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Abstract

Fast and Effective Approximations for Summarization and Categorization of Very

Large Text Corpora

by

Andrew B Godbehere

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

and the Designated Emphasis

in

New Media

University of California, Berkeley

Laurent El Ghaoui, Chair

Given the overwhelming quantities of data generated every day, there is a pressing

need for tools that can extract valuable and timely information. Vast reams of text

data are now published daily, containing information of interest to those in social

science, marketing, finance, and public policy, to name a few. Consider the case of

the micro-blogging website Twitter, which in May 2013 was estimated to contain 58

million messages per day [1]: in a single day, Twitter generates a greater volume of

words than the Encyclopedia Brittanica. The magnitude of the data being analyzed,

even over short time-spans, is out of reach of unassisted human comprehension.

This thesis explores scalable computational methodologies that can assist human

analysts and researchers in understanding very large text corpora. Existing methods

for sparse and interpretable text classification, regression, and topic modeling, such as

the Lasso, Sparse PCA, and probabilistic Latent Semantic Indexing, provide the foun-

dation for this work. While these methods are either linear algebraic or probabilistic

in nature, this thesis contributes a hybrid approach wherein simple probability mod-

els provide dramatic dimensionality reduction to linear algebraic problems, resulting

in computationally efficient solutions suitable for real-time human interaction.
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Specifically, minimizing the probability of large deviations of a linear regression

model while assuming a k-class probabilistic text model yields a k-dimensional opti-

mization problem, where k can be much smaller than either the number of documents

or features. Further, a simple non-negativity constraint on the problem yields a sparse

result without the need of an ℓ1 regularization. The problem is also considered and

analyzed in the case of uncertainty in the model parameters. Towards the problem of

estimating such probabilistic text models, a fast implementation of Sparse Principal

Component Analysis is investigated and compared with Latent Dirichlet Allocation.

Methods of fitting topic models to a dataset are discussed. Specific examples on

a variety of text datasets are provided to demonstrate the efficacy of the proposed

methods.

Laurent El Ghaoui
Dissertation Committee Chair
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Chapter 1

Introduction

In an age of Big Data, text content is omnipresent and voluminous, yet actionable

information can be difficult to acquire. While every news article, patent application,

financial transaction, and Tweet is archived, there are vastly more documents in these

datasets than an individual could ever hope to read and understand. Comprehension

of the content these corpora, while essential for decision-making and social-scientific

research, is beyond the capability of the unassisted analyst or researcher.

For the methodologies and applications of this dissertation, the size of “Big Data”

is relative to the abilities of a person to manage. It is not defined by data on the order

of multiple terabytes, or by data distributed across many servers. Rather, “Big Data”

can mean a text corpus on the order of a few hundred megabytes, which can contain

on the order of 10,000 news articles, or 100,000 Twitter messages. An individual

attempting to read a corpus of this size would have to resort to some sort of sampling

approach: read a few articles here and there, possibly guided by a keyword search,

and try to develop a general understanding of the content, major stories, and trends.

The contributions of this dissertation are directed towards the goal of developing

a technology that can assist researchers, analysts, or lay-persons to navigate and

comprehend text data.

There are some existing tools, such as Google n-grams [27], that provide a user

with statistics and information about text on demand. These analyses count the

occurrences of keywords over time, and the resulting time series can provide insight
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into topical trends or to changing word meanings. For researchers in the humanities

and social sciences, however, it is important to interact directly with source content,

which is inaccessible in Google n-grams; the difficulty is in navigation, categorization,

comparing, and detecting relationships between words and concepts. Additionally,

the most useful abstractions are flexible, permitting interaction and exploration, so

the technical goals target a human-in-the-loop system. To facilitate rich real-time

interaction, the methodologies described in this dissertation are designed to be as

computationally efficient as possible in order to facilitate real-time interaction nec-

essary for an assistive tool: the methods must be fast and they must be effective in

delivering useful, relevant, and timely information.

1.1 Contributions

Theoretical contributions of this dissertation center around the development of

a hybrid approach to text analysis, situated between existing approaches which ei-

ther identify latent patterns in text with linear algebraic methods, or with generative

probabilistic models. Linear algebraic methods, such as sparse regression and low-

rank approximation [12, 13, 48] operate directly on observed data. Methods using

probabilistic models, on the other hand, estimate statistics, the parameters of which

convey information about the underlying patterns within text. This dissertation pro-

poses methods at the intersection of the two approaches, in which estimated statistics

are used to dramatically reduce the size of the linear regression and classification prob-

lems, and where Sparse Principal Component Analysis (SPCA) may be leveraged to

estimate multiple probability models from observed data.

This dissertation also explores practical applications of the proposed tools. Given

that the tools are intended to be interactive for a non-technical audience, the pri-

mary considerations in evaluation are computational efficiency and interpretability of

results. The aim is not necessarily to develop accurate models of text but to develop

useful abstractions.

First, an implementation of SPCA is compared to a fast estimation of the Latent

Dirichlet Allocation (LDA) model [4, 18, 36, 42] in order to establish the suitability



3

of SPCA to interactive systems. Subsequently, applications of the proposed method-

ology to real-world data such as news, Twitter messages, a work of fiction, and an

archive of United States Patent applications. Examples establish the legibility of the

results and describes how researchers can use and combine the proposed methods to

gain insight.

Concretely, this dissertation contributes the following:

1. a robust approach to text classification and feature selection, where a sparse

solution is recovered in the absence of a regularization term.

2. an analysis of the robust classification and feature selection problem in the pres-

ence of uncertainty in parameters. This approach is demonstrated to function

well on unbalanced classification problems in Chapter 6.

3. an analysis of the performance of SPCA in contrast with LDA on an archive of

over 400,000 news articles from BBC. SPCA is demonstrated to be suitable for

real-time interaction and computes results at least an order of magnitude faster

than LDA.

4. a method for computing similarity between a topic, represented as a categorical

distribution, and an observed document, based on the Hellinger distance.

5. Example uses:

(a) Discovering associated keywords to a query (query expansion) in an archive

of news from Aljazeera English. Differences in results from using different

probability models are described in terms of their relevance to specific

semantic insights.

(b) Discovering previously unknown conversations, opinions, and populations

on Twitter.

(c) Analyzing descriptions of and actions taken by a character in “Harry Potter

and the Sorcerer’s Stone”, introducing new modes of reading.

(d) Uncovering topics, sub-topics, and trends within a selection of United

States Patent applications pertaining to Clean Technology.
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1.2 Data Sources & Application Areas

Text data exists in a wide variety of contexts, outlined here to establish potential

application areas.

• Academic texts: summarize research fields, find related documents, recom-

mend articles.

• News: compare coverage of stories between news outlets or countries.

• E-mail: navigate content and conversations hierarchically based on content,

useful when exact words used in desired email are unknown.

• Social media: uncover distinct populations and their opinions, identify timely

topics, and track topic evolution over time.

• Fan fiction: explore different characterizations of characters among authors,

discover how characters capture the imagination of fans.

• Legal texts (e.g. patents): discover legal precedent or prior art.

• Congressional Proceedings Transcripts: enable the voting public to read

and understand the opinions and actions of representatives.

• Earnings call transcripts: tap into unstructured text sources that include

business insights useful for investment.

• Product reviews: ascertain differences in opinion about a product, summarize

recommendations or praise from customers.

• File systems: dynamic reorganization of file system relative to content and

user input.

While text content is often dubbed “free” and “open”, in practice it may be

impossible for a lay-person to read and comprehend, requiring domain specialists

to interpret and convey to a broader audience. In the example of Congressional
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Proceedings Transcripts, this has important sociopolitical consequences. Data that

is touted to be public is, in practice, opaque. The voting public relies on domain

specialists to interpret the proceedings of Congress and the Senate, which is typically

filtered through a few major news outlets. Open and accessible democracy in this

case requires tools usable and interpretable by a non-technical audience. Providing

data is itself insufficient; this data must be delivered with the means to extract useful

and relevant information. This application area has been analyzed previously to

identify voting patterns among representatives. [33] The methods of this dissertation

can expand upon this work to navigate the rich text content of the archives; what

representatives say and how their statements evolve may provide much more feedback

to voters than just their voting records.

1.3 Computational Abstractions

This section describes three major computational abstractions that serve as the

foundation for this work: text vectorization, probabilistic models of text, and linear

algebraic algorithms. Contributions of this dissertation, beginning with Chapter 2,

involve a synthesis of these approaches.

1.3.1 Text Vectorization

The idea that useful information can be much simpler than the collection of data as

a whole can be traced to the beginning of statistical methods of scientific inquiry. The

work of Pierre Laplace [17], for instance, involved compiling meticulously recorded

(but noisy and somewhat unreliable) data about the positions of celestial bodies

over time, and leveraging new statistical methods to extract the useful information

of the parameters of the simple Newtonian trajectories. Vast reams of data could

be interpreted as a simple equation, and used to accurately predict the positions of

celestial bodies, much to the amazement of Laplace’s contemporaries.

In the mid 20th century, Claude Shannon famously defined a mathematical quan-

tity termed “information” [38]. This measure professes to quantify how informative
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a stream of data may be, and offers a method by which to distill data into “in-

formation.” Shannon’s information, like Laplace’s statistical estimation procedures,

propose statistical frameworks within which to define signal (information) and noise,

and thereby separate the two.

Text data gathered from news and social media, however, are very complicated

signals, with no clear and simple probabilistic description. The useful perspectives,

approaches, and models varies depending on the question or application or on the

sort of action to be taken with the information.

With this caveat, consider the widely used “bag-of-words” representation of text

[4, 12, 13, 19, 20, 39, 46]. This concept is expanded to a “bag-of-features” representa-

tion, where a “feature” is a generalization of a “word.” Broadly, within the “bag-

of-features” model, a text can be represented as a collection of symbols from some

dictionary. These features may be more than just words, often called “unigrams.”

Unigrams may be augmented with tags, like parts-of-speech [28,39]. Or, features may

be n-grams, representing short sequences of words. Information encoded in this model

is contained within the features used and how often each is used within a document.

Once a document transformed into features, order is ignored, and the collection of

features is transformed into a numerical vector.

As an example: suppose a block of text reads “a b c b”, and a dictionary maps

each feature (in this case defined to be a letter) to a number, i.e. “1,2,3,2”. If the

dictionary is of size m, the vector v ∈ Rm is such that v1 = 1, v2 = 2, v3 = 1, and

vi = 0 for all i > 3. This vector records simply which terms appeared in the block of

text and how many times each appeared.

This model is not intended to be realistic; lacking order, much semantic informa-

tion is lost. The benefit is simplicity and the ability to use computationally efficient

tools to extract useful information. As an example, methods have been proposed

to access the “latent semantic structure” of text [9, 19, 30], meaning identifying the

groups of features commonly occurring together within the same document. It should

be noted that the unit of analysis with this model is application-dependent. With

very long documents, features from the beginning and end are considered to be just as

related as words appearing together within the same sentence. As such, a document
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unit may be a sentence, paragraph, or chapter rather than a document in its entirety.

1.3.2 Probabilistic Models

Textual communication has been analyzed as a stochastic process since Claude

Shannon introduced “A Mathematical Theory of Communication” [38]. Recent work

in probabilistic modeling of text, such as Latent Dirichlet Allocation (LDA) [4], em-

ploy graphical models assuming a generative process by which documents and corpora

are created. The statistics of this process, namely the parameters of the distributions

in the model, are used as a succinct description of the content of the dataset. Within

LDA, a random process selects a mixture of possible topics (represented as probabil-

ity distributions on the set of possible features), and features in the document are

generated by selecting a specific topic and subsequently generating a feature from

that random process.

This work employs earlier probabilistic models of text, called the Binary Inde-

pendence Model (BIM) [25] and probabilistic Latent Semantic Indexing (pLSI) [19].

These models use simpler generative probabilistic models and parameters of which

are efficient to estimate. Further, their utility in generating meaningful results is

demonstrated in Chapter 6. These models will be introduced in detail in Chapter 2.

Analysis of text data using probabilistic models can rely on well developed theories

and algorithms of estimation.

1.3.3 Linear Algebraic Methods

Linear algebraic approaches do not explicitly posit a statistical model for the

data. Rather, they constitute convex optimization problems solving regression, clas-

sification, and low-rank approximations. The solution of classification and regression

problems report to a user a set of features most representative of one class with re-

spect to another, or which features are most influential in an observed signal [12].

A list of all possible features would be overwhelming for an end-user, so algorithms

are designed to generate sparse results, where the number of non-zero entries in the
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solution vector is small. This short list concentrates on the most important features,

leading to more intuitive results.

