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Abstract

We study ridge-regularized generalized robust regression estimators, i.e

β̂ = argminβ∈Rp

1

n

n∑
i=1

ρi(Yi −X ′iβ) +
τ

2
‖β‖2 , where Yi = εi +X ′iβ0 .

in the situation where p/n tends to a finite non-zero limit.
Our study here focuses on the situation where the errors εi’s are heavy-tailed and Xi’s have an

“elliptical-like” distribution. Our assumptions are quite general and we do not require homoskedasticity
of εi’s for instance.

We obtain a characterization of the limit of ‖β̂−β0‖, as well as several other results, including central

limit theorems for the entries of β̂.

1 Introduction

Robust regression estimators are a standard and important tool in the toolbox of modern statisticians.
They were introduced in the last sixties (Relles (1968)) and important early results appeared shortly
thereafter (Huber (1972, 1973)). We recall that these estimators are defined as

β̂ρ = argminβ∈Rp
1

n

n∑
i=1

ρ(Yi −X ′iβ) , (1)

for ρ a function chosen by the user. Here Yi is a scalar response and Xi is a vector of predictor in Rp.
In the context we consider here, ρ will be a convex function. Naturally, one of the main reason to use
these estimators instead of the standard least-squares estimator, is to increase the robustness of β̂ρ to
outliers in e.g Yi’s. Formally, this robustness result can be seen through results of Huber (see Huber and
Ronchetti (2009)), in the low-dimensional case where p is fixed. Huber showed that when Yi = X ′iβ0 + εi,

and when εi’s are i.i.d, under some mild regularity conditions, β̂ρ is asymptotically normal with mean β0

and (asymptotic) covariance

(X ′X)−1 E
(
ψ2(ε)

)
[E (ψ′(ε))]2

, where ψ = ρ′ . (2)

The question of understanding the behavior of these estimators in the high-dimensional setting where
p is allowed to grow with n was raised very early on in Huber (1973) (p.802, questions b) to f)). These
questions started being answered in the mid to late eighties in work of Portnoy and Mammen (e.g Portnoy
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(1984), Portnoy (1985), Portnoy (1986), Portnoy (1987), Mammen (1989)). However, these papers covered
the case where p/n→ 0 while p→∞.

In the papers El Karoui et al. (2011) and El Karoui et al. (2013), we explained (mixing, as in Huber
(1973), rigorous arguments, simulations and heuristic arguments) that the case p/n→ κ ∈ (0, 1) yielded a
qualitatively completely different picture for this class of problems. For instance, under various technical
assumptions, we explained that the risk ‖β̂ρ−β0‖2 could be characterized through a system of two non-linear
equations (sharing some characteristics with the one below), the distribution of the residuals could be found
and was completely different of that of the εi’s, by contrast with the low dimensional case. Furthermore,
we showed in Bean et al. (2013) that maximum likelihood estimators were in general inefficient in high-
dimension and found dimension-adaptive loss functions ρ that yielded better estimators than the ones we
would have gotten by using the standard maximum likelihood estimator, i.e using ρ = − log fε, where
fε is the density of the i.i.d errors εi’s. (We subsequently showed in as-of-yet-unpublished El Karoui
(2013) that the techniques we had proposed in El Karoui et al. (2011) could be made mathematically
rigorous under various assumptions. See also the paper Donoho and Montanari (2013) that handles only
the case of i.i.d Gaussian predictors, whereas El Karoui (2013) can deal with more general assumptions on
the predictors. Donoho and Montanari (2013) also make interesting connection with the Scherbina-Tirrozi
model in statistical physics - see Shcherbina and Tirozzi (2003) and Talagrand (2003). For other interesting
results using rigorous approximate message passing techniques, see also e.g Bayati and Montanari (2012))

In the current paper, we study a generic extension of the robust regression problem involving ridge
regularization. In other words, we study the statistical properties of

β̂ = argminβ∈Rp
1

n

n∑
i=1

ρi(Yi −X ′iβ) +
τ

2
‖β‖2 , where Yi = εi +X ′iβ0 .

We will focus in particular on the case where there is no moment restriction on εi’s. Furthermore, a
key element of the study will be to show that the performance of β̂ is driven by the Euclidean geometry
of the set of predictor {Xi}ni=1. To do so, we will study “elliptical” models for Xi’s, i.e Xi = λiXi, where
Xi has for instance independent entries. We note that when λi is independent of Xi and E

(
λ2
i

)
= 1,

cov (Xi) = cov (Xi). Hence these families of distributions for Xi’s have the same covariance, but as we will
see they yield estimators whose performance vary quite substantially with the distribution of λi’s. As we
explain below, the role of λi’s is to induce a “non-spherical geometry” on the predictors; understanding the
impact of λi’s on the performance of β̂ is hence a way to understand how the geometry of the predictors
affects the performance of the estimator. We note that in the low-dimensional case, when Xi’s are i.i.d,
X ′X/n → cov (X1) in probability under mild assumptions, and hence the result of Huber mentioned in
Equation (2) shows that the limiting behavior of β̂ρ defined in Equation (1) is the same under “elliptical”
and non-elliptical models.

Our interest in elliptical distributions stems from the fact that, as we intuited for a related problem in
El Karoui et al. (2011), the behavior of quantities of the type X ′iQXi for Q deterministic is at the heart of

the performance of β̂. Hence, studying elliptical distribution settings both shed light on the impact of the
geometry of predictors on the performance of the estimator and allow us to put to rest potential claims of
“universality” of results obtained in the Gaussian (or geometrically similar) case. We note that in statistics
there is a growing body of work showing the importance of predictor geometry on various high-dimensional
problems (see e.g Diaconis and Freedman (1984); Hall et al. (2005); El Karoui (2009, 2010); El Karoui and
Koesters (2011)).

One main motivation for allowing ρi to change with i is that it might be natural to use different loss
functions for different observations if we happen to have information about distributional inhomogeneities
in {Xi, Yi}ni=1. For instance, one group of observations could have errors coming from one distribution and
a second group might have errors with a different distribution. Another reason is to gain information on
the case of weighted regression, in which case ρi = wiρ. Also, this analysis can be used to justify rigorously
some of the claims made in El Karoui et al. (2011). Finally, it may prove useful in some bootstrap studies
(see e.g El Karoui and Purdom (2015) for examples).

In the current paper, we consider the situation where β0 is “diffuse”, i.e all of its coordinates are small
and it cannot be well approximated by a sparse vector. In this situation, use of ridge/`2 penalization is
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natural. The paper also answers the question, raised by other researchers in statistics, of knowing whether
the techniques of El Karoui (2013) could be used in the situation we are considering here. Finally, the
paper shows that some of the heuristics of Bean et al. (2012) can be rigorously justified.

When ρi = ρ for all i, a natural question is to know whether we can find an optimal ρ, in terms of
prediction error for instance, as a function of the law of εi’s - in effect asking similar questions to the
ones we answered by Huber (Huber and Ronchetti (2009)) in low-dimension and in Bean et al. (2013) in
high-dimension. However, the constraints we impose in the current paper on both the errors (i.e we do
not want them to have moments) and the functions ρi’s make part of the argument in Bean et al. (2013)
not usable and might require new ideas. So we will consider this “optimization over ρi’s and τ” in future
work, given that the current proof is already long.

The problem and setup considered in this paper are more natural in the context of robust regression
than the ones studied in the as-of-yet unpublished El Karoui (2013), where the setup chosen was targeted
towards problems related to suboptimality of maximum likelihood methods. However, the strategy for the
proof of the results here is similar to the strategy we devised in El Karoui (2013). There are three main
conceptual novelties, that create important new problems: handling ellipticity and the fact that β0 6= 0
requires new ideas in the second part of the proof (i.e Section D). Dealing with heavy tails and appropriate
loss functions impacts the whole proof and requires many changes compared to the proof of El Karoui
(2013). Conceptually, this latter part is also the most important, as it shows that all the approximations
made in earlier heuristic papers are valid, even in the presence of heavy-tailed errors. This situation is of
course the one where these approximations, while having clearly shown their usefulness in giving conceptual
and heuristic understanding of the statistical problem, were the most mathematically “suspicious”. So it
is interesting to see that they can be made to work rigorously, especially since the probabilistic heuristics
developed in this earlier papers allow researchers to shed light quickly on non-trivial statistical problems.

