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Abstract

We apply coarse-to-fine MCMC to perform Bayesian inference for a seismic monitoring sys-
tem. While traditional MCMC has difficulty moving between local optima, by applying
coarse-to-fine MCMC, we can adjust the resolution of the model and this allows the state
to jump between different optima more easily. It is quite similar to simulated annealing.
We use a 1D model as an example, and then compare traditional MCMC with coarse-to-fine
MCMC and discuss the scaling behavior.



1 Introduction

Markov chain Monte Carlo (MCMC) (Andrieu, De Freitas, Doucet, & Jordan, 2003) refers
to a class of algorithms that sample from a probability distribution based on constructing
a Markov chain that has the desired distribution as its equilibrium distribution. The state
of the chain after a number of steps is used as a sample from the desired distribution. In
theory, as the number of steps increases, the sample quality will improve.

However, in practice, this method can often get stuck in local optimal of the distribution
and fail to find all the modes of the target distribution. In this document, we will introduce
coarse-to-fine MCMC to solve this problem. Generally speaking, coarse-to-fine is a strategy
that solves a problem first at a coarse scale and then at a fine scale, which lead to significant
improvements in running time. By introducing coarse-to-fine MCMC, we explore more modes
of the target distribution and can solve larger problems under a given computational budget.

Coarse-to-fine strategies have also been applied to a wide range of problems. Marco (Pedersoli,
Vedaldi, & Gonzalez, 2011) presents a method that can dramatically accelerate object de-
tection with part based models. Fleuret (Fleuret & Geman, 2001) applies a coarse-to-fine
sequential testing to localize all instances of a generic object class. There are also many
related works on Markov decision process (Bouvrie & Maggioni, 2012; Higdon, Lee, & Bi,
2002; Amit, Geman, & Fan, 2004). In this document, we will apply coarse-to-fine MCMC to
deal with the seismic monitoring problem (N. Arora, Russell, Kidwell, & Sudderth, 2010).

The layout of this paper is as follows:

We first introduce the necessary technical background and provide an introduction to Markov
Chain Monte Carlo(MCMC) space. Then, we introduce 1D models of seismic monitoring
systems including both a continuous model and a discrete model. In the continuous model,
we assume the monitoring station can receive seismic signals precisely, and the arrival time
uncertainty for the earthquake is the key parameter we can adjust to control how coarse our
model is. In the discrete model, we keep the arrival time uncertainty constant, and use the
station resolution to control model coarseness. The continuous model is from NET-VISA
(N. S. Arora, Russell, & Sudderth, 2013), a detection-based system and the discrete model
is from SIG-VISA (Moore, Mayeda, Myers, Seo, & Russell, 2012), a signal-based system.

Next, we introduce parallel tempering, which is a critical step in coarse-to-fine MCMC
(Efendiev, Hou, & Luo, 2006; Efendiev, Jin, Michael, & Tan, 2015) after we have both
the coarse and fine model. We run two or more independent Markov chains with different
“coarseness” simultaneously. Then we introduce swap moves which will swap the state be-
tween the chains. State in the coarse model jumps between optima more easily, so the swap
move allows the fine chain to propose large jumps between modes for the fine chain (Geyer,
1991).



Finally we show that coarse-to-fine lets us solve much larger problems under a given compu-
tational budget. Because the chain mixes faster, coarse-to-fine MCMC requires fewer steps.
We show that this improves efficiency on a synthetic test dataset of seismic observations.



2 Technical background

In this chapter we review the necessary technical background. It covers the probability model
for seismic monitoring, MCMC, and parallel tempering, which we use as the starting point
for our coarse-to-fine MCMC.

2.1 Probability model

Suppose we have parameter, #, and evidence, e. Both 6 and e is a vector. # contains the
information of earthquake events like time and location. e contains the information of sig-
nals received by seismic monitoring station. For each parameter # we know the likelihood
for generating evidence e is p(e|6).

Usually the evidence e is what we can observe and 6 is what we are interested in. We
hope to infer parameter 6 by evidence e, thus we want to know p(f|e). Since we already have
information for p(el@), we can infer p(f|e) with Bayesian inference

p(e|f) x p(0)

p(fle) = (6

(1)
where the likelihood p(e|f) can be calculated. p(f) is the prior. p(e) is always constant
because the evidence is given (Andrieu et al., 2003). In the case that the prior is a uniform
distribution, the posterior probability is proportional to the likelihood.

