
Petabit Switch Fabric Design

Jen-Hung Lo
Yue Cao
Jingxue Zhou

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-46

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-46.html

May 10, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Special thanks to our advisors Vladimir Stojanovic, Elad Alon and our
faculty committee member John Wawrzynek. Also many thanks to the
graduate students at BWRC who helped us tremendously with our project:
Christopher Yarp, Angie Wang, Paul Rigge, Ranko Sredojevic, and
Taehwan Kim. Lastly, we would also like to thank Lawrence Berkeley
National Lab staffs Farzad Fatollahi-Fard and David Donofrio for allowing
us use their OpenSoCFabric as our project baseline and for giving us a
presentation on the source code

 Jen-Hung Lo

 Page 1

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2016

Electrical Engineering and Computer Science

Physical Electronics and Integrated Circuits

Petabit Switch Fabric Design

Jen-Hung Lo

This Masters Project Paper fulfills the Master of Engineering degree requirement.

Approved by:

1. Capstone Project Advisor:

Signature: __________________________ Date ____________

Print Name/Department: Vladimir Stojanovic/EECS

2. Faculty Committee Member #2:

Signature: __________________________ Date ____________

Print Name/Department: John Wawrzynek/EECS

 Jen-Hung Lo

 Page 2

Table of Contents

Chapter 1: Technical Contribution

1. Introduction --3

2. Switch in Literature ---4

3. Approach, Design and Validation -- 12

4. Results --- 18

Chapter 2: Industry and Market Analysis

1. Introduction -- 26

2. Industry Analysis -- 27

3. Tech Strategy --- 29

4. Market Analysis -- 30

Reference-- 32

Appendix -- 34

 Jen-Hung Lo

 Page 3

Chapter 1: Technical Contribution

I. INTRODUCTION

1.1 Motivation

 Interconnection networks are used virtually in almost all digital systems that contain at least two

components to connect be it CPU core, memory, or I/O device (Dally, 2004). As digital systems today

continue to scale up, the interconnection network becomes one of the major bottleneck that limit the

performance of the systems (Dally, 2004). Thus throughput and latency of the network are becoming

more relevant than ever before when benchmarking a system’s performance. Thanks to the increase in pin

bandwidth due to scaling of pin and wire density, the throughput of the network has been keeping pace

with the rate at which systems are scaling. Furthermore, with high pin bandwidth a paradigm shift from

low-radix wide-channel switch to high-radix narrow-channel switch can be seen (Abts, 2011). However,

increasing the radix of a switch brings about various challenges as internal components such as crossbar

switch and allocator scale at a faster rate than the radix (Kim, 2005). Our project, Petabit Switch Fabric

Design, aims to sweep the design space of a high radix switch and draw a conclusion as to what the most

optimal switch architecture is based on its performance metrics.

1.2 OpenSoC Fabric

 The core of our project centers around the open source switch fabric code, named OpenSoC

Fabric, implemented by Lawrence Berkeley National Laboratory (LBNL). OpenSoC Fabric was

developed with the purpose of providing users a “complete and power on-chip network generator for

evaluating future large-scape chip multiprocessors and system on chip” (Fatollahi-Fard at el, 2015).

OpenSoC Fabric is implemented entirely in Chisel – which is a hardware construction language

developed at UC Berkeley – and Scala. The primary use case for Chisel is describing diverse and highly

parameterized hardware generators that traditional hardware description language such as Verilog lack

(Izraelevitz, 2015). Moreover, Chisel can generate a software cycle-accurate simulator in C++ for

 Jen-Hung Lo

 Page 4

verification as well as Verilog file that can be pushed through the ASIC or the FPGA flow (Bachrach at el,

2012). Leveraging the parameterization feature that Chisel offer, LBNL created a network generator that

can be instantiated with user-defined parameters. Our project goal is to extract a single switch from

LBNL’s generator, implement other variants of the same blocks found within a the switch, adjust the

parameters found within the design space and examine how these modifications may help or hinder the

performance under the context of high-radix switch.

II. SWITCH IN LITERATURE

 Our primary source of literature review is William Dally’s book Principles and Practices of

Interconnection Networks. The book describes the various sub-components within a switch. The main

blocks of interest – namely virtual channels, routing computation, VC allocator, switch allocator and

crossbar switch – are illustrated in high-level block diagram shown in Figure 1. In the next couple of

sections, we introduce some essential switch terminologies – such as message, packet, flit and virtual

channel – before dedicating the rest of the sections to each of the block’s functional descriptions and

architecture.

Figure 1. Router microarchitecture (Kim, 2005)

 Jen-Hung Lo

 Page 5

2.1 Message, Packet and Flit

 Message, packet and flit are units of data transfer in which the network resources are allocated

for. In Figure 2, message is the largest unit of transfer and it is usually sent from a source terminal such as

processors or memories to the network. Since message can be arbitrarily large, message is broken down

into several fix-sized packets. However, a packet can still be rather large compared to a port width of a

narrow-channel high-radix switch, so a packet is further divided into flits. There are two kinds of flits

within a packet: a head flit and a body flit. The head flit, as its name suggested, is the first flit of the

packet and it contains information such as the packet destination, packet type, and packet ID. Body flits,

on the other hand, are flits that follow the head flit and they contain the same packet type and packet ID as

the head flit and additionally they also carry the packet payload. In our switch design, the resources are

allocated for flits.

Figure 2. Message, packet and flit structures.

2.2 Virtual Channel

 In Figure 1 the switch is shown to have k input ports on the left side and k output ports on the

right side. Associated with these ports are v numbers of virtual channels, or VC. The idea of virtual

channel is that when there are multiple different flits coming into Input 1, for example, these flits can be

 Jen-Hung Lo

 Page 6

buffered in different virtual channels while they are waiting to be serviced. On the flip side, if there is

only one virtual channel, then a single flit can potentially idle on the sole channel while other flits also

wanting to enter the same port will be stuck in the buffer behind the idling flit. Hence, the benefit of

having multiple virtual channels is to prevent the active flits from being obstructed by an idle flit as much

as possible. Although it is not shown in Figure 1, virtual channels can also reside on the output ports.