We now state our results. We believe our notations are standard but refer the reader to p.17 in case
clarification is needed.

2 Results

The main focus of the paper is in understanding the properties of

β̂ = argminβ∈Rp
1

n

n∑
i=1

ρi(Yi −X ′iβ) +
τ

2
‖β‖2 , where Yi = X ′iβ0 + εi , (3)

and τ > 0. For all 1 ≤ i ≤ n, we have εi ∈ R and Xi ∈ Rp.
We prove four main results in the paper:

1. we characterize the `2-risk of our estimator, i.e ‖β̂ − β0‖2

2. we describe the behavior of the residuals Ri = Yi−X ′iβ̂ and relate them to the leave-one-out prediction

error r̃i,i = Yi −X ′iβ̂(i)

3. we obtain an approximate update formula for β̂ when adding an observation (and show it is very
accurate)

4. we provide central limit theorems for the individual coordinates of β̂.

For the sake of clarity, we provide in the main text a series of assumptions that guarantee that our
results hold. However, a more detailed and less restrictive statement of our assumptions is provided in the
Appendix (see p. 14 and beyond).
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2.1 Preliminaries and overview of technical assumptions

We use the notation prox(ρ) to denote the proximal mapping of the function ρ, which is assumed to
be convex. This notion was introduced in Moreau (1965). We recall that

prox(cρ)(x) = argminy∈R(cρ(y) +
1

2
(x− y)2) , or equivalently,

prox(cρ)(x) = (Id + cψ)−1(x) , where ψ = ρ′

We refer the reader to Moreau (1965), Beck and Teboulle (2010), or Ruszczyński (2006), Section 7.3, for
more details on this operation. Note that the previous definitions imply that

∀x , prox(cρ)(x) + cψ(prox(cρ)(x)) = x .

We give examples of proximal mappings in the Appendix, Section F, p. 51.
We now state some sufficient assumptions that guarantee that all the results stated below are correct.

The main proofs are in the Appendix. The proofs done in the Appendix are done at a much greater level of
generality than we are about to state and various aspects of those proofs require much weaker assumptions
than those we present here. We start by giving an example where all of our conditions are met.

Example Our conditions are met when

• p/n→ κ ∈ (0,∞)

• εi’s are i.i.d Cauchy (with median at 0)

• Xi = λiXi, where λi ∈ R and Xi ∈ Rp are independent. λi’s are i.i.d with bounded support; Xi’s are
i.i.d with i.i.d N (0, 1) entries, or i.i.d entries with bounded support and mean 0 as well as variance
1. {Xi}ni=1, {λi}ni=1 and {εi}ni=1 are independent.

• β0 is a “diffuse” vector with β0(i) = ui,p/
√
p, 0 ≤ |ui,p| ≤ C and

∑p
i=1 u

2
i,p = 1.

• ρi = ρ for all i’s. ψ = ρ′ is bounded and ψ′ is Lipschitz and bounded. sign(ψ(x)) = sign(x) and
ρ(x) ≥ ρ(0) = 0.

We note that this last condition is satisfied for smoothed approximation of the Huber function, where the
discontinuity in ψ′ at say 1 is replaced by a linear interpolation; see below for more details. Note however
that the Huber function has a priori no statistical optimality properties in the context we consider.

Sufficient conditions for our results to hold

• p/n has a finite non-zero limit.

• ρi’s are chosen from finitely many possible convex functions. If ψi = ρ′i, supi‖ψi‖∞ ≤ K, supi‖ψ′i‖∞ ≤
K, for some K. ψ′i is also assumed to be Lipschitz-continuous. Also, for all x ∈ R, sign(ψi(x)) =
sign(x) and ρi(x) ≥ ρi(0) = 0.

• Xi = λiXi, where Xi’s are i.i.d with independent entries. λi’s are independent and independent of
Xi’s. The entries of Xi’s satisfy concentration property in the sense that if G is a convex 1-Lipschitz
function (with respect to Euclidean norm), P (|G(Xi) −mG| > t) ≤ C exp(−ct2), for any t > 0, mG

being a median of G(Xi). We require the same assumption to hold when considering the columns of
the n×p design matrix X . Xi’s have mean 0 and cov (Xi) = Idp. We also assume that the coordinates
of Xi have moments of all order. Furthermore, for any given k, the k-th moment of the entries of Xi
is assumed to be bounded independently of n and p.

• E
(
λ2
i

)
= 1, E

(
λ4
i

)
is bounded and sup1≤i≤n |λi| grows a most like C(log n)k for some k. λi’s may

have different distributions, but the number of such possible distributions is finite.

• εi’s are independent. They may have different distributions, but the number of such possible dis-
tributions is finite. Those distributions are assumed to have densities that are differentiable, sym-
metric and unimodal. Furthermore, we assume that if fi is the density of one such distribution,
limx→∞ xfi(x) = 0. {Xi}ni=1, {λi}ni=1 and {εi}ni=1 are independent.
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• ‖β0‖2 remains bounded. Furthermore, ‖β0‖∞ = O(n−e), where 1/4 < e.

• The fraction of time each possible combination of functions and distributions for (ρi,L(εi),L(λi))
appears in our problem has a limit as n→∞. (L(εi) and L(λi) are the laws of εi and λi.)

We now state our most important results (several others are in the Appendix, where we give the proof) and
our proof strategy; naturally, the two go together to provide a sketch of proof. We postpone our discussion
of both the assumptions and our results to Subsection 2.3 on p. 9.

2.2 Results and proof strategy

2.2.1 Characterization of the risk of β̂

Consider β̂ defined in Equation (3) and assume that τ > 0 is given, i.e does not change with p and n.
Under the technical assumptions detailed in Subsection 2.1, we have :

Theorem 2.1. As p, n tend to infinity while p/n → κ ∈ (0,∞), var
(
‖β̂ − β0‖2

)
→ 0. Furthermore,

‖β̂ − β0‖ → rρ(κ) in probability, for rρ(κ) a deterministic scalar. Call Wi = εi + rρ(κ)λiZi, where Zi is a
N (0, 1) random variable independent of εi and λi. Then there exists a constant cρ(κ) ≥ 0 such that{ [

limn→∞
1
n

∑n
i=1 E

(
[prox(cρ(κ)λ2

i ρi)]
′(Wi)

)]
= 1− κ+ τcρ(κ)

κ
[
limn→∞

1
n

∑n
i=1 E

(
(Wi−prox(cρ(κ)λ2i ρi)[Wi])

2

λ2i

)]
+ τ2‖β0‖2c2

ρ(κ) = κ2r2
ρ(κ) .

(4)

We note that
(x− prox(cρ(κ)λ2

i ρi)[x])2

λ2
i

= c2
ρ(κ)λ2

iψ
2
i (prox(cρ(κ)λ2

i ρi)[x])

so in case λi takes the value 0, we can replace the expression on the left hand side by that on the right
hand side, which does not involve dividing by λ2

i . This alternative expression also shows that there is no
problem taking expectations in our equations.

The previous system can be reformulated in terms of prox((cρ(κ)λ2
i ρi)

∗), where f∗ represents the
Fenchel-Legendre dual of f . Indeed, Moreau’s prox identity (Moreau (1965)) gives

prox((cρ)∗)(x) = x− prox(cρ)(x) .

This is partly why we chose to write the system as we did, since it can be rephrased purely in terms
of prox([cρ(κ)λ2

i ρi]
∗), a formulation that has proven useful in previous related problems (see Bean et al.

(2013)).
We note that rρ(κ) and cρ(κ) will in general depend on τ , but we do not index those quantities by τ

to avoid cumbersome notations.

2.2.2 Organization of the proof and strategy

The proof is quite long so we now explain the main ideas and organization of the argument. Recall
that if

F (β) =
1

n

n∑
i=1

ρi(Yi −X ′iβ) +
τ

2
‖β‖2 ,

we have
β̂ = argminβ∈Rp F (β) .

