
Analytics for NetApp E-Series AutoSupport Data

Using Big Data Technologies

Jialiang Zhang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-23

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-23.html

May 1, 2016



Copyright © 2016, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

Analytics for NetApp E-Series AutoSupport Data  

Using Big Data Technologies 

 

by 

Jialiang Zhang 

 

 

Masters Project Paper 

Presented to the Faculty of the Graduate Division of  

The University of California at Berkeley 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Engineering in  

Electrical Engineering and Computer Sciences 

 

Faculty Committee 

Professor Lee Fleming, Department of IEOR 

Professor Michael Franklin, Department of EECS 

 

The University of California at Berkeley 

May 2014 

DO NOT CIRCULATE



 ii 

Acknowledgements 

 

Many thanks to my faulty committee members Professor Lee Fleming and 

Professor Michael Franklin, my industry advisors Jordan Hambleton and Mittha 

Manjunath from NetApp, and my teammates Achal Pandey and Huisi Tong.  

 

 

 



 iii 

Abstract 

 

Analytics for NetApp E-Series AutoSupport Data  

Using Big Data Technologies 

 

Jialiang Zhang 

University of California at Berkeley, 2014 

 

Supervisor:  Lee Fleming 

 

Our capstone project, utilizing novel Big Data technology, was to help NetApp 

Inc. develop the AutoSupport (ASUP) Ecosystem for their E-series products [1]. With 

this software framework, NetApp Inc. was able to collect normalized data, perform 

predictive analytics and generate effective solutions for its E-series products customers. 

We used the Star Schema for the data warehousing structure and built seven dimension 

tables and two fact tables to handle the plethora of E-series ASUP data. To refine our 

decision and eliminate improper technologies, we made a comparison of many eligible 

Big Data technologies with respect to their technical strengths and weaknesses. We 

utilized the latest Spark/Shark Big Data technology developed by Berkeley AMPLab [2] 

to construct the software framework. Additionally, to perform the featured predictive 

analytics we used K-means Clustering and K-fold cross-validation machine learning 

techniques on the normalized data set. 

My main contribution in this project was to develop a Python based script to 

convert the majority of the E-series product’s daily/weekly and event-based ASUP logs 



 iv 

into the normalized data format. After performing multiple trials and the overall 

assessment of both the difficulty and feasibility of different data parsing approaches, I 

recommended the approach of parsing the text-based data in raw ASUP data set. Based 

on the normalized data I generated, we then successfully built a prototype. And we 

expected that with our ASUP framework and predictive data analysis function, NetApp 

would have more power and efficiency in resolving the E-series product issue for its 

customer. At the same time, our project on ASUP framework would revolutionize 

NetApp’s data storage and customer support business and help the company exploit its 

niche market in the Big Data industry. 



 v 

Table of Contents 

 

List of Tables .........................................................................................................vi 

List of Figures...................................................................................................... vii 

Chapter 1  Introduction .......................................................................................1 

1.1 Company and Products .............................................................................1 

1.2 Project Overview.......................................................................................2 

1.3 My Contributions ......................................................................................3 

Chapter 2  Literature Review ..............................................................................4 

2.1 Competitors' Strategy ................................................................................4 

2.2 NetApp's Strategy .....................................................................................6 

Chapter 3  Methodology.......................................................................................8 

3.1 ASUP Environment ..................................................................................9 

3.2 Dataset.....................................................................................................10 

3.3 Technology Comparison .........................................................................11 

3.4 Data Storage Mechanism ........................................................................12 

3.5 Data Parsing and Storing ........................................................................12 

3.6 Data Querying and Insights ....................................................................13 

Chapter 4  Discussion .........................................................................................14 

4.1 Technology Comparison Matrix .............................................................14 

4.2 Data Parsing ............................................................................................15 

4.3 Star Schema Data Structure ....................................................................19 

Chapter 5  Conclusion ........................................................................................20 

Appendix A  Data Parser Presentation Slides..................................................22 

Appendix B  Sample Data Parser Source Code ...............................................25 

Bibliography .........................................................................................................43 



 vi 

List of Tables 

 

Table 1: Existing Landscape of Data Storage and Analysis Market .................4 

Table 2: Technology Comparison Matrix .......................................................14 



 vii 

List of Figures 

 

Figure 1: NetApp E2600 Storage System ..........................................................1 

Figure 2: The Size of ASUP Data Set Generated in 24-Hour Period.................2 

Figure 3: NetApp AutoSupport Infrastructure ...................................................9 

Figure 4: AutoSupport Data on ASUP Search Engine .....................................10 

Figure 5: Details of a Sample AutoSupport Data Set .......................................10 

Figure 6: ASUP Data Processing Using Binary -> XML  

 -> Tabular Format Approach ............................................................16 

Figure 7: Star Schema Structure .......................................................................19 

 

 

  



 

Page 1 

 

Chapter 1:  Introduction 

 

 

1.1 COMPANY AND PRODUCTS 

 

NetApp Inc. is a traditional computer storage and data management company. According 

to International Data Corporation (IDC), in the second quarter of 2013, NetApp Inc. achieved 

13.3% of market share in external disk storage systems [3]. Its major competitors are EMC 

Corporation, International Business Machines Corporation (IBM), Seagate Technology PLC and 

Western Digital Corporation (WD). 

E-series is NetApp’s new product line of conventional storage arrays which receives 

many attentions in the storage market. E-series is composed of model E2600, E2700, E5400 and 

E5500, with storage capacity ranging from 768TB to 1536TB [1]. 

For each individual E-series product, NetApp Inc. integrates 

AutoSupport (ASUP) technology with it, in order to efficiently 

check the health of the system “on a continual basis” [4]. 

Continual monitoring generated huge amount of AutoSupport data. In this project, our 

team focused on the NetApp’s E-series AutoSupport raw data that were already collected on 

company’s server in Sunnyvale, California. 

 

  

Figure 1: NetApp E2600 Storage System [1] 



 

Page 2 

 

Figure 2: The Size of ASUP Data Set Generated in 24-Hour Period 2 

1.2 PROJECT OVERVIEW 

 “Big Data” refers to the data that is “large or fast moving” and the current “conventional 

databases and technologies” are not sufficient enough to analyze them.1The advent of Big Data 

technologies, such as distributed systems and in-memory computing, data repository with SQL 

compatibility and various machine learning algorithms have successfully “facilitated easier 

analysis of large amounts of data”. 1  Our capstone project, utilizing novel Big Data technology, 

is to help NetApp Inc. develop an AutoSupport (ASUP) Ecosystem for their E-series products.  

At the customer end, plethora of daily/weekly E-series log files is generated worldwide 

every day.  

The screenshot above presents the size of a typical ASUP log dataset.2 Within 24-hour 

period, there were totally 230 AutoSupport files reported to NetApp headquarter. What is more, 

                                                 
1Referencing “NetApp Capstone Team Strategy Paper” in Jan., 2014  
2Using NetApp internal AutoSupport data search engine 



 

Page 3 

 

when the E-series storage system encounters an abnormal event, for example, a system level 

warning or a failure due to disk malfunction, an event-based log will be filed immediately. With 

this software framework, NetApp is able to capture the significant root cause from multiple 

warnings or failures reported, perform predictive analysis based on them and generate effective 

solutions for its customers. 

 

1.3 MY CONTRIBUTION  

 

While working with the other two Master of Engineering students together, my major 

contribution to the capstone project were as following:  

1) Helped to investigate and understand the hardware configuration of NetApp’s E-series 

product and how ASUP worked.  

2)cParticipated in designing the evaluation matrix for different Big Data technologies.  

3) Researched one of Big Data technologies – Phoenix from Salesforce.com Inc.  

4) Participated in building the Star Schema data structure for ASUP data.  

5) Accomplished ASUP raw log files data parsing and cleaning.  

6) Generated tables containing necessary information in a normalized format for data 

repository, and had data cleaned for the team to analyze. 

 
  



 

Page 4 

 

Chapter 2:  Literature Review 

 

Admittedly, there are many data storage service providers in the market who are advocate 

of Big Data technologies. Other than NetApp, EMC Corporation, Cisco Systems, International 

Business Machines Corporation (IBM), Seagate Technology PLC and Western Digital 

Corporation (WD) are all storage array solution companies who are potential competitors to 

NetApp. Table 1 below illustrates their key technologies, product trend, target and user group, 

and whether they are equipped with predictive ability or not. 