First, the standard linear regression problem is as follows. For a data matrix

A ∈ Rn×m, where n is the number of documents and m is the number of features,

and for a target vector b ∈ Rn and regressor vector x ∈ Rm:

argmin
x
∥Ax− b∥2 (1.1)

This problem results in a vector x of weights for every feature in the data rep-

resenting how predictive each is for the target vector. In order to make the result

sparse and more interpretable, the Lasso [40,48] is commonly used for text classifica-

tion [13,46], which introduces an ℓ1 regularization term in the problem:

Lasso: argmin
x
∥Ax− b∥2 + λ∥x∥1 (1.2)

Changing the loss function from the 2-norm ∥ ·∥ yields two other methods, Sparse

Support Vector Machine (SVM) and Logistic Regression [12]:

Sparse SVM: argmin
x,ν

1

m

m∑
i=1

h
(
yi(A

T
i x+ ν)

)
+ λ∥x∥1 (1.3)

Logistic Regression: argmin
x,ν

1

m

m∑
i=1

h
(
yi(A

T
i x+ ν)

)
+ λ∥x∥1 (1.4)

where

Hinge Loss: h(t) = max(0, 1− t) (1.5)

Smoothed Hinge Loss: l(t) = log(1 + e−t) (1.6)

The second linear algebraic problem employed is that of low-rank approximation

of a matrix. This method finds a small representation of the text that extracts the

most prevalent patterns, and is rooted in singular value decomposition (SVD). This

type of approximation is considered by Deerwester [9] to extract the “latent semantic

structure” of a body of text. The basic concept comes from the Eckart-Young-Mirsky
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Theorem [11], wherein hard thresholding of singular values results in an optimal low-

rank approximation in the Frobenius norm.

Represent the SVD of a rank-r matrix A as:
∑r

i=1 σiuiv
T
i where σ1 ≥ σ2 ≥ . . . ≥ σr

are the singular values, and ui, vi are the left and right singular vectors respectively.

The problem is to find an optimal rank k < r approximation of A:

argmin
u,v
∥A− uvT∥F (1.7)

Then, the optimal rank k < r approximation of A is: Â =
∑k

i=1 σiuiv
T
i , where the

largest k singular values are maintained and the remaining are discarded.

Sparse Principal Component Analysis (SPCA) is introduced to induce sparsity in

the singular vectors, in order to make results interpretable by a person. An efficient

algorithm to identify an approximate solution to this problem is described in detail

in Chapter 5.
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Chapter 2

Probabilistic Text Models

This chapter introduces two probabilistic models of text corpora, defining their

structure, assumptions, and properties. Mentioned briefly in the Introduction, these

are the Binary Independence Model (BIM) and the probabilistic Latent Semantic

Indexing (pLSI) model. While these models have been around for several decades

[19,25,30], their structure in expectation leads to very efficient solutions to regression

problems, as will be discussed in Chapter 3. In addition, they represent effective

abstractions of text for certain applications, as is explored in Chapter 6.

2.1 Notation and Core Assumptions

All probabilistic models discussed here share some fundamental assumptions. All

build on top of the bag-of-features model of text, where documents are represented

as vectors in some feature-space of words or short short sequences of words. The

order of words or features within a document is ignored, and the models are designed

to focus on relationships between words as they co-occur within documents. These

relationships and associations among words can provide insight about topics discussed

in a corpus, and these models are simpler to represent and analyze than more complete

natural-language models.

Text corpora, as constructed in a bag-of-words model, are represented with a

matrix A ∈ Rn×m, where n represents the number of documents in the corpora
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and m represents the size of the feature-space, e.g. the number of words that appear

anywhere within the given text corpus. Rows of the matrix are vector representations

of individual documents, and the values for each feature typically correspond to the

number of occurrences of the word within the document.

Each document will be considered as a random vector generated from some proba-

bility distribution with parameter vector π ∈ (0, 1]m. The parameter vector represents

a condensed representation of the relationships among words for documents gener-

ated from the given distribution, and is referred to in this dissertation as a “topic”.

Multiple topics may exist for a corpus, but through Chapter 4 each document con-

tains only a single topic. Further, the random vectors representing topics are pairwise

independent.

2.2 Binary Independence Model

The BIM model [25] ignores the frequency of occurrence of individual words and

instead represents the appearance of any given feature in a document with an indicator

variable. Specifically, if feature k appears in a given document represented by vector

Ai, then:

Aik =

1 if feature k appears in document i

0 otherwise
(2.1)

The model represents each feature as a Bernoulli random variable with an as-

signed probability of occurrence. Every feature of every document vector is pairwise

independent.

Let Ai represent a random document vector under the BIM model. That is, the

random vector takes on values in {0, 1}m and is parameterized by a vector π ∈ (0, 1]m

representing the probabilities of occurrence of each feature. Assume the half-open

interval for probabilities as features that never occur can be removed from the model.

We refer to the parameters of this model, the vector π, as the “topic model”,

with the understanding that clusters of frequently co-occurring words (such as “oil”,

“drill”, “well”) can be interpreted semantically as a topic.
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2.2.1 Expectations

Developments in subsequent chapters will depend on expectations of a random

text corpus. The random variable representing the corpus will be denoted in bold:

A, while the instance of the random variable will be denoted as: A.

Consider first a single row vector of A, denoted Ai. Each element of the vector is

independent and distributed as a Bernoulli. The topic model, or vector of probabilities

for occurrence of each feature, for this document is πi. Therefore, E [Ai] = πi. Given

that each random row vector of A is i.i.d. under the BIM model, each row of the

expectation will be πi, where i corresponds to the row index.

Further developments also depend on the expectation of the random variable

represented by E
[
ATA

]
, which yields a simple structure that will be exploited later.

Lemma 1. Under BIM, assume a k-topic model where rows of A are distributed

according to one of k possible parameter vectors π. Let ni represent the number of

rows that follow topic model πi. Then, E
[
ATA

]
is a diagonal matrix plus a rank-k

matrix. Specifically: E
[
ATA

]
= Φ +

∑k
i=1 niπiπ

T
i where Φ is diagonal, and Φii =∑k

i=1 niπi(1− πi).

Proof. Consider first the element in row i and column j:

E
[
ATA

]
ij

= E

[(
n∑

l=1

AliAlj

)]
(2.2)

Let Jl ⊂ [1, n] be the set of indexes corresponding to documents generated from topic

model πl. Note that the cardinality of Jl, or |Jl|, is nl. If i ̸= j, each entry in the sum

becomes πliπlj, due to independence, so E
[
ATA

]
ij
=
∑k

l=1 nlπliπlj.

For i = j, we are concerned with the random variable A2
ii. Since Aii is binary

valued, A2
ii ≡ Aii. Therefore, assuming i ∈ Ji, E [A2

ii] = πli. Let x⊙ y represent the

element-wise product of two vectors: x⊙ y =
∑m

i=1 xiyi, and let diag (x) represent a

diagonal matrix with vector x on the diagonal.

Adding and subtracting
∑k

l=1 nldiag (πl ⊙ πl) from the resulting matrix yields:

E
[
ATA

]
=

(
k∑

l=1

diag (nlπl ⊙ (1− πl)) +
k∑

l=1

nlπlπ
T
l

)
(2.3)
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For ease of notation, let Φ =
(∑k

l=1 diag (nlπl ⊙ (1− πl))
)
.

Note that πli(1− πli) is the variance of feature i with respect to topic model πl.

2.3 Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (pLSI) [19,30] incorporates the number of

feature occurrences in each document into the model. That is, if feature j appears 8

times within document represented by vector Ai, then Aij = 8.

As with the BIM model, each document vector generated by the pLSI model is

assumed to be pairwise independent. The topic models are again parameterized by

a vectors π ∈ (0, 1]m, but with the additional requirement that 1Tπ = 1. Thus, the

parameter vector is constrained to the (m− 1)-simplex. In other words, each feature

generated by this model is distributed as a categorical random variable.

This dissertation makes a small modification to the pLSI model: each row of the

text corpus matrix is re-scaled to sum to 1, by dividing each document vector Ai

by the number of words in the document, ri. In this section, refer to this row-wise

scaled matrix as Ã, though in later sections the normalization will be inferred and

the matrix denoted A.

Once scaled in this fashion, this model yields a similar structure to the BIM model.

2.3.1 Expectations

Each random document vector Ai is assumed to be IID and distributed as a

multinomial distribution with parameters π ∈ (0, 1]m representing the parameters of

the multinomial and ri ∈ N representing the number of words in the document.

E
[
Ai

ri

]
=

riπ

ri
= π (2.4)

Consider next ÃT Ã.

Lemma 2. Under pLSI, assume a k-topic model where rows of A are distributed

according to one of k possible parameter vectors π. Let ni represent the number of
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rows that follow topic model πi. Then, E
[
ATA

]
is a diagonal matrix plus a rank-

k matrix. Specifically: E
[
ATA

]
= Φ +

∑k
i=1(ni − ρi)πiπ

T
i where Φ is diagonal,

Φii =
∑k

i=1 ρiπi, and ρi =
∑k

i=1
1
ri
.

Proof. Let the parameter of the multinomial distribution generating document k be

represented as πk.

The off-diagonal entry of E
[
ÃT Ã

]
is:

E
[
ÃT Ã

]
ij
=

n∑
l=1

πliπlj −
n∑

l=1

1

rl
πliπlj (2.5)

Let Ji represent the set of indices of documents corresponding to topic i, and∪k
i=1 Ji = [1, n]. Let ni represent the number of documents corresponding to topic i,

or the cardinality of the index set: ni = |Ji|.
Then,

E
[
ÃT Ã

]
ij
=

t∑
v=1

[
nvπviπvj − πviπvj

∑
k∈Jv

1

rk

]
(2.6)

On-diagonal entries are:

t∑
v=1

[
πvi

∑
k∈Jv

1

rk
+ nvπ

2
vi − π2

vi

∑
k∈Jv

1

rk

]
(2.7)

Let ρv =
∑

k∈Jv
1
rk
. Combining into a single vector expression yields:

E
[
ÃT Ã

]
=

t∑
v=1

[
diag (πv) ρv + (nv − ρv)πvπ

T
v

]
(2.8)

Note that the result is a diagonal plus rank-k matrix.

2.4 Unified Form of BIM and pLSI

The structures of the expectations ATA under the BIM and (row-wise normalized)

pLSI models are both low-rank plus a diagonal matrix. This simple representation
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requires only the parameter vectors π to be estimated and stored, a great dimension-

ality reduction from the raw n×m data matrix. In Chapter 3, this representation of

the data will be leveraged to derive fast solutions to regression problems.

Note that the forms of E
[
ATA

]
are similar enough to combine into a common

formulation. Recall that we have used a row-wise normalized matrix in the pLSI

model, previously denoted as Ã. In this section, we simply refer to this matrix as A.

Lemma 3. Under a k-topic BIM or pLSI, E
[
ATA

]
= Φ+

∑k
i=1 ciπiπ

T
i , where ci = ni

under BIM or (ni −
∑

k∈Ji
1
rk
) under pLSI. Further, Φii =

∑k
l=1 nlπli(1 − πli) under

BIM or
∑k

l=1 ρlπl under pLSI. This may also be represented as Φ + ΠΠT where Π ∈
Rm×k, and where column i is

√
ciπi.

Proof. For both models:

E [A]i = πT
i (2.9)

where πi is the parameter vector for the topic that generated row i.

Further,

E
[
ATA

]
=

t∑
k=1

Φ̌k + ckπkπ
T
k (2.10)

where Φ̌k is diagonal, and ck is a constant.

An alternative form is:

E
[
ATA

]
= Φ+ΠΠT (2.11)

where Φ =
∑t

k=1 Φ̌k and Π ∈ Rm×t is defined such that column j is
√
cjπj.

Φii =


∑t

k=1 nkπki(1− πki) BIM∑t
k=1 ρkπki pLSI

(2.12)

ck =

nk BIM

nk − ρk pLSI
(2.13)

It is important for the subsequent chapters to establish that Φ+ΠΠT is a positive-

definite matrix.

Lemma 4. Φ +
∑T

k=1 ckπkπ
T
k ≻ 0
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Proof. Symmetry is apparent, as each matrix in the sum is symmetric. Next, consider

a vector v ∈ Rm such that v ̸= 0. Then:

vTΦv +
T∑

k=1

ck(π
T
k v)

2 =
m∑
i=1

Φiiv
2
i +

T∑
k=1

ck(π
T
k v)

2 > 0 (2.14)

This holds due to the following: In both BIM and pLSI, each diagonal entry of Φ is

strictly > 0, so vTΦv > 0. Note that ρk =
∑

j∈Jk
1
rj
≤ nk, so in both BIM and pLSI,

ck ≥ 0.

Therefore, Φ +
∑T

k=1 ckπkπ
T
k ≻ 0.

2.4.1 Feature Scaling

Some applications require features to be scaled by importance relative to a user

query, past results, or by a property of frequency within a dataset. A common method

to scale features is by a TF-IDF [19, 26] transformation which is dependent on both

the frequency of a feature within a document and the overall frequency of the feature

in a corpus. Here, we consider a form of scaling where feature j is scaled by a constant

γj within every document. This is achieved with multiplication by a diagonal matrix

Γ ∈ Rm×m, where Γjj = γj:

A′ = AΓ (2.15)

The following demonstrates that the low-rank plus diagonal matrix structure is

maintained and that the modification to E [A] and E
[
ATA

]
are both trivial to com-

pute. Further, it is trivial to scale features independently for distinct document

classes. This opens up a lot of possibilities for enhancing text analysis results and for

opening up opportunities for user interaction.