Often the above calculation is intractable. In the next section, we will cover the Metropolis-
Hasting algorithm, which allows one to efficiently sample from this distribution.

2.2 Markov Chain Monte Carlo

In this section we use I1(x) to represent p(f|e). Now z is our notation for the state instead of
6. Suppose we need to sample from the distribution II(x). The core of the MCMC algorithm
is to define a Markov Chain with II(z) as its stationary distribution.

The Metropolis-Hastings algorithm (MH) is a way to define a Markov chain with a particular
target distribution. MH is defined by the target distribution, II(x), and a proposal distribu-
tion, g(x — 2’). A step of MH is defined by sampling a candidate next state 2’ ~ q(z — z’).
The Markov Chain then moves to 2’ with acceptance rate

(z")g(x" — x)
(z)q(z — 2')

) (2)

r(z — 2') = min(1,

The pseudo code is shown in Fig.1



1. Initialize x©
2. Fori=0to N—-1

Sample u ~ Uy
Sample x* ~q(x® - x*)
If u<r(x® - x")

next state is x(+1) = x*
else
next state is x(*D = x®

Figure 1: Pseudocode for Metropolis-Hasting algorithm.

After we run the MH algorithm we have a sequence of states. If the iteration number is large
enough, the histogram of the MCMC samples will approach the target distribution.

015 0.15

04 i=100 0.1 R i=500

Figure 2: Target distribution and histogram of the MCMC samples at different iteration
points.

Usually the proposal distribution is symmetric, thus ¢(x — 2’) = g(2’ — x), so the accep-
tance rate has the following formula:

r(z — 2') = min (1, %) (3)

For an “uphill” move, the acceptance rate is always 1. While for a “downhill” move, the
fatter the peak is, the smaller the slope for a fixed size step, the smaller the difference be-
tween the posterior probability of two states, and thus the larger the acceptance rate. So



the shape of the target distribution affects the rate of convergence as well as the frequency
of state transfers between different modes.

Usually, there exists a crucial parameter controlling whether a model is coarse or fine. The
model with relative broad peak is called the “coarse version” while the model with narrow
peak is called the “fine version”. Later, we will see that such parameters are similar to the
annealing temperature in simulated annealing. As we will describe in detail later, in our
model, it can be the arrival time uncertainty or just the resolution of the station.

Next we will introduce parallel tempering, which we will use to implement our coarse-to-fine
MCMC algorithm.

2.3 Parallel tempering

Previously, we briefly introduced Markov Chains with different degrees of coarseness. It is
intuitive that this degree of coarseness can be viewed as temperature in simulated annealing.

Simulated annealing (SA) is a probabilistic technique for approximating the global opti-
mum of a given function. The term annealing is a concept from metallurgy and involves a
technique involving heating and controlled cooling of a material to increase the size of its
crystals and reduce defects. High temperature corresponds to high energy, which will give
low quality solution for the lattice configuration. While low energy will give high quality
solution. Simulated annealing interprets slow cooling as a slow decrease in the probability of
accepting worse solutions as it explores the solution space. Accepting worse solutions allows
for a more extensive search for the optimal solution.Thus, we know that the system will
approach optima more quickly when we vary the temperature.

There are two common approaches to tempering: sequential tempering and parallel temper-
ing. In sequential tempering, we adjust the parameter in the model during our algorithm.
The coarse Markov chain will run first, and then the fine chain. This is quite similar to the
simulated annealing in physics. In order to achieve the best configuration for a particular
compound, we usually increase the temperature and then gradually cool it. Sometimes we
repeat this several times.

Another method is called parallel tempering (Geyer, 1991). In parallel tempering, we main-
tain two separate chains: a coarse chain and a fine chain. They will have different target
distributions, as illustrated below:



Coarse version

Fine version

Figure 3: The coarse model has a relatively broad peaks while the fine model has a relatively
narrow peaks.

Since the MH acceptance rate depends on the slope of target distribution (or the height
difference between peaks and valleys, and distance between peaks), the coarse chain will
generally have a larger acceptance ratio compared to the fine chain. We can use the states
in the coarse chain to “help” the states in the fine chain jump between different modes.
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Figure 4: Swap move helps the state in the fine chain to jump between different optima.
Red points represents the states (demoted by c¢) in the coarse chain and blue hollow circles
represents the states (denoted by f) in the fine chain. Superscript @ of the state ¢ and f
represents the ¢-th step of MH algorithm.