Table 1: Existing Landscape of Data Storage and Analysis Market 

Competitor NetApp EM C Cisco IBM Seagate WD 

 

 
Product 

Name 

 

 
AutoSupport 

(ASUP) 

Fully 

Automated 
St orage 

Tiering 

(FAST ) 

 
Storage Area 

Networking 

(SAN) 

Predictive 
Failure 

Analysis 

(PFA) 

 

 
SimplyRAID™ 

technology 

 
WD 

Smart Ware 

Product 
Target 

E-series 
Product 

All Product 
Lines 

Network 
St orage 

Hard Drive 
St orage 

NAS Storage My Book 
Series  

 
Core 

Process 

Predictive 

Analysis & 

Solution 

 
“SP Collect” 

Receive 

– Confirm 

– Solve 

– Prevent 

 
Diagnostics 
Indication 

 
N/A 

 
N/A 

Product 

User 

Engineers / 

Customers 

Engineers / 

Customers 
Engineers Engineers Customers Customers 

Predictive 
Ability 

Yes No No Yes No No 

 

 

2.1 COMPETITORS’ STRATEGY 
 

As the NetApp Project Strategy Paper emphasizes, huge amount of data requires fast-

paced analysis and efficient management, especially in this Big Data Era.1 To promote “Big Data 



 

Page 5 

 

analytics”, EMC Corporation developed “Pivotal HD Solution”. In their marketing literature, 

“pivotal” solution referred to their utilization of Apache Hadoop distribution application, which 

was advertised as the revolutionary in “Hadoop analytics for unstructured Big Data” [5]. 

Similarly, as a worldwide leader in networking, Cisco IT chose Hadoop to deliver its 

commitment that “Enterprise Hadoop architecture, built on Cisco UCS (Unified Computing 

System) Common Platform Architecture (CPA) for Big Data, unlocks hidden business 

intelligence” [6]. What is more, in their promotional material, IBM emphasized “Big Data 

platform”, whose key capabilities included: “Hadoop-based analytics”, “Streaming Computing” 

and “Data Warehousing”, with prominence on analytic applications of “Business Intelligence” 

and “Predictive Analytics” [7]. Unwilling to lag behind, traditional storage solution companies 

were dedicatedly building their own Big Data technology. As Mike Crump, VP of Seagate and 

Harrie Netel, director of Seagate denoted, “Seagate puts Big Data in action” with the “automated 

ODT (Outgoing DPPM Test)” and eCube technologies based on its own “Seagate’s Enterprise 

Data Warehouse (EDW)” [8]. WD (Western Digital), another major disk drive manufacturer, 

announced that they used Hadoop and Hortonworks to “optimize manufacturing with longer 

retention of sensor data” [9]. It is predictable that this market will evolve rapidly, and in order to 

survive, our ASUP ecosystem development for NetApp needs to exploit a niche market in this 

industry. 

 
  



 

Page 6 

 

2.2 NETAPP’S STRATEGY 

 

For NetApp Inc. the proper use of Big Data technology in our project will have a positive 

impact on its future business, because the successful deployment of Big Data technology on E-

series products will “necessitates secure, robust and low-cost solutions for data storage and 

management”, as emphasized in NetApp Strategy Paper.1 When AutoSupport was first 

introduced in NetApp white paper in 2007, it was highlighted that NetApp would have a more 

than “65% chance of resolving a customer case in less than one day” instead of only “35% 

[chances] without AutoSupport data” [10].  

On the other hand, as the database structure has become increasingly complex, our 

strategy for NetApp in the project is a radical evolution in the industry. MapReduce was the 

milestone in data mining, processing and management, like Dr. Jeff Ullman claimed in his book 

Mining of Massive Datasets, “Implementations of MapReduce enable many of the most common 

calculations on large-scale data to be performed on computing clusters efficiently” [11]. Later, 

the MapReduce methodology was integrated with Hadoop Hive, specifically, HiveQL “which are 

compiled into map-reduce jobs executed on Hadoop” as demonstrated by Ashish Thusoo et al. in 

the paper entitled Hive - A Warehousing Solution Over a Map-Reduce Framework in 2011 [12]. 

Since then, the tool was tailored to handle large data set and was very powerful, and many 

companies still relied on it. However, we chose to use Berkeley Shark, which was Spark on top 

of Hadoop Hive with SQL compatibility. One of the special features of Shark was the fact that 

Shark could implement MapReduce functions approximately a hundred times faster [2], which 

was an ideal choice for fast-paced big data analysis. As illustrated in Table 1 above, with the 

help of Berkeley Shark technology, our data analysis function which required the predictive 



 

Page 7 

 

nature and real- time feature over large-scale data set became feasible. This was innovative and 

would dramatically improve the user experience of NetApp’s customers. 

Actually, for all the IT companies in this Big Data era, the key to the success is whether 

the company can master the advanced technology and seize the opportunity in a niche market. 

Our project on E-series ASUP framework will revolutionize NetApp’s data storage and customer 

support business and help the company exploit its niche market in the Big Data industry. 

  



 

Page 8 

 

Chapter 3:  Methodology 

 

One of our tasks in this project was to gain extensive knowledge by researching, 

analyzing and testing various Big Data technologies for the E-series ASUP framework. Initially, 

we made our technology selection list with Spark/Shark from Berkeley AMPLab [2], Impala [13] 

and Parquet [14] from Cloudera, Phoenix from Saleforce.com [15] and Clydesdale from Google 

and IBM [16]. We then set up various benchmarks to compare these technologies in order to 

narrow down our list. After we finalized the decision to utilize the latest Berkeley Spark/Shark as 

our key technology, we developed the data storage schema, constructed the data repository 

thereafter and parsed the ASUP raw log files into tabular format data for the repository. At the 

same time, we made progress on Berkeley Shark configuration based on NetApp’s computing 

clusters, with which we could store the large-scale parsed data, perform analysis and offer 

predictive solutions using machine learning techniques. Since my work is majorly focused on 

data parsing, this paper will be centered on data processing accordingly. 

 

  



 

Page 9 

 

3.1 ASUP ENVIRONMENT 

 

Figure 3 on the right is a demonstration of ASUP 

infrastructure from NetApp’s AutoSupport documents 

online [4]. NetApp developed this technology many 

years ago, and integrated it with several branded product 

lines in order to continuously and efficiently monitor the 

health of storage systems. It is achieved by constantly 

sending ASUP reports back to NetApp headquarter and “My AutoSupport” online platform. As 

an effective troubleshooting tool, AutoSupport targets both of the NetApp support engineers and 

product customers. 

Although AutoSupport was already deployed in many other NetApp products, it had not 

been integrated with NetApp’s E-series product line. Since E-series products are becoming one 

of NetApp’s featured products, the company is desired to make this integration accomplished 

soon. And that is the goal of our capstone project. 

 

  

Figure 3: NetApp AutoSupport Infrastructure [4] 



 

Page 10 

 

3.2 DATASET 

 

 

Now returning to the internal AutoSupport data search engine with details of 

AutoSupport data in Figure 4, it can be easily observed that one storage system can generate 

multiple AutoSupport reports continuously in just a short period of time. This is a pressure for us 

to do data cleaning and analysis. Likely, it is due to a hardware failure or a system warning 

occurred before. But within each of the AutoSupport report, most of the contents are duplicated. 

Therefore, how to efficiently extract the root cause of the problem becomes significant. 

By clicking on one of AutoSupport report links, as demonstrated in Figure 5, one can see 

the details of this AutoSupport dataset and can download the whole dataset from the link. The 

size of such dataset varies greatly from a few megabytes to several hundreds of megabytes in 

total, depending on how large the storage system is and whether the AutoSupport data is a daily 

log or a system warning type. 

 

Figure 4: AutoSupport Data on ASUP Search Engine  



 

Page 11 

 

 

 

 

 

 

 

 

 

 

 

These are the raw datasets that we used for our capstone project. With access to the 

NetApp’s repository of AutoSupport raw data, we can continuously collect these data globally. 

However, to process and integrate the huge dataset demands novel Big Data technologies rather 

than traditional database and data management solutions. 

 

3.3 TECHNOLOGY COMPARISON 

  

We made technical comparison of five eligible Big Data technologies, namely Berkeley 

Spark/Shark, Cloudera Impala and Parquet, Salesforce.com Phoenix and Google Clydesdale. 

They all have various advantages and disadvantages. And one of our tasks in this project was to 

narrow down this list, and made a final decision on which technology we were going to use to 

Figure 5: Details of a Sample AutoSupport Data Set 



 

Page 12 

 

construct the framework. In order to achieve that goal, we did research on their hardware 

limitations and computing constraints one by one, and list our evaluation standards and results to 

examine each single technology. 

 

3.4 DATA STORAGE MECHANISM 

  

In order to efficiently organize and store all of the normalized data, we utilized the Star 

Schema data structure. The Star Schema consisted of fact tables and dimension tables, in which 

fact tables stored the central metrics and information, whereas dimension tables were data 

warehouse linked to the fact tables. Based on our design, we decided to construct:  

Two Fact Tables: one for the ASUP fact table containing all of the keys, and the other 

one was for all of the unstructured data 

Seven Dimension Tables: for the Controller, Drive, Drive_Error, Storage_Array, Tray, 

Drawer and Major_Event_Log separately 

 

3.5 DATA PARSING AND STORING 

  

After choosing Berkeley Spark/Shark technology, it was important to install and 

configure it properly on the NetApp’s company computing cluster. Our computing cluster 

consisted of one master node and three worker nodes. And we installed the Berkeley 

Spark/Shark with the latest release on February 2014 on all of the cluster nodes. With that 



 

Page 13 

 

accomplished, I began to work on data parser, convert the ASUP raw data into tabular format to 

store in data repository. 