Physically, virtual channels are fixed-sized buffers and it is up to the designer to partition them as shown

in Figure 3. Since the partitioning is user-defined, the number of virtual channels makes a good parameter

choice in the design space.

Figure 3. Buffer storage for 1, 2, and 4 virtual channels with fixed buffer size of 16 flits (Dally, 2004).

2.3 Routing Function

 After the flit is buffered in one of the virtual channels, the output port through which the flit

should go to needs to be determined. This is where routing function comes in. Routing function is an

algorithm that determines the switch output that a flit should take based on the destination address

embedded within the head flit. There are several approaches to implementing a routing function. Two

implementations are considered in this paper.

 One implementation is the dimension order routing (DOR). The idea is that the flit is first routed

in a lower dimension to the correct coordinate before it is routed towards the next dimension (Yu, 2015).

In a 3-dimensional mesh, we can define the DOR to first route in the X-dimension, then in the Y-

dimension, and finally in the Z-dimension. Consider routing from (0,0,0) to (2,2,2) in a 3-D mesh indexed

 Jen-Hung Lo

 Page 7

by Cartesian coordinates. The routing function in the switch indexed by (0,0,0) will choose an output port

that leads to a neighboring switch indexed by (1,0,0). The routing function in the switch indexed by

(1,0,0) will in turn choose the output port that leads to switch indexed by (2,0,0). Since the flit is at the

correct location as far as X-dimension is concerned, the next switch is (2,1,0), follow by (2,2,0), (2,2,1),

and finally (2,2,2). Figure 4 illustrates the path the flit takes from (0,0,0) to (2,2,2). Note that in a 3-

dimensional mesh, the highest radix is limited to 6 (2 radix in each of the dimension). Hence, the

dimension of the mesh has to scale up as the radix scales up.

Figure 4. 3-Dimensional mesh with starting point switch indexed in (0,0,0) and ending point in (2,2,2).

The red path is chosen as path of traversal by the dimension order function.

The downside to this approach is that it restrains the network topology to a grid structure which limits the

options of switch fabric infrastructure. Furthermore, the scaling of the dimension proportionally lengthens

the time it needs to compute the destination port, thus incurring an undesirable critical path in the routing

function block.

 The second approach to routing function is lookup table and it alleviates the drawbacks

experienced by DOR. A lookup table is a data table stored in a switch that lists the key-value pairs of all

 Jen-Hung Lo

 Page 8

the addresses and their associated ports. The size of the address space depends on how many computing

nodes there are in a network topology. A lookup table implemented in a 4-radix switch with 8 computing

nodes in the network is shown in Figure 5. As we can see, address 0 and 6 maps to output port 3, address

of 1 and 4 maps to output port 1, and so on. As opposed to the topology constraints imposed by

dimension routing function, a lookup table has no such limitation as it is entirely user-defined. It also

offers faster route computation than that of dimension order routing at the expense of area and power.

Address Output Port

0 11

1 01

2 00

3 10

4 01

5 00

6 11

7 10

Figure 5. Lookup table for 8x8 switch

The lookup table is implemented simply as a register file that can be populated serially in the initialization

process. Each virtual channel in a switch can read from the lookup table, hence there are as many read

ports and multiplexors as there are numbers of virtual channels. Figure 6 shows a lookup table with m

network nodes, r radix, and n read ports. Note that n usually equals to number of radix times number of

VC. As radix scales up, the width of the lookup table scales up at the rate of log r and the number of

multiplexers scales up at the rate of r. Therefore, the complexity of the lookup table as a whole scales at r

log r relative to radix.

 Jen-Hung Lo

 Page 9

Figure 6. m-deep, r-wide lookup table with n read ports.

2.4 VC Allocator

 Once the output port for the flit is determined using the routing function, the flit now needs to

requests an output virtual channel from the virtual channel (or VC) allocator (Dally, 2004). There may be

several flits from different input ports that are requesting the same output VC. To resolve the contention,

it is the role of the VC allocator to allocate the output VC in question and ensure that only one request

may obtain the output VC. In terms of implementation, an allocator is consists of several arbiters. An

arbiter is a logic block that arbitrates among several requests competing for the same resource. An

allocator leverages the functionality of several arbiters in order to achieve an arbitration scheme that

arbitrates among several requests competing for a group of resources as opposed to just one resource.

Figure 7 shows an allocator with m resources and n*m requests using m arbiters. In an allocator, n and m

represent the number of input and output ports and vice versa. Therefore, scaling up the radix would

increase the complexity of the allocator quadratically.

 Jen-Hung Lo

 Page 10

Figure 7. n-by-m allocator.

2.5 Switch Allocator

 Once an output VC has been allocated by the VC allocator, a route between the input port and the

output VC has been determined. The switch allocator’s responsibility is to configure the select signals for

the multiplexors located after the input VCs as well as the multiplexors within the crossbar switch in

order to link together the input VC to output VC. The implementation for switch allocator is exactly the

same as that of VC allocator and hence has the same complexity.

2.6 Crossbar switch

 A crossbar switch connects multiple inputs to multiple outputs. The flit is able to physically

traverse from input VC to output VC after the link is established between the I/O by configuring the select

signals that control the multiplexors that reside within a crossbar. In Figure 8, it shows a schematic of the

n-by-m MUX crossbar switch. This means there are n inputs and m outputs. Each of input and output

 Jen-Hung Lo

 Page 11

ports are a flit wide as denoted by fw. Similar to an allocator, a switch grows quadratically as radix scales

up. In fact, switch is the second largest block in the design as seen in the result section below. Hence,

distributed MUX crossbar, another crossbar switch implementation, is considered. As shown in Figure 9,

the idea of distributed MUX crossbar is to break a single MUX in Figure 8 into smaller MUXes in order

to relieve some burden from the synthesis tool. As it turns out, distributed MUX crossbar not only offers

very little area benefit compared to the regular MUX crossbar, but it also doubled the critical path in the

switch. Hence, distributed MUX crossbar will not be further investigated in the rest of the paper. Chisel

code for the distributed MUX crossbar can be found in the Appedix. We have also taken a look at Clos

network as an alternative to MUX crossbar. Its implementation can also be found in the Appendix.