These results precipitate from linearity of expectation.

For instance, consider E [A′]:

E [AΓ]i = E [A]i Γ = πT
i Γ (2.16)

The result is a scaled version of the original expectation, where each parameter in πi

is scaled by γi.
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Consider E
[
A′TA

]
, in a 2-class setting:

E
[
ΓATAΓ

]
= ΓE

[
ATA

]
Γ (2.17)

= ΓΦΓ + n1Γπ1π
T
1 Γ + n2Γπ2π

T
2 Γ (2.18)

The resulting form is exactly the same, assuming Γ ⪰ 0. The result is computed

by multiplying Φi by γ2
i for i ∈ [1,m] and multiplying π1i and π2i by γi.

Consider now independent scaling of features from two classes. Let

A =

[
A1 ∈ Rn1×m

A2 ∈ Rn2×m

]
(2.19)

where A1 represents a sub-matrix of documents all in one class, and A2 repre-

senting documents from a second distinct class. Let Γ1 represent a diagonal feature

scaling matrix for A1 and Γ2 for A2. Let:

B =

[
A1Γ1

A2Γ2

]
(2.20)

Note that:

E
[
BTB

]
= Γ1E

[
AT

1A1

]
Γ1 + Γ2E

[
AT

2A2

]
Γ2 (2.21)

Therefore, scaling of features within each class may be computed independently

without any impact on the structure of the expected matrices.
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Chapter 3

Robust Regression

The previously introduced probabilistic text corpus models can be applied to

the problem of linear regression or classification, where the low-rank plus diagonal

structure derived in the previous chapter yields computationally efficient and sparse

solutions.

In this chapter, a robust regression methodology is employed to take advantage

of an assumed probabilistic structure of a data matrix. Further, we show how these

solutions may be made sparse without the need for regularizations as is required for

the Lasso and similar problems [12,40,46].

3.1 Robust Regression

Consider the linear regression problem:

argmin
x
∥Ax− b∥2 (3.1)

when A ∈ Rn×m is a random matrix following either the Binary Independence

Model (BIM) or the probabilistic Latent Semantic Indexing (pLSI) model.

Assume a two-topic model, where the first n1 rows of A are drawn from one topic

model parameterized by π1 ∈ (0, 1]m and the remaining n2 rows are drawn from a

second topic model with parameter π2 ∈ (0, 1]m.
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Rather than solving the regression problem directly for a given realization of the

random corpus, we instead consider the problem of minimizing the probability of large

deviation, using a bound closely related to the Chebyshev inequality and derived from

Cramér [8]:

P (∥Ax− b∥2 ≥ ϵ) ≤ E [∥Ax− b∥22]
ϵ2

(3.2)

Minimizing this upper bound yields a robust solution to the classification problem

that does not rely on the raw observations and instead operates on the underlying

structure and statistics of the data. So we arrive at the problem:

argmin
x

E
[
∥Ax− b∥22

]
= argmin

x
xTΦx+ xTΠΠTx− 2bTE [A] x+ bT b (3.3)

The constant bT b term is irrelevant for the argmin optimization problem, so it is

omitted in the following.

For now, we assume that b is a classification vector and oracle information is

provided to correctly identify those documents following distribution π1 or π2. The

goal is to identify the most important features of the corpus in discriminating between

the two classes of documents.

Define b such that the first n1 entries are some value α
n1

where α ∈ R, and the

remaining n2 entries are some other value β
n2

where β ∈ R.
Thus, the problem becomes:

argmin
x

xT (Φ + ΠΠT )x− 2απT
1 x− 2βπT

2 x (3.4)

3.2 Unconstrained Solution

Let f(x) = xTΦx + c1(π
T
1 x)

2 + c2(π
T
2 x)

2 − 2απT
1 x − 2βπT

2 x. Note that this is

quadratic in x as (Φ+ c1π1π
T
1 + c2π2π

T
2 ) is positive definite, as established in Lemma

4.
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Calculating the gradient yields:

∇xf(x) = 2Φx+ 2c1π1π
T
1 x+ 2c2π2π

T
2 x− 2απ1 − 2βπ2 (3.5)

Because (Φ + ΠΠT ) is positive definite, a solution can be achieved with a simple

matrix inversion.
⋆
x = (Φ + ΠΠT )−1 (απ1 + βπ2) (3.6)

The matrix inversion lemma [44] allows the inversion of Φ+ΠΠT to be calculated as

the inverse of a 2 × 2 matrix, yielding a simple closed-form solution to the problem

after parameter vectors π1 and π2 have been estimated.

By the Matrix Inversion Lemma:

(Φ + ΠΠT )−1 = Φ−1 − Φ−1Π
(
I +ΠTΦ−1Π

)−1
ΠTΦ−1 (3.7)

As Φ is diagonal, its inverse is trivial to calculate. The remaining matrix requiring

inversion is I +ΠTΦ−1Π, which is 2× 2.

A recurring element in the calculation is the matrix product Φ−1Π ∈ Rm×2, which

is:

Φ−1Π =
[ √

c1Φ
−1π1

√
c2Φ

−1π2

]
(3.8)

where each entry above represents a column of the matrix.

The 2× 2 matrix to invert, which we define as G is:

G ≡ I +ΠTΦ−1Π =

[
1 + c1π

T
1 Φ

−1π1
√
c1c2π

T
2 Φ

−1π1

√
c1c2π

T
2 Φ

−1π1 1 + c2π
T
2 Φ

−1π2

]
(3.9)

The determinant of G is:

detG = 1 + c1π
T
1 Φ

−1π1 + c2π
T
2 Φ

−1π2 +

c1c2π
T
1 Φ

−1π1π
T
2 Φ

−1π2 − c1c2(π
T
1 Φ

−1π2)
2 (3.10)

Thus, G−1 is:

G−1 =
1

detG

[
1 + c2π

T
2 Φ

−1π2 −√c1c2πT
2 Φ

−1π1

−√c1c2πT
2 Φ

−1π1 1 + c1π
T
1 Φ

−1π1

]
(3.11)
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Let y ≡ απ1 + βπ2.

G−1ΠTΦ−1y =
1

detG

[
(1 + c2π

T
2 Φ

−1π2)
√
c1π

T
1 Φ

−1y − c2
√
c1π

T
2 Φ

−1π1π
T
2 Φ

−1y

(1 + c1π
T
1 Φ

−1π1)
√
c2π

T
2 Φ

−1y − c1
√
c2π

T
2 Φ

−1π1π
T
1 Φ

−1y

]
(3.12)

This is a vector in R2. Let:

G−1ΠTΦ−1y ≡

[
a

b

]
(3.13)

Therefore,

⋆
x = Φ−1y − (a

√
c1Φ

−1π1 + b
√
c2Φ

−1π2) (3.14)

= Φ−1 ((α− a
√
c1)π1 + (β − b

√
c2)π2) (3.15)

In this case, a closed-form solution exists, once parameters π1 and π2 have been

estimated.

3.3 Non-negative Constrained Solution

Some solutions seek to identify only features which positively identify a target

class with respect to another class, so we introduce a non-negativity constraint. We

discover that the solution to this problem tends to be sparse, without the need for

regularization.

In this section, consider the problem:

argmin
x⪰0

xTΦx+ c1(π
T
1 x)

2 + c2(π
T
2 x)

2 − 2απT
1 x− 2βπT

2 x (3.16)

3.3.1 Introduction of helper variables

Let z1 = πT
1 x and z2 = πT

2 x. Let

f(x, z) = xTΦx+ c1z
2
1 + c2z

2
2 − 2απT

1 x− 2βπT
2 x (3.17)
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We selectively replace the πT
∗ x expressions from the function to simplify the KKT

conditions later.

With the introduced equality constraints, the Lagrangian is:

L(x, z, λ, ν) = xTΦx+c1z
2
1+c2z

2
2−2απT

1 x−2βπT
2 x−λTx−ν1(πT

1 x−z1)−ν2(πT
2 x−z2)
(3.18)

3.3.2 The Dual Problem

Taking the gradient with respect to x yields:

∇xL = 2Φx− 2απ1 − 2βπ2 − λ− ν1π1 − ν2π2 (3.19)

Therefore, we find a solution for λ:

⋆

λ = 2Φx− (2α + ν1)π1 − (2β + ν2)π2 (3.20)

By the KKT conditions, λi ≥ 0 ∀i. Therefore, we have the requirement that

2Φixi − (2α + ν1)π1i − (2β + ν2)π2i ≥ 0, or:

xi ≥
(2α + ν1)π1i + (2β + ν2)π2i

2Φi

(3.21)

Further, by the KKT conditions, λixi = 0 ∀i. Therefore, for all i:

2Φix
2
i − (2α + ν1)π1ixi − (2β + ν2)π2ixi = 0 (3.22)

Suppose xi > 0:

(2α + ν1)π1i + (2β + ν2)π2i = 2Φixi (3.23)

and
⋆
xi =

(2α + ν1)π1i + (2β + ν2)π2i

2Φi

(3.24)

If the RHS ≤ 0, then we have a contradiction, implying that
⋆
xi = 0. Therefore,

⋆
xi =

max (0, (2α + ν1)π1i + (2β + ν2)π2i)

2Φi

(3.25)
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We take a step back now to consider
⋆
z1 and

⋆
z2.

∂L(x, z, λ, ν)

∂z1
= 2c1z1 + ν1 (3.26)

So,
⋆
z1 = − ν1

2c1
. Similar reasoning yields

⋆
z2 = − ν2

2c2
.

Due to the non-negativity constraint, πT
1 x ≥ 0, so z1 ≥ 0. Therefore, − ν1

2c1
≥ 0,

or ν1 ≤ 0. The same reasoning applies for ν2.

Now, we plug in our optimal values to derive g(ν) for our dual problem.

L(x, z,
⋆

λ, ν) = −xTΦx+ c1z
2
1 + c2z

2
2 + ν1z1 + ν2z2 (3.27)

L(x,
⋆
z,

⋆

λ, ν) = −xTΦx+
ν2
1

4c1
− ν2

1

2c1
+

ν2
2

4c2
− ν2

2

2c2
(3.28)

= −xTΦx− ν2
1

4c1
− ν2

2

4c2
(3.29)

L(
⋆
x,

⋆
z,

⋆

λ, ν) = g(ν) = −
m∑
i=1

max (0, (2α + ν1)π1i + (2β + ν2)π2i))
2

4Φi

− ν2
1

4c1
− ν2

2

4c2

(3.30)

Let w1 = 2α + v1 and w2 = 2β + v2. With these variables, the dual problem

becomes:

g(w) = −
m∑
i=1

max(0, w1π1i + w2π2i)
2

4Φi

− (w1 − 2α)2

4c1
− (w2 − 2β)2

4c2
(3.31)

Consider the solution for a few different cases. First, assume w1, w2 < 0. In this

case,
⋆
x ≡ 0, a trivial solution.

In the next case, consider w1, w2 > 0. In this case, all elements of the sum are

non-zero:

g(w) = −
m∑
i=1

(w1π1i + w2π2i)
2

4Φi

− (w1 − 2α)2

4c1
− (w2 − 2β)2

4c2
(3.32)

For solutions in this first quadrant, let w2 = ηw1 for η > 0.

g(w1, η) = −w2
1

m∑
i=1

(π1i + ηπ2i)
2

4Φi

− (w1 − 2α)2

4c1
− (ηw1 − 2β)2

4c2
(3.33)
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Consider the partial derivative with respect to η:

∂g(w1, η)

∂η
= −w2

1

m∑
i=1

(
π1iπ2i + ηπ2

2i

2Φi

)
− ηw2

1

2c2
+

βw1

2c2
(3.34)

Therefore,

⋆
ηw1 =

−w1

∑m
j=1

π1iπ2i

2Φi
+ β/c2∑m

j=1
π2
2i

2Φi
+ 1/(2c2)

(3.35)

To simplify notation, let:

η =

∑m
j=1

π1iπ2i

2Φi∑m
j=1

π2
2i

2Φi
+ 1

2c2

(3.36)

Note that:
∂
⋆
ηw1

∂w1

= −w1η (3.37)

With this established, consider the partial derivative with respect to w1:

∂g(w1,
⋆
η)

∂w1

=
m∑
i=1

(w1π1i +
⋆
ηw1π2i)(π1i − η)

2Φi

− w1 − 2α

2c1
+ η

⋆
ηw1 − 2β

2c2
(3.38)

This derivative is linear in w1, yielding a straight-forward solution by solving for

w1 after equating the derivative with 0. If the solution requires w1 ≤ 0, then a

contradiction arises and the first quadrant can be ruled out for a solution. Further,

consider
⋆
ηw1; if β ≤ 0, then

⋆
ηw1 ≤ 0, which also raises a contradiction, ruling out

the first quadrant. If, for example, we are comparing a positive and negative class,

and α = 1 and β = −1, then the first quadrant is infeasible.