 

3.6 DATA QUERYING AND INSIGHTS 

 

Last but not least, we spent time and effort on identifying example use cases for 

NetApp’s E-series products, and generating insightful data queries. Because this was one of our 

key tasks for the project, we wanted to offer valuable and predictive solutions for our customer.  

A simple use case would be to collect any drive errors from one system, performing 

analysis on its system configuration, record of repairing, capacity usage and device running time 

etc., aggregating similar errors and identifying the root cause, and predicting what the next time 

that the potential failure would occur. We applied K-means clustering and K-fold cross-

validation machine learning algorithms on our dataset and generated insightful conclusions 

accordingly. 

  



 

Page 14 

 

Chapter 4:  Discussion 

 

4.1 TECHNOLOGY COMPARISON MATRIX 

Table 2 below presents the technology comparison results we concluded for five major 

advanced Big Data technologies. 

Table 2: Technology Comparison Matrix [17] 

Name Spark Impala Phoenix Parquet Clydesdale 

Company UCB/Apache Cloudera Salesforce Cloudera/Twitter Google/IBM 

Ease of Setup Easy  Easy  Easy  Medium Hard  

Compatibility Hive  Hive  HBase  Hadoop   

SQL Like      

Star Schema      

Unstructured 

Data 
 

Not for Non-

scalar Data  
   

Accelerated 

Storage Format 
 Columnar   Columnar  Columnar  

Bulk Data Load      

In-memory      

UDF      

Predictive 

Analytics 
     

Available APIs 
Java, Python, 

Scala 
Java Java Java Java 

Maturity High   Medium Medium Medium Low  

Note 

In-memory 

computing, faster 

data queries, 

ideally suited for 

machine learning 

Best 

integration 

with Parquet 

Table Join 

function not 

available in 

Phoenix 

Version 

2.1.2 

Requires extensive 

configuration, query 

dependent, not 

suitable for mult iple 

queries 

Still a research 

prototype. 

Performance 

varies 

depending on 

query type 

Users 
IBM, Yahoo!, 

Intel, Groupon 
Cloudera Salesforce  

Salesforce, Couldera, 

Twitter 
Google, IBM 

Our Choice      

 



 

Page 15 

 

The evaluation standards are: 

1. Company: The entity who developed and supported such technology 

2. Ease of Setup: To measure how easy it is for users to setup and configure such technology 

3. Compatibility: To examine whether such technology is compatible with HIVE/HBase/Hadoop 

4. SQL Like: To examine whether such technology has the SQL skin, which is easy to develop 

5. Star Schema: To examine whether such technology supports “Star Schema”  

6. Unstructured Data: To survey how well such technology handles the unstructured data like txt  

7. Accelerated Storage Format: To identify if such technology utilizes Columnar data format  

8. Bulk Data Load: To examine whether such technology supports large size data bulk loading  

9. In-memory : To observe if such technology has the function of in-memory computation 

10. UDF: To examine if such technology has the User Defined Function features  

11. Predictive Analytics: To survey whether such technology has the predictive analytics function 

12. Available APIs: To examine what APIs it supports, like Java, Python or Scala  

13. Maturity: To measure how mature such technology is, in the level of High, Medium and Low 

14. Extra Note: Other significant features, functions, releasing or development notes 

15. Users: The example of companies/entities who utilize or deploy such technology 

 

4.2 DATA PARSING 

 In company’s ASUP repository, all of the raw log files were in the format of .snappy file, 

which was a unique, but unstructured data format for ASUP log files. One of my major tasks in 

this capstone project was to parse the raw log files and extract valuable data from them. At the 

early stage of our project, we discovered that there was a binary file entitled object-bundle.bin in 

the log file jar. Utilizing an internal java-based parser, we could convert these binary files into 

semi-structured xml files for preliminary analysis. However, xml file was not valuable to us, 

because this type of data format was not compatible with databases and none of the machine 

learning algorithms could be applied upon. We needed to further normalize these data and 



 

Page 16 

 

Figure 6: ASUP Data Processing Using Binary -> XML -> 
Tabular Format Approach 

convert them into tabular format, then store them into our databases residing on powerful 

computing clusters, aggregate them further to perform the predictive analysis using modern 

machine learning algorithms and finally generate insightful solutions. To achieve these goals, we 

devoted our effort on creating a new parser based on Python, to convert these xml files into csv 

(comma-separated values) format with organized data in it.  

 However, the internal binary to xml parser is just a preliminary version. As we parsed 

different ASUP log files later on, it failed 

several times. On the other hand, the binary to 

xml parser had its drawback as inefficiency in 

data processing. Because when we needed to 

use it every time, we had to convert those raw 

log files into xml format first and then further 

transform into tabular format using the parser 

developed by our team. This can be illustrated 

clearly in Figure 6. 

Hence, in consideration of the 

efficiency of our AutoSupport ecosystem, we 

needed to explore an alternative approach. We 

found that there were many text files within the 

same ASUP log jar. Though they are all 

unstructured data, those text-based data contain almost equally sufficient and valuable 



 

Page 17 

 

information as the object-bundle.bin binary files. So we decided to set aside the previous 

approach, and begin to develop a new parser aiming to parse these text-based data. This process 

is clearly illustrated in Appendix A. 

 I wrote a parser based on Python, which took in the text files in ASUP log file jar, and 

generated all the seven dimension tables and two fact tables automatically. The parser would 

extract all the key words in the text file, like ASUP_ID, ASUP_GenDate, Storage Array_Cache 

Flushing Rate, Drive_Date of Manufacture, Drive Error_Total Command Count, Major Event 

Log_Sequence Number etc. as column names in the table, and the associated value or description 

to those key words would be stored in a tabular format in a csv file, for example, 

DIM_MAJOR_EVENT_LOG.csv . 

 As discussed in section 3.2 and Figure 4, the same storage system could continuously 

generate multiple ASUP reports in a short period of time. These datasets were mostly alike to 

each other, so to simply bulk load those in the data repository without proper process might 

cause overwriting problems. To deal with such issue, I utilized the “Partitioning” function in 

Hive, as well as Shark (because Shark was Spark on top of Hive), to solve this issue. ASUP 

generation date was in the format of yyyy/mm/dd/hh/mm/ss, for example, 20130327002204. 

Since it had sufficient precision as a 14-digit integer, we decided to use it as the partition field to 

differentiate distinct ASUP data, or the data generated by the same ASUP but in different time 

period. In the parser specifically, I added: 

 

 



 

Page 18 

 

# Generate partitioned field names date_partition, which is equal to ASUP_GenDate 

         g_majorEventLog['date_partition'] = g_asup['ASUP_GenDate'] 

 

And when defining a table in the data repository, the DDL (Data Definition Language) would be 

modified as: 

CREATE TABLE DIM_ASUP (ASUP_Content STRING, ASUP_Subject STRING, ASUP_SystemID 

STRING, ASUP_ID STRING, ASUP_ClientID STRING, ASUP_OSVersion STRING, ASUP_GenDate 

STRING) PARTITIONED BY (date_partition STRING) ROW FORMAT DELIMITED FIELDS  

TERMINATED BY ',' STORED AS TEXTFILE;  

 

Similarly, when loading data into the database, we simply needed to add an extra partition 

command: 

LOAD DATA LOCAL INPATH '/home/3bears/src/table/DIM_DRIVE_ERROR.csv' INTO TABLE 

DIM_DRIVE_ERROR PARTITION (date_partition = '20130204200101');  

 

Finally, we could write a query against it to manipulate data and generate insights, for example: 

SELECT Drive_ID, Log FROM DIM_DRIVE_ERROR f1 JOIN FACT_UNSTRUCTURED_LOG f2 

ON (f1.ASUP_ID = f2.ASUP_ID) WHERE Log LIKE "%log3%"; 

  



 

Page 19 

 

4.3 STAR SCHEMA DATA STRUCTURE 

 

 I also participated in designing the data structure for the repository. Figure 7 below is the 

sample Star Schema we created for ASUP data warehousing: 

 As discussed in previous sections, we 

designed seven dimension tables and two fact 

tables to implement the Star Schema structure 

for ASUP data warehousing. Large-scale 

ASUP data were all stored following this 

structure on computing cluster. For different 

dimension tables, we used either Drive_ID, 

Tray_ID, Drawer_ID or Storage_Array_ID as 

the primary key to link to the two fact tables. And as claimed above, each table contained the 

column 'date_partition' as the partition field when storing in data repository. 