Figure 8. n-by-m switch. fw is the width of a flit.

 Jen-Hung Lo

 Page 12

Figure 9. Small MUXes of distributed MUX crossbar that make up a larger MUX in a regular MUX crossbar.

III. APPROACH, DESIGN AND VALIDATION

3.1 Work Breakdown

 Figure 10 depicts the work breakdown structure that we have defined for our capstone project.

Chisel and router learning is the first step that all members of the team have to undertake before moving

on to comprehend OpenSoC Fabric code. These two task plans dominated most of the Fall Semester as

they have steep learning curve. In the Spring Semester, we were able to achieve a decent understanding of

the code base insomuch that we were able to distinctly split the work into three parts: (1) Implementation

of arbiter modules; (2) implementation of routing function and back-end tool setup; and (3) extraction of a

single switch and implementation of test harness. Lastly, the resulting design from our combined work

will be pushed through the back-end ASIC flow which includes synthesis, floorplanning, place and route.

 Jen-Hung Lo

 Page 13

Figure 10. Work breakdown structure.

3.2 Arbiter Modules

 Arbiter is the main component within an allocator and as mentioned previously, the complexity of

an allocator increases quadratically with the number of radix. Hence it is important to explore various

arbiter implementations to gauge the efficiency of each type in a high-radix switch. Yue has chosen two

different implementations of arbiter to explore: matrix arbiter and lookahead arbiter. Since types of arbiter

are part of the design space, they can be parametrized using Chisel’s parametrization feature.

 Matrix Arbiter implements the least recently served scheme, which means the most recently

served port will be assigned the lowest priority in the next round of arbitration. Using the analogy of a

street intersection, it is similar to giving the left turn light the lowest priority to be green after it was just

green a moment ago. Matrix arbiter stores the priorities inside a matrix structure, hence the name of the

arbiter. Lookahead arbiter is a variant of fixed priority round robin arbiter that is superior in the speed of

arbitration. Figure 11(a) shows the implementation of a normal fixed-priority arbiter and Figure 11(b)

shows the lookahead implementation of the arbiter. Since lookahead arbiter experiences less gate delay, it

has relatively higher speed than a typical arbiter.

 Jen-Hung Lo

 Page 14

Figure 11. Two implementations of 4-bit arbiter: (a) Using iteration; (b) using lookahead (Dally, 2012).

3.3 Routing Function & Back-end Tool Setting

 As mentioned in the previous section, lookup table was chosen as the routing function of the

switch. A lookup table offers fast access and flexibility in topology infrastructure at the expense of area

and power. Since I am responsible for the implementation, I have included the snippet of the lookup table

Chisel implementation in Figure 12. For full implementation and test harness, see Appendix. The IOs are

quite similar to a register file except that there can be more than 2 read ports. In fact, there are as many

read ports as there number of radix times number of VCs. Also note that the only handshaking signal is

writeEnable. This means that the lookup table can only be initialized/modified once before the functional

traffic of the switch begins. Since write and read operations are never executed at the same time, there is

no need to worry about race condition.

 Jen-Hung Lo

 Page 15

Figure 12. Chisel code for lookup table

 Apart from the lookup table implementation, I was also responsible for modifying all the modules

and test harnesses that depended on dimension order routing – which was originally implemented by

LBNL – to accommodate the integration of the lookup table. Lastly, I set up the environment for ASIC

back-end flow which is described in detail in “3.5 Back-end ASIC Flow” section.

3.4 Single Switch Extraction & Test Harness

 OpenSoC Fabric is a generator for network mesh. However, within the realm of our project

scope, we only need to explore and analyze a single router. Therefore, the first step is then to extract a

single switch from the mesh provided in OpenSoC Fabric. The key to switch extraction is to recognize

that the content of the module which contains network topology can be replaced by that of a single router

without modifying the module’s I/Os. With this approach, there is no need to modify the top level

modules as well as the child modules that interface with the topology module. Figure 13 shows the code

snippet of the topology that instantiates one switch only. The bus probe that is instantiated alongside of

the switch is used to monitor the flit traffic on the output ports.

 Jen-Hung Lo

 Page 16

Figure 13. Chisel code for topology with only one switch instantiation

 Test harness is a testing structure that wraps around the entire switch design. It injects packet

traffic with various traffic patterns and measures the packet latency as well as the channel utilization. Due

to the scope of the project, the only traffic pattern we considered is 10% injection rate without bursting.

The methodology to test the switch functionality is simply injecting a packet into an input port and

expecting it to exit the correct output port in a certain amount of cycles. After a simple packet traversal is

validated, we then inject a total of 64 packets of varying lengths into each of the ports and monitor the

arrival/departure of all the packets. Using these numbers, the latency and throughput are calculated like

such:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
1

64 ∗ 𝑟𝑎𝑑𝑖𝑥
∗ ∑(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑅𝑎𝑑𝑖𝑥 ∗ 𝑓𝑙𝑖𝑡 𝑤𝑖𝑑𝑡ℎ ∗ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 Jen-Hung Lo

 Page 17

Note that clock frequency in the throughput equation can be found in static timing report generated from

the Design Compiler tool.

3.5 Back-end ASIC Flow

 OpenSoC Fabric is designed entirely in Chisel. Chisel is capable of generating Verilog equivalent

code that can be pass to an ASIC or FPGA flow. Once we have the Verilog code that is functionally the

same as its Chisel counterpart, we can feed it to Design Compiler which is logic synthesis tool that

synthesizes the hardware design described in HDL into a gate-level circuit representation. From this tool

we can also get estimation on timing, area and power of the design. However, it is not accurate as no

routing or placement has been done yet. We borrowed the setup scripts from the ASIC lab we took last

semester and from the Petabit team previous year. The next step after Design Compiler is to push the

design through IC Compiler which does floorplanning, placement and routing. Figure 14 highlights the

steps in ASIC design flow.

Figure 14. ASIC design flow

 Jen-Hung Lo

 Page 18

IV. RESULTS

4.1 Objective, Design Space, and Performance Metrics

 As mentioned previously, our objective is to explore the design space of a switch and determine

what configuration gives the most optimal performance. The parameters within the design space that we

chose to vary are the types of arbiters and the number of radix. Figure 15 summarizes all the parameters.