The proof is broadly divided into three steps.
First step The first idea is to relate β̂ and β̂(i), the solution of our optimization problem when the

pair (Xi, Yi) is excluded from the problem. It is reasonable to expect that adding (Xi, Yi) will not change
too much r̃j,(i) = Yj − X ′j β̂(i) when j 6= i, and hence that r̃j,(i) ' Rj = Yj − X ′j β̂ when j 6= i. Armed

with this intuition, we can try to use a first-order Taylor expansion of β̂ around β̂(i) in the equation

∇F (β̂) = 0 to relate the two vectors. This is what the first part of the proof does, by surmising an
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approximation for ηi = β̂ − β̂(i)- following along the intuitive lines above but non-trivial to come up with
at the precision we need. Much work is devoted to proving that this very informed guess is sufficiently
accurate for our purposes. Since “the only thing we know” about β̂ is that ∇F (β̂) = 0, we compare
∇F (β̂)−∇F (β̂(i) + ηi) to do so, and show in our preliminaries (see Section B) that controlling this latter

quantity is enough to control ‖β̂ − β̂(i) − ηi‖. Once our bound for ‖β̂ − β̂(i) − ηi‖ is established, we

use it to bound E
(
|‖β̂ − β0‖2 − ‖β̂(i) − β0‖2|2

)
and use a martingale inequality to deduce a bound on

var
(
‖β̂ − β0‖2

)
, which we show goes to zero. The corresponding results are presented in Subsubsection

2.2.3 and the detailed mathematical analysis is in Section C.
Second step The second step of the proof is to relate β̂ to another quantity γ̂, which is the solution

of our optimization problem when the last column of the matrix X is excluded from the problem - see
Subsubsection 2.2.4 below and Section D for detailed mathematical analysis. Call V the corresponding
design matrix. In our setting, it is reasonable to expect that ri,[p] = Yi − Xi(p)β0(p) − V ′i γ̂ ' Yi − X ′iβ̂.

A first order Taylor expansion of ∇F (β̂) around (γ̂′ β0(p))′ and further manipulations yields an informed
“guess”, denoted b̃ below, for β̂, and in particular for β̂p, the last coordinate of β̂. A large amount of work

is devoted to proving that the quantity denoted bp below we surmised approximates β̂p sufficiently well
for our purposes - once again by doing delicate computations on the corresponding gradients. Since bp
has a reasonably nice probabilistic representation, it is possible to write E

(
b2
p

)
is terms of other quantities

appearing in the problem, such as ψi(ri,[p]) (where ψi = ρ′i) and a quantity cτ,p that is the trace of the

inverse of a certain random matrix. Because bp approximates β̂p sufficiently well, our approximation of

E
(
b2
p

)
can be used to yield a good approximation of E

(
‖β̂ − β0‖2

)
. However, we want the approximation

of E
(
‖β̂ − β0‖2

)
to not depend on quantities that depend on p, such as ri,[p] and cτ,p. Further work is

needed to show that the approximation of E
(
‖β̂ − β0‖2

)
can be made in terms of r̃i,(i)’s - which we used

in the first part of the proof - and a new quantity cτ , which is the trace of the inverse of a certain random

matrix, as was cτ,p. The resulting approximation for E
(
‖β̂ − β0‖2

)
is essentially the second equation of

our system - see Proposition (2.4) for instance.
Third step The last part of the proof - see Subsubsection 2.2.5 and Section E for detailed mathe-

matical analysis - is devoted to first showing that r̃i,(i) = Yi − X ′iβ̂(i) behaves asymptotically like εi +

λi

√
E
(
‖β̂ − β0‖2

)
Zi, where Zi ∼ N (0, 1). The work done previously in the proof is extremely useful for

that. Finally, we show that cτ is asymptotically deterministic. The characterization of cτ is essentially the
first equation of our system - see Theorem 2.6 below. After all this is established, we can state for instance
central limit theorems for β̂p and interesting quantities that appear in our proof.

The following few subsubsections make all our intermediate results precise. Armed with the above
explanation for our approach, they provide the reader with a clear overview of the arc of our proof. The
detailed mathematical analysis is given in the Appendix.

2.2.3 Leave-one-observation out approximations

We call the residuals
Ri = Yi −X ′iβ̂ = εi −X ′i(β̂ − β0) .

We consider the situation where we leave the i-th observation, (Xi, εi), out. We call

β̂(i) = argminβ∈Rp Fi(β) , where Fi(β) =
1

n

∑
j 6=i

ρj(εj +X ′jβ0 −X ′jβ) +
τ

2
‖β‖2 .

and

r̃j,(i) = εj −X ′j(β̂(i) − β0) and Si =
1

n

∑
j 6=i

ψ′j(r̃j,(i))XjX
′
j .

Note that r̃j,(i) are simply the leave-one-out residuals (for j 6= i) and the leave-one-out prediction error
(for j = i).
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Let us consider

β̃i = β̂(i) +
1

n
(Si + τ Id)−1Xiψi(prox(ciρi)(r̃i,(i))) , β̂(i) + ηi ,

where

ci =
1

n
X ′i(Si + τ Id)−1Xi , and ηi =

1

n
(Si + τ Id)−1Xiψi(prox(ciρi)(r̃i,(i))) .

We have the following theorem.

Theorem 2.2. Under our technical assumptions, we have, for any fixed k, when τ is held fixed,

sup
1≤i≤n

‖β̂ − β̃i‖ = OLk(
polyLog(n)

n
) .

Also,

sup
1≤i≤n

sup
j 6=i
|r̃j,(i) −Rj | = OLk(

polyLog(n)

n1/2
) ,

sup
1≤i≤n

|Ri − prox(ciρi)(r̃i,(i))| = OLk(
polyLog(n)

n1/2
) .

Finally,

var
(
‖β̂ − β0‖22

)
= O

(
polyLog(n)

n

)
A stronger version of this theorem is available in the Appendix. There are two main reasons this theorem

is interesting: it provides online-update formulas for β̂ through β̃i, with guaranteed approximation errors.
Second, it relates the full residuals, whose statistical and probabilistic properties are quite complicated to
the much-simpler-to-understand “leave-one-out” prediction error, r̃i,(i). Indeed, because Xi is independent

of β̂(i) under our assumptions, the statistical properties of β̂′(i)Xi are much simpler to understand than

those of β̂′Xi.

2.2.4 Leave-one-predictor out approximations

Let V be the n× (p− 1) matrix corresponding to the first (p− 1) columns of the design matrix X. We
call Vi in Rp−1 the vector corresponding to the first p− 1 entries of Xi, i.e V ′i = (Xi(1), . . . , Xi(p− 1)). We
call X(p) the vector in Rn with j-th entry Xj(p), i.e the p−th entry of the vector Xj . When this does not
create problems, we also use the standard notation Xj,p for Xj(p).

Let us call γ̂ the solution of our optimization problem when we use the design matrix V instead of X.
In other words,

γ̂ = argminγ∈Rp−1

1

n

n∑
i=1

ρi(εi − V ′i (γ − γ0)) +
τ

2
‖γ‖2 . (5)

For stating the following results, we will rely heavily on the following definitions:

Definition. We call the corresponding residuals {ri,[p]}ni=1, i.e ri,[p] = εi + V ′i γ0 − V ′i γ̂. Let

up =
1

n

n∑
i=1

ψ′i(ri,[p])ViXi(p) ,Sp =
1

n

n∑
i=1

ψ′i(ri,[p])ViV
′
i .

We have up ∈ Rp−1 and Sp is (p− 1)× (p− 1). We call

ξn ,
1

n

n∑
i=1

X2
i (p)ψ′i(ri,[p])− u′p(Sp + τ Id)−1up ,

Np ,
1√
n

n∑
i=1

Xi(p)ψi(ri,[p]) .

7



We consider

bp , β0(p)
ξn

τ + ξn
+

1√
n

Np

τ + ξn
. (6)

Note that when ξn > 0, we have

bp − β0(p) =
1
n

∑n
i=1Xi(p)ψi(ri,[p])− τbp

1
n

∑n
i=1X

2
i (p)ψ′i(ri,[p])− u′p(Sp + τ Id)−1up

=
n−1/2Np − τbp

ξn
.

We call

b̃ =

[
γ̂

β0(p)

]
+ [bp − β0(p)]

[
−(Sp + τ Id)−1up

1

]
. (7)

Theorem 2.3. Under our Assumptions, we have, for any fixed τ > 0,

‖β̂ − b̃‖ ≤ OLk

(
polyLog(n)

[n1/2 ∧ ne]2

)
In particular,

√
n(β̂p − bp) = OLk

(
polyLog(n)n1/2

[n1/2 ∧ ne]2

)
,

sup
i
|X ′i(β̂ − b̃)| = OLk

(
polyLog(n)n1/2

[n1/2 ∧ ne]2

)
,

sup
i
|Ri − ri,[p]| = OLk

([
polyLog(n)√

n ∧ ne

]
∨

[
polyLog(n)n1/2

[n1/2 ∧ ne]2

])
.