 

  

Figure 7: Star Schema Structure [17] 



 

Page 20 

 

Chapter 5:  Conclusion 

  

At this time, we have successfully designed the data structure, configured Spark/Shark on 

computing clusters, had the majority of ASUP data parsed and cleaned for use, and generated 

several use cases insights based on machine learning algorithm already.  

To review my part of work, the biggest difficulty I encountered was to parse the 

unstructured text-based AutoSupport data. Yet at the same time, I realized that it was important 

to have a clean and normalized dataset generated for machine learning application, user interface 

development and future predictive analysis. The difficulty lay in the fact that my parser might 

work well on one version of AutoSupport, but turn out to be a failure totally when testing on 

other AutoSupport versions, simply due to the new lines added in other AutoSupport versions. 

To overcome this difficulty, I had to run and test my parser on multiple AutoSupport versions 

one by one. Fortunately, I found out that all of the AutoSupport reports were in a “normalized” 

format to some degree. The total amount of information, or the column names in tabular data 

format after conversion, was set and fixed. The only difference was that some AutoSupport 

versions tended to omit certain hardware information, which might not be configured in the 

storage system. Therefore, I drawn the conclusion that to develop a parser for such unstructured 

text format data, it was important to aggregate all of the possible information first, no matter 

whether it existed in the current dataset or not. Furthermore, some parsing techniques, like the 

look-up table mechanism, should be used to parse the dataset completely, instead of parsing the 

dataset line by line or by searching key words in it. 



 

Page 21 

 

In the future, continued work can be done in the areas of implementing more machine 

learning algorithms on the whole set of E-series AutoSupport data, constructing a friendly user 

interface for potential customers, and continuing working to make the E-series AutoSupport 

ecosystem more efficient and robust. 

  



 

Page 22 

 

Appendix A:  Data Parser Presentation Slides23 

  

 

 

 

                                                 
3Referencing “NetApp Capstone Team Final Presentation” in May, 2014 



 

Page 23 

 

 

 

 

 

 



 

Page 24 

 

 

 

 

 



 

Page 25 

 

Appendix B:  Sample Data Parser Source Code 

import sys 

import re 

import csv 

from dateutil import parser as dateParser 

 

 

nameIndex = 1 

 

try: 

    PATH_data_folder = sys.argv[1] 

except: 

    print "Please Specify the Correct Working Directory to the Data Files" 

if PATH_data_folder[-1]!='/': 

    PATH_data_folder = PATH_data_folder + '/' 

 

 

     

## ~~~~~~~~~~ header.txt Parser ~~~~~~~~~~ 

asupMap={ 

'X-Netapp-asup-content':'ASUP_Content', 

'X-Netapp-asup-subject':'ASUP_Subject', 

'X-Netapp-asup-system-id':'ASUP_SystemID', 

'X-Netapp-asup-os-version':'ASUP_OSVersion', 

'X-Netapp-asup-hostname':'ASUP_Hostname', 

'X-Netapp-asup-generated-on':'ASUP_GenDate',  

'X-Netapp-asup-sequence':'ASUP_Sequence', 

'X-Netapp-asup-serial-num':'ASUP_Serial', 

'X-Netapp-asup-model-name':'ASUP_Model', 

'X-Netapp-asup-payload-checksum':'ASUP_Payload', 

'X-Netapp-asup-contents-truncated':'ASUP_ContentTruncated', 

'X-Netapp-asup-proxy-agent-id':'ASUP_ProxyAgent', 

'X-Netapp-asup-client-id':'ASUP_ClientID', 

'X-Netapp-asup-oem-id':'ASUP_OEMID', 

'Received':'ASUP_Received', 

'X-Forwarded-For':'ASUP_Forwarded_For'} 

 

g_asup = {} 

 

for l in open(PATH_data_folder + 'header.txt'): 

#for l in open('/home/saasbook/ASUP/E-series_Data1/' + 'header.txt'): 

    if 'From' in l: continue 

    if 'Subject' in l: continue 

    tmpL = l.split(":") 

    try: 

        g_asup[asupMap[tmpL[0]]]=str.strip(":".join(tmpL[1:])) 

    except: 

        print "Error parsing 'header.txt' in line ["+l+"]" 

 



 

Page 26 

 

g_asup['ASUP_GenDate'] = 

dateParser.parse(g_asup['ASUP_GenDate']).strftime("%Y%m%d%H%M%S") 

 

### DIM_ASUP table 

 

g_asup['ASUP_ID'] = g_asup['ASUP_GenDate'] + "_" + g_asup['ASUP_SystemID'] 

# Generate partitioned field names date_partition, which is equal to ASUP_GenDate 

g_asup['date_partition']=g_asup['ASUP_GenDate'] 

 

DIM_ASUP_table = 'DIM_ASUP_{0}.csv'.format(nameIndex) 

 

fileHeader = open(DIM_ASUP_table,'w') 

dimAsup = csv.DictWriter(fileHeader,fieldnames = g_asup.keys()) 

 

dimAsup.writeheader() 

dimAsup.writerow(g_asup) 

 

fileHeader.close() 

 

 

 

## ~~~~~~~~~~ storage-array-profile.txt Parser ~~~~~~~~~~ 

 

sapString = open(PATH_data_folder + 'storage-array-profile.txt').read(); 

#sapString = open('/home/saasbook/ASUP/E-series_Data1/' + 'storage-array-

profile.txt').read(); 

#sapString.split('\n') 

 

### DIM_STORAGE_ARRAY table 

 

tmpIndex = sapString.find("STORAGE ARRAY------------------------------") 

 

endIndex = re.search("Power Supplies\s\s\s", sapString).start() 

 

saMap={ 

'Storage array world-wide identifier (ID)':'General_Storage array world-wide 

identifier (ID)', 

'Chassis Serial Number':'General_Chassis Serial Number', 

'Event configuration data version':'General_Event configuration data version', 

'Start cache flushing at':'Cache_Start cache flushing at', 

'Start demand cache flushing at':'Cache_Start demand cache flushing at', 

'Stop cache flushing at':'Cache_Stop cache flushing at', 

'Cache block size':'Cache_Cache block size',  

'Media scan frequency':'Cache_Media scan frequency', 

'Failover alert delay':'Cache_Failover alert delay', 

'Status':'AutoSupport_Summary_Status', 

'Daily schedule':'AutoSupport_Summary_Daily schedule', 

'Weekly schedule':'AutoSupport_Summary_Weekly schedule', 

'Target name':'iSCSI_Target name', 

'Target alias':'iSCSI_Target alias', 

'Target authentication':'iSCSI_Target authentication', 



 

Page 27 

 

'CHAP secret defined':'iSCSI_Target authentication_CHAP secret defined', 

'iSNS server registration':'iSCSI_Target discovery_iSNS server registration', 

'Registration state':'iSCSI_Target discovery_Registration state', 

'IPv4 Configuration':'iSCSI_Target discovery_IPv4 Configuration', 

'IPv4 IP address':'iSCSI_Target discovery_IPv4 IP address', 

'IPv6 IP address':'iSCSI_Target discovery_IPv6 IP address', 

'TCP listening port':'iSCSI_Target discovery_TCP listening port', 

'Unnamed discovery sessions':'iSCSI_Target discovery_Unnamed discovery sessions', 