Next, consider the case where w1 > 0 and w2 < 0.

In this case, let w2 = −ηw1 for η > 0. Consider one term in the summation:

max(0, w1π1i − ηw1π2i)
2 (3.39)

Sparsity emerges with a likelihood ratio test, where η sets the threshold level:

π1i

π2i

> η ⇒ ⋆
xi > 0 (3.40)

π1i

π2i

≤ η ⇒ ⋆
xi = 0 (3.41)
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If all that is desired is a list of the k features represented in a k-sparse solution

vector, then all that is required is to sort features based on π1i

π2i
, keeping the largest

k features. The computation is carried out via estimation and sorting, which can be

solved in time O(nm log(m)).

Consider now the full solution. Let J ⊆ i ∈ [1,m] be the set of indices where
⋆
xi > 0, referred to as the activation set.

g(w1, η) = −w2
1

∑
J

(π1i − ηπ2i)
2

4Φi

− (w1 − 2α)2

4c1
− (ηw1 + 2β)2

4c2
(3.42)

∂g(w1, η)

∂η
= w1

∑
J

(π1i − ηπ2i)π2i

2Φi

− ηw1 + 2β

2c2
(3.43)

Solving for
⋆
η:

⋆
ηw1 =

w1(
∑

i∈J
π1iπ2i

2Φi
)− β

c2

(
∑

i∈J
π2
2i

2Φi
) + 1

c2

(3.44)

Note that the derivative of this with respect to w1 takes the following form:

∂(
⋆
ηw1)

∂w1

=

∑
i∈J

π1iπ2i

2Φi∑
i∈J

π2
2i

2Φi
+ 1

c2

≡ h (3.45)

Now consider

∂g(w1,
⋆
η)

∂w1

=
∑
i∈J

(w1π1i −
⋆
ηw1π2i)(π1i − hπ2i)

2Φi

− w1 − 2α

2c1
− h(

⋆
ηw1 + 2β)

2c2
(3.46)

Equating to 0 and solving for
⋆
w1 yields a possible solution, given the activation

set J . We can check if this is a valid solution by evaluating
⋆
η with this value of

⋆
w1.

Given
⋆
η, we can calculate Ĵ , the set of indices of

⋆
x such that xi > 0. If Ĵ ̸= J , then

this possible solution is incorrect. At most, we must test m solutions: as η decreases,

new features xi are activated, and no currently active features will drop out of the

solution.
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Chapter 4

Dealing With Uncertainty

The preceding work assumed that the parameters of each probability distribution

are known. In practice, these parameters must be estimated, with uncertainty sur-

rounding the value of each parameter. This chapter describes methods to incorporate

such uncertainty into the robust regression problem discussed in the previous chapter.

Generally, upon estimation of model parameters, we have a measure of uncertainty

about the estimated parameters. This dissertation employs bounded confidence in-

tervals to represent uncertainty around a parameter. Many methods are available for

such an estimate for parameters of both BIM and pLSI [2,10,14,23,24]. This section

focuses on methods by which any selected confidence interval may be integrated into

the robust regression problem.

First, consider the feature selection portion of the regression problem. As dis-

cussed in Chapter 3, feature selection is solved with a likelihood ratio threshold. For

use in a human-facing tool, it is desirable to limit false positives; spurious features

appearing in the solution may lead to confusion or erroneous interpretations of the

underlying data. The robust approach requires features to be selected only with

strong and convincing evidence that they are indeed strongly associated with one set

of documents relative to another. This need becomes apparent when the regression

problem is unbalanced, meaning that there are many more observations in one class

than in another. The statistics perspective shows that the confidence intervals for the

parameters of the class with few observations will be much wider than those for the
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class with many observations. An estimate that doesn’t take this uncertainty into

account may encounter issues with spurious feature selection. This effect is demon-

strated empirically in Chapter 6.

4.1 Robust Estimate of BIM Parameters

Unlike in the pLSI model, the parameters for each feature in the BIM model may

be determined independently. When deciding on features for a solution to the non-

negative constrained robust regression problem, the conservative estimate would be

to ensure that the minimum likelihood ratio of the parameters within the confidence

bounds exceeds the selected likelihood ratio threshold. Stated as an optimization

problem:

min
π1i,π2i

π1i

π2i

(4.1)

s.t. π̆1i ≤ π1i ≤ π̂1i (4.2)

π̆2i ≤ π2i ≤ π̂2i (4.3)

The solution is immediate:

⋆
π1i
⋆
π2i

=
π̆1i

π̂2i

(4.4)

4.2 Robust Estimates of pLSI Parameters

The pLSI model requires more care. Note that exact confidence intervals are

more challenging to estimate [15,41]. To proceed, confidence intervals are determined

independently for each feature in the dataset in precisely the same fashion as for

the BIM model. However, in the optimization problem, an additional constraint is

added, so any estimated parameter vector must both satisfy the confidence interval

box constraints and the simplex constraint: 1⃗Tπ = 1.
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4.2.1 Maximum Entropy

Consider the maximum entropy estimate of a categorical distribution under box

constraints. This approach is motivated by the principal of maximum entropy, or a

mathematical interpretation of Occam’s razor [39], an estimation approach previously

applied to text modeling. Further, by computing maximum entropy distribution for

both parameters π1 and π2, the estimates are both being pulled towards the same

point in the parameter space, reducing their contrast.

Let log x be defined such that (log x)i = log xi ∀i. The maximum entropy problem

is stated:

argmax
π
− πT log π (4.5)

s.t. 1⃗Tπ = 1 (4.6)

π̆ ⪯ π ⪯ π̂ (4.7)

The Lagrangian is:

L(π, λ1, λ2, ν) = πT log π − λT
1 (π − π̆)− λT

2 (π̂ − π)− ν (⃗1Tπ − 1) (4.8)

The gradient with respect to π is:

∇πL = −(ν − 1)⃗1 + log π − λ1 + λ2 (4.9)

λ1 may be interpreted as a slack variable:
⋆

λ1 = −(ν − 1)⃗1 + log π + λ2.

Further, by the K.K.T. conditions [5], λ1i(πi− π̆i) = 0 and λ2i(π̂i− πi) = 0 for all

i. There are three cases to consider in regards to the box constraints:

i λ1i = 0, λ2i > 0

ii λ1i > 0, λ2i = 0

iii λ1i = 0, λ2i = 0

Both λ1i and λ2i cannot be > 0 at the same time as the upper bound constraint and

lower bound constraint cannot both be active.

Consider possible values for πi in each of these cases:
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i
⋆
πi = π̂i, as the upper bound constraint is active. By plugging in for λ1i:

− ν + 1 + log π̂i + λ2i = 0 (4.10)

Since λ2i > 0, −ν + 1 + log π̂i < 0. Therefore, π̂i < eν−1.

ii
⋆
πi = π̆i, as the lower bound constraint is active. As λ1i > 0, −ν + 1 + log πi > 0,

implying π̆i > eν−1

iii Niether bound is active in this case, and the K.K.T. conditions yield the equality:

−ν + 1 + log πi = 0, so
⋆
πi = eν−1

These conditions imply a simple optimization scheme in one variable: ν. If eν−1 <

π̆i, then
⋆
πi = π̆i. If e

ν−1 > π̂i, then
⋆
πi = π̂i. Otherwise,

⋆
πi = eν−1.

To solve the problem, we must find the value of ν such that 1⃗T
⋆
π(ν) = 1 to satisfy

the final constraint. Note that as a function of ν, 1⃗T
⋆
π(ν) is monotonically increasing.

The solution may be uncovered by choosing an initial ν such that eν−1 = argmini π̆i.

The initial value is the minimum lower bound. The resulting value of
⋆
π(ν) = π̆. If

1⃗T
⋆
π(ν) < 1, ν is increased until the parameter vector meets the constraint. Note that

it is assumed that 1⃗T π̆ ≤ 1, otherwise the problem would be infeasible.

This problem can be solved efficiently using bisection in O(logm) time. as follows:

1. Combine the values of each upper and lower bound in a sorted list of length

2m, called v. Set i = m.

2. Choose ν such that eν−1 = vi

3. Set l = 1, u = 2m representing upper and lower bounds on the solution.

4. Choose a candidate solution π such that each πj is as close to vi as bounds will

permit.

5. Compute 1⃗Tπ. If < 1, set l = i. If > 1, set u = i. Update i = ⌊(u − l)/2⌋. If

u − l ≤ 1, then the solution lies in the continuous interval between vu and vl,

and can be solved analytically. Otherwise, return to Step 2. In each iteration,

half of the bounds in list v are eliminated.

In the following algorithm, let η = eν−1.
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Algorithm 1 Maximum Entropy Solution for π Under Box Uncertainty Constraints

1: procedure MaxEnt(π̆, π̂)

2: v ∈ R2m ← sorted(π̆, π̂) ▷ Sort bounds in a single list

3: l← 1

4: u← 2m ▷ Initialize upper and lower bounds on solution for ν

5: while u− l ≥ 1 do

6: i← ⌊u−l
2
⌋

7: η ← vi

8: for all j ∈ [1,m] do πj ←


π̂j if η ≥ π̂j

π̆j if η ≤ π̆j

η otherwise

9: if 1⃗Tπ < 1 then u← i

10: else l ← i

11: π ← solution in interval between u and l

4.2.2 Adversarial Model

An adversarial perspective on the problem allows for the parameters π1 and π2

to always be the worst-case values for the value of x chosen in the original problem.

Consider the robust regression problem with confidence intervals as box constraints

and a second optimization over parameters π1 and π2:

min
x

max
π1,π2

xTΦx+ c1(π
T
1 x)

2 + c2(π
T
2 x)

2 − 2απT
1 x− 2βπT

2 x (4.11)

s.t. π̆1 ⪯ π1 ⪯ π̂1 (4.12)

π̆2 ⪯ π2 ⪯ π̂2 (4.13)

The simple formulation of the diagonal matrix Φ within the pLSI model allows

the problem to be analyzed relatively simply.

Consider first the sub-problem of maximization with respect to π, as solutions for

π1 and π2 may be considered independently. As such, subscripts are omitted in the
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following for ease of notation. The optimization problem with respect to π is:

max
π

ρxTdiag (π)x+ c(πTx)2 − 2απTx (4.14)

subject to π̆ ⪯ π ⪯ π̂ (4.15)

1Tπ = 1 (4.16)

We approach the solution algorithmically. Begin with a candidate vector π = π̆.

It is assumed that 1T π̆ ≤ 1, otherwise the problem is infeasible. Values of individual

components of π may be increased, though there is a fixed “budget”, requiring 1Tπ =

1.

Let f(π) = ρxTdiag (π) x+ c(πTx)2− 2απTx. The partial derivative with respect

to an individual variable πi is:

∂f(π)

∂πi

= ρx2
i + 2xi(cπ

Tx− α) ≡ f̃i (4.17)

Lemma 5. Assume x ⪰ 0 and that cπ̆Tx− α > 0. Then, xi > xj ⇔ f̃i > f̃j.

Proof. Assume f̃i > f̃j. For sake of contradiction, assume that xj > xi, or xj = xi+ ϵ

for ϵ > 0. Then:

ρx2
i + 2xi(cπ

Tx− α) >

ρ(x2
i + 2xiϵ+ ϵ2) + 2xi(cπ

Tx− α) + 2ϵ(cπTx− α) (4.18)

which implies that:

0 > 2xiϵ+ ϵ2 + 2ϵ(cπTx− α) > 0 (4.19)

raising a contradiction, therefore f̃i > f̃j ⇒ xi > xj.

If xi > xj, then each term of f̃i is greater than the corresponding term of f̃j, and

the result follows.

With Lemma 5 established, a solution for π is clear. Suppose xi > xj and consider

f̃i and f̃j when πTx increases slightly to πTx + ϵ, ϵ > 0. The partial derivatives at

this new value of πTx are denoted f̃ ′
i and f̃ ′

j.
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f̃ ′
i − f̃ ′

j = ρx2
i + 2xi(cπ

Tx+ ϵ− α)− ρx2
j − 2xj(cπ

Tx+ ϵ− α) (4.20)

= ρ(x2
i − x2

j) + 2(cπTx− α)(xi − xj) + 2ϵ(xi − xj) (4.21)

By our assumptions, f̃ ′
i > f̃ ′

j for arbitrary values of ϵ > 0.

Note that πTx increases on the solution path for the optimal value of π, so the

ordering of partial derivatives remains constant. Further, the ordering matches the

ordering of the individual components of x.