Note that we varied the radix from 2 up to 64 because the C++ simulator was not able to run for 128-radix

or above configurations due to complexity and time. The primary performance metrics we decided to use

to deduce the best configuration is the division of throughput by latency.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

𝑅𝑎𝑑𝑖𝑥 ∗ 𝑓𝑙𝑖𝑡 𝑤𝑖𝑑𝑡ℎ ∗ 𝑐ℎ𝑛 𝑢𝑡𝑖𝑙

1
64 ∗ 𝑟𝑎𝑑𝑖𝑥

∗ ∑(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑎𝑡𝑒𝑛𝑐𝑦) ∗ 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑
 (𝑏𝑖𝑡𝑠

𝑠 ∗ 𝑐𝑦𝑐𝑙𝑒⁄)

Since we want to achieve the highest throughput and the lowest latency, the implementation that offers

the highest division of throughput by latency is the most ideal. Area and power are also considered in

choosing the optimal configuration.

Parameters Fixed or Vary Value(s)

Types of Arbiter Vary Round Robin

Lookahead

Matrix

Radix Vary 2, 4, 8, 16, 32, 64

Num of VC Fixed 2

Num of nodes Fixed 256

Queue depth Fixed 16

Flit size Fixed 55 bits

Figure 15. Design parameters and their values

 Jen-Hung Lo

 Page 19

4.2 Choosing an Arbiter

 There are three kinds of arbiters we implemented: Round robin, matrix and lookahead. Figure

16(a), 16(b) and 16(c) show how these arbiters fare under different metrics, namely power, area and

throughput over latency. Note that the figures contain data up to radix 8 because we think the data is

enough to show the general trend as radix scales up. Under 2-, 4- and 8-radix switch, lookahead arbiter

proves to be the superior arbiter as it takes up the least areas, offers the most throughput over latency and

generates similar power numbers as those of the other arbiters. It is also interesting to note that matrix

arbiter sacrificed power and area for a slightly better performance than round robin.

 Besides the metrics used above, it is also crucial to consider the fairness of each arbiter.

Lookahead arbiter is a fixed priority arbiter and thus the channels that were assigned the lowest priorities

will have starved packets. A side-by-side comparison of each arbiter’s fairness is shown in Figure 17(a),

17(b) and 17(c). They show the histograms of the latencies of 1024 packets injected at 10% rate under

each of the arbiter in a 16-radix switch. As seen in the lookahead arbiter’s histogram, it has a relatively

higher peak on the left follow by a long tail. This means that majority of the packets are serviced right

away while the rest of the packets are idling waiting to be serviced. On the other hand, round robin and

matrix arbiter rotate the priorities of the channel and hence have a relatively smoother gradient and

shorter tail. For comparison, the longest latency in lookahead, round robin and matrix are 49, 26 and 27

cycles, respectively. Hence, at 10% injection rate, the longest packet latency in lookahead is twice as long

as that of the round robin and matrix, which may or may not be desirable depending on the application.

Despite its inferior arbitration fairness, lookahead arbiter is still chosen as the best arbiter based on its

performance and thus is used in the rest of the result analysis.

 Jen-Hung Lo

 Page 20

Power (uW) Radix 2 Radix 4 Radix 8

RR Arbiter 24800 48400 95600

Matrix Arbiter 24800 50700 123000

CL Arbiter 26500 50700 10100

Figure 16(a). Power figures for different types of arbiters and radix

Area (um
2
) Radix 2 Radix 4 Radix 8

RR Arbiter 104491.3082 223193.841 486472.7992

Matrix Arbiter 105031.8725 229982.0274 548598.3014

CL Arbiter 104736.5572 221551.0542 476628.531

Figure 16(b). Area figures for different types of arbiters and radix

Throughput/Latency

(Gb/s*cycle)
Radix 2 Radix 4 Radix 8

RR Arbiter 1.526 2.300 3.485

Matrix Arbiter 1.400 2.240 3.948

CL Arbiter 1.633 2.641 4.282

Figure 16(c). Throughput/Latency for different types of arbiters and radix

 Jen-Hung Lo

 Page 21

Figure 17(a). Histogram of packet latency under round robin arbiter

Figure 17(b). Histogram of packet latency under matrix arbiter

Figure 17(c). Histogram of packet latency under lookahead arbiter

 Jen-Hung Lo

 Page 22

4.3 Choosing a Radix

 Similar to choosing the arbiter, we decided on the best radix based on the throughput over latency

metric. Figure 18(a), 18(b) and 18(c) show the latency, throughput and throughput over latency versus

radix, respectively. Note that the data points for radix-128 are extrapolated and the rest is obtained from

software simulation and DC synthesis. In Figure 18(c), it shows that 64-radix switch yields the highest

performance and droops a little bit at 128-radix. Before claiming 64-radix switch as the best

configuration, we also have to consider its area and power figures to see if they are reasonable.

Figure 18(a). Average packet latency vs. radix

 Jen-Hung Lo

 Page 23

Figure 18(b). Throughput vs. radix

Figure 18(c). Throughput / latency vs. radix

 Jen-Hung Lo

 Page 24

 Figure 19(a) and 19(b) illustrate the area and power distribution of 64-radix switch. We can

observe that the buffers consume majority of the area and power. Buffers include injection/ejection

queues and VC buffers that are 16 registers deep and are allocated for 55-bit flit. The next largest block is

the crossbar switch. As mentioned previously, crossbar switch is innately large and it grows quadratically

with respect to radix. Hence it is likely that the crossbar may overtake buffer – which grows linearly – as

the largest component beyond 128 radix. This is a major concern, so pipelining and efficient crossbar

design such as Clos network should be look into as future work. One more concerning thing to note is the

rest of the area and power denoted as “others”. This mainly includes the logics on the toplevel, with the

biggest hitter being the scoreboard registers that track all the valid grants of the allocators. The scoreboard

is a sequential element that also grows quadratically with respect to radix. This may be the reason why its

power is higher than that of the switch, which is purely combinational. Overall, the total power is 1.32W

and the total area is 7,736,094 um
2
 or 7.7 mm

2
 which comes down to a 2.8mm by 2.8mm chip if the

aspect ratio is 1. A caveat is that these figures might be an underestimation as they are obtained from DC

reports.