Let us call

cτ =
1

n
trace

(
(S + τ Id)−1

)
, where S =

1

n

n∑
i=1

ψ′i(Ri)XiX
′
i .

We also have

Proposition 2.4. Under our assumptions, we have( p
n

)2
E
(
‖β̂ − β0‖22

)
=
p

n

1

n

n∑
i=1

E
(
[cτλiψi(prox(cτλ

2
i ρi)(r̃i,(i)))]

2
)

+ τ2‖β0‖2E
(
c2
τ

)
+ o(1) .

Furthermore,
sup
i
|ci − λ2

i cτ | = OLk(n−1/2polyLog(n)) .

2.2.5 Final steps and related results

Lemma 2.5. Under our assumptions , as n and p tend to infinity, r̃i,(i) behaves like εi+λi

√
E
(
‖β̂ − β0‖2

)
Zi,

where Zi ∼ N (0, 1) is independent of εi and λi, in the sense of weak convergence.
Furthermore, if i 6= j, r̃i,(i) and r̃j,(j) are asymptotically (pairwise) independent. The same is true for

the pairs (r̃i,(i), λi) and (r̃j,(j), λj)

Theorem 2.6. Under our assumptions, when p/n → κ ∈ (0,∞), ‖β̂ − β0‖2 → rρ(κ), where rρ(κ) is
deterministic. Call Wi = εi + λirρ(κ)Zi, where Zi ∼ N (0, 1) independent of εi and λi. Call

Gn(x) =
1

n

n∑
i=1

E

(
1

1 + xλ2
iψ
′
i(prox(xλ2

i ρi)(Wi))

)
and G(x) = lim

n→∞
Gn(x) ,

Hn(x) =
1

n

n∑
i=1

E
(
[xλiψi(prox(xλ2

i ρi)(Wi))]
2
)

and H(x) = lim
n→∞

Hn(x) .

8



Under our assumptions, cτ → cρ(κ) in probability, where cρ(κ) is the unique solution of the equation
G(x) = 1− κ+ τx. Furthermore, rρ(κ) solves

κ2r2
ρ(κ) = κH(cρ(κ)) + τ2‖β0‖2c2

ρ(κ) .

We note that the equation G(x) = 1−κ+τx translates into the first equation of our system (4). The last
equation of Theorem 2.6 is the second equation of our system (4). (The fact that the limits of Gn and Hn
exist simply come from our assumptions that the proportion of times each possible triplet (ρi,L(εi),L(λi))
appears has a limit as n→∞.)

From this main theorem follows the following propositions.

Proposition 2.7. ξn → ξ in probability, where ξ = κ/cρ(κ)− τ > 0.
Np =⇒ N (0, v2) where

v2 = lim
n→∞

1

n

n∑
i=1

E
(
λ2
iψ

2
i [prox(cρ(κ)λ2

i ρi)(Wi)]
)

Finally, when β0(k) = O(n−1/2),

√
n[(τ + ξ)β̂k − β0(k)ξ] =⇒ N (0, v2) .

The previous result is still true if v2 is replaced by v̂2
n = 1

n

∑n
i=1 λ

2
iψ

2
i [prox(cτλ

2
i ρi)(r̃i,(i))] and ξ is replaced

by ωn = p/(ncτ )− τ .

We note that ωn is computable from the data. In our setup, λi’s are estimable using the scheme
proposed in El Karoui (2010) and v̂2

n can therefore also be estimated from the data. Hence, the previous
proposition allows for testing the null hypothesis that β0(k) = 0, for any 1 ≤ k ≤ p.

We are also now in position to explain the behavior of the residuals.

Proposition 2.8. When our assumptions are satisfied and we further assume that λi’s are uniformly
bounded, we have

sup
1≤i≤n

|Ri − prox(λ2
i cρ(κ)ρi)(r̃i,(i))| = oLk(1) .

The behavior of the residuals is therefore qualitatively very different in this high-dimensional setting
than its counterpart in the low-dimensional setting.

2.3 Discussion of assumptions and results

2.3.1 Why consider elliptical-like predictors?

The study of elliptical distributions is quite classical in multivariate statistics (see Anderson (1984)).
As pointed out by various authors (see in the context of statistics and random matrix theory Diaconis
and Freedman (1984); Hall et al. (2005); El Karoui (2009)), the Gaussian distribution has a very peculiar
geometry in high-dimension. It is therefore important to be able to study models that break away from
these geometric restrictions, which are not particularly natural from the point of view of data analysts.

Under our assumptions, in light of Lemma G.3, it is clear that

sup
1≤i≤n

∣∣∣∣‖Xi‖2

p
− λ2

i

∣∣∣∣ = o(1)

sup
i 6=j

∣∣∣∣X ′iXj

p

∣∣∣∣ = o(1) .

In the Gaussian (or Gaussian-like case of i.i.d entries for Xi, with e.g bounded entries which satisfy the
assumptions we stated above), λi = 1. Hence, Gaussian or Gaussian-like assumptions imply that predictor
vectors are situated near a sphere and are nearly orthogonal. (This simple geometry is of course closely
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tied to - or a manifestation of the - concentration of measure for convex 1-Lipschitz functions of those
random variables.)

This is clearly not the case for elliptical predictors, though under our assumptions, cov (Xi) = Idp, even
in the “elliptical” case we consider in the paper. So all the models we consider have the same covariance
but the corresponding datasets may have different geometric properties.

We show in the paper that the role of the distribution of λi’s in the performance of the estimator
depends on much more than its second moment, as Theorem 2.1 makes very clear. This is a situation
that is similar to corresponding results in random matrix theory - see e.g El Karoui (2009); El Karoui and
Koesters (2011). It is therefore clear here again that predictor geometry (as measured by λi) plays a key
role in the performance of our estimators in high-dimension, in contrast with the low-dimensional setting
(see Huber and Ronchetti (2009) - which shows that in low-dimensional robust regression, what matters
is only cov (Xi)).

These types of studies are also interesting and we think important as they clearly show that there is little
hope of statistically meaningful “universality” results derived from Gaussian design results : moving from
independent Gaussian assumptions for the entries of Xi to i.i.d assumptions does not change the geometry
of the predictors, which appears to be key here as our proof’s reliance on concentration of quadratic forms
in Xi makes clear. As such, while very interesting on many counts, for instance to allow discrete predictors,
moving from Gaussian to i.i.d assumptions is not a very significant perturbation of the model for statistical
purposes. This is why we chose to work under elliptical assumptions. See also Diaconis and Freedman
(1984) for similar observations in a different statistical context.

In conclusion, the generalized elliptical models we study in this paper prove also that many models may
be such that the predictors have the same covariance cov (Xi) but yield very different performance when it
comes to lim‖β̂−β0‖. They therefore provide a meaningful perturbation of the Gaussian assumption, give
us insights into the impact of predictor geometry on the behavior of our estimators, and give us a rough
idea of the subclass of models for which we can expect similar (or “universal”) performance for β̂.

Examples of distribution for Xi satisfying our concentration assumptions Corollary 4.10 in
Ledoux (2001) shows that our assumptions are satisfied if Xi has independent entries bounded by 1/(2

√
c).

Theorem 2.7 in Ledoux (2001) shows that our assumptions are satisfied if Xi has independent entries with
density fk, 1 ≤ k ≤ p such that fk(x) = exp(−uk(x)) and u′′k(x) ≥

√
c for some c > 0. Then c = c/2. This

is in particular the case for the case where Xi has i.i.d N (0, 1) entries: then c = 1 and c = 1/2. We discuss
briefly after Lemma G.1 in the Appendix the impact of choosing other types of concentration assumptions.

2.3.2 Non-sparse β0: why consider `2/ridge-regularization?

In this paper, we consider the case where β0 cannot - in general - be approximated in `2-norm by a
sparse vector. This is a situation that is thought to not be uncommon in biology (see, in a slightly different
context, Michael B. Eisen and Botstein (1998) and many similar references), where sparsity assumptions
are often/sometimes in doubt.