Thus, a solution may be described by the following algorithm:

Algorithm 2 Adversarial Solution for π in pLSI

1: procedure AdversarialParam(π)

2: π ← π̆

3: while 1⃗Tπ < 1 do

4: i← argmaxj∈[1,m] xj

5: v ← 1⃗Tπ

6: πi ← π̂i

7: if 1⃗Tπ > 1 then

8: πi ← π̆i + (1− v)

At the initial point, where π = π̆, the most effective means to spend the “budget”

is on the parameter πi corresponding to the largest element of x. Once πi = π̂i, the

algorithm switches to the next largest element of x, repeating until the parameter

vector π satisfies 1⃗Tπ = 1.
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Chapter 5

Sparse Principal Component

Analysis

The preceding chapters have focused on 2-class models of text and have assumed

knowledge of document class membership. When document classes are unknown, we

may use linear algebraic approximation methods such as Sparse Principal Component

Analysis (SPCA) to identify underlying patterns in a text corpus. The results of

SPCA are useful and legible in their own, providing accessible summaries of topics by

identifying semantically consistent groups of features and documents. Further, the

results of SPCA may be used in conjunction with probability models of text which

enable principled methods of associating detected topics with text content.

SPCA computes a low-rank approximation to original raw data. The driving con-

cept is that the low-rank approximation will capture interesting and useful semantic

structures within the data, such as word usage patterns and associations. In 1990,

Deerwester et. al. [9] described the use of Singular Value Decomposition (SVD), a

low rank approximation, for exactly this purpose. They proposed that SVD would

reduce noise and present a condensed representation of text retaining the most preva-

lent semantic structures. In the subsequent decades, sparsity was introduced in the

interest of interpretability, efficient algorithms were developed, and the methods were

applied to text content [12,13,21,46,48].

The implementation of SPCA explored in this dissertation identifies sparse prin-
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cipal components one at a time, approximately solving the problem:

min
u,v
∥A− uvT∥F + λ∥u∥1 + µ∥v∥1 (5.1)

where a rank-1 approximation problem is augmented with ℓ − 1 regularizations to

induce sparsity in the vectors u and v. Once the first problem is solved, the vectors

u and v are referred to together as a “topic.” To proceed, the original matrix A

must be modified to reflect the fact that one prevalent pattern has been extracted,

via a process called deflation. Typically, in the context of SVD, the updated matrix

is A′ = A−σuvT , which eliminates the rank-1 structure just uncovered. For the sake

of computational efficiency, the implementation of SPCA described in this chapter

is an approximation, and eliminates rows and columns of A corresponding to the

sparse support of the vectors u and v. If, for instance, vi! = 0, the ith column of the

data matrix A is removed. The same process can be done for the rows of the matrix

corresponding to non-zero elements of u.

The implementation considered is a modified power iteration [13,21], described in

Algorithm 3, below.

5.1 Comparison with LDA

At present, popular perception is that the state-of-the art in document topic

modeling is represented by Bayesian modeling approaches such as Latent Dirichlet

Allocation (LDA) [4, 18, 31, 34, 36, 42, 43, 47]. However, this section discovers empiri-

cally that the aforementioned SPCA implementation yields a competitive advantage

over a collapsed Gibbs sampling implementation of LDA [34,45] in computation time,

scalability, and quality of results. In summary, when computing a small number of

topics over dataset sizes between 10K and 100K documents from the BBC News,

the implementation of SPCA runs between 10 and 20 times faster than the point-

of-comparison LDA implementation. A secondary experiment computing 1000 topics

over 400K documents yields a 50-fold performance advantage for SPCA. Further, the

results returned by SPCA are as good as or better than those returned by LDA, as
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Algorithm 3 SPCA Approximation [13]

1: procedure SPCA(A)

2: nf ▷ Number of features per topic, i.e. sparsity of v

3: nd ▷ Number of documents per topic, i.e. sparsity of u

4: nt ▷ Number of topics desired

5: for all i ∈ [1, nt] do

6: ui, vi ← Iterate(A, nf , nd)

7: A← Deflate(A, ui, vi)

8: function Iterate(A, nf , nd)

9: u← 1⃗

10: v ← 1
m
AT 1⃗ ▷ Initialization

11: while u, v not converged do

12: u← HardThresh(Av, nd) ▷ Enforce sparsity

13: u← u
∥u∥2 ▷ Normalize

14: v ← HardThresh(ATu, nf )

15: v ← v
∥v∥2

16: return u, v

17: function Deflate(A, u, v)

18: Ji ← {i∥ ui ̸= 0}
19: Jj ← {j∥ vj ̸= 0}
20: for all i ∈ Ji, j ∈ Jj do

21: Aij = 0

22: return A
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the SPCA topics tend to be more focused on interesting stories in the news while

LDA topics are more broad and general.

Given a body of text, the goal is to generate a list of k topics, each of which

is described by a list of features (words) and a list of documents. The feature list

contains words that are identified to be associated with one another within a subset

of documents. The returned documents are relevant examples of documents using a

mixture of words like the given word list. In application, this type of tool automati-

cally organizes search results into distinct topics, and describes the dominant features

of each topic as a word list.

LDA, on the other hand, represents topics as probability distributions over the

set of words in the dataset. Computation involves estimation of the parameters

of a graphical model, which is intractable in its complete form, as Blei et. al [4]

state explicitly in their seminal paper. Efficient solutions utilize approximations to

the full problem and sampling methods [16]; for example, the LDA implementation

compared against in this section uses collapsed Gibbs sampling [18]. LDA continues

by associating documents or portions of documents with topics via the estimated

probability model.

LDA has been popular within machine learning and information retrieval commu-

nities due to its mathematical modeling of text and its formal analysis of its results.

SPCA, on the other hand, is agnostic to the linguistic origin of the data it analyzes.

Despite not modeling text sources explicitly, SPCA happens to extract salient features

of a body of text numerically, and this chapter will show that the resulting topics are

comparable to those returned by LDA. Low-rank data approximations such as SPCA

have been used with much success in other domains, such as facial recognition [6] and

genetic analysis [48], and the low-rank structure of large bodies of text are uncovered

by SPCA.

5.1.1 Notable Differences in Methods

The two algorithms are not exactly interchangeable:

• SPCA is designed to be sparse, LDA is not. Sparsity is useful for:
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– user interpretation of results. Content needs to be concise enough for

people to find it worthwhile to read.

– achieving fast and memory-efficient computation

• SPCA clusters documents automatically, LDA requires an extra step of solving

a maximum likelihood problem to identify relevant documents

• SPCA implementation returns topics one at a time. Once one topic is extracted,

it can be immediately reported to a user, and subsequent computations are

independent. LDA estimates all topics simultaneously, with no response to a

user until computation is complete. If a user requests a new topic from SPCA,

it can be computed quickly. If a user requests an additional topic from LDA,

the entire computation must be redone.

5.1.2 Measurements

SPCA is compared with LDA in three areas:

• Computation time

• Quality of results (qualitative)

• Number of iterations until convergence is reached

Computation time is paramount for an interactive application. Researchers and

analysts must run queries and have results reported with very little delay. Queries

should be able to be modified painlessly, and words and topics a user isn’t interested

in should be able to be eliminated on-the-fly and results recomputed without long

waits.

Equally important in an interactive system is the quality of the results. The

utility of the results for the social sciences and humanities cannot be measured nu-

merically, so the results of the algorithms are compared side-by-side and are described

qualitatively.
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Finally, while the implementation of LDA used did not include an explicit conver-

gence criterion, one was added in order to investigate the optimization process. This

is explained further in Section 5.1.6.

5.1.3 Test Implementation

The SPCA implementation described previously is compared to an implementa-

tion of LDA using collapsed Gibbs sampling [16,29,34,45] that is available in Python.

This package, called lda1, is freely available from the Python Package Index (pip

install lda). This implementation of LDA is designed to be fast and efficient,

representing a good target for comparison. An alternative LDA implementation,

called Gensim [35](https://radimrehurek.com/gensim/), was evaluated for com-

parison as well, but computation times for each experiment were prohibitively long,

and invariably much longer than either the SPCA implementation or the Python lda

package.

The experiment was performed on an archive of articles from the BBC news:

• Contains 415, 041 documents

• Text in each document is contained in 3 fields. For this experiment, all 3 fields

are combined together to represent a single document.

– title

– content

– brief description of article

• Covers time range from April 21, 2010 to April 30, 2014

Computation time is measured across a range of various parameters:

• n topics: number of topics: (8, 12, 16)

• card terms: number of words in each topic: (8, 12, 16)

1Documentation can be found online: http://pythonhosted.org/lda/

https://radimrehurek.com/gensim/
http://pythonhosted.org/lda/
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• dataset size: number of documents to analyze: Starting at 1000, going up to

4090002 in increments of 8000.

Each algorithm is configured to run a maximum of 100 iterations before returning.

The lda implementation has no explicit convergence criterion outside of the number

of iterations. Each execution simply runs 100 iterations and terminates.

It should be noted that the SPCA algorithm is set to run a maximum of 100

iterations for every topic, while the lda implementation simply runs for 100 iterations

total. LDA computes all topics at the same time, while SPCA computes one at a

time. To explore this difference further, a separate experiment is reported in Section

5.1.6 where a convergence criterion is introduced into lda to determine the number of

iterations required by each algorithm until convergence is reached. This comparison

reveals a striking difference between lda and SPCA, where lda typically requires two

orders of magnitude more iterations to converge than SPCA.

Computation time is measured by “wall-time”. To mitigate the effects of variations

in wall-time that are independent from the computation itself, each experiment is

performed 3 times and the minimum time is reported.

For each tested dataset size, an appropriately sized random sub-sample of the en-

tire corpus is generated. Documents are sampled uniformly and without replacement,

and each sample is independent of the rest.

5.1.4 Computation Time

Figure 5.1 illustrates the computation time growth of the SPCA and lda imple-

mentations as the number of documents in the dataset increases. The computation

growth is also shown for three different numbers of topics, 8, 12, and 16, to show the

effect of adding topics to the overall computation time.

The SPCA results are illustrated in blue, and the lda results in red. Computation

time of both algorithms increases steadily as the number of documents in the dataset

gets larger. However, computation time for SPCA in the largest case remains well

2Experimental results are presented only up to roughly 113000 documents due to prohibitively
long computation times on the part of lda.
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below 50 seconds. On the other hand, over the dataset sizes explored here, lda

requires a minimum computation time of between 110-120 seconds, and exceeds 400

seconds (over 6 minutes) for the larger datasets.

For each algorithm, note that computing additional topics adds some computation

time cost. The slope of the lda curves seems to increase as well with the number of

topics. A plot of the relative performance between the two algorithms, time(lda)
time(spca)

, is

presented in Figure 5.2.

Figure 5.1: SPCA & LDA Computation Time Comparison

Each curve represents the relative computation times of lda and SPCA for dif-

ferent numbers of computed topics. Note that the relative performance of SPCA

tends to increase in all three cases as the number of documents increases, implying
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an advantage for SPCA in terms of scalability.

Also, note that the performance gain of SPCA relative to LDA decreases as the

number of computed topics increases. This is to be expected as the SPCA algorithm

runs one optimization for every topic, so adding topics increases the total number

of iterations required. The lda algorithm on the other hand always executes exactly

100 iterations of its optimization algorithm.

The performance of the two algorithms is also tested in a more demanding region:

the computation time in measured for the task of returning 1000 topics over the entire

BBC dataset, 415041 documents. Execution of lda was terminated after reaching

25% complete and full execution times are extrapolated. A very important difference

is illuminated in the “time to first response.” Here, as SPCA computes topics one

at a time, and continues computing subsequent topics independently of the first, it

may return topics immediately as they are uncovered, while lda must wait for the

algorithm to run to completion.

SPCA LDA

Time to 25 % complete: est. 8 minutes 21 seconds 7 hours 16 minutes 57 seconds

Total Time: 33 minutes 25 seconds est. 29 hours 7 minutes 48 seconds

Time Per Topic: 2 seconds 105 seconds

Time to First Response: 2 seconds est. 29 hours 7 minutes 48 seconds

In summary: for small numbers of topics and dataset sizes between 10K and 100K,

SPCA runs between 10 and 20 times faster than lda. When large numbers of topics

(1000) are required in a large dataset (400K documents), however, the performance

gain is more dramatic. In total, LDA takes approximately 52 times longer. Since

SPCA can return topics immediately once they are computed, SPCA can present to

a user a new topic about every 2 seconds. This means that the user will begin to

see results after 2 seconds. LDA, on the other hand, must run to completion before

returning any results.
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Figure 5.2: Performance Gain of SPCA relative to lda
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5.1.5 Qualitative Comparison of Results

While speed is critical in an interactive system, it must be balanced with the

quality of results. Presently, the textual human-readable results of SPCA and lda

are compared and established to be similar, with some notable advantages for SPCA.

For this comparison, SPCA and lda are executed on two keyword search samples

from the BBC dataset, constituting documents matching either “france” or “russia”.

8 topics are generated, where each topic is thresholded to contain 32 features. For

ease of presentation, the results are truncated to the top 12 features. For each topic,

we also identify 16 documents that exemplify the given topic. To aid side-by-side

comparison, topics generated by the two algorithms are matched with one another

by solving the assignment problem with the Munkres algorithm3. This automatically

pairs similar topics side-by-side. While some topics demonstrate similarity, it should

be noted that others will be quite dissimilar as the two algorithms are quite distinct.