In parallel tempering, the coarse chain and fine chain chain run simultaneously. We use a
swap move to switch the two states from different chains.

For example, as Fig.4 illustrated, we have mode 1 and mode 2 for target distribution. c
and f denotes the coarse version state and fine version state separately. The index ¢ denotes
the i-th step for MH algorithm. In the first step, both ¢l and f1 are in mode 1. After few
steps, the blue states are still confined in mode 1, like f8, while the red state have already
jumped into mode 2, like c8, since its target distribution is fatter. Then in the 9-th step we
apply a swap move. So the coarse version state c9 is in mode 1 and fine version state {9 is
in mode 2.

Thus, the probability that the state in the coarse chain jumps to another mode is rela-
tively high. The swap move can switch these two states and the state in the fine chain will
be in another mode. If we do not have a swap move, we expect to wait for a very long time
for the state in the fine chain to jump from one mode to another.



Generally speaking, the swap move in coarse-to-fine MCMC will help the state in the fine
chain jump between different modes more easily, and can solve much larger problems under
a given computational budget.
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3 1D continuous model

3.1 1D Continuous model description

We present these ideas in a 1D earthquake detection model. We have earthquake monitoring
stations at x = 0 and « = L. Earthquakes occur in the internal [0, L]. For each earthquake
event ¢, we have parameter z; and ¢; describing the location and time for it. Once an event
occurs, the earthquake wave will propagate towards the stations and stations will receive
signals. Then, suppose we take a time period [0, 77, thus the state of each event are in the
space [0, L] @ [0, T7.

Assume the velocity, v, of the wave is constant, thus the situation can be illustrated be-
low:

L+ (L=x)/v

A A

x=0 ’ x=L X

Figure 5: Hlustration of 1D model. Once we have some event occurs, the station will receive
signals from it.

However the station have some Gaussian uncertainty in recording the arrival time with zero
mean and variance o2. That means that even if the theoretical arrival time for one event is
t, where t = t + /v can be easily calculated from the information of station and event, the
actual arrival time recorded by station has a Gaussian Distribution N (%, o?).
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Figure 6: Because of the existence of arrival time uncertainty, for each event, the arrival
time has a Gaussian distribution. And for each actual arrival time, there are many possible
event times and locations corresponding to it.

Remember that the station signal e is our observation, and our goal is to infer the information
of events 6.

3.2 Calculation of likelihood
3.2.1 Likelihood for only one event
In order to run Metropolis-Hastings, we need to calculate the likelihood, p(e|6), for any state,

0, we are interested in. First, suppose the state only contains one event.

For the parameter 6 of such event, assume the location of this event is x; and the time
of this event is ¢;. Thus, the event can be represented as (x,t1). Remember that (z1,1;)
is not the actual state(or event) which generated the actual observations: it is the state we
want to get the likelihood of.

12
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Figure 7: The left picture shows the evidence we observed. The evidence is the arrival times

for two stations, 7'1(1) and 7'1(2), represented by the little red cross. The right picture shows

for any state (z1,t;), we can predicted its arrival time Fgl) and F§2), represented by the little
yellow cross.

For the evidence e, assume the first station s; at x = 0 receives the signal of such event at
time 7'1(1) where the superscript denotes the station and the subscript denotes which signal
it received (1 means its the first signal and 2 means its the second signal for the station).
Since we only have one event, the subscript is just 1. Similarily, assume the second station

so at © = L receives the signal at time 71(2 . Thus we have

p(eld) = p(r", 72|21, ). (4)

For event (x4, 1), we can predict its arrival time at stations s; and s, if there doesn’t exist any
arrival time uncertainty. For station s;, the distance between the event and s; is ;. Thus
the theoretical arrival time ?gl) should be t; + x;/v. Similarly, for station s, the distance
between the event and s, is L — 1. Thus the theoretical arrival time 7\ is t1 + (L — z,)/v.
However, the actual time for the arriving signal we received is not exactly the predicted
one. For station s; it is 7'1(1) and for station s, it is 7'1(2). Thus the original likelihood can be
expressed as