'Tag':'Core_Dump_Tag', 

'Time collected':'Core_Dump_Time collected', 

'Retrieved':'Core_Dump_Retrieved', 

'Disk pools':'Storage_Disk pools', 

'Volumes on Disk Pools':'Storage_Disk Pools_Volumes on Disk Pools', 

'Volume groups':'Storage_Volume groups', 

'RAID 0 Volume Groups':'Storage_Volume groups_RAID 0 Volume Groups', 

'RAID 1 Volume Groups':'Storage_Volume groups_RAID 1 Volume Groups', 

'RAID 2 Volume Groups':'Storage_Volume groups_RAID 2 Volume Groups', 

'RAID 3 Volume Groups':'Storage_Volume groups_RAID 3 Volume Groups', 

'RAID 4 Volume Groups':'Storage_Volume groups_RAID 4 Volume Groups', 

'RAID 5 Volume Groups':'Storage_Volume groups_RAID 5 Volume Groups', 

'RAID 6 Volume Groups':'Storage_Volume groups_RAID 6 Volume Groups', 

'Access volumes':'Storage_Access volumes', 

'Standard Volumes (Used/Allowed)':'Storage_Standard Volumes (Used/Allowed)', 

'Base':'Storage_Standard Volumes_Base', 

'Repository':'Storage_Standard Volumes_Repository', 

'Mirror repositories':'Storage_Standard Volumes_Mirror repositories', 

'Thin Volumes (Used/Allowed)':'Storage_Thin Volumes (Used/Allowed)', 

'Total volumes using SSD cache':'SSD Cache_Total volumes using SSD cache', 

'Maximum system-wide capacity allowed':'SSD Cache_Maximum system-wide capacity 

allowed', 

'Volume copies':'Copy Services_Volume copies', 

'Snapshot Groups':'Copy Services_Snapshot Groups', 

'Snapshot Images':'Copy Services_Snapshot Images', 

'Snapshot Volumes':'Copy Services_Snapshot Volumes', 

'Consistency Groups':'Copy Services_Consistency Groups', 

'Member Volumes':'Copy Services_Member Volumes', 

'Asynchronous mirror groups':'Copy Services_Asynchronous mirror groups', 

'Asynchronous mirrored pairs':'Copy Services_Asynchronous mirrored pairs', 

'Remote Volume Mirroring mirrored pairs':'Copy Services_Remote Volume Mirroring 

mirrored pairs', 

'Snapshot volumes(legacy)':'Copy Services_Snapshot volumes(legacy)', 

'Access volume':'Host_Mapping_Access volume', 

'Default host OS':'Host_Mapping_Default host OS', 

'Mapped volumes':'Host_Mapping_Mapped volumes', 

'Unmapped volumes':'Host_Mapping_Unmapped volumes', 

'Trays':'Hardware_Number of Trays', 

'System configured to use batteries':'Hardware_Trays_System configured to use 

batteries', 

'Controllers':'Hardware_Number of Controllers', 

'Redundancy mode':'Hardware_Controllers_Redundancy mode', 

'Drives':'Hardware_Number of Drives', 



 

Page 28 

 

'Current drive media types':'Hardware_Drives_Current drive media types', 

'Current drive interface type(s)':'Hardware_Drives_Current drive interface type(s)', 

'Total hot spare drives':'Hardware_Drives_Total hot spare drives', 

'Standby':'Hardware_Drives_Total hot spare drives_Standby', 

'In use':'Hardware_Drives_Total hot spare drives_In use', 

'Drive security key identifier':'Hardware_Drive security key identifier', 

'Feature enable identifier':'Features_Feature enable identifier', 

'Feature pack':'Features_Feature pack', 

'Feature pack submodel ID':'Features_Feature pack submodel ID', 

'Snapshot groups allowed per base volume':'Features_Snapshot groups allowed per base 

volume', 

'Snapshots(legacy) allowed per base volume':'Features_Snapshots(legacy) allowed per 

base volume', 

'Volumes allowed per storage partition':'Features_Volumes allowed per storage 

partition', 

'AMW Version':'Firmware_SANtricity ES_AMW Version', 

'Report Date':'Firmware_SANtricity ES_Report Date', 

'Storage Array Name':'Firmware_Storage Array_Name', 

'Current Package Version':'Firmware_Storage Array_Current Package Version', 

'Current NVSRAM Version':'Firmware_Storage Array_Current NVSRAM Version', 

'Staged Package Version':'Firmware_Storage Array_Staged Package Version', 

'Staged NVSRAM Version':'Firmware_Storage Array_Staged NVSRAM Version', 

'Location':'Firmware_Controllers_Location', 

'Current Package Version':'Firmware_Controllers_Current Package Version', 

'Current NVSRAM Version':'Firmware_Controllers_Current NVSRAM Version', 

'Board ID':'Firmware_Controllers_Board ID', 

'Sub-Model ID':'Firmware_Controllers_Sub-Model ID'} 

 

DIM_STORAGE_ARRAY_sap = {} 

 

stringStorageArray = sapString[tmpIndex:endIndex] 

 

if 'Snapshot groups allowed per base volume (see note below)' in stringStorageArray: 

    stringStorageArray = stringStorageArray.replace('Snapshot groups allowed per base 

volume (see note below)', 'Snapshot groups allowed per base volume', 1) 

elif 'Snapshot groups allowed per base volume (see note)' in stringStorageArray: 

    stringStorageArray = stringStorageArray.replace('Snapshot groups allowed per base 

volume (see note)', 'Snapshot groups allowed per base volume', 1) 

 

for l in stringStorageArray.split('\n'): 

#for l in open('/home/saasbook/ASUP/E-series_Data1/' + 'storage-array-profile.txt'): 

    if 'PROFILE FOR STORAGE ARRAY' in l: continue 

    if 'Note:' in l: continue 

    if 'Location:' in l: continue 

    if ':' not in l: continue 

    tmpL = l.strip().split(":") 

    try: 

        DIM_STORAGE_ARRAY_sap[saMap[tmpL[0]]]=str.strip(":".join(tmpL[1:])) 

    except: 

        print "Error parsing 'storage-array-profile.txt' in line ["+l+"]" 

 



 

Page 29 

 

 

DIM_STORAGE_ARRAY_sap['ASUP_ID'] = g_asup['ASUP_ID'] 

# Generate partitioned field names date_partition, which is equal to ASUP_GenDate 

DIM_STORAGE_ARRAY_sap['date_partition']=g_asup['ASUP_GenDate'] 

 

DIM_STORAGE_ARRAY_table = 'DIM_STORAGE_ARRAY_{0}.csv'.format(nameIndex) 

 

fileStorageArray = open(DIM_STORAGE_ARRAY_table,'w') 

dimStorageArray = csv.DictWriter(fileStorageArray,fieldnames = 

DIM_STORAGE_ARRAY_sap.keys()) 

 

dimStorageArray.writeheader() 

dimStorageArray.writerow(DIM_STORAGE_ARRAY_sap) 

 

fileStorageArray.close() 

 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 

## ~~~~~~~~~~ drive-error.txt Parser ~~~~~~~~~~ 

 

erString = open(PATH_data_folder + 'controller-drive-error-event-log.txt').read(); 

#erString = open('/home/saasbook/ASUP/E-series_Data1/' + 'controller-drive-error-

event-log.txt').read(); 

erString = erString + '\n' + 'St ' 

#print erString[-100:],'##############################' 

 

DIM_DRIVE_ERROR = {} 

 

recordOfExistingTrayNum = [] 

recordOfExistingDrawerNum = [] 

 

#DRIVEERRORFieldName = ['Devnum','Location','Role','Rank','Total CmdCount','Total 

Error Count','Total Event Count'] 

 

### DIM_DRIVE table 

 

DIM_DRIVE_sap = {} 

 

tmpIndex = sapString.find("DRIVES------------------------------") 

 

endIndex = sapString.find("DRIVE CHANNELS------------------------------") 

 

TotalNumDrives = re.findall("Number of drives: (.*?)\n", 

sapString[tmpIndex:endIndex])[0].strip() 

print "The total number of Drives in this system is: ", TotalNumDrives, '\n', 

"********************" 

 

tmpIndex = tmpIndex + sapString[tmpIndex:endIndex].find("DETAILS") 

nextIndex = tmpIndex 

 



 

Page 30 

 

DRIVEFieldName = ['Status','Mode','Raw capacity','Usable capacity','World-wide 

identifier','Associated volume group','Associated disk pool','Media type','Interface 

type','Drive path redundancy','Wear life monitoring','Average erase count','Spare 

blocks remaining','Drive capabilities','Security Capable','Secure','Read/write 

accessible','Drive security key identifier','Speed','Current data rate','Logical 

sector size','Physical sector size','Product ID','Drive Firmware Version','FPGA 

version','Serial number','Manufacturer','Date of manufacture'] 

DRIVEFieldName.sort() 

 

DIM_DRIVE_table = 'DIM_DRIVE_{0}.csv'.format(nameIndex) 

DIM_DRIVE_ERROR_table = 'DIM_DRIVE_ERROR_{0}.csv'.format(nameIndex) 

 

fileDrive = open(DIM_DRIVE_table,'w') 

fileDriveError = open(DIM_DRIVE_ERROR_table,'w') 

 

checkIfDrawerMissing = sapString[tmpIndex:endIndex].find('Drawer') 

 

## For system with NO Drawers configuration: 

if checkIfDrawerMissing == -1: 

    print "This system has NO Drawers configuration, the corresponding column in the 

DIM_DRIVE table will be filled with 'na'. \n" 

    for trayNum in [0,1,2,3,4,5,6,7,8,9,10,99]: 

        for slotNum in range(36): 

            slotNum += 1 

         

            searchString = "Drive at Tray " + str(trayNum) + ", Slot " + str(slotNum) 

+ "\n" 

            checkIfExist = sapString[tmpIndex:endIndex].find(searchString) 

            if checkIfExist == -1: 

                continue 

            else: 

                recordOfExistingTrayNum.append(trayNum) 

                                 

                # Generate partitioned field names date_partition, which is equal to 

ASUP_GenDate 

                DIM_DRIVE_sap['date_partition'] = g_asup['ASUP_GenDate'] 