The topics presented are manually assigned “names” which concisely describe their

content. The results are presented below:

France This query matched 16,442 documents and 88,272 distinct

words (features). Words marked in bold occur in multiple topics

returned by lda. As the SPCA implementation is designed to be

sparse, and employs an aggressive deflation scheme eliminating rows

and columns from the data matrix, words may only occur in a single

topic.

A few topics seem to correspond quite well: Nuclear Issues, the

Eurozone Economy and the Middle East. The “Food, Culture, Gov-

3https://pypi.python.org/pypi/munkres/

https://pypi.python.org/pypi/munkres/
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Topic Name Features

Food, Culture, french - people - food - london - british - paris

Government government - country - roma - hollande - president - english

Nuclear Issues nuclear - power - energy - reactor - safety - reactors

fukushima - epr - flamanville - plants - electricity - germany

Eurozone Economy eurozone - greece - debt - euro - crisis - greek

economic - banks - growth - austerity - bailout - euros

MidEast syria - lebanon - syrian - israel - assad - minister

hezbollah - israeli - lebanese - attack - beirut - security

Telecom minitel - today - internet - telecom - service - services

system - set - project - travel - offer - online

Turkey/Genocide bill - turkey - genocide - turkish - law - ankara

armenians - armenian - senate - erdogan - ottoman - armenia

Tax tax - social - cgt - income - charge - rate

taxes - capital - britons - contribution - residents - pay

Islam malian - islamist - town - rebels - islamists - intervention

and War west - northern - air - support - strikes - deployment

Table 5.1: SPCA Topics for “france”

ernment” topic returned by SPCA seems to broadly describe French

issues including food, ties to England, and government. The other top-

ics are more specific, describing discrete events such as the Greek debt

crisis or recurring stories (like taxes) in the news. LDA offers some

specificity in its topics as well, though “Family Words” and “General

Words” don’t present tight ties to specific news stories. They appear to

describe general relationships between words that appear throughout

the corpus, yet the result is uninformative. Further, the LDA results

include many words that are repeated across multiple topics. These

words may be considered “stop-words,” words that are uninformative
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Topic Name Features

French Government french - president - hollande - sarkozy - mali - party

election - francois - people - minister - political - african

Nuclear Issues nuclear - iran - china - power - world - russia

britain - president - energy - french - countries - government

Eurozone Economy european - eurozone - europe - germany - government - countries

economic - year - growth - debt - crisis - economy

MidEast government - forces - people - military - president - syria

security - roma - libya - foreign - country - minister

General Economy people - company - food - year - business - market

industry - years - sales - firm - europe - number

General Legal police - court - french - told - case - government

paris - law - year - years - authorities - public

Family Words french - people - world - years - time - children

life - young - film - year - work - school

General Words people - year - time - london - day - years

british - team - tour - world - french - air

Table 5.2: LDA Topics for “france”

to the results (such as “year” and “years”.) SPCA may return such

words as well, but they do not permeate all the returned topics. Of

note, half of the words in the “Family Words” and “General Words”

topics are repeated words, not specific to the particular topic. Over

all the topics, a total of 40 out of the 96 words returned by LDA are

repeated words, roughly 42%.

Now, compare the titles of documents associated with topics about

two topics that seem to match well between LDA and SPCA, “Nuclear

Issues” and the “Eurozone Economy”:

• SPCA
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– France expands nuclear power plans despite Fukushima

– France struggles to cut down on nuclear power

– Fessenheim: Splitting the atomic world

– Japan disaster reopens nuclear debate in Europe and US

– France nuclear: Marcoule site explosion kills one

– Global fallout: Did Fukushima scupper nuclear power?

– Cameron and Sarkozy hail UK-French relationship

– Hundreds of problems at EU nuclear plants

– Cameron and Sarkozy hail UK-France defence treaties

– Nicolas Sarkozy and Manmohan Singh in nuclear deal Iran

profile

– Anti-nuclear protests in Germany and France

– Parties clash over future of nuclear power in France

– Greenpeace France nuclear action prompts security alert

– UK nuclear plans put energy in French hands

– Nuclear power gets little public support worldwide

• LDA

– France expands nuclear power plans despite Fukushima

– Iran nuclear talks resume in Geneva

– Iran nuclear talks successful

– Iran nuclear deal reached at Geneva talks
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– Nuclear deal: Iran couldnt take it

– Iran FM Zarif: Geneva nuclear deal is first step

– BAE-EADS merger: France and Germany must reduce stake

– Iran nuclear talks to resume in Geneva amid optimism

– Ministers urge nuclear safety tests after Japan crisis

– UK and France agree to joint nuclear testing treaty

– No deal at Iran nuclear talks

– The South Atlantic question in French-British plan

– Iran wants nuclear deal in months, says President Rouhani

– Foreign powers disappointed at Iran nuclear talks

– Iran nuclear: Israel PM warns against easing pressure

– Khamenei: Iran will never give up its nuclear programme

The documents selected by the two algorithms are comparable, with

each algorithm returning a mix of documents related to nuclear energy,

concerns about Fukushima, and concerns about nuclear weaponry in

Iran. Reflecting the mix of words in each topic, the SPCA results focus

more on energy and Fukushima, while the LDA results focus more on

nuclear weapons and Iran.

Next, consider documents related to the Eurozone Economy topics.

• SPCA

– Viewpoints: Election impact on eurozone
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– Timeline: The unfolding eurozone crisis

– Eurozone summits: Moments of truth or waste of time?

– Germany v France: The eurozones next big battle?

– Eurozone debt web: Who owes what to whom?

– Eurozone crisis: European voices

– George Osborne: Eurozone crisis threatens all Europe

– France shrugs off loss of top triple-A credit rating

– Why the eurozone downgrades matter

– Q&A: Eurozone rescue proposals

– France loses AAA rating as euro governments downgraded

– How Dexia was caught out by the eurozone debt crisis

– The domino effect in Europes debt crisis

– Eurozone ministers approve 8bn euro Greek bailout aid

– Who will dictate Europes future?

– Moodys keeps French AAA credit rating

• LDA

– Eurozone services sector growth slows again

– Europe economy: Recession hits Italy and Netherlands

– France to enter recession as eurozone growth slows

– German exports set record of a trillion euros in 2011

– ECB keeps eurozone interest rates unchanged at 1.5%
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– French bank Credit Agricole to cut 2,350 jobs

– Stock markets down on Greek swap fears

– Eurozone business growth slows

– Eurozone economy grows 0.2% in third quarter

– Germanys economy grows by 0.3%

– Commerzbank sees profits increase

– French economic growth revised down

– French jobless rate climbs to highest level in 15 years

– Euro drops below $1.31 for first time since January

– Fitch revises outlook on France to negative

– European Central Bank keeps rate at record low

The documents returned by each algorithm in this case are quite sim-

ilar, concentrating on the Greek debt crisis and other economic issues

in the Eurozone.

Russia This query contains 10,456 documents and 65,698 distinct

words (features).

In this case, 48 out of the 96 words returned by LDA are repeated

words. 75% of the words in the “General News” topic are not specific to

the topic, and include a lot of words about time such as “year/years”,

“time”, and “day”, which do not convey any information about some
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Topic Name Features

Crimean Crisis crimea - ukraine - people - russian - country - ukrainian

international - crimean - sevastopol - today - state - political

Georgia Conflict georgia - georgian - south - saakashvili - tbilisi - ossetia

abkhazia - troops - soviet - elections - opposition - parliament

China & Economy china - trade - oil - energy - gas - economic

foreign - resources - europe - economy - chinese - investment

Syria & syria - weapons - syrian - chemical - assad - security

Chemical Weapons arab - council - action - resolution - regime - middle (east)

N.Korea Nuclear north - nuclear - korea - talks - programme - korean

arctic - pyongyang - sea - fuel - test - officials

Gay Rights gay - rights - propaganda - homosexuality - bbc - sexual

public - news - hate - report - homophobic - live

Euro Relations germany - serbia - austria - hungary - german - britain

france - responsibility - conflict - leaders - vienna - berlin

Elections election - vote - vladimir - medvedev - prime - communist

duma - result - seats - leader - presidential - ruling

Table 5.3: SPCA Topics for “russia”

event or story. In comparing the topics returned by SPCA and LDA,

SPCA again concentrates more on specific news events, while LDA

tends to select topics that show broad corpus-wide relationships be-

tween words.

Now, compare the titles of documents selected by LDA and SPCA

to be relevant to the topics of Crimea and Syria, topics that overlap

well between LDA and SPCA.

For Crimea:

• SPCA

– Crimea crisis: Russian President Putins speech annotated
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Topic Name Features

Crimean Crisis ukraine - russian - crimea - ukrainian - president - kiev

moscow - putin - pro - yanukovych - government - eastern

Energy russian - gas - president - nuclear - georgia - nato

soviet - union - moscow - energy - south - military

China & Economy china - russian - year - government - economic - economy

market - country - business - world - india - oil

Syria syria - syrian - government - security - assad - president

Chemical Weapons military - people - weapons - council - foreign - forces

Oil (Iran & US) iran - world - countries - oil - international - time

deal - arctic - israel - obama - programme - gas

General Words people - russian - world - years - year - time

city - moscow - bbc - country - day - children

General News people - snowden - russian - country - world - president

political - crimea - state - international - daily - media

Elections & Government russian - putin - moscow - president - party - election

vladimir - minister - court - political - opposition - state

Table 5.4: LDA Topics for “russia”

– Russia profile

– Vladimir Putin: The rebuilding of Soviet Russia

– Deadly clashes at Ukraine port base as leaders meet

– Voices from the conflict in Crimea

– Ukraine-Russia gas row: Red bills and red rags

– Analysis: Why Russias Crimea move fails legal test

– What is Russias vision of a federal Ukraine?

– Ukraine crisis: US warns Russia over destabilisation

– Ukraine crisis: US urges restraint and warns it is watching
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Russia

– Chechnya profile

– Analysis: Russias carrot-and-stick battle for Ukraine

– Ukraine crisis: Does Russia have a case?

– Ukraine: Europes major test

– Ukraine crisis: Whats driving Russias response?

– Ukraine crisis: Deal to de-escalate agreed in Geneva

• LDA

– Crimea result makes “a mockery” of democracy says Hague

– UK will stand up for Ukraine, says David Cameron

– Ukraine crisis: EU extends sanctions over Crimea

– Ukraine crisis: Hague praises EU for action against Russia

– Russia is more isolated, says EC chief Jose Manuel Barroso

– Lithuanias Dalia Grybauskaite warns of prelude to new Cold

War

– The EU does not recognise outcome of Crimea referendum

– Ukraine crisis: Sergei Lavrov news conference

– Crimea referendum: Voters back Russia union

– Crimea always part of Russia

– Crimea MPs vote to join Russia and announce referendum

– Crimea exit poll: More than 90% back Russia union
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– Russia will respect Crimea vote

– Ukraine crisis: EU ponders Russia sanctions over Crimea vote

– Muscovites on controversial Crimea referendum

– Ukraine crisis: EU imposes sanctions over Crimea

For documents pertaining to Syria and Chemical Weapons: For

Crimea:

• SPCA

– Viewpoints: Can Russias chemical weapons plan for Syria

work?

– Analysis of Putins plea to Americans over Syria

– Viewpoints: Is there legal basis for military intervention in

Syria?

– Chinese, Iranian press alone back UN Syria veto

– Syria unrest: Russia pulled two ways

– President Putins Middle East gambit

– Why Russia sells Syria arms

– Syria resolution: The diplomatic train-wreck

– How to destroy Syrias chemical arsenal

– Syria crisis: Assad confirms chemical weapons plan

– Syria crisis: Why is Russia defending Bashar al-Assad?

– Syria crisis: Tense US-Russia talks on chemicals deal
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– Syria profile

– PJ Crowley: Syria crisis upends Mid-East positions

– Syrias Assad will go, says US, as UN vote nears

– All eyes on Russian ministers Syria trip

• LDA

– Syria is implementing peace plan, says foreign minister

– Ban Ki-moon calls for one voice on Syria

– UN vote on Syrias chemical weapons stockpile

– UN meets to discuss resolution to stop Syria violence

– John Kerry: Syria needs political, not military solution

– Can Syrias chemical arsenal be hunted down?

– Syria: US backs Red Cross call for truce

– Hillary Clinton: Syria violence unconscionable

– Syria crisis: UN inspectors renew chemical attack probe

– Russias Lavrov urges Syria to comply with Annan plan

– Clashes in Syria leave 19 dead

– Syria: New UN call over human rights abuses

– Syria ceasefire: UN expected to vote on monitor team

– Leaked report: Peace envoy suggests Assad should go

– Arab League to call for UN backing on Syria plan

– Russia cannot support UN Syria draft resolution
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Once again, the results in the returned documents in these topics are

quite comparable. The Syrian topic returned by SPCA focuses more

on Russia-specific relationships, while the LDA topic returns a broader

spread of international perspectives.