In other words, if s is a sparse vector (e.g with support of size o(p)), we necessarily have when β0 is
diffuse (i.e all of its entries are roughly of size p−1/2) ‖β0 − s‖ →/ 0. In the situation we consider, it is
in fact unclear whether any estimator can be consistent in `2 for β0. One interesting aspect of our study
is that the System (4) might allow us to optimize (at least in certain circumstances) over the functions
ρi’s we consider to get the best performing estimator in the class of ridge-regularized robust regression
estimators for β0 and hence potentially beat sparse estimators (in the same line of thought, there are of
course numerous applied examples where ridge regression outperforms Lasso in terms of prediction error).

Finally, one benefit of our analysis is that we have a central limit theorem for a linear transform of β̂p
(see Proposition 2.7), which makes testing possible. In the situations where β0 has some large entries (of
size up to n−1/4−η, η > 0) and many small ones (of size o(n−1/2)), this central limit theorem and its more
refined version in Proposition E.8 could help in designing better performing estimators by using scaled
versions of β̂p, which we would threshold according to the result of our test.
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2.3.3 A remark on the fixed design case

We have worked in this paper with a certain class of random designs. It is not unusual to do so in
robust regression studies - see the classic Portnoy (1987, 1984, 1985). In many areas of applications, it is
also unclear why statisticians should limit themselves to the study of fixed designs, in particular when they
do not have control over the choice of the values of the predictors, i.e they cannot design their experiments.

However, it is also interesting to understand what remains valid of our analysis in the case of fixed
design. We note that our analysis gives already a few results in this direction.

In fact, since we have shown that var
(
‖β̂ − β0‖2

)
→ 0, we have shown that

E
(

var
(
‖β̂ − β0‖2|X

))
→ 0 and var

(
E
(
‖β̂ − β0‖2|X

))
→ 0 ,

since
var
(
‖β̂ − β0‖2

)
= E

(
var
(
‖β̂ − β0‖2|X

))
+ var

(
E
(
‖β̂ − β0‖2|X

))
.

Therefore, with probability (over the design X) going to 1,

‖β̂ − β0‖2 − rρ(κ)→ 0 in P{εi}ni=1
-probability .

(P{εi}ni=1
-probability simply refers to probability statements with respect to the random εi’s, the only source

of randomness if the design matrix X is assumed to be fixed.) In other words, if the design is fixed, but
results from a draw a random of a n × p matrix satisfying our distributional assumptions, Theorem 2.1
applies with probability (over the choice of design matrix) going to 1.

We note that ‖β̂ − β0‖ is an especially important quantity in terms of prediction error in our context,
which why our short discussion above focused on this quantity: if we are given a new predictor vector Xnew,
we would naturally predict an unobserved response Ynew by X ′newβ̂ and hence, if Ynew = εnew + X ′newβ0,
our prediction error will be PEnew = εnew +X ′new(β0 − β̂). (Of course, if Xnew satisfies cov (Xnew) = Idp,

EXnew

[
X ′new(β0 − β̂)

]
= ‖β0 − β̂‖22.)

2.3.4 Optimization with respect to τ and ρ

Just as the classic work of Huber on robust regression started by establishing central limit theorems
for the estimator of interest (as a function of ρ) and proceeded to find optimal methods in various contexts
(see Huber and Ronchetti (2009)), one objective of our work is to pave the way for answering optimality
questions in the setting we consider. An important first step to do so is therefore to obtain results such as
Theorem 2.1.

A natural question is therefore to ask what are the optimal ρi’s in the context we consider, where
optimality might be defined in terms of minimizing rρ(κ) in Theorem 2.1 or v2 in Proposition 2.7. For
an example of such a study for rρ(κ) in a slightly different context, see Bean et al. (2013). Similarly,
optimization over τ should be possible. We leave however these questions for future work, since they are
of a more analytic nature. (We have had success in Bean et al. (2013) in the situation where λi = 1 and
the errors are log-concave and hence not heavy-tailed, but the technique we employed in that paper does
not apply readily here.)

We also note that in our context the optimal τ is in general not going to be close to 0, so the fact that
our current study requires τ > 0 is not a problem (see also Bean et al. (2012)).

2.3.5 Possible extensions

Less smooth ρ’s and ψ’s While our approach is quite general and allows us to handle designs that are
far from being Gaussian, the proof presented in this paper still requires some smoothness concerning ρi’s
and ψi’s. On the one hand, results such as the ones obtained in Bean et al. (2013) suggest that it is often
the case that optimal loss functions in high-dimension are smoother than in low dimension. So the fact
that we require ψi’s to be smooth is a source of less concern that it would be in low dimension. (Note also
that the classic papers Portnoy (1985); Mammen (1989) also require smoothness properties on ψ.)
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Though it is unclear whether the Huber function is optimal in any sense for the problems we are looking
at, and hence whether it warrants a special focus, let us discuss this function in some detail. For the sake
of simplicity let us focus on the situation where the transition from quadratic to linear happens at x = ±1.
Then

ψ(x) =

{
x if |x| ≤ 1

sign(x) if |x| ≥ 1
.

So ψ is not differentiable at 1. However, it is easy to approximate this function by a function whose
derivative is Lipschitz. As a matter of fact, ψ′η such that

ψ′η(x) =


1 if |x| ≤ 1− η
1−|x|
η if |x| ∈ (1− η, 1)

0 if |x| ≥ 1

,

is 1/η-Lipschitz. Furthermore,

ψη(x) =


x if |x| ≤ 1− η
1− η + δ(x)(η − δ(x)

2 ) if |x| = 1− η + δ(x), 0 ≤ δ(x) ≤ η ,
1− η + η2

2 sign(x) if |x| ≥ 1

can be made to be arbitrarily close to ψ and similarly for the corresponding ρη, picked such that ρη(0) = 0.
Our results apply to ρη, for any η > 0. It seems quite likely that with a bit (and possibly quite a bit)

of further approximation theoretic work, it should be possible to establish results similar to Theorem 2.1
for the Huber function by taking the limit of corresponding results for ρη with η arbitrarily small.

We note that most of our proof (in particular Sections C and D) is actually valid with functions ρi’s
that can change with n. In particular, many results hold when ψ′i are Li(n)-Lipschitz with Li(n) ≤ Cnα.
So one strategy to handle the case of the Huber function could be to use ψηn with ηn = 1/ log(n) for
instance and strengthen the arguments of Section E in the Appendix - in this very specific case where ψηn
has a limit - to get the Huber case as a limiting result. Because our proof is already long, we leave the
details to the interested reader and might consider this problem in detail in future work.

Weighted robust regression One motivation for working on the problem at the level of generality we
dealt with is that our results should allow to tackle among other things weighted robust regression. For
instance if εi’s or λi’s in our model had different distributions, it would be natural to pick the corresponding
ρi’s either as completely different functions, or maybe as ρi = wiρ, with wi deterministic but possibly
depending on the distribution of εi’s or λi’s. In the case where εi’s and λi’s come from finitely many
possible distributions, our results handle this situation.

Most of our results - i.e those of Section C and D - are true even when wi’s are allowed to take a possibly
infinite set of different values. If εi’s are i.i.d, λi’s are i.i.d and wi’s are i.i.d and these three groups of
random variables are independent of each other, our arguments can be made to go through without much
extra difficulties. The main potential problem is in Section E, but then distributional symmetry between
the Ri’s on one hand and the r̃i,(i) on the other hand becomes helpful, as it had in El Karoui (2013). So
it is very likely that our results could be extended to cover this case at relatively little technical cost.

3 Conclusion

We have studied ridge-regularized robust regression estimators in the high-dimensional context where
p/n has a finite non-zero limit. Our study has highlighted the importance of the geometry of the predictors
in this problem: two models with similar covariance but different predictor geometry will in general yield
estimators with very different performance. We have shown this result by studying the random design case
in the context of elliptical predictors and looking at the influence of the “ellipticity parameter” λi on our
results. Importantly, this shows that no statistically meaningful “universality” results can be derived from
the study of Gaussian or i.i.d-designs, since their geometry is so peculiar (i.e they are limited to the case
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λi = 1 for all i’s). The technique used in the paper seems versatile enough to be useful for several other
high-dimensional M-estimation problems.

We have also obtained central limit theorems for the coordinates of β̂ that can be used for testing
whether β0(k) = 0 for any 1 ≤ k ≤ p. However, our interest was mostly in the case where β0 is diffuse,
with all coordinates small but contributing to Yi = εi + X ′iβ0. Our results also provide a very detailed
understanding of the properties of the residuals Ri.