                 

                tmpIndex = tmpIndex + checkIfExist 

                DIM_DRIVE_sap['Tray Number'] = trayNum 

                #DIM_DRIVE_sap['Tray Number'] = re.findall("Tray (.*?),", 

sapString[tmpIndex:endIndex])[0].strip() 

                DIM_DRIVE_sap['Drawer Number'] = 'na' 

                DIM_DRIVE_sap['Slot Number'] = slotNum 

                for field in DRIVEFieldName: 

                    if field not in sapString[tmpIndex:endIndex]: 

                        ###print '\n\n', "Cannot find field '{0}' in the 'storage-

array-profile.txt' file, \nin the corresponding column in DIM_DRIVE table, it will be 

filled with 'na'. \n".format(field) 

                        DIM_DRIVE_sap[field] = 'na' 

                    else: 



 

Page 31 

 

                        DIM_DRIVE_sap[field] = re.findall(field + ": (.*?)\n", 

sapString[tmpIndex:endIndex])[0].strip() 

                if 'Data Assurance (DA) capable' not in sapString[tmpIndex:endIndex]: 

                    print '\n\n', "Cannot find field 'Data Assurance (DA) capable' in 

the 'storage-array-profile.txt' file. \nin the corresponding column in DIM_DRIVE table, 

it will be filled with 'na'. \n" 

                    DIM_DRIVE_sap['Data Assurance (DA) capable'] = 'na' 

                else: 

                    DIM_DRIVE_sap['Data Assurance (DA) capable'] = re.findall("Data 

Assurance \(DA\) capable: (.*?)\n", sapString[tmpIndex:endIndex])[0].strip() 

         

                # Generate Drive ID 

                DIM_DRIVE_sap['Drive ID'] = g_asup['ASUP_SystemID'] + '_' + 

DIM_DRIVE_sap['Serial number'] 

         

                if trayNum == min(recordOfExistingTrayNum) and slotNum == 1: 

                    dimDrive = 

csv.DictWriter(fileDrive,fieldnames=DIM_DRIVE_sap.keys()) 

                    dimDrive.writeheader() 

                dimDrive.writerow(DIM_DRIVE_sap) 

         

         

### DIM_DRIVE_ERROR table 

 

                # Generate partitioned field names date_partition, which is equal to 

ASUP_GenDate 

                DIM_DRIVE_ERROR['date_partition'] = g_asup['ASUP_GenDate'] 

 

                DIM_DRIVE_ERROR['Serial number'] = DIM_DRIVE_sap['Serial number'] 

         

                # Generate Drive ID 

                DIM_DRIVE_ERROR['Drive ID'] = g_asup['ASUP_SystemID'] + '_' + 

DIM_DRIVE_ERROR['Serial number'] 

         

         

                twoControllerIndexER = [] 

         

                # Deal With special cases: "Retrieved on Controller A/B at Not 

Available" 

         

                #ifControllerAExists = re.search("Retrieved on Controller A at 

(.*)\r\n\r\nError", erString) 

                ifControllerAExists = re.search("Retrieved on Controller A at 

(.*)\n\nError", erString) 

                if ifControllerAExists == None: 

                    locationindexER1 = erString.find(DIM_DRIVE_sap['Serial number']) 

                    twoControllerIndexER.append(locationindexER1) 

                 

                else: 

                    print '\n', "Retrieved on Controller A at 'Not Available', there 

is an Error, and no DRIVE information on Controller A" 



 

Page 32 

 

                 

                #ifControllerBExists = re.search("Retrieved on Controller B at 

(.*)\r\n\r\nError", erString) 

                ifControllerBExists = re.search("Retrieved on Controller B at 

(.*)\n\nError", erString) 

                if ifControllerBExists == None: 

                    locationindexER2 = erString.rfind(DIM_DRIVE_sap['Serial number']) 

                    twoControllerIndexER.append(locationindexER2) 

             

                else: 

                    print '\n', "Retrieved on Controller B at 'Not Available', there 

is an Error, and no DRIVE information on Controller B" 

         

         

                ###print twoControllerIndexER, '\n' 

         

                for driveLocationIndexER in twoControllerIndexER: 

             

                    if ifControllerAExists == None: 

                        if driveLocationIndexER == locationindexER1: 

DIM_DRIVE_ERROR['Controller Type'] = 'A' 

                    if ifControllerBExists == None: 

                        if driveLocationIndexER == locationindexER2: 

DIM_DRIVE_ERROR['Controller Type'] = 'B' 

         

                    beginIndexER = erString.rindex('St ',0,driveLocationIndexER) 

                    endIndexER = erString.index('St ',driveLocationIndexER) 

         

                    cuttinglinelong = "-- -------- -------- ---------- - -------- ----

---------- ----------------- -----------------" 

         

                    tmpIndexER = erString.find(cuttinglinelong,beginIndexER,endIndexER) 

+ len(cuttinglinelong) 

                    tmpEndIndexER = erString.find('WWN',tmpIndexER,endIndexER) - 1 

         

                    erStringSplit = erString[tmpIndexER:tmpEndIndexER].split(' ') 

         

                    for itr in range(7): 

                        for element in erStringSplit: 

                            if element == '': erStringSplit.remove(element) 

                            elif element == '\n': erStringSplit.remove(element) 

                            elif element == '|': erStringSplit.remove(element) 

                            else: continue 

                

                    DIM_DRIVE_ERROR['Devnum'] = erStringSplit[0] 

                    DIM_DRIVE_ERROR['Location'] = erStringSplit[1] 

                    DIM_DRIVE_ERROR['Role'] = erStringSplit[2] 

                    DIM_DRIVE_ERROR['Rank'] = erStringSplit[3] 

                    DIM_DRIVE_ERROR['Total CmdCount'] = erStringSplit[4] 

                    DIM_DRIVE_ERROR['Total Error Count'] = erStringSplit[5] 

                    DIM_DRIVE_ERROR['Total Event Count'] = erStringSplit[6] 



 

Page 33 

 

         

                    DIM_DRIVE_ERROR['WWN'] = re.findall("WWN: (.*?)\n", 

erString[tmpIndexER:endIndexER])[0].strip() 

         

                    cuttinglineshort = "--------------- --------                        

-----" 

         

                    tmpIndexER = 

erString.find(cuttinglineshort,beginIndexER,endIndexER) + len(cuttinglineshort) + 1 

         

                    erStringSplitCmd = erString[tmpIndexER:endIndexER].split('\n') 

         

                    for itr in range(2): 

                        for element in erStringSplitCmd: 

                            if element == '': erStringSplitCmd.remove(element) 

             

                    ###print "For the Drive (Serial Number): ", 

DIM_DRIVE_ERROR['Serial number'], " in Controller ", DIM_DRIVE_ERROR['Controller 

Type'], '\n', "------------------------------" 

             

                    DIM_DRIVE_ERROR['Time since Boot'] = 'null' 

                    DIM_DRIVE_ERROR['CmdCount'] = 'null' 

                    DIM_DRIVE_ERROR['Command Type'] = 'null' 

                    DIM_DRIVE_ERROR['Idcmd'] = 'null' 

             

                    dimDriveError = 

csv.DictWriter(fileDriveError,fieldnames=DIM_DRIVE_ERROR.keys()) 

             

                    if ifControllerAExists == None: 

                        if trayNum == min(recordOfExistingTrayNum) and slotNum == 1 

and driveLocationIndexER == locationindexER1: 

                            dimDriveError.writeheader() 

                    else: 

                        if trayNum == min(recordOfExistingTrayNum) and slotNum == 1 

and driveLocationIndexER == locationindexER2: 

                            dimDriveError.writeheader() 

             

                    for itrElement in erStringSplitCmd: 

                        if 'Event' in itrElement: 

                            EventString = itrElement.split() 

                 

                            DIM_DRIVE_ERROR['Time since Boot'] = EventString[0] 

                            DIM_DRIVE_ERROR['CmdCount'] = EventString[1] 

                            DIM_DRIVE_ERROR['Command Type'] = EventString[2] 

                            DIM_DRIVE_ERROR['Idcmd'] = EventString[3] 

                 

                        elif 'Error' in itrElement: 

                            ErrorString = itrElement.split() 

                 

                            DIM_DRIVE_ERROR['Time since Boot'] = ErrorString[0] 

                            DIM_DRIVE_ERROR['CmdCount'] = ErrorString[1] 



 

Page 34 

 

                            DIM_DRIVE_ERROR['Command Type'] = ErrorString[2] 

                            #DIM_DRIVE_ERROR['Idcmd'] = ''.join(ErrorString[3:],' ') 

                            DIM_DRIVE_ERROR['Idcmd'] = ErrorString[3] + ' ' + 

ErrorString[4] + ' ' + ErrorString[5] + ' ' + ErrorString[6] + ' ' + ErrorString[7] + 

' ' + ErrorString[8] + ' ' + ErrorString[9] 

             

                        else: continue 

                 