1) (2 ) (2)=(1) =(2

oy, P ar th) = p(r 7 7). (5)
where ﬁ” =t +x1/v and ?52) =t + (L —x1)/v.
Since the signals at different stations are independent, we can rewrite the likelihood as
1) (2)=(1) —(2 1) =0 2)=(2
VT = e n ) < op(n ). (6)
where p(Tl(l), |?§1)) is only related to the first station s; and p(71(2) |?§2))
second station ss.

is only related to the
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Since we model the actual arrlvmg signal recorded by station using a Gaussian distribu-
tion, we can calculate p(7‘1 |7‘ ) and p(Tl(2)|?§2)) as below:

1) (1 T.
g ) N( (1) Tg),a)_\/zlfmexp(—T 7
( (7.(2)_?(%)2 ( )
T1

) =N@" 7 0) = Zgean(-Fgm )

p(r!’
p(r”

Thus, the likelihood is

! Gk (n? =77y
eld) = exp(— X exp(————).
plelt) = —m—eap(— ) x ——emp(~ I
It can be expressed as
2 (k) _ =(k)y2
1 (7 —=7")
0) = - ). 8
plelt) =TT et =7 2 ®)

where k is the index for the station.

3.2.2 Likelihood for multiple events

Now we generalize to multiple events. Suppose we have n events, each described as (z;,t;)
for + = 1,...,n. For the first station sy, the arrival times of the signals it receives are
(71(1), . ,’7'7(11)). For the second station s, the arrival times are (71(2), . ,77(12)). Note that the
subscript ¢ just means the ¢-th arrival time for a particular station. It doesn’t correspond to

event 1.

Then, the likelihood can be expressed as

piein = 1111 5 () )

where k is the index for the station and 7 is the index for the events.

Note that when the number of events increases, there may exist more than one probable
solution. In fact, as the dimension our state increases, there will occur more local modes.
High dimension is hard to visualize, let’s just use the two events case as an example. See
Fig. 8



Figure 8: Use two events in thelD model as an example that we have more than one solution
for given evidence. Both yellow states and blue hollow states can give the same observation.
Thus we say that we have two modes.

3.3 Arrival time uncertainty

It is obvious that the arrival time uncertainty, o, is a crucial parameter because it will af-
fect the posterior probability distribution. If ¢ is large then the peaks of the optima in the
posterior will be quite broad, while for small o the peaks in the posterior will be narrow.

This is referred to Fig. 9:

g large a small

Figure 9: The left part is the model with a large arrival time uncertainty while the right
part is the model with a small uncertainty.

We can see the model with a small arrival time uncertainty will have a quite sharp posterior
probability distribution. Thus the slope is very small for most of the region. We say this is
a fine version of the model compared to the coarse version model.
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3.4 Proposal move

In the previous section, we introduced both the coarse and fine versions of the model , as
well as the calculation of likelihood. In this section we need to figure out the proposal moves
so that we can implement our parallel tempering algorithm.

We have two kinds of proposal moves. The first one is a normal move that changes the
position of the state in one chain. The second is called a swap move that can switch the
state between the coarse and fine chain. In this section we use “state” to denote the state in
one chain, and use “parallel state” to denote the combination of states from different chains.

3.4.1 Normal move

In this 1D case, our state space is (z,t)-space. Suppose we propose a new state using a
Gaussian distribution:

q(@ = 0") = q(z,t — 2/, 1)
= ./\/'(x‘x', Uppsfx) N(t!t’, Uppsft) (1())

Where 0,5 » and 0,5+ are the standard deviations. It shows how much each move makes
the new state deviate from the original.

This is reasonable and is symmetric. So ¢(6 — ¢') = q(6’ — ). Then, the acceptance
rate can be expressed as:

Now, let’s run the MH algorithm in one chain first as an example.

10 10
oa 08
HL
06} $ * 06
p
] -
D4l‘. L] 0.4 * é
. e
o
.o {".‘
0z "*. 02
00 : [11]

0.0 02 04 06 08 10 0.0 02 0.4 06 08 10
Figure 10: An example of MH algorithm. Suppose we have two events with [zq,t;] =

[0.17,0.13] and [z2, t2] = [0.49,0.38]. We can see the state will jump from an random initial
state to the actual state. And finally converge under the posterior probability distribution.
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We can see that the initial state is far away from the peak of target distribution. Then it
moves to the peak gradually and finally the sample distribution will converge to the target
distribution.