All these results were obtained without moment requirements on the errors εi’s.
Finally, our characterization of the risk of these estimators raise interesting analytic questions related

to finding optimal loss functions ρi’s in the context we consider. We plan to study these questions in the
future.
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APPENDIX

A Assumptions and technical elements

Recall that the focus of the paper is on understanding the properties of

β̂ = argminβ∈Rp
1

n

n∑
i=1

ρi(εi −X ′i(β − β0)) +
τ

2
‖β‖2 (A-1)

where τ > 0. For all 1 ≤ i ≤ n, we have εi ∈ R and Xi ∈ Rp.
Different parts of the proof require different assumptions. So we label them accordingly.
Most of our proof (Sections C and D) is carried out for functions ρi,n that may vary with n, so our

assumptions reflect this and we carry out most of our work at this level of generality. However, we do not
make the dependence of ρi,n on n explicit to avoid cumbersome notations. Having these results available
should make future work on weighted regression or work of a more approximation-theoretic nature (for
instance using a sequence ρi,n to approximate a function ρi that is not smooth) easier. This is one of the
prime motivations for working at this level of generality.

Naturally, our assumptions are more and more restrictive as the proof progresses, so the summary
of assumptions we provided in the main text is obtained by going through the assumptions and simply
tallying the more restrictive ones. A sketch of proof is provided in Subsubsection 2.2.2, which should be
helpful in navigating the detailed proof we provide in this appendix.

Before we delve into the details of the assumptions needed for each part of the proof to work, we
summarize for the convenience of the reader the assumptions we need for the whole proof to go through.

Assumptions under which the whole proof goes through

• A1 p/n has a finite non-zero limit

• A2 ‖β0‖ remains bounded. Furthermore, ‖β0‖∞ = O(n−e), for e > 1/4

• A3 ρi’s are twice differentiable, and convex. If ψi = ρ′i, we assume that sign(ψi(x)) = sign(x) and
ρi ≥ 0 = ρi(0). Furthermore, there exists C such that ‖ψi‖∞ ≤ C, ‖ψ′i‖∞ ≤ C and ψ′i is assumed to
be Lipschitz. The functions ρi’s can be chosen among finitely many possible functions.

• A4 Xi = λiXi. λi’s are random variables with λi ∈ R. Xi ∈ Rp are independent and identically
distributed. Their distribution is allowed to change with p and n. The entries of Xi are independent.
Furthermore, for any 1-Lipschitz (with respect to Euclidean norm) convex function G, if mG(Xi) is a
median of G(Xi), for any t > 0, P (|G(Xi)−mG(Xi)| > t) ≤ Cn exp(−cnt2), Cn and cn can vary with n.
For simplicity, we assume that 1/cn = O(polyLog(n)) and Cn is bounded in n. Xi’s have mean 0 and
cov (Xi) = Idp. We also assume that the coordinates of Xi have moments of all order. Furthermore,
for any given k, the k-th moment of the entries of Xi is assumed to be bounded independently of n
and p. Also, for any 1 ≤ k ≤ p, the vectors Θk = (X1(k), . . . ,Xn(k)) in Rn satisfy: for any 1-Lipschitz
(with respect to Euclidean norm) convex function G, if mG(Θk) is a median of G(Θk), for any t > 0,
P (|G(Θk) −mG(Θk)| > t) ≤ Cn exp(−cnt2), Cn and cn can vary with n. As above, we assume that
1/cn = O(polyLog(n)).

• A5 λi’s are independent of each other and {Xi}ni=1. E
(
λ2
i

)
= 1 and E

(
λ4
i

)
≤ C and sup1≤i≤n |λi| =

OLk(polyLog(n)).

• A6 εi’s are independent {Xi}ni=1 and {λi}ni=1 and of each other. Furthermore, for any r ∈ R, if
Z ∼ N (0, 1), independent of εi, εi + rZ has a (differentiable) density fi,r which is increasing on
(−∞, 0) and decreasing on (0,∞). Finally, lim|t|→∞ tfi,r(t) = 0.
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• A7 λi’s can have different distributions. Similarly, εi’s can have different distributions. However, the
number of choices for the triplet (ρi,L(λi),L(εi)) is finite. Furthermore, the fraction of times each
such triplet appears in our problem - see Equation (A-1) has a limit. (L(εi) just means the law of
εi.)

We note that the entries of Xi do not need to have the same distribution. Our condition A4 is satisfied
when Xi have i.i.d N (0, 1) entries, or independent entries that are bounded by a constant and have mean
0 and variance 1. (See Ledoux (2001), Corollary 4.10.)

Condition A7 just means that if for instance ρi = ρ and λi’s are i.i.d but εi’s can come from 3
distributions, the fraction of εi’s coming from each of these three distributions has a limit as n → ∞.
(This last condition mostly plays a role in guaranteeing that we can take limits in various expressions.)
The simplest case is of course when ρi = ρ, λi’s are i.i.d and εi’s are i.i.d, in which case there is only one
possible choice for the triplet (ρi,L(λi),L(εi)).

We now state the conditions under which we carry out the proof. We state them in one place for the
convenience of the reader. A discussion follows immediately after the statement of all the conditions.

First part of the proof (Section C)

For the first part of the proof (i.e “leave-one-Observation-out”), we work under the following assump-
tions:

• O1: p/n has a finite non-zero limit.

• O2: ρi’s are twice differentiable, convex and non-linear. ψi = ρ′i. Note that ψ′i ≥ 0 since ρi is convex.
We assume that sign(ψi(x)) = sign(x) and ρi ≥ 0 = ρi(0).

• O3: supx,i |ψi(x)| ≤ CpolyLog(n) where C is constant. This is natural in the context of robust
statistics, since it means that we allow ρi’s to grow at most linearly at infinity. This assumption
is for instance verified for Huber functions. Furthermore, ψ′i is assumed to be Li(n)-Lipschitz with
Li(n) ≤ Cnα, α ≥ 0. (We here have in mind smoothed Huber functions.) We also assume that
supi‖ψ′i‖∞ ≤ CpolyLog(n). Finally, we assume that 1

n

∑n
i=1‖ψ2

i ‖∞ ≤ C, where C is a constant
independent of n.

• O4: Xi = λiXi. λi’s are random variables with λi ∈ R. Xi ∈ Rp are independent and identically
distributed. Their distribution is allowed to change with p and n. Furthermore, for any 1-Lipschitz
(with respect to Euclidean norm) convex function G, if mG(Xi) is a median of G(Xi), for any t > 0,
P (|G(Xi) −mG(Xi)| > t) ≤ Cn exp(−cnt2), Cn and cn can vary with n. For simplicity, we assume
that, 1/cn = O(polyLog(n)) and Cn is bounded in n. Xi’s have mean 0 and cov (Xi) = Idp. We also
assume that the coordinates of Xi have moments of all order. Furthermore, for any given k, the k-th
moment of the entries of Xi is assumed to be bounded independently of n and p. {Xi}ni=1 and {λi}ni=1

are independent.

• O5: {Xi}ni=1 and {λi}ni=1 are independent of {εi}ni=1. εi’s are independent of each other.

• O6: sup1≤i≤n |λi| , Ln = OLk((log n)β) and λi’s are independent. Furthermore, E
(
λ2
i

)
= 1. (Note

that this implies that cov (Xi) = cov (Xi).)

• O7: 1− 2α > 0 and ‖β0‖ = O(polyLog(n)).

Note that we do not assume that εi’s have identical distributions. Assumption O4 is satisfied for
instance when Xi are for instance N (0, Idp) or have i.i.d entries bounded by polyLog(n) - see Ledoux
(2001) (this reference guarantees the concentration result we require is satisfied; the moment conditions
need to be checked by other methods, but this is generally much simpler, as the case of Gaussian random
variables clearly shows). Importantly, note that O4 does not require the entries of Xi to be independent;
see Ledoux (2001) or El Karoui (2009) for examples of X〉 satisfying O4 with dependent entries. In other
respects, the assumption E

(
λ2
i

)
= 1 plays a very minor role mathematically and could be relaxed to

E
(
λ2
i

)
is uniformly bounded without problems. Statistically, it is however important as it guarantees that

cov (Xi) = Idp in all the models we consider.
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Second part of the proof (Section D)

For the second part of the proof (i.e “leave-one-Predictor-out”), we need all the previous assumptions
and

• P1: Xi’s have independent entries. Furthermore, for 1 ≤ k ≤ p, the vectors Θk = (X1(k), . . . ,Xn(k))
in Rn satisfy: for any 1-Lipschitz (with respect to Euclidean norm) convex function G, if mG(Θk) is
a median of G(Θk), for any t > 0, P (|G(Θk) −mG(Θk)| > t) ≤ Cn exp(−cnt2), Cn and cn can vary
with n. As above, we assume that 1/cn = O(polyLog(n)).