                        dimDriveError.writerow(DIM_DRIVE_ERROR) 

             

                    

                    #print 

'\n','##############################################################',DIM_DRIVE_ERROR 

                     

                     

## For system with the Drawers configuration: 

else: 

    for trayNum in [0,1,2,3,4,5,6,7,8,9,10,99]: 

        for drawerNum in range(12): 

            drawerNum += 1 

            for slotNum in range(36): 

                slotNum += 1 

         

                searchString = "Drive at Tray " + str(trayNum) + ", Drawer " + 

str(drawerNum) + ", Slot " + str(slotNum) + "\n" 

                checkIfExist = sapString[tmpIndex:endIndex].find(searchString) 

                if checkIfExist == -1: 

                    continue 

                else: 

                    recordOfExistingTrayNum.append(trayNum) 

                    recordOfExistingDrawerNum.append(drawerNum) 

                 

                    # Generate partitioned field names date_partition, which is equal 

to ASUP_GenDate 

                    DIM_DRIVE_sap['date_partition'] = g_asup['ASUP_GenDate'] 

                 

                    tmpIndex = tmpIndex + checkIfExist 

                    DIM_DRIVE_sap['Tray Number'] = trayNum 

                    #DIM_DRIVE_sap['Tray Number'] = re.findall("Tray (.*?),", 

sapString[tmpIndex:endIndex])[0].strip() 

                    DIM_DRIVE_sap['Drawer Number'] = drawerNum 

                    DIM_DRIVE_sap['Slot Number'] = slotNum 

                    for field in DRIVEFieldName: 

                        if field not in sapString[tmpIndex:endIndex]: 

                            ###print '\n\n', "Cannot find field '{0}' in the 'storage-

array-profile.txt' file. \nin the corresponding column in DIM_DRIVE table, it will be 

filled with 'na'. \n".format(field) 

                            DIM_DRIVE_sap[field] = 'na' 

                        else: 

                            DIM_DRIVE_sap[field] = re.findall(field + ": (.*?)\n", 

sapString[tmpIndex:endIndex])[0].strip() 



 

Page 35 

 

                    if 'Data Assurance (DA) capable' not in 

sapString[tmpIndex:endIndex]: 

                        print '\n\n', "Cannot find field 'Data Assurance (DA) capable' 

in the 'storage-array-profile.txt' file. \nin the corresponding column in DIM_DRIVE 

table, it will be filled with 'na'. \n" 

                        DIM_DRIVE_sap['Data Assurance (DA) capable'] = 'na' 

                    else: 

                        DIM_DRIVE_sap['Data Assurance (DA) capable'] = 

re.findall("Data Assurance \(DA\) capable: (.*?)\n", 

sapString[tmpIndex:endIndex])[0].strip() 

         

                    # Generate Drive ID 

                    DIM_DRIVE_sap['Drive ID'] = g_asup['ASUP_SystemID'] + '_' + 

DIM_DRIVE_sap['Serial number'] 

         

                    if trayNum == min(recordOfExistingTrayNum) and drawerNum == 

min(recordOfExistingDrawerNum) and slotNum == 1: 

                        dimDrive = 

csv.DictWriter(fileDrive,fieldnames=DIM_DRIVE_sap.keys()) 

                        dimDrive.writeheader() 

                    dimDrive.writerow(DIM_DRIVE_sap) 

         

         

### DIM_DRIVE_ERROR table 

 

                    # Generate partitioned field names date_partition, which is equal 

to ASUP_GenDate 

                    DIM_DRIVE_ERROR['date_partition'] = g_asup['ASUP_GenDate'] 

 

                    DIM_DRIVE_ERROR['Serial number'] = DIM_DRIVE_sap['Serial number'] 

         

                    # Generate Drive ID 

                    DIM_DRIVE_ERROR['Drive ID'] = g_asup['ASUP_SystemID'] + '_' + 

DIM_DRIVE_ERROR['Serial number'] 

         

         

                    twoControllerIndexER = [] 

         

                    # Deal With special cases: "Retrieved on Controller A/B at Not 

Available" 

         

                    #ifControllerAExists = re.search("Retrieved on Controller A at 

(.*)\r\n\r\nError", erString) 

                    ifControllerAExists = re.search("Retrieved on Controller A at 

(.*)\n\nError", erString) 

                    if ifControllerAExists == None: 

                        locationindexER1 = erString.find(DIM_DRIVE_sap['Serial 

number']) 

                        twoControllerIndexER.append(locationindexER1) 

                         

                    else: 



 

Page 36 

 

                        print '\n', "Retrieved on Controller A at 'Not Available', 

there is an Error, and no DRIVE information on Controller A" 

             

                    #ifControllerBExists = re.search("Retrieved on Controller B at 

(.*)\r\n\r\nError", erString) 

                    ifControllerBExists = re.search("Retrieved on Controller B at 

(.*)\n\nError", erString) 

                    if ifControllerBExists == None: 

                        locationindexER2 = erString.rfind(DIM_DRIVE_sap['Serial 

number']) 

                        twoControllerIndexER.append(locationindexER2) 

             

                    else: 

                        print '\n', "Retrieved on Controller B at 'Not Available', 

there is an Error, and no DRIVE information on Controller B" 

         

         

                    ###print twoControllerIndexER, '\n' 

         

                    for driveLocationIndexER in twoControllerIndexER: 

             

                        if ifControllerAExists == None: 

                            if driveLocationIndexER == locationindexER1: 

DIM_DRIVE_ERROR['Controller Type'] = 'A' 

                        if ifControllerBExists == None: 

                            if driveLocationIndexER == locationindexER2: 

DIM_DRIVE_ERROR['Controller Type'] = 'B' 

         

                        beginIndexER = erString.rindex('St ',0,driveLocationIndexER) 

                        endIndexER = erString.index('St ',driveLocationIndexER) 

         

                        cuttinglinelong = "-- -------- -------- ---------- - -------- 

-------------- ----------------- -----------------" 

         

                        tmpIndexER = 

erString.find(cuttinglinelong,beginIndexER,endIndexER) + len(cuttinglinelong) 

                        tmpEndIndexER = erString.find('WWN',tmpIndexER,endIndexER) - 1 

         

                        erStringSplit = erString[tmpIndexER:tmpEndIndexER].split(' ') 

         

                        for itr in range(7): 

                            for element in erStringSplit: 

                                if element == '': erStringSplit.remove(element) 

                                elif element == '\n': erStringSplit.remove(element) 

                                elif element == '|': erStringSplit.remove(element) 

                                else: continue 

                

                        DIM_DRIVE_ERROR['Devnum'] = erStringSplit[0] 

                        DIM_DRIVE_ERROR['Location'] = erStringSplit[1] 

                        DIM_DRIVE_ERROR['Role'] = erStringSplit[2] 

                        DIM_DRIVE_ERROR['Rank'] = erStringSplit[3] 



 

Page 37 

 

                        DIM_DRIVE_ERROR['Total CmdCount'] = erStringSplit[4] 

                        DIM_DRIVE_ERROR['Total Error Count'] = erStringSplit[5] 

                        DIM_DRIVE_ERROR['Total Event Count'] = erStringSplit[6] 

         

                        DIM_DRIVE_ERROR['WWN'] = re.findall("WWN: (.*?)\n", 

erString[tmpIndexER:endIndexER])[0].strip() 

         

                        cuttinglineshort = "--------------- --------                        

-----" 

         

                        tmpIndexER = 

erString.find(cuttinglineshort,beginIndexER,endIndexER) + len(cuttinglineshort) + 1 

         

                        erStringSplitCmd = erString[tmpIndexER:endIndexER].split('\n') 

         

                        for itr in range(2): 

                            for element in erStringSplitCmd: 

                                if element == '': erStringSplitCmd.remove(element) 

             

                        ###print "For the Drive (Serial Number): ", 

DIM_DRIVE_ERROR['Serial number'], " in Controller ", DIM_DRIVE_ERROR['Controller 

Type'], '\n', "------------------------------" 

             

                        DIM_DRIVE_ERROR['Time since Boot'] = 'null' 

                        DIM_DRIVE_ERROR['CmdCount'] = 'null' 

                        DIM_DRIVE_ERROR['Command Type'] = 'null' 

                        DIM_DRIVE_ERROR['Idcmd'] = 'null' 

             

                        dimDriveError = 

csv.DictWriter(fileDriveError,fieldnames=DIM_DRIVE_ERROR.keys()) 

             

                        if ifControllerAExists == None: 

                            if trayNum == min(recordOfExistingTrayNum) and drawerNum 

== min(recordOfExistingDrawerNum) and slotNum == 1 and driveLocationIndexER == 

locationindexER1: 

                                dimDriveError.writeheader() 

                        else: 

                            if trayNum == min(recordOfExistingTrayNum) and drawerNum 

== min(recordOfExistingDrawerNum) and slotNum == 1 and driveLocationIndexER == 

locationindexER2: 