5.1.6 Convergence Issues

It was noted previously in this chapter that the lda algorithm does

not have any criterion for convergence, and the algorithm is set to run

for exactly 100 iterations. In this experiment, a convergence criterion

is added to the software. The performance of lda is measured in terms

of the log likelihood of the observed data with respect to the estimated

probability model. This algorithm computes the log likelihood for the

overall model along with the average log likelihood per word in the

dataset. The lda algorithm is modified to identify convergence when

the absolute change in the per-word log likelihood between consecutive

iterations is < 1−10. To compare this with SPCA: the convergence cri-

terion is measured in the change in angle of the output vectors between

iterations, which is also set to < 1−10.

For different dataset sizes, the total number of iterations required

by each algorithm is recorded over 8 executions on random subsets of

data. The average and the standard deviation among the results are

computed.
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Figure 5.3: Average number of iterations until convergence
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Figure 5.4: Standard deviation in the number of iterations required until convergence

Figure 5.3 indicates that the SPCA algorithm consistently requires

just over 100 iterations to converge to a solution. LDA, on the other

hand, is widely varied, typically requiring over 1000 iterations to con-

verge, and sometimes many more. Figure 5.4 illustrates the standard

deviation in the number of iterations required for convergence, high-

lighting a two-order of magnitude difference between the two algo-

rithms. When run to convergence, therefore, the SPCA implementation

is far more consistent in run-time, and requires many fewer iterations in
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general. Also, if run to convergence, the lda implementation typically

takes at least 10 times longer to execute than in Section 5.1.4, where

execution was truncated at exactly 100 iterations.

5.2 Topic Tagging

This section connects the results of SPCA to the pLSI model intro-

duced in Chapter 2.3. Each topic returned by SPCA consists of two

vectors, u and v, corresponding to left and right sparse singular vectors.

Vector v ∈ Rm associates weights with features; intuitively it represents

the relative rates with which features appear in documents associated

with the given topic. This section describes how these feature vectors

may be interpreted as parameters of categorical distributions and intro-

duces similarity metrics based on the Hellinger distance to determine

how well a topic is represented within a document.

First, some additional conditions are required for SPCA. The algo-

rithm expects a centered data matrix, where each entry represents how

much more or less frequently a feature appears in a document with re-

spect to the corpus-wide average. Equivalently, the algorithm operates

on centered matrix A′ calculated as:

A′ = A− 1

n
1⃗AT (5.2)

Additionally, the hard thresholding step in the algorithm is required

to maintain only nonnegative components, so feature vector v ⪰ 0. At

the end of the algorithm, an additional step ℓ1-normalizes the result.
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With these conditions, each feature vector v is such that:

v ⪰ 0 (5.3)
m∑
i=1

vi = 1 (5.4)

Thus, v may be interpreted as the parameter of a categorical distri-

bution over the set of features.

Next, consider a vectorized document, d ∈ Rm, within the same

feature-space. With the interpretation of a topic’s feature vector v as

the parameter to a categorical distribution, assume that d is distributed

as a categorical with some different parameter vector w, which is esti-

mated from an observed document, perhaps including a model of un-

certainty. The Hellinger distance is proposed to evaluate the similarity

between v and w [3], and has precedent for use in analyzing text [22].

The Hellinger distance is defined as:

H(x, y) =
1√
2
∥
√
x−√y∥2 (5.5)

where
√
x is defined as the element-wise square root of vector x.

Critically, for vectors representing parameters of categorical distri-

butions, this is a bounded metric:

H : Rm × Rm → [0, 1] (5.6)

1−H(x, y) = 0 occurs in this case when xTy = 0, or when there is

no overlap in the support of the two probability distributions.

1−H(x, y) = 1 occurs in the event that x ≡ y.
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In the event of uncertainty in the estimate of w from an observed

document, first note that a maximum-entropy estimate of w can be

computed in time O(logm) as described in Section 4.2.1.

An alternative is to consider the following optimization problem for

finding w maximizing the ℓ2 distance to v subject to box constraints.

argmax
w
∥w − v∥22 (5.7)

s.t. w̆ ⪯ w ⪯ ŵ (5.8)

1⃗Tw = 1 (5.9)

While not directly maximizing the Hellinger distance, a simple method

of estimating w emerges making it suitable in practice.

The Lagrangian of the problem is:

L(w, λ1, λ2, η) =

− wTw + 2wTv − λT
1 (w − w̆)− λT

2 (ŵ − w)− η(⃗1Tw − 1) (5.10)

Calculating the gradient with respect to w, and interpreting λ1 as a

slack variable while equating to 0 yields:

⋆

λ1 = 2(v − w) + λ2 − η1⃗ (5.11)

Consider three cases for the box constraints:

1. wi = w̆i

2. wi = ŵi

3. w̆i < wi < ŵi
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Case 1 implies λ1i ≥ 0 and λ2i = 0. Therefore:

wi = w̆i ⇒ 2(v − w̆i)− η ≥ 0 (5.12)

Case 2 implies λ1i = 0 and λ2i ≥ 0. Therefore:

wi = ŵi ⇒ 2(v − ŵi)− η ≤ 0 (5.13)

Finally, case 3 implies λ1i = λ2i = 0. Therefore:

wi ∈ (w̆i, ŵi)⇒ 2(vi − wi) = η (5.14)

Combining these conditions yields a simple relationship between η

and wi, and the problem may be solved in a similar fashion to the

maximum-entropy problem.

⋆
wi =


w̆i ⇐ η

2 ≤ vi − ŵi

ŵi ⇐ η
2 ≥ vi − w̆i

2vi−η
2 ⇐ vi − ŵi <

η
2 < vi − w̆i

(5.15)

Note that the derivative of
⋆
wi with respect to η is always negative. A

solution emerges by choosing an initial η0 such that η0 = maxi 2(vi−w̆i).

At this value, the candidate solution is w = ŵ. Assume that 1⃗T ŵ ≥ 1,

otherwise the problem is infeasible.

Repeatedly decrease η and recompute w according to Equation 5.15,

checking the sign of 1⃗Tw− 1 in order to satisfy the equality constraint.

This problem can be discretized on the sorted list of confidence interval

boundaries in exactly the same way as in the Maximum Entropy prob-

lem described in Section 4.2.1, and can exploit bisection to achieve a

solution in time O(logm).
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Chapter 6

Applications & Examples

This chapter discusses the application of the methods described in

the preceding chapters to real-world datasets. One example regard-

ing topical analysis of BBC news data, was presented in Chapter 5.

This chapter discusses four more applications on: news from Aljazeera

English, messages from Twitter, a work of fiction (“Harry Potter and

the Sorcerer’s Stone” [37]), and a collection of United States Patents

pertaining to the general area of Clean Technology.

The examples demonstrate practical aspects of the methods of this

dissertation and their applicability to a wide range of types of text

content. In addition, each example describes how results may be read

and interpreted by an individual, and what sorts of insights may be

uncovered.
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6.1 Keyword Expansion in Aljazeera English

Keyword expansion refers to the application wherein a user is un-

certain about relevant keywords to use when searching for content. In

this example, a user is interested in understanding how “Obama” is

portrayed in this news source, and the tool recommends additional

keywords that may be relevant. The keywords themselves hint at the

type of content associated with the query (“obama”).

The Aljazeera English dataset used in this section comprises 13,289

articles spanning almost two years, from March 16, 2011 to February

26, 2013.

This example compares four different approaches: results from BIM,

pLSI, and implementations of Logistic Regression and Lasso in the

Python package “scikit-learn” [32].

First, consider the BIM model. Most of the computation involved

is in the parameter estimation problem. The following table compares

results for BIM using a maximum-likelihood estimate and a robust

minimized ratio estimate, which is described in Equation 4.4. The top

15 keywords are extracted in each case: see Table 6.1

Note that “obama” appears as the top keyword in both cases. This

is due to the keyword query design: the class of documents mentioning

Obama is compared against the class of documents not mentioning

Obama. It should be noted that this is an unbalanced classification

problem, where 447 documents mention Obama and 12,842 do not.

This can create issues for classification algorithms as noise can lead to
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Maximum Likelihood Minimum Ratio

obama obama

barack barack

hagel hagel

mutually boehner

unbreakable apec

advertisement unbreakable

apec advertisement

obamacare mutually

flickers romney

qishan mitt

abiding chuck

reorienting charlotte

payrolls reorienting

pinching fisher

prey andrews

Table 6.1: Comparison of results of BIM for two different parameter estimates

poor performance and, in this case, misleading results.

Table 6.1 demonstrates that the robust estimate of the underlying

parameters improves the clarity of the results. There is significant over-

lap between the two, including related individuals like Chuck Hagel and

including agencies related to news stories such as APEC (Asia-Pacific

Economic Cooperation). The maximum likelihood estimate results con-

tain more action words such as “flickers”, “pinching”, and “reorient-

ing”, which do not have an intuitive or informative association with

Obama. Rather, these words emerge due to noise in the dataset and

the unbalanced nature of the classification problem. The minimum ra-

tio results, on the other hand, include more words describing major
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related actors: “Chuck Hagel”, “Mitt Romney”, and “John Boehner”.

Each indicates an association with Obama that may provide further

insight on an aspect of the news surrounding Obama.

Next, compare the robust BIM result to those of Logistic Regression

and Lasso. Note that the optimization problem for Logistic Regression

and Lasso both involve a regularization parameter which must be ad-

justed in order to achieve the desired sparsity level of 15 words. This

necessitates solving the optimization problem multiple times.

BIM Logistic Regression

0.28s 1.21s

obama obama

barack barack

hagel administration

boehner republican

apec negotiations

unbreakable trans

advertisement ground

mutually department

romney prices

mitt urges

chuck bachmann

charlotte halt

reorienting attacks

fisher crackdown

andrews ally

Table 6.2: Comparison of results of BIM and Logistic Regression for keyword expan-
sion on “Obama”.

Table 6.2 presents these results along with computation times recorded

in the experiment. The computation time for BIM is mostly in com-
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puting Clopper-Pearson [7] exact confidence intervals.

Note that the logistic regression algorithm operates on the full count

matrix, where the number of times a feature appears in a document is

maintained. BIM, on the other hand, uses a binary matrix, recording

only if a word appears in a document or not.

The differences in the results boils down to specificity. BIM con-

centrates on key actors and agencies. Logistic Regression includes

some specific terms as well, such as “trans (Trans-Pacific Pipeline)”

and “Michelle Bachmann”, though many words are much broader, like

“administration”, “republican”, and “negotiations”. Each has a clear

and intuitive association with Obama, yet seem too broad to be par-

ticularly insightful.

This yields an interesting insight about the simple Binary Indepen-

dence Model. While the representation disregards a lot of information

about precise sentences, it presents an abstraction that can be useful

and insightful. The reason specific individuals appear more in the BIM

results than others is the fact that the matrix is binary; the frequency

of word usage within a document is ignored. Broad words, such as “ad-

ministration”, may appear many times in a document about Obama

(“the Obama administration”), yet the word itself may be used in dif-

ferent contexts in different parts of the news archive. Logistic Regres-

sion identifies that the word “administration” is indeed well associated

with Obama when compared to all the other documents. However,

it is not particularly specific to documents mentioning Obama. The

binary representation of BIM avoids this problem as the model puts
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any document mentioning a given word on equal footing. Since words

like “administration” are not specific to Obama, but certain words like

“Romney” are, BIM tends to select the more specific keywords.

6.2 Topic Analysis in Twitter

In this section, we analyze a small collection of Tweets: 21,495 mes-

sages pertaining to womens’ health issues over the month of March

2014. A peculiarity of the dataset is that messages may be “re-tweeted”,

leading to many duplicates of the same message. Naive application of

the SPCA algorithm leads to document vectors (left principal compo-

nents) that index identical messages, which is undesirable for an in-

dividual using such a tool. So, a pre-processing step is introduced to

identify duplicates and combine them into a single message. If k du-

plicates are detected, the single stand-in message is given k-times the

weight to maintain the “importance” of the message in the dataset.

The following show results of the topic analysis. Given the very short

length of Twitter messages, only a small number of features are main-

tained in the feature vectors. Table 6.3 shows the identified keywords

defining four topics.

Table 6.3 demonstrates an interesting and useful aspect of SPCA:

automatic language clustering. Because SPCA is identifying the “latent

semantic structure” of text, it can identify groups of words commonly

associated with one another and isolate them. In this case, languages

are distinct with few overlapping words.
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Topic 1 Topic 2 Topic 3 Topic 4

kanker study life abnormal

serviks women foolish doctor

akibat #cancer extend recommend

meninggal caught days chances

setelah #papsaveslives #tdh colposcopy

Table 6.3: Features defining four topics extracted automatically by SPCA from a
collection of Twitter messages.

Table 6.4 contains two example messages exemplifying each topic,

which were identified by the SPCA algorithm. Beyond segmenting by

language, note that the algorithm segments more broadly by population

or by opinion. For example, Topic 2 includes individuals promoting pap

smears and touting their effectiveness at preventing cervical cancer.