In our model we assume the number of events is fixed. When the number of events is
unsure, this number becomes a parameter of our state. Then, we will include birth and
death moves in the proposal, which allow the dimension of state to vary during the MH
algorithm (Oh, Russell, & Sastry, 2004; Green & Hastie, 2009).

3.4.2 Swap move

Now let’s consider the parallel state (6, 60;) where 6, is the state in coarse chain and 6, is
the state in fine chain. Thus, for the proposal distribution of swap move we have

1 lf 61:95,92:0’1

0 otherwise (12)

Q(91792 — 9/179/2) = {

Where the parameters, ¢, in coarse chain are the same as the parameters, ¢, in the fine
chain. Parameters, 6, in the fine chain are the same as the parameters, 0, in the coarse
chain.

Since it is symmetric we can rewrite the acceptance rate as
H(Gl, 92)q<01, 02 — 01, 9;)
11(61,05)q(67, 05 — 601, 6,)

= min (1, %) (13)

Where I1(6y,02) = I1(6,) I1(6,) is the probability of the parallel state is the product of the
probability of those states in each chain.

r(01,0s — 07,05) = min (1,

In our algorithm, we run two Markov chains simultaneously. The swap move is only useful
when the state in the coarse and fine chains both reach the mode. Thus, the swap move
should be rare. Most of the proposal moves should be the normal move which change the
position of the state in each chain.

Thus, for each step of MH algorithm, we say that we have a probability of r, = 0.99
that we choose a normal move for both the coarse and fine chain, and a probability of 1 —r,
that we choose a swap move. r, is a parameter we can adjust during our algorithm.

3.5 Results

In reality, we usually draw log probability of the state versus step to observe its convergence
behavior. The state is usually high dimensional, so we draw one parameter of the state ver-
sus the step. We can see that the parameter will converge to and jump between those modes.
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In our program, we set the length scale L = 1, time scale T" = 1, velocity v = 1, stan-
dard deviation of arrival time uncertainty ocparse = 0.2 for coarse chain and o ;. = 0.05 for
fine chain. The standard deviation of proposal distribution is 0,5 = Oppss = 0.02

We set our actual state to be (z1,t;) = (0.3,0.5), (x2,t2) = (0.7,0.5), thus our target
distribution has two modes.

First, we only run the fine chain. We run 50000 steps and plot the state parameter against
the step:

Sal e S

10000 20000 30000 40000 50000

Figure 11: This picture shows state parameter v.s. steps for fine chain with ¢ = 0.05. In
this case, it is xq v.s. steps. We also have t1, x5, t5 v.s. steps but we don’t draw it here since
the parameters of one of the events are already enough to show the result. From the picture
we see that for the fine chain, it is rare for one state to jump between modes. In 10000 steps
there are only two jumps.

From the picture above we can see that if we run standard MCMC, the frequency for a state
transferring between different modes is very slow.

Then we run the parallel tempering program. The results are listed below

18



20000

step #

Figure 12: This picture shows the case for parallel tempering. The red line denotes the fine
chain with ¢ = 0.05 and blue line denotes the coarse chain with ¢ = 0.2. By introducing the
swap move, we can see that the state in fine chain jumps between different modes frequently.
This is because state in coarse chain is more easily to jump from one modes to another, so
the swap move can switch the fine state from one mode to another.

We can see that both the blue state and red state jump between different modes frequently.
The frequency for coarse-to-fine MCMC is about 5 times larger than traditional MCMC.

Next, we draw the graph of log probability v.s. steps to see that coarse-to-fine MCMC
converges quicker than traditional MCMC

10

\ ’{M’SMW
5 :c"

=

log probability
. |
g

|
o
&

200 200 ] B00 000
step

Figure 13: This picture shows the log probability versus steps for coarse-to-fine MCMC(red)
and traditional MCMC(blue). We can see coarse-to-fine MCMC converges quicker than
traditional MCMC.