• P2: 1
n

∑n
i=1‖ψ′i‖∞ = O(1).

• P3: ‖β0‖∞ = O(n−e), where e > 0. Furthermore, ‖β0‖2 ≤ C, where C is a constant independent of
p and n. e satisfies α+ 1/4− e < 0.

• P4: 1/2− 2α > 0 and min(1/2, e)− α− 1/4 > 0. The latter implies that min(1/2, e)− α > 0

We note that according to Corollary 4.10 and the discussion that follows in Ledoux (2001), Assumptions
O4 and P1 are compatible. O4 and P1 are for instance satisfied if the entries of Xi’s are independent and
bounded by polyLog(n). Another example is the case of Xi ∼ N (0, Idp), in which case cn is a constant
independent of the dimension.

Note that we do not assume that the entries of Xi have the same distribution.
We note that if for instance α = 1/12 and e = 5/12, all the conditions in P3-P4 are satisfied. When

α = 0, they simply become e > 1/4.

Last part of the proof (Section E)

For the last part of the proof, when we combine everything together, we will need the following as-
sumptions on top of all the others:

• F1: the εi’s may have different distributions; however, they may only come from finitely many dis-
tributions. Furthermore, for any r ∈ R, if Z ∼ N (0, 1), independent of εi, εi+ rZ has a differentiable
density fi,r which is increasing on (−∞, 0) and decreasing on (0,∞). Finally, lim|t|→∞ tfi,r(t) = 0.

• F2: 1
n

∑n
i=1‖ψi‖∞ = O(1). ψ′i has Lipschitz constant Li(n). Furthermore, 1

n

∑n
i=1 Li(n)‖ψi‖∞ =

O(1).

• F3: α < 1/6 and α+ 1/3 < 2 min(1/2, e)

• F4: there exists C independent of n and p such that E
(
λ4
i

)
≤ C.

• F5: λi’s may have different distributions, but the set of possible distributions for λi is finite. Similarly,
ρi may be different functions, but the set of possible functions ρi may be is finite. Also, the number
of distinct triplets (ρi,L(εi),L(λi)) is finite. Furthermore, the proportion of each such distinct triplet
has a limit as n→∞.

Condition F3 is clearly satisfied in the case α = 1/12 and e = 5/12 we mentioned above. On the other
hand, condition F5 requires that α = 0, since it prevents ρi to change with n. (We note that since F5
is required only at the very end of the proof, one could probably weaken its requirements considerably if
another situation that the one we investigate really called for it.)

We refer the reader to Lemma H.1 and the discussion immediately following it for examples of densities
for εi’s satisfying F1. We note that smooth symmetric (around 0) log-concave densities will for instance
satisfy all the assumptions we made about the εi’s. See Karlin (1968) and Ibragimov (1956) for instance.
This is also the case for the Cauchy distribution (see Theorem 1.6 in Dharmadhikari and Joag-Dev (1988)).
The latter is the most relevant reference here since we care about heavy-tailed εi’s.
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Discussion of the assumptions

Assumptions concerning the loss functions We wanted to investigate in this paper the situation
where εi’s have no moment restrictions, as befits “classical” robust statistics studies. As such, it is natural
to assume that ψi’s remain bounded, which is part of assumption A3. We think that interesting results
can be found in Sections C and D: in particular for dealing with ψi functions that are not smooth and
require approximations by ψi,n functions that are smooth, but also for bootstrap studies for instance. This
is why the paper handles those cases, even though we do not use fully these results in the main statements
of the paper. We note that in specific cases, one would simply need to modify various arguments in Section
E to handle limits of those ψi,n.

Assumptions concerning the predictors Assumption O4 is a bit stronger than we will need. For
instance, Sections C and D do not actually require the Xi’s to have identical distributions; Section E would
work if we assumed that Xi’s were coming from finitely many distributions, with the proportion of Xi’s
picked from a particular distribution having a limit as n→∞. The functions G we are working with will
either be linear or square-root of quadratic forms, so we could limit our assumptions to those functions.
However, as documented in Ledoux (2001) and discussed briefly in the introduction, a large number of
natural or “reasonable” distributions satisfy the O4 assumptions. Our choice of having a potentially
varying cn is motivated by the idea that we could, for instance, relax an assumption of boundedness of the
entries of Xi’s - that guarantees that O4 is satisfied when Xi has independent entries - and replace it by an
assumption concerning the moments of the entries of Xi’s and a truncation of triangular arrays argument
(see for instance Yin et al. (1988)). We also refer the interested reader to El Karoui (2009) for a short list
of distributions satisfying O4, compiled from various parts of Ledoux (2001). Finally, we could replace the
exp(−cnt2) upper bound in O4 by exp(−cntβ) for some fixed β > 0 and it seems that all our arguments
would go through. We chose not to work under these more general assumptions because it would involve
extra book-keeping and does not enlarge the set of distributions we can consider enough to justify this
extra technical cost. Importantly, O4 allows the entries of Xi’s to be dependent.

To give a concrete example, let us consider the situation where the entries of Xi are independent and
symmetric with an exponential density chosen to have variance 1. Then it is clear that supi,j |Xi(j)| ≤
K[log(n)]2 almost surely as n, p → ∞. Our analysis and assumptions then apply to the predictors Xi =
λisnΓi,n, with Γi,n = Xi1‖Xi‖∞≤K[log(n)]2 where sn is chosen so that 1/s2

n = var (Γi,n) (the variance of the
entries of Γi,n is not 1, since it is a truncation of Xi but it is easy to see that var (Γi,n) → 1). Note that
Xi = Xi almost surely, and therefore our statistical problem is not affected. Very minor modifications to
the arguments of Section E are then needed to handle sn and show that our results go through. Naturally
the same argument could be made for other (non-exponential) distributions as long as supi,j |Xi(j)| ≤
K[log(n)]2. We note that our method should also be able to handle cn such that 1/cn grows faster that
polyLog(n) and hence deal with an even broader class of predictor distributions, but we chose not to do it
to limit the book-keeping burden in an already long proof.

Notations

We will repeatedly use the following notations: Yi = X ′iβ0 + εi; polyLog(n) is used to replace a power
of log(n); λmax(M) denotes the largest eigenvalue of the matrix M ; |||M |||2 denotes the largest singular
value of M . We call Σ̂ = 1

n

∑n
i=1XiX

′
i the usual sample covariance matrix of the Xi’s when Xi’s are

known to have mean 0. We say that X ≤ Y in Lk if E
(
|X|k

)
≤ E

(
|Y |k

)
. We write X

L
= Y to say that

the random variables X and Y are equal in law. We use the usual notation β̂(i) to denote the regression
vector we obtain when we do not use the pair (Xi, Yi) or (Xi, εi) in our optimization problem, a.k.a the
leave-one-out estimate. We will also use the notation X(i) to denote {X1, . . . , Xi−1, Xi+1, . . . , Xn}. We
use the notation (a, b) for either the interval (a, b) or the interval (b, a): in several situations, we will have
to localize quantities in intervals using two values a and b but we will not know whether a < b or b > a.
We denote by X the n× p design matrix whose i-th row is X ′i. We write a ∧ b for min(a, b) and a ∨ b for
max(a, b). If A and B are two symmetric matrices, A � B means that A − B is positive semi-definite,
i.e A is greater than B in the positive-definite/Loewner order. The notations oP , OP are used with their
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standard meanings, see e.g van der Vaart (1998) p.12 for definitions. For the random variable W , we use

the definition ‖W‖Lk =
[
E
(
|W |k

)]1/k
. For sequences of random variables Wn, Zn, we use the notation

Wn = OLk(Zn) (resp Wn = oLk(Zn)) when ‖Wn‖Lk = O(‖Zn‖Lk) (resp ‖Wn‖Lk = o(‖Zn‖Lk)). For a
vector v in Rp, ‖v‖ is its Euclidean norm, whereas ‖v‖∞ = max1≤k≤p |v(k)|. For a function f from R to
R, ‖f‖∞ = supx∈R |f(x)|.