This is immediately counterposed with messages expressing skepticism

about pap smears, and warning their audience about them. These two

markedly different opinions are automatically detected and presented

to the user, allowing for immediate analysis of the breadth of opinions

expressed in a dataset. This ability would otherwise require manual

reading, coding, sampling of data.

6.3 Topic Analysis of Fiction

A different use of topical analysis is described in application to the

text of “Harry Potter and the Sorcerer’s Stone” [37]. The text is broken

down into individual sentences, which are used as the unit of analysis.

SPCA is used in this example to explore the characterization of the
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Topic Examples

2 Study: Paps save lives, even in women who get cervical cancer http:

//t.co/SyxjiKKP via usnews

Regular Pap Smear Boosts Cervical Cancer Survival: Study:

THURSDAY, March 1 (HealthDay News) – Women who have r...

http://t.co/Q3wH4gZX

3 RT This Foolish Cancer ”Prevention” May Only Extend Your Life

by 2.8 Days http://t.co/IOWrDI3Q #TDH

Dr.Mercola Health: This Foolish Cancer ”Prevention” May Only

Extend Your Life by 2.8 Days: By Dr. Mercola Women... http:

//t.co/fDKICZIz

4 Colposcopy After Abnormal Pap: If you have had an abnormal Pap

smear, chances are your doctor has recommended th... http://t.

co/4MT4S9Zv

It can be scary when a Pap test comes back abnormal. The next

step might be a colposcopy heres how that works: http://t.co/

wpscklWZ

Table 6.4: Example messages pertaining to specific topics

character Hermoine Granger. Specifically, the algorithm analyzes the

subset of all sentences that mention either “hermoine” or “granger”.

Table 6.5 shows features identified for 5 topics pertaining to Her-

moine Granger. Names are associated with each topic which are as-

signed manually.

The first topic, “Harry & Ron”, identifies first the characters closest

to Hermoine, and in addition their most common shared activities and

locations. Those involve being in the library, studying charms, and

working on homework.

The second topic, “Dialogue”, focuses on the qualities of dialogue

http://t.co/SyxjiKKP
http://t.co/SyxjiKKP
http://t.co/Q3wH4gZX
http://t.co/IOWrDI3Q
http://t.co/fDKICZIz
http://t.co/fDKICZIz
http://t.co/4MT4S9Zv
http://t.co/4MT4S9Zv
http://t.co/wpscklWZ
http://t.co/wpscklWZ
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Topic

Name

Features

Harry, Ron ron - harry - checking - homework - charms - window - sat - boat

Dialogue told - snape - gasped - clutching - chest - stitch - change - plan

Class neville - fang - draco - flying - nervous - urged - suffering - looked

Hagrid hagrid - path - voice - round - warm - flattering - puffing - running

Ominous

Senses

thought - heard - sweets - rats - lurking - footsteps - sense - whisper

Table 6.5: Topics pertaining to Hermoine Granger in “Harry Potter and the Sorcerer’s
Stone.”

Hermoine participates in. It touches on how conversation is delivered:

with authority (“told”) and with fear & anxiety (“gasped”). The anx-

iety is reinforced with “clutching” and “chest”. The content of the

conversations is included in discussion of “Snape” and in “plan”s and

how they “change”.

The first topics returned by SPCA are the broadest, with additional

topics becoming more specific. This third topic, “Class”, is much

more specific, and captures major elements of one scene where stu-

dents gather for Hagrid’s class to learn to ride a Hippogriff. Neville

and Draco both interact with the creature and express anxiety about

the experience. The words of this topic capture both the major actors

and the mood of this scene.

The “Hagrid” topic extracts key attributes of the character Ha-

grid, such as “round” and “warm” that describe the safe, comforting,

parental qualities conveyed through his character. In addition, the topic

captures major trends in interactions Hermoine has with Hagrid: she
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often runs down the path to his hut to seek him out.

Finally, the “Ominous Senses” topic focuses on the prevalent atmo-

sphere of the novel, that something is lurking, hidden, and approaching.

6.4 Topic Analysis of United States Patents

This dissertation concludes with an analysis of the abstracts of 29,447

patents pertaining to clean technology and spanning nearly six decades

from 1957 to 2013. This example leverages the topic tagging concept

of Section 5.2 and demonstrates how quantification of topics can offer

additional context, information, and insight.

First, SPCA was used to automatically extract 20 topics from the

entire set of 29,447 patents. As in Section 6.3, topics are manually

labeled with names representative of the content they summarize. The

following list introduces these topics with names in bold and a set of

defining features.

Solar Cells solar - cell - module - cells - diode - contact - layer - array

Wind Power power - wind - system - electrical - generator - output -

voltage - converter

Hot Water Heater water - tank - heat - pump - hot - temperature -

heating - flow

Fuel fuel - assembly - rods - nuclear - rod - composition - reactor -

additive
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Energy Conversion energy - device - storage - converting - conver-

sion - wave - thermal - apparatus

Rotors rotor - blade - turbine - blades - hub - includes - axis - edge

Materials material - semiconductor - organic - photovoltaic - conduc-

tive - method - substrate - form

Soybeans soybean - plant - cultivar - parts - methods - plants - relates

- produced

Surfaces & Photovoltaics surface - light - formed - electrode - silicon

- side - transparent - front

DNA & Amino Acids acid - nucleic - fatty - sequence - producing -

amino - encoding - comprising

Fluid Pressure fluid - working - pressure - transfer - collector - outlet

- inlet - source

Chemical Processes process - production - ethanol - fermentation -

high - preparation - acids - biomass

Air Pressure air - chamber - heated - compressed - combustion - panel

- building - duct

Gas gas - liquid - stream - hydrogen - exhaust - oxygen - landfill -

vessel

Controls control - signal - unit - drive - core - operation - signals -

circuit
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Thin Films film - thin - forming - oxide - amorphous - type - metal -

deposited

Support Structure structure - support - element - member - wall -

panels - frame - supporting

Physical Description portion - body - upper - lower - outer - extend-

ing - plate - portions

Assembly & Apparatus tube - tubes - guide - steam - absorber -

cladding - glass - length

Shafts & Gears shaft - mounted - connected - rotation - gear - hous-

ing - vertical - bearing

Note that the topics correspond to distinct areas of technological

innovation. Each area is quite broad, though a sub-topic analysis will

be introduced later in this section demonstrating how additional detail

and specificity can be uncovered with topic hierarchies.

First, using this set of 20 topics, determine the similarity between

each document and topic pair, using the Hellinger distance methodol-

ogy as defined in Section 5.2. Each document is assigned a value be-

tween 0 and 1 representing how well the document matches the given

topic, where 1 is a perfect match.

Figure 6.1 illustrates the average strength of each topic over the

entire dataset. This yields insight into the frequency with which patents

matching the topic are generated, and allows for comparisons between
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topics. The chart provides a “fingerprint” of a dataset relative to a

selection of topics, and can be recomputed on any subset of the data.

Figure 6.1: Average Topic Strengths of Top 20 Topics

This idea of computing “fingerprints” for subsets of data is employed

to independently compute average topic strengths for sets of patents in

each decade to generate a time-series. The time series can be used

to identify trends and correlations between topics within the dataset.

Figure 6.2 illustrates time series for the first 16 topics returned by

SPCA.
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Figure 6.2: Average Strength of Topics by Decade
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A few insights into the evolution of the interest in specific application

areas are apparent from Figure 6.2. First, “Materials”, “Fuel”, and

“Controls” are trendy in the 50’s and 60’s. There was a swell of interest

into “Chemical Processes” in the 90’s. Also, interest in “soybeans” and

“rotors” steadily increase over time to reach their largest strength in

the 2010’s.

As these top-level topics are quite broad, it is useful to “drill down”

into one topic to understand its subtleties and sub-patterns. In this

example, consider the topic “Rotors”. While it is good to know that

“Rotors” are discussed in patent applications and know how frequently

they are discussed (from the topic strength), it would be useful to

understand the context in which rotor technologies are discussed, what

they are used for, what particular types of innovations are described

in rotors, etc. This insight is achieved with a hierarchical sub-topic

analysis, where SPCA is computed on the sub-set of documents in

which the topic strength of “Rotors” is > 0.

The automatically generated and manually named subtopics for “Ro-

tors” are as follows:

Wind Power wind - power - speed - method - installation - angle -

energy - generator

Turbine Innovation, Control pitch - shaft - bearing - control - sys-

tem - drive - connected - provided

Stator stator - plurality - outer - side - core - machine - windings -

rotation
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Air Flow, Pressure fluid - flow - direction - air - device - pressure -

mounted - assembly

Tower tower - portion - tip - position - root - nacelle - rotational -

support

Spar & Joints spar - cap - segment - joint - segments - surface - pre-

form - attached

Electrical Load electrical - connection - conductor - plant - resistance

- comprising - provide - disposed

Water Turbine water - body - extending - runner - wheel - comprises

- driven - generating

Carbon Fiber fibers - material - carbon - flange - formed - including

- reinforcing - embedded

Drive Train gear - stage - structure - transmission - ring - planet -

carrier - forces

Airfoils airfoils - airfoil - lift - range - length - family - maximum -

coefficient

Turbine Blade Deflection beam - deflection - determining - sensor

- based - coupled - coupling - positioning

Wind Powered Engine engine - block - pistons - cooling - connecting

- heating - reciprocate - causing
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Rotor Innovations component - shell - access - window - configured

- region - defined - generally

General main - medium - output - ambient - input - apparatus - low

- velocity

Manufacturing Blades layer - cross - binding - fibre - fiber - element

- central - front

Confinement & Seals tappets - housing - seal - number - adjustment

- adjusted - adjustable - closer

Wind/Water Designs aerofoil - thereof - underwater - chord - sym-

metrical - unit - units - mid

Geothermal Vapor Generator series - geothermal - vapor - vapors

- nickel - operating - high - life

Support Structure airframe - extend - supported - vertically - cables

- poles - windmill - vertical

This subtopic breakdown reveals the different application areas for

rotors, such as wind, water, and geothermal energy. Quite a few

subtopics describe innovations related to wind power, such as “Carbon

Fiber” material for the blades, “Airfoils”, “Turbine Blade Deflection”,

and “Tower” as a support structure for rotors.

Computing sub-topic strengths as previously done with top-level

topics reveals interesting patterns in the technological development in-

terest into rotors and how it changes over time. Figure 6.3 illustrates

the average topic strengths for each subtopic.
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Figure 6.3: Average Topic Strengths of Top 20 Sub-topics of “Rotors”

“Wind Power”, “Water Turbines”, and “Air Flow and Pressure” are

the strongest overall sub-topics, and the process of making turbines

(“Carbon Fiber” and “Manufacturing Blades”) appears to be a strong

interest.

Finally, consider Figure 6.4 which illustrates the fluctuations over

each decade of the first 8 subtopics as returned by SPCA.



80

Figure 6.4: Average Strength of Sub-topics of “Rotors” by Decade

Observe that “Water Turbines” and “Air Flow and Pressure” are

hot topics in the 70’s and 80’s, tapering off gradually thereafter. “Wind

Power” gains strong interest in the 2000’s and 2010’s. “Towers” and

“Stators” are strongest in the 50’s, tapering off since then.

The topic tagging methodology enabled a few graphs relating strengths

of topics to one another and illustrating their evolution over time. Fur-

ther, it allowed for a critical technological component for an interactive

system: the ability to “zoom in” on a specific topic to investigate the

context and find more specific details and relationships.
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Chapter 7

Conclusion

The contributions introduced in this dissertation are directed to-

wards the goal of a set of interactive tools for rich and insightful anal-

ysis of text content. Two generative probabilistic models of text, the

Binary Independence Model and the Probabilistic Latent Semantic In-

dexing model, which are described in Chapter 2, are leveraged in Chap-

ters 3 and 4 for efficient solutions to features selection and classification

problems. The solutions offer robustness that proves important in un-

balanced classification problems, and operate in time O(nm log(m)),

including model estimation. The abstractions represented by these

probability models are lossy, requiring only O(m) storage, where m

is the number of features in the text corpus.

Chapter 5 describes the use of Sparse Principal Component Analy-

sis for topic modeling in text, describing an existing fast, approximate

algorithm, and contributing an analysis comparing the computational

efficiency relative to Latent Dirichlet Allocation. With computational

efficiency and suitability for an interactive system established, a method
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is introduced connecting the linear algebraic results to the Probabilis-

tic Latent Semantic Indexing model. This approach leverages fast al-

gorithms for robust estimation of categorical probability distributions

to determine the strength with which a topic is expressed in a given

document. The method handles documents of any length in a princi-

pled statistical domain, and employs the Hellinger distance to compare

estimated distributions from documents to topic models extracted from

Sparse Principal Component Analysis.

The utility of these methods is demonstrated in Chapter 6. While

the models are significantly compressed representations of text, these

abstractions enable very fast solutions to problems that are demon-

strated to be effective in revealing practical, human-readable insights

to queries across a wide variety of application domains.
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