From above two pictures we see that coarse-to-fine MCMC converges to one mode and
switches between different modes much quicker than traditional MCMC, while providing the

same precision.
Finally, we draw the graph of autocorrelation v.s. lags to compare the performance between
coarse-to-fine MCMC and traditional MCMC.
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autocorrelation
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lags %104

Figure 14: This picture shows the autocorrelation v.s. lags for coarse-to-fine MCMC(red) and
traditional MCMC(blue). We can see the autocorelation of coarse-to-fine MCMC converges
to zero much quicker than traditional MCMC, which means the state is easier to jump to
other positions after a long enough steps.

The picture above shows autocorrelation of state parameter v.s. lags. When lag increases,
the autocorrelation approaches to zero. This means that a state’s position is unrelated to its
position after enough steps. We can see that, for coarse-to-fine MCMC, it converges quicker
than traditional MCMC.

These results show that coarse-to-fine MCMC performs better.

20



4 1D discrete model

4.1 Insight of introducing discrete model

In the previous model, adjusting the arrival time uncertainty controls how coarse our con-
tinuous model is. Now, we introduce the discrete model which is closer to the signal-based
system.

Suppose each station has a resolution and it can not give the precise arrival time in a
particular time period. But it can tell you how many signals it received during that period.
When the resolution is low, we define it as “coarse”. Compared to the continuous model,
arrival time uncertainty as a measure of “coarseness” is just an analogy for discretization.
Similarly, when the resolution is low, it corresponds to a fine version model.

tf 11 t £y

o |

A A A A

e
f =

Figure 15: Suppose now we have discretized model. The left part corresponds to a coarse
chain while the right part corresponds to a fine chain.

By introducing this new parameter resolution, we can apply coarse-to-fine MCMC without
modifying the seismic model.

4.2 Discrete model description
4.2.1 Time scale for stations

In order to introduce the discrete model, let’s first consider the time scale for event. In the
continuous model, the time scale for the events is [0, 7], thus the time scale for the station
is [0,T + L/v] = [0, Tg].

4.2.2 Station resolution

In the continuous case, the arrival time recorded by each station is a real number. However,
in the discrete case, we suppose each station has finite resolution and the actual arrival time
can not be very precise. But it can tell you how many signals it received in this period. We
say the station has high resolution when the time period is short and low resolution when

21



the time period is long.

For example, suppose the time scale of the station is [0,1]. Then if the resolution of the
station is 0.1, we have 10 possible choices for the arrival time. If the resolution is 0.01 then
we have 100 choices, and similarly, 1000 choices for resolution 0.001.

After we set the station resolution, we can see the arrival time of the events are discretized.
It has only finite states. Suppose the resolution, res, of the station is T,/5, thus the time
periods are [0, Ts/5], [Ts/5,2Ts/5], [215/5,3T5/5], [31s/5,4Ts/5], [4T5/5,Ts/5]. We represent
it as 7, 79, 73, T4, T5. Remember that in discrete model 7 represents a particular time period
instead of a precise time point.

4.2.3 Signal amplitude

Next, let’s assume each event contains some units of energy, represented by ene. When the
wave of event arrives at the station, the average magnitude of the signal is proportional to
ene/res. This is intuitive since, if the resolution is fine, then the station will receive this
energy in a smaller time period and enhance its magnitude level.

As an example, for station s;, suppose one arriving signals come during time period 75
and two signals come during time period 74. The signal received should be

ene ene

signal™ = [0, —,0,2—,0]. (14)
res res
The signal can be illustrated below:
o
I 1
] 1
] 1
e T
1 1 1 i
1 1 1 1
1 1 1 1
Fp——— | L S— | | "
0 Ts

Figure 16: Ty is the time scale for the station. Suppose the resolution is 75/5. Then, the
green dotted line represents the signal the station received when 75 receives one arriving
signal and 74 receives two arriving signals.

4.2.4 Noise

Because seismic signals are noisy, we include noise in our model. In addition, by including
noise, we can directly apply a Gaussian distribution to calculate the likelihood, which can
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avoid unrealistic delta functions.

Suppose we have noise in our signal with mean g and variance o,,s. For each period,

7;, the amplitude level of noise, no;, is under N (i, 0poise)-

Thus we can express the signal as the formula below when we consider noise:

, (1) ene ene
signal'” = [noy, noy + —, nos, noy + 2— nos.
res res

The signal can be illustrated below:

p———

= — ]

0 Ts

Figure 17: The green dotted line is the signal without noise, while the blue solid line is the

actual signal when we consider noise.