Figure 19(a). Area distribution for 64-radix switch

 Jen-Hung Lo

 Page 25

Figure 19(b). Power distribution for 64-radix switch

4.4 Concluding Remarks and Future Work

 Since all the power and area figures are generated from Design Compiler, they do not account for

wiring congestion and parasitics. However, these figures still show a general trend that shed lights on the

growth rates of area and power with respect to radix. Using the three performance metrics – throughput

over latency, power and area – we were able to find the most suitable arbiter, the lookahead arbiter. Even

though it has an inferior arbitration scheme than the other two arbiters, it gives us the least amount of area

while having the best throughput over latency. Using the same performance metrics, we were able to find

the most ideal radix, 64, under the switch architecture implemented by LBNL.

 For future work, we are hoping to push 64-radix switch through ICC. Currently, we were only

able to push 16-radix switch through ICC, hence no significant ICC data was reported in this paper.

Although not executed, we have been looking into the hierarchical synthesis flow as a potential solution.

It is a methodology where each of the components are synthesized individually and then put together on

the toplevel to be synthesized again. With this approach, we may be able to synthesize 32- or high radix

switch in ICC.

 Jen-Hung Lo

 Page 26

Industry and Market Analysis

I. INTRODUCTION

 Driven by the growing demand for faster processing speed in recent years, chip companies such

as Intel and AMD have turned to multi-core CPUs as the solution to scaling system performance (Wolfe,

2009). Unlike single-core processors, multi-core processors integrate hundreds or thousands of processing

elements together on small chips. Given the physical proximity of myriads of processors on a single die,

significant boost in performance can be achieved while maintaining minimal communication latency. As

the number of architectural elements integrated on a single die continues to grow, the network-on-chip

(NoC) implementation becomes the major bottleneck in how fast the multicore chip can operate (Becker,

2012). Network-on-chip is essentially the communication system integrated directly on the chip that ties

all the processors, memories and external devices together. Figure 1 illustrates a multi-core NoC platform

that features multiple cores, memories and other devices linked together by a central NoC switch fabric.

Figure 1. Multi-core Network-on-Chip Layout (Benini, 2007)

 The switch fabric itself consists of several network nodes, or routers, that are interweaved

together in certain geometrical topology to make up the entire NoC system. Hence, the times it takes to

communicate between two network endpoints ultimately depends on the number of router hops along the

path of data traversal (Dally, 2004). The numbers of router hops are directly related to the number of ports

 Jen-Hung Lo

 Page 27

–or radix – of a router, and by scaling up the radix of a router we can connect additional endpoint devices

and communicate with fewer router hops, thus achieving the level of efficiency required by a multicore

system. However, there exist design tradeoffs within router microarchitecture that limit the scope of

radix’s scalability, hence marking a point of diminishing return in network quality.

 Our project, Petabit Switch Fabric Design, thus is to experiment and analyze the design tradeoffs

in question and observe how they may help or hinder the performance of a router as it scales up its radix.

Using the router design prototype based on the open source code developed by Lawrence Berkeley

National Lab as a baseline, we will be investigating the ways in which different parameters may impact

the performance of the router design. Ultimately, our end goal is to find the most efficient configuration

for high radix router.

II. INDUSTRY ANALYSIS

 One of the biggest current technology trends is the shift towards cloud computing. Major

companies like Dell, Microsoft, and Amazon have started to provide cloud computing services. For

example, Dell announced the Dell Private Cloud Solution, which is powered by Intel architecture, and

provides infrastructure that helps to reduce ownership cost by having superior automatic allocation of

computing resources (2016). Instead of managing their own localized hardware, enterprises can rent data

computing resources from these big companies to obtain more flexible resources and to reduce overall

cost (Hassan, 2011).

 Such trends lead to the collection of data computing resources towards the few big companies

mentioned above. To provide the storage for such a large amount of resources, these companies need to

construct data centers with warehouse-scale computers (WSC), that is, warehouses full of supercomputers

interconnected together. In order for all the computers within such a warehouse to communicate to each

other and to the outside world while maintaining high performance, having powerful interconnection

infrastructure is extremely critical. Hence, these data center giants become obvious target customers for

our high-speed router.

 Jen-Hung Lo

 Page 28

 To assess the profitability of this product, we will use the Porter’s five forces model: new entrants,

substitutes, buyers, suppliers, and existing rivals (2008). Firstly, consider the force of the new entrants.

Routers are highly specialized pieces of hardware that are sold in the form of chips. The biggest part of

the chip cost is the non-recurring engineering cost, which is the one-time cost for a chip design, so the

overall cost of the chips will decrease drastically when increasing the sale amount. However, it is hard for

new entrants to sell as many chips as the existing companies. Therefore, the new entrants have a critical

cost disadvantage and thus the effect should be weak. Secondly, the substitute of a router chip is its

software counterpart. Nowadays routers are a combination of software and hardware so as to fill in the

shortcomings of each other. For example, Broadcom’s Trident II ASIC switch is currently being used as

top-of-rack switch configuration in Facebook’s Wedge and FBOSS. Wedge is the physical hardware of

the top-of-rack switch and FBOSS is the software agent that controls the ASIC (Simpkins, 2014).

Therefore, the effect of the substitute software should be weak. Thirdly, the bargaining power of suppliers

(the chip manufacturing companies) and the customers (warehouse-scale data centers) are quite strong

since they don’t come in high volume.

Finally, the rivals of our products are the products from existing network companies such as

Cisco, Juniper and Broadcom. Since these companies are already firmly established in the networking

landscape, the force of rivalry is strong. Fortunately, these companies are providing products with strong

features instead of strong cost advantage, which may not have a great impact on the market price. For

example, Broadcom announced the StrataXGS Tomahawk™ Series in September of 2014. This chip is

used for Ethernet switch for cloud-scale network and the promised bandwidth is 3.2 terabits per second

(Broadcom, 2014). This product can support from 32 to 128 ports based on the speed of Ethernet, and the

data transfer rate of the data center network can be largely improved while keeping the same cabling

complexity and equipment footprint (Broadcom, 2014). This is a good example of competitors with

powerful features.