                                dimDriveError.writeheader() 

             

                        for itrElement in erStringSplitCmd: 

                            if 'Event' in itrElement: 

                                EventString = itrElement.split() 

                 

                                DIM_DRIVE_ERROR['Time since Boot'] = EventString[0] 

                                DIM_DRIVE_ERROR['CmdCount'] = EventString[1] 

                                DIM_DRIVE_ERROR['Command Type'] = EventString[2] 

                                DIM_DRIVE_ERROR['Idcmd'] = EventString[3] 

                 



 

Page 38 

 

                            elif 'Error' in itrElement: 

                                ErrorString = itrElement.split() 

                 

                                DIM_DRIVE_ERROR['Time since Boot'] = ErrorString[0] 

                                DIM_DRIVE_ERROR['CmdCount'] = ErrorString[1] 

                                DIM_DRIVE_ERROR['Command Type'] = ErrorString[2] 

                                #DIM_DRIVE_ERROR['Idcmd'] = ''.join(ErrorString[3:],' 

') 

                                DIM_DRIVE_ERROR['Idcmd'] = ErrorString[3] + ' ' + 

ErrorString[4] + ' ' + ErrorString[5] + ' ' + ErrorString[6] + ' ' + ErrorString[7] + 

' ' + ErrorString[8] + ' ' + ErrorString[9] 

             

                            else: continue 

                 

                            dimDriveError.writerow(DIM_DRIVE_ERROR) 

             

                                           

#print'\n','##############################################################',DIM_DRIVE_

ERROR 

             

fileDriveError.close() 

fileDrive.close() 

 

 

 

## ~~~~~~~~~~ major-event-log.txt Parser ~~~~~~~~~~ 

majorEventLogMap={ 

'Date/Time':'Major Event Date and Time', 

'Sequence number':'Major Event Sequence number', 

'Event type':'Major Event type', 

'Event category':'Major Event category', 

'Priority':'Major Event Priority', 

'Event needs attention':'Major Event needs attention', 

'Event send alert':'Major Event send alert', 

'Event visibility':'Major Event visibility', 

'Description':'Major Event Description', 

'Event specific codes':'Major Event specific codes', 

'Component type':'Major Event Component type', 

'Component location':'Major Event Component location', 

'Logged by':'Major Event Logged by'} 

 

### DIM_MAJOR_EVENT_LOG table 

 

g_majorEventLog = {} 

i = 0 

 

for l in open(PATH_data_folder + 'major-event-log.txt'): 

#for l in open('/home/saasbook/ASUP/E-series_Data1/' + 'major-event-log.txt'): 

    if i <= 15: i += 1 # 15 lines of useful information 

    if 'Raw data:' not in l: 

        if ':' not in l: continue 



 

Page 39 

 

        tmpL = l.split(":") 

        try: 

            g_majorEventLog[majorEventLogMap[tmpL[0]]]=str.strip(":".join(tmpL[1:])) 

        except: 

            print "Error parsing 'major-event-log.txt' in line ["+l+"]" 

 

    else: 

        g_majorEventLog['Major Event Date and Time'] = 

dateParser.parse(g_majorEventLog['Major Event Date and Time']).strftime("%Y%m%d%H%M%S") 

 

        g_majorEventLog['ASUP_ID'] = g_asup['ASUP_ID'] 

        # Generate partitioned field names date_partition, which is equal to 

ASUP_GenDate 

        g_majorEventLog['date_partition']=g_asup['ASUP_GenDate'] 

         

        if i == 15: 

            DIM_MAJOR_EVENT_LOG_table = 'DIM_MAJOR_EVENT_LOG_{0}.csv'.format(nameIndex) 

            fileMajorEventLog = open(DIM_MAJOR_EVENT_LOG_table,'w') 

            dimMajorEventLog = csv.DictWriter(fileMajorEventLog, fieldnames = 

g_majorEventLog.keys()) 

            dimMajorEventLog.writeheader() 

         

        dimMajorEventLog.writerow(g_majorEventLog) 

 

fileMajorEventLog.close() 

 

## ~~~~~~~~~~ storage-array-profile.txt Parser [DIM_TRAY table]~~~~~~~~~~ 

trayMap={ 

'Tray path redundancy':'Major Event Date and Time', 

'Sequence number':'Major Event Sequence number', 

'Event type':'Major Event type', 

'Event category':'Major Event category', 

'Priority':'Major Event Priority', 

'Event needs attention':'Major Event needs attention', 

'Event send alert':'Major Event send alert', 

'Event visibility':'Major Event visibility', 

'Description':'Major Event Description', 

'Event specific codes':'Major Event specific codes', 

'Component type':'Major Event Component type', 

'Component location':'Major Event Component location', 

'Logged by':'Major Event Logged by'} 

 

### DIM_MAJOR_EVENT_LOG table 

 

g_majorEventLog = {} 

i = 0 

 

for l in open(PATH_data_folder + 'major-event-log.txt'): 

#for l in open('/home/saasbook/ASUP/E-series_Data1/' + 'major-event-log.txt'): 

    if i <= 15: i += 1 # 15 lines of useful information 

    if 'Raw data:' not in l: 



 

Page 40 

 

        if ':' not in l: continue 

        tmpL = l.split(":") 

        try: 

            g_majorEventLog[majorEventLogMap[tmpL[0]]]=str.strip(":".join(tmpL[1:])) 

        except: 

            print "Error parsing 'major-event-log.txt' in line ["+l+"]" 

 

    else: 

        g_majorEventLog['Major Event Date and Time'] = 

dateParser.parse(g_majorEventLog['Major Event Date and Time']).strftime("%Y%m%d%H%M%S") 

 

        g_majorEventLog['ASUP_ID'] = g_asup['ASUP_ID'] 

        # Generate partitioned field names date_partition, which is equal to 

ASUP_GenDate 

        g_majorEventLog['date_partition']=g_asup['ASUP_GenDate'] 

         

        if i == 15: 

            DIM_MAJOR_EVENT_LOG_table = 'DIM_MAJOR_EVENT_LOG_{0}.csv'.format(nameIndex) 

            fileMajorEventLog = open(DIM_MAJOR_EVENT_LOG_table,'w') 

            dimMajorEventLog = csv.DictWriter(fileMajorEventLog, fieldnames = 

g_majorEventLog.keys()) 

            dimMajorEventLog.writeheader() 

         

        dimMajorEventLog.writerow(g_majorEventLog) 

 

fileMajorEventLog.close() 

 

 

  



 

Page 41 

 

Bibliography 

 

[1] [Online]chttp://www.netapp.com/us/products/storage-systems/e5400/e5400-product-
comparison.aspx 

[2] [Online] http://spark.apache.org/research.html 

[3] [Online] http://www.idc.com/getdoc.jsp?containerId=prUS24302513 

[4] [Online] http://www.netapp.com/us/services-support/autosupport.aspx 

[5] [Online].http://www.emc.com/microsites/big-data-explorer/index.htm#content 

/which/analytics/, last access Jan. 30, 2014.  

[6] [Online].http://www.cisco.com/en/US/solutions/collateral/ns340/ns1176/data-

center/BigData_Case_Study-1.html/, last access Jan. 31, 2014. 

[7] [Online]. http://www-01.ibm.com/software/data/bigdata/, last access Jan. 31, 2014.  

[8] [Online].http://storageeffect.media.seagate.com/2013/04/storage-effect/seagate-puts-

big-data-in-action-a-case-study/, last access Feb. 1, 2014.  

[9] [Online].http://hortonworks.com/customer/western-digital/, last access Feb. 2, 2014.  

[10] "Proactive Health Management with AutoSupport" NetApp White Paper. Network 

Appliance, Inc. Technical Report. WP-7027-0907. Sept. 2007. 

[11] J. Ullman, "Mining of Massive Datasets" pp.19, Cambridge University Press, 

December 30, 2011. 

[12] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff 
and R. Murthy, “Hive - A Warehousing Solution Over a Map-Reduce Framework”. 

Proceedings of the VLDB Endowment. Vol. 2 Issue 2. Pp. 1626-1629. August 2009.  

[13][Online]http://www.cloudera.com/content/cloudera/en/products-and-

services/cdh/impala.html 

[14] [Online] http://parquet.io/ 

[15] [Online] https://github.com/forcedotcom/phoenix 

[16] T. Kaldewey, E. Shekita, S. Tata, “Clydesdale: Structured Data Processing on 

MapReduce” IBM Almaden Research Center, Google. 
http://www.timkaldewey.de/pubs/Clydesdale__EDBT12.pdf  

[17] A. Pandey, H. Tong and J. Zhang, "Analytics for E-Series AutoSupport Using Big Data 

Technologies." Poster, NetApp Inc., Sunnyvale, CA, Tech. Rep., Nov., 2013.  