Thus, for a particular resolution, our observation is one such signal for every station. We

hope to infer the actual events.

4.3 Calculation of likelihood
4.3.1 Likelihood for only one event

For simplicity, let’s consider the case with only one event first. The evidence for one station

is like

— — ]

0 Ts

Figure 18: The actual signal above shows the case of only one events. Notes that in each

period, 7;, the magnitude level is non-zero because noise exists.
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We express this signal as si*) = [sigk), N siék)] where £ represents the index of station.

Then, for any given state (z1, %), the likelihood can be expressed as

peld) = p(siV, 5i® |y, 1) (16)

For a particular state (x,t1), we can predicted its arrival time for a given station, ng),

where k represents the index of the station. Suppose ng) arrives in 75. In this case, it can

illustrated in the picture below:

Figure 19: For any given state we can predict its arrival time presented by the little red
cross. Due to the arrival time uncertainty it may corresponds to multiple predicted signals
with particular weights.

Due to the arrival time uncertainty, these arrival times are located in adjacent time periods
with some set probability. Though it should be located in 75 theoretically, it can also be
located 7 and 3.

Thus, we need to calculate the weights for predicted arrival times being located in each
particular 7;. Such weight in fact is the integral of a Gaussian function in each time period.
In the example above, we assume the probability that 71 receives a signal is w;, similarly the
probabilities for 7, and 73 are wy and w3. Because the Gaussian distribution has an infinitly
long tail, we cut the tail at two deviations to simplify the calculation. Remember that we
need to do renormalization for w; during the calculation. After that we can see for each
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predicted signal we have a weight w; that corresponds to it:
0, = / NEF, o)t (17)
Where ?5’” is the predicted arrival time.

For each w; (i = 1,2,3), suppose the predicted signal is pred_sit*¥, then the likelihood
can be expressed as

3
p(elf) = Zwi x pi(si, 5i@|pred_siV? pred_si®) (18)
i=1

Where i denotes different cases and p; denotes the likelihood for each case. Since the signals
in different stations are independent, we can rewrite the likelihood as:

3
p(elt) = Zwi X pgl)(si(l) [pred_siV+) x pEQ)(si(Q) [pred_si®)

=1
3 2
= Z w; H pgk) (58 |pred_sit)) (19)

i=1 k=1
T P F
[ 1 1 1 1 1
I 1 1 1 | 1
1 S-S -] e o e e e o 1 [ I S

w1 w2 w3
/ /s /

Figure 20: For a given state and station we can calculate its w; and likelihood p; for each
case 1. The likelihood is the sum for each case, ), w; X p;.
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Next, for each case w; (i = 1,2,3), we can compare the actual signal with the predicted
signal and then calculate its likelihood p;. From previous part we know the signal consists
of 5 parts since the resolution is 7, /5. Thus for any actual signal si®®) and predicted signal
pred_si)? we have:

si® =[5 sl (20)

pred,si(k)’i = [pred,sz'gk)’i, e ,predﬁiék)’i] (21)

Since the magnitude level in different periods are independent, and in each period, the dif-
ference of the actual magnitude level and predicted magnitude level is due to the uncertainty
of noise, we know the smaller difference between the actual magnitude level and predicted
actual level, the higher probability that this prediction is true.

Thus, we can express each likelihood as
5

pgk)(si(k)|pred,si(k)’i) = H/\/(si;k),pred,sig-k)’i, T noise )- (22)

j=1
Finally, the full likelihood is expressed as:
p(elf) = p(si, si@|zy, t1)

3 2

5
— Z w; H H ./\/'(sz'g»k) , pred,si§k)’i, T noise )- (23)

i=1  k=1j=1

Where i denotes any probable cases, k denotes different stations, j denotes to different time
period for the station signal.

This is only for the state with one event, thus ¢ is relatively small. Later we will see that when
the number of events increase, the probable cases for the state will increase exponentially.