 After considering these five forces, we can see that except the rivalry force, we have two strong

and two weak forces. As for rivalry, the strong force towards feature usually improves the profitability of

 Jen-Hung Lo

 Page 29

the industry. However, our product will be a new entrant, which is determined as a disadvantage

previously. In general, the profitability of our product should be on average level since the five forces are

almost balanced. Based on the profit trend convention of rivalry above, we should focus on developing

strong features to further improve the overall profit. Meanwhile, since it will be hard for us to compete

with the existing strong rivals on all kinds of features, we should first concentrate on a niche market and

design our product with few special features.

III. TECH STRATEGY

As mentioned previously, there is a clear indication in the current trend that enterprises and

consumers alike are moving towards cloud services and solutions. A little more than a decade ago

however, this trend was less obvious and most companies were still using localized servers with switches

and routers that are managed individually (Morgan, 2015). Google, a pioneer in distributed computing

and data processing, was the only company that foresaw the need of transformative networking

technology required by the increasingly powerful computing infrastructure. Indeed, for the past decade or

so, Google has been developing and deploying its own networking infrastructures to complement the

computing power required from Google’s large-scale cluster architecture starting from Google File

System in 2002 to Spanner in 2012.

Armin Vahdat, the technical lead for networking at Google, succinctly described this mutual

dependency between network and computing in his keynote in ONS 2015: “Networking is an inflection

point and what computing means is going to be largely determined by our ability to build great networks

over the coming years (2015)”. By discovering before everybody else that traditional network was not

able to scale up to meet the computing requirements in the near future and proactively improving and

transforming their network infrastructure in response to the growing bandwidth demands from their

servers, Google was able to become one of the biggest players in the computing industry today.

With the advancement of memory technology – for example, the 3D XPoint nonvolatile memory

that offers up to 1,000 times the speed and up to 10 times the storage (Intel, 2015) – playing a major role

 Jen-Hung Lo

 Page 30

in the future scene of datacenters, it is imperative for the networking technology to evolve even further

than before. Vahdat has predicted in his keynote that a 5 Petabit per second network, in comparison to the

Gigabit per second network commercially available today, may be needed in the near future (2015).

Currently, Google’s latest-generation network Jupiter employs high-radix switch with 128 ports and 40

Gigabytes per port, allowing it to deliver 1.3 Petabit per second (Singh et al, 2015). In light of the

successful deployment of high-radix switch from Google and Vahdat’s foresight on networking trend, our

team pursues to find the optimal high-radix router architecture that enables data to be communicated at

the Petabit level and beyond.

IV. MARKET ANALYSIS

Fast router technology has ample opportunities in the tech market because it addresses the need

for fast and efficient network infrastructure. This section assesses the success of our router technology in

the market by applying the 4P marketing analysis which considers four main aspects of go-to-market

elements: price, product, promotion and place.

One can find routers being used in almost all digital systems where there are at least two

endpoints that can communicate with each other. However, as a new entrant, it is important to find a

specific niche market in which our product best fits. According to Andre Barroso, the manufacturing cost

is directly proportional to the number of radix (Andre Barroso, 2013). The increased cost means that our

product will be an enterprise, business-to-business product rather than a commodity sold directly to

consumers. Moreover, companies such as Broadcom, Cisco and Juniper are already dominant in the

networking world, thus making it a difficult process for us as new entrant to compete. As previously

mentioned, our router technology is designed to enable fast and efficient communication between large

collections of machines in computing centers. Therefore, it may be in our best interest to zoom in our

market focus to companies such as Google and Facebook that house homegrown warehouse-scale

datacenters. Moreover, in recent years many major players on par with Google and Facebook have

 Jen-Hung Lo

 Page 31

starting to develop their own data servers, thus forming a growing pool of demand for robustness and

efficiency in the underlying networking infrastructures.

 Since our market segment is quite narrow and our product fits business-to-business commerce the

most, our distribution channel should just be a team of professional salespeople that are highly familiar

and experienced in this market. Therefore, the appropriate promotion strategy is definitely not huge-scale

advertisement; rather, if our technology is exactly what Google or Facebook is looking for, their adoption

of our product will publicize it to other potential customers. Another common way for new techs to raise

awareness is by showcasing them at technology trade shows such as Consumer Electronic Show. Linksys

and Netgear – companies that sells data networking hardware products – for example have seen huge

success in CES with announcements of new generation of routers.

 In general, as we determined our product as a business-to-business one, we will first focus our

market on big companies such as Google and Facebook who need router technology for their datacenters.

As a new entrant, we will keep track on what our competitors are doing, and specialize in our feature –

using high radix to achieve high speed. Once we succeed in our first target market, we plan to promote

our product to a broader potential market to gain more recognition by publicizing the product through

existing consumers and showcasing the product in Electronic Show.

 Jen-Hung Lo

 Page 32

Work Cited

Abts, Dennis, and John Kim. High Performance Datacenter Networks: Architectures, Algorithms, and

Opportunities. Morgan & Claypool Publishers, 2011.

Andre Barroso, Luiz, Jimmy Calidaras, Urs Holzle. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines.” Morgan & Claypool Publishers, 2013.

Bachrach, Jonathan, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avizienis, John

Wawrzynek, Krste Asanovic. “Chisel: Constructing Hardware in a Scala Embedded Language”. DAC

2012, June 3-7, 2012, San Francisco, CA. 2012.

Becker, Daniel. “Efficient microarchitecture for network-on-chip routers”. Doctoral

dissertation submitted to Stanford University. August 2012.

http://purl.stanford.edu/wr368td5072

Benini, Luca and Giovanni De Micheli. “The Challenges of Next-gen Multicore Networks-on-Chip

Systems.” n.p. 26 Feb. 2007

<http://www.embedded.com/design/mcus-processors-and-socs/4006822/The-challenges-of-next-gen-

multicore-networks-on-chip-systems-Part-4>

Broadcom. Broadcom Delivers Industry's First High-Density 25/100 Gigabit Ethernet

Switch for Cloud-Scale Networks. Press Release. n.p., 24 Sept. 2014. Web. 1 Mar. 2015.