4.3.2 Likelihood for multiple events

The likelihood for multiple events are similar. Use two events as an example.
Suppose for some state, two predicted arrival time locates in 75 and 74. Due to the ar-
rival time uncertainty, for the first arrival, it can be located either in 7, 7, 73. And for the

second arriving, it can be located either in 73, 74, 75. Thus we have 3 x 3 = 9 cases which
can be shown in the picture below.
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Figure 21: The picture above shows 9 cases of probable predicted signals for two events state
and compare it with the actual signal. For the same column, the first arriving signal are
always in the same 7, while different row means the second arriving signal are in different
7. Similarily, for the same row, the second arriving signal are always in the same 7, while
different columns mean that the first arriving signal are in different 7. The green dotted line
is predicted signal and blue solid line is actual signal. The resolution of the station is 75/5.

From the above picture, we can see in most of the cases (except ws), the overlap of the
predicted signal and actual signal is quite small. The most probable case is ws. The cases
far away from w;s have little probability.

Thus, the likelihood is
3 2 5 '
pleld) = Z w; H H/\/’(si;k),pred_sig-k)’l, Onoise)- (24)
=1 k=1j=1

It is the same as the likelihood in the case of a single event, while w; represents all the cases
here.
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4.4 Proposal move

In previous chapter, we introduced the proposal move for the continuous model. It is similar
for the discrete model. (N. Arora et al., 2010)
For a normal move

q(0 = 0") = N(a, 2, 0pps.c) N(t, 1, Opps.t)- (25)

Thus, the acceptance rate is

For a swap move

;o 1 if 0 =105,0,=0]
901,02 = 01,05) = { 0 otherwise (27)
Thus the acceptance rate is
. I1(6y, 65)
7“(91, 6‘2 — 9/1, 9/2) =min (1, m) (28)

4.5 Results

For the discrete model, the results are quite similar with those of the continuous model. In
our discrete model, we set the length scale L = 1, time scale T' = 1, velocity v = 1, standard
deviation of arrival time uncertainty ¢ = 0.1. The resolution of station for coarse model is
0.4 and the resolution for fine model is 0.2. The standard deviation of proposal distribution
IS Opps .z = Oppst = 0.02

We set our actual state to be (z1,t;) = (0.3,0.5), (x2,t2) = (0.7,0.5), thus our target
distribution has two modes. It is the same as the continuous model.

First, we only run the fine chain. We run 50000 steps and draw state parameter v.s step
diagram.
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0 10000 20000 30000 20000 50000
step

Figure 22: This picture shows state parameter v.s. steps for fine chain with res = 0.2. We
see that for the fine chain, it is rare for one state jumping between different modes. In 10000
steps there is only one jump.

Thus, we know that, in standard MCMC, the frequency for a state transferring between
different modes is low.

Then, we run the parallel tempering program.

s .

os (48 AR AH

i i#{ Ll

o 10000 20000 30000 40000 50000
step

Figure 23: This picture shows the case for parallel tempering. The red line denotes the
fine chain with res = 0.2 and the blue line denotes the coarse chain with res = 0.4. By
introducing the swap move, we can see that the state in the fine chain jumps between different
modes frequently.

We can see that both the blue states and red states jump between different modes frequently.

Finally, we draw the graph of autocorrelation v.s. lags to compare the performance be-
tween coarse-to-fine MCMC and traditional MCMC.

29



autocorrelation

-0.4

lags %104

Figure 24: Autocorrelation v.s. lags for coarse-to-fine MCMC(blue) and traditional
MCMC(red). The autocorelation of coarse-to-fine MCMC converges to zero much quicker
than traditional MCMC.

Generally speaking, the results for the discrete model are similar to the results from the
continuous model. We can say that coarse-to-fine MCMC has better performance in both
of these models. It provides shorter convergence time as well as higher frequency jumps
between modes.
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5 Conclusion

The coarseness of a chain is crucial for the behavior of sampling in MCMC. Coarse chains
provide more opportunities to jump between different modes. While fine chains give more
precise solution for a particular mode.

Coarse-to-fine MCMC combines the advantage of both of them. It mixes the chains with
different coarseness and helps the state in fine chain to jump between different modes as
quickly as those states in coarse chain. It gives very precise solutions for one mode, and
explores different modes at the same time.

In the previous examples, we compared how states jump between mode in coarse-to-fine
and traditional MCMC. We conclude that coarse-to-fine MCMC has a higher frequency for
state transferring between different modes. We also compared log probability and autocor-
relation to confirm that. Thus, in order to achieve the same result, coarse-to-fine MCMC
requires fewer steps. The efficiency would be enhanced for such problems.
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