<http://www.broadcom.com/press/release.php?id=s872349>.

Dally, William, and Brian Towles. Principles and Practices of Interconnection Networks.

San Francisco: Morgan Kaufmann Publishers, 2004.

Dally, Williams and R. Curtis Harting. Digital Design: A Systems Approach. Cambridge University Press,

2012

Dell. “Dell Private Cloud Solutions”. www.dell.com. n.d. Accessed 4 March 2016

Fatollahi-Fard, Farzad, David Donofrio, George Michelogiannakis, John Shalf. OpenSoC Fabric: User

and Reference Manual. 22 June 2015.

<https://github.com/LBL-CoDEx/OpenSoCFabric/wiki>

Hassan, Qusay. "Demystifying Cloud Computing". The Journal of Defense Software Engineering

(CrossTalk) (2011 Jan/Feb): 16–21. Retrieved 4 March 2016

John Kim, William J. Dally, Brian Towles, Amit K. Gupta. “Microarchitecture of a High-

Radix Router”. Proceedings of the 32nd annual international symposium on Computer

Architecture, 2005: 420-431. Washington, DC. 2005

Izraelevitz, Adam, Advanced Parametrerization Manual. 22 May 2015.

<https://chisel.eecs.berkeley.edu/2.2.0/chisel-parameters.pdf>

Porter. “The Five Competitive Forces That Shape Strategy”. hbr.org. January 2008. Accessed 4 March

2016

http://purl.stanford.edu/wr368td5072
http://www.embedded.com/design/mcus-processors-and-socs/4006822/The-challenges-of-next-gen-multicore-networks-on-chip-systems-Part-4
http://www.embedded.com/design/mcus-processors-and-socs/4006822/The-challenges-of-next-gen-multicore-networks-on-chip-systems-Part-4
http://www.dell.com/
https://github.com/LBL-CoDEx/OpenSoCFabric/wiki
http://www.crosstalkonline.org/storage/issue-archives/2011/201101/201101-Hassan.pdf

 Jen-Hung Lo

 Page 33

Simpkins, Adam. “Facebook Open Switching System (“FBOSS”) and Wedge in the Open.” n.p. 10 Mar.

2014.

<https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-

in-the-open/>

Singh, Arjun, et al. “Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s

Datacenter Network”. In SIGCOMM (2015)

Vahdat, Amin. “A Look Inside Google’s Data Center Network.” Open Networking Summits 2015. Santa

Clara Convention Center, Santa Clara. 17 Jun. 2015. Keynote.

Yu, Zhigang, Dong Xiang, Xinyu Wang. “Balancing Virtual Channel Utilization for Deadlock-free

Routing in Torus Networks”. The Journal of Supercomputing, 17(8), 3094-3115. August 2015.

https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open/

 Jen-Hung Lo

 Page 34

Appendix

lookUpTable.scala
package OpenSoC

import Chisel._
import scala.util.Random

class LookUpTable(parms: Parameters) extends Module(parms) {
 val lutWidth = parms.get[Int]("widthLookUpTable")
 val lutDepth = parms.get[Int]("depthLookUpTable")
 val numReadPorts = parms.get[Int]("numReadPorts")

 val io = new Bundle {
 val writeData = UInt(INPUT, width = log2Up(lutWidth))
 val writeEnable = Bool(INPUT)
 val writeAddress = UInt(INPUT, width = log2Up(lutDepth))
 val readData = Vec.fill(numReadPorts) { UInt(OUTPUT, width =
log2Up(lutWidth)) }
 val readAddress = Vec.fill(numReadPorts) { UInt(INPUT, width =
log2Up(lutDepth)) }

 // Debug Ports
 val readOutAddress = Vec.fill(numReadPorts) { UInt(OUTPUT, width =
log2Up(lutDepth)) }
 }

 val lut = Vec.fill(lutDepth) {Reg(init = UInt(0, width = log2Up(lutWidth)))}
 when (io.writeEnable) {
 lut(io.writeAddress) := io.writeData
 }

 for (i <- 0 until numReadPorts) {
 io.readData(i) := lut(io.readAddress(i))
 }

 // Debug Ports
 io.readOutAddress <> io.readAddress
}

class LookUpTableTest(c: LookUpTable) extends Tester(c) {
 implicit def bool2BigInt(b:Boolean) : BigInt = if (b) 1 else 0

 val lutWidth : Int = c.lutWidth
 val lutDepth : Int = c.lutDepth
 val numReadPorts : Int = c.numReadPorts

 val nums = (0 until lutDepth).map(x =>
BigInt(Random.nextInt(Math.pow(2,log2Up(lutWidth)).toInt)))

 for (i <- 0 until lutDepth) {
 poke(c.io.writeAddress, i)
 poke(c.io.writeEnable, true)
 poke(c.io.writeData, nums(i))

 Jen-Hung Lo

 Page 35

 step(1)
 }

 poke(c.io.writeEnable, false)

 for (i <- 0 until numReadPorts) {
 poke(c.io.readAddress(i), i % lutDepth)
 expect(c.io.readData(i), nums(i % lutDepth))
 }
 step(1)
}

 Jen-Hung Lo

 Page 36

topology.scala
package OpenSoC

import Chisel._

abstract class VCTopology_LUT(parms: Parameters) extends Module(parms) {
 val numVCs = parms.get[Int]("numVCs")
 val numRadix = parms.get[Int]("numRadix")
 val numNodes = parms.get[Int]("numNodes")
 val topoInCredits = parms.get[Int]("topoInCredits")
 val topoOutCredits = parms.get[Int]("topoOutCredits")
 val routerCtor = parms.get[Parameters=>VCRouter]("routerCtor")

 val counterMax = UInt(32768)

 val io = new Bundle {
 val inChannels = Vec.fill(numRadix) { new ChannelVC(parms) }
 val outChannels = Vec.fill(numRadix) { new ChannelVC(parms).flip() }
 val lutWriteEnable = Bool(INPUT)
 val lutWriteData = UInt(INPUT, width = log2Up(numRadix))
 val lutWriteAddress = UInt(INPUT, width = log2Up(numNodes))

 val cyclesRouterBusy = UInt(OUTPUT, width=counterMax.getWidth)
 val cyclesChannelBusy = Vec.fill(numRadix){UInt(OUTPUT,
width=counterMax.getWidth)}
 }
}

class SimpleVCRouterTopology(parms: Parameters) extends VCTopology_LUT(parms) {
 var newRouter = Chisel.Module (routerCtor(
 parms.child(("Router"), Map(
 ("numInChannels"->Soft(numRadix)),
 ("numOutChannels"->Soft(numRadix)),
 ("numRadix"->Soft(numRadix)),
 ("numNodes"->Soft(numNodes)),
 ("routerInCredits"->Soft(topoInCredits)),
 ("routerOutCredits"->Soft(topoOutCredits)),
 ("numVCs" ->Soft(numVCs))
))))
 var newBusProbe = Chisel.Module(new BusProbe(
 parms.child("BusProbeParms", Map(
 ("numRadix"->Soft(numRadix))
))))

 for (i <- 0 until numRadix) {
 io.outChannels(i) <> newRouter.io.outChannels(i)
 newRouter.io.inChannels(i) <> io.inChannels(i)
 newBusProbe.io.inFlit(i) := newRouter.io.outChannels(i).flit
 newBusProbe.io.inValid(i) := newRouter.io.outChannels(i).flitValid
 io.cyclesChannelBusy(i) := newBusProbe.io.cyclesChannelBusy(i)
 }
 io.cyclesRouterBusy := newBusProbe.io.cyclesRouterBusy
 newRouter.io.lutWriteEnable := io.lutWriteEnable
 newRouter.io.lutWriteData := io.lutWriteData

 Jen-Hung Lo

 Page 37

 newRouter.io.lutWriteAddress := io.lutWriteAddress
}

 Jen-Hung Lo

 Page 38

switch_t.scala (distributed MUX crossbar)
package OpenSoC

import Chisel._

class Switch_t(parms: Parameters) extends Module(parms) {
 val numInPorts = parms.get[Int]("numInPorts")
 val numOutPorts = parms.get[Int]("numOutPorts")
 val switchWidth = parms.get[Int]("switchWidth")
 val io = new Bundle {
 val inPorts = Vec.fill(numInPorts) { UInt(INPUT, width = switchWidth) }
 val outPorts = Vec.fill(numOutPorts) { UInt(OUTPUT, width = switchWidth) }
 val sel = Vec.fill(numOutPorts) {UInt(width = log2Up(numInPorts))}.asInput
 }
 val selOH = Vec.fill(numOutPorts) {UInt(width = numInPorts)}
 for(i <- 0 until numOutPorts) {
 selOH(i) := UIntToOH(io.sel(i))
 }
 for (i <- 0 until numOutPorts) {
 val data = Vec.fill(numInPorts) {UInt(width = switchWidth)}
 data(0) := io.inPorts(0)
 for(j <- 1 until numInPorts) {
 data(j) := Mux(selOH(i)(j), io.inPorts(j), data(j-1))
 }
 io.outPorts(i) := data(numInPorts-1)
 }
}

 Jen-Hung Lo

 Page 39

clos.scala (incomplete clos network, missing the select scheme)
package OpenSoC

import Chisel._
import scala.collection.mutable.HashMap

class Clos(parms: Parameters) extends Module(parms) {
 val numInPorts = parms.get[Int]("numInPorts")
 val numOutPorts = parms.get[Int]("numOutPorts")
 val switchWidth = parms.get[Int]("switchWidth")
 val switchCtor = parms.get[Parameters=>Switch_t]("switchCtor")

 var n : Int = 6
 var k : Int = 11
 var r : Int = 11

 if (numInPorts == 32) {
 n = 4
 k = 7
 r = 8
 } else if (numInPorts == 64) {
 n = 6
 k = 11
 r = 11
 } else {
 n = 6
 k = 11
 r = 11
 }

 val io = new Bundle {
 val inPorts = Vec.fill(numInPorts) { UInt(INPUT, width = switchWidth) }
 val outPorts = Vec.fill(numOutPorts) { UInt(OUTPUT, width = switchWidth) }
 val sel = Vec.fill(numOutPorts) {UInt(width = log2Up(numInPorts))}.asInput
 }

 def selectScheme(r1 : Int, r2 : Int) : Int = {
 //TODO
 }

 var firstStageMap = new HashMap[Int, Switch_t]()
 var secondStageMap = new HashMap[Int, Switch_t]()
 var thirdStageMap = new HashMap[Int, Switch_t]()

 for (i <- 0 until r) {
 var firstStageSwitch = Chisel.Module (switchCtor(
 parms.child(("firstStageSwitch",i), Map(
 ("numInPorts"->Soft(n)),
 ("numOutPorts"->Soft(k)),
 ("switchWidth"->Soft(55))
))))
 var thirdStageSwitch = Chisel.Module (switchCtor(
 parms.child(("thirdStageSwitch",i), Map(
 ("numInPorts"->Soft(k)),

 Jen-Hung Lo

 Page 40

 ("numOutPorts"->Soft(n)),
 ("switchWidth"->Soft(55))
))))
 firstStageMap += i -> firstStageSwitch
 thirdStageMap += i -> thirdStageSwitch
 }
 for (i <- 0 until k) {
 var secondStageSwitch = Chisel.Module (switchCtor(
 parms.child(("secondStageSwitch",i), Map(
 ("numInPorts"->Soft(r)),
 ("numOutPorts"->Soft(r)),
 ("switchWidth"->Soft(55))
))))
 secondStageMap += i -> secondStageSwitch
 }

 for (i <- 0 until r) {
 for (j <- 0 until n) {
 if (i*n + j < numInPorts) {
 firstStageMap(i).io.inPorts(j) <> io.inPorts(i*n + j)
 }
 if (i*n + j < numOutPorts) {
 io.outPorts(i*n + j) <> thirdStageMap(i).io.outPorts(j)
 }
 }
 for (j <- 0 until k) {
 firstStageMap(i).io.outPorts(j) <> secondStageMap(j).io.inPorts(i)
 secondStageMap(j).io.outPorts(i) <> thirdStageMap(i).io.inPorts(j)
 }
 }
}