Remarks

We call

F (β) =
1

n

n∑
i=1

ρi(εi +X ′iβ0 −X ′iβ) +
τ

2
‖β‖2 . (A-2)

Note that under our assumptions on ρ, β̂ is defined as the solution of

f(β̂) = 0 with (A-3)

∇F = f(β) =
1

n

n∑
i=1

−Xiψi(εi +X ′iβ0 −X ′iβ) + τβ . (A-4)

Recall the important definitions:

Definition. We call

Ri = εi +X ′iβ0 −X ′iβ̂ (i.e the residuals), (A-5)

S =
1

n

n∑
i=1

ψ′i(Ri)XiX
′
i , (A-6)

cτ =
1

n
trace (S + τ Id)−1 . (A-7)

B Preliminaries

B-1 General remarks

Proposition B.1. Let β1 and β2 be two vectors in Rp. Then, when ρi’s are convex and twice-differentiable,

‖β1 − β2‖ ≤
1

τ
‖f(β1)− f(β2)‖ . (B-8)

Proof. Let β1 and β2 be two vectors in Rp. We have by definition

f(β1)− f(β2) = τ(β1 − β2) +
1

n

n∑
i=1

Xi

[
ψi(εi +X ′iβ0 −X ′iβ2)− ψi(εi +X ′iβ0 −X ′iβ1)

]
.

We can use the mean value theorem to write

ψi(εi +X ′iβ0 −X ′iβ2)− ψi(εi +X ′iβ0 −X ′iβ1) = ψ′i(γ
∗
εi+X′iβ0,X

′
iβ1,X

′
iβ2

)X ′i(β1 − β2) ,

where γ∗εi+X′iβ0,X′iβ1,X′iβ2
is in the interval (εi +X ′iβ0 −X ′iβ1, εi +X ′iβ0 −X ′iβ2) - recall that we do not care

about the order of the endpoints in our notation.
Hence,

f(β1)− f(β2) = τ(β1 − β2) +
1

n

n∑
i=1

ψ′i(γ
∗
εi+X′iβ0,X

′
iβ1,X

′
iβ2

)XiX
′
i(β1 − β2) ,

which we write
f(β1)− f(β2) = (Sβ1,β2 + τ Idp)(β1 − β2) , (B-9)
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where

Sβ1,β2 =
1

n

n∑
i=1

ψ′i(γ
∗
εi+X′iβ0,X

′
iβ1,X

′
iβ2

)XiX
′
i . (B-10)

This shows that
β1 − β2 = (Sβ1,β2 + τ Idp)

−1 (f(β1)− f(β2)) .

Since ρi’s are convex, ψ′i = ρ′′i is non-negative and Sβ1,β2 is positive semi-definite. In the semi-definite
order, we have Sβ1,β2 + τ Idp � τ Idp. In particular,

‖β1 − β2‖ ≤
1

τ
‖f(β1)− f(β2)‖ .

Proposition B.1 yields the following lemma.

Lemma B.2. For any β1,

‖β̂ − β1‖ ≤
1

τ
‖f(β1)‖ .

The lemma is a simple consequence of Equation (B-8) since by definition f(β̂) = 0 .
Our strategy in what follows is to come up with “good candidates” for β1, for which we can control

f(β1) and transfer the information we will glean about the statistical properties of β1 to β̂ through Lemma
B.2.

B-2 On ‖β̂‖ and ‖β̂ − β0‖

We show in the following lemma that ‖β̂‖ and ‖β̂ − β0‖ cannot be too large.

Lemma B.3. Let us call Wn(b) = 1
n

∑n
i=1Xiψi(εi +X ′ib), Wn ∈ Rp.

We have, if Dψi(Yi) is the n× n diagonal matrix with (i, i)-entry ψi(Yi) = ψi(εi +X ′iβ0),

‖β̂‖ ≤ 1

τ
‖Wn(β0)‖ =

1

τ

√
1

n2
1′nDψi(Yi)XX

′Dψi(Yi)1n ,

and if Dψi(εi) is the n× n diagonal matrix with (i, i)-entry ψi(εi),

‖β̂ − β0‖ ≤ ‖β0‖+
1

τ
‖Wn(0)‖ = ‖β0‖+

1

τ

√
1

n2
1′nDψi(εi)XX

′Dψi(εi)1n .

Also,

‖Wn(β0)‖2 ≤
1′nD

2
ψi(Yi)

1n

n
|||X ′X/n|||2 .

Therefore, under our assumptions O1-O6,

E
(
‖β̂‖2

)
≤ 1

τ2

p

n
C2polyLog(n) , and (B-11)

E
(
‖β̂‖4

)
≤ 1

τ4
CpolyLog(n) (B-12)

Similarly, for any finite k,

E
(
‖β̂ − β0‖k2

)
≤ Ck

[
‖β0‖k + polyLog(n)/τk

]
.

In the case k = 2, we have the more precise bound

E
(
‖β̂ − β0‖22

)
≤ 2

[
‖β0‖2 +

p/n

τ2

1

n

n∑
i=1

E
(
ψ2
i (εi)

)]
.
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Proof. The first and key inequality simply comes from applying Lemma B.2 with β1 = 0, after noticing
that f(0) = −Wn(β0).

The second one comes from using β1 = β0 and noticing that f(β0) = −Wn(0) + τβ0.
We note that under our assumptions, according to Lemma G.4

|||X ′X/n|||2 = OLk(polyLog(n))

and
1

n

n∑
i=1

ψ2
i (Yi) ≤

1

n

n∑
i=1

‖ψ2
i ‖∞ = O(1) ,

which gives all the results about Lk bounds.
The last result about k = 2 follows from computing E

(
‖Wn(0)‖2

)
= p

n
1
n

∑n
i=1 E

(
ψ2
i (εi)

)
and using the

bound

‖β̂ − β0‖2 ≤ 2‖β0‖2 +
2

τ2
‖Wn(0)‖2 .

C Approximating β̂ by β̂(i): leave-one-observation-out

We consider the situation where we leave the i-th observation, (Xi, εi), out. By definition,

β̂(i) = argminβ∈Rp Fi(β) , where Fi(β) =
1

n

∑
j 6=i

ρj(εj +X ′jβ0 −X ′jβ) +
τ

2
‖β‖2 .

We call

r̃j,(i) = εj −X ′j(β̂(i) − β0) and Si =
1

n

∑
j 6=i

ψ′j(r̃j,(i))XjX
′
j .

We also call

fi(β) = − 1

n

∑
j 6=i

Xjψj(εj +X ′jβ0 −X ′jβ) + τβ = f(β) +
1

n
Xiψi(εi −X ′i(β − β0)) .

We have of course
fi(β̂(i)) = 0 .

Let us consider

β̃i = β̂(i) +
1

n
(Si + τ Id)−1Xiψi(prox(ciρi)(r̃i,(i))) , β̂(i) + ηi , (C-13)

where

ci =
1

n
X ′i(Si + τ Id)−1Xi , and (C-14)

ηi =
1

n
(Si + τ Id)−1Xiψi(prox(ciρi)(r̃i,(i))) . (C-15)

These definitions and the approximations they will imply can be understood in light of the probabilistic
heuristics we derived for a related problem in El Karoui et al. (2011) and El Karoui et al. (2013). The
interested reader is referred to those papers - where we made a large effort to explain our intuitive ideas
- for more information and intuition; given page limit requirements, we do not give a complete heuristic
derivation of our results and refer the reader to Subsubsection 2.2.2 for a detailed explanation of our
strategy. (A somewhat long heuristic derivation would also likely not be appropriate for submission to
PTRF.) We note however that the rigorous proof requires refinements over the intuitive ideas. Those
aspects are of a more technical nature and become apparent only through the analysis that we present
here.

One of our aims is to show Theorem C.6 below, which shows that we can very accurately approximate
β̂ by β̃i. Note that the statistical properties of β̃i are easier to understand that those of β̂; our high-quality
approximations will allow us to transfer our understanding of β̃i to β̂.
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C-1 Deterministic bounds

Proposition C.1. We have, with β̃i defined in Equation (C-13),

‖β̂ − β̃i‖ ≤
1

τ
‖Ri‖ , (C-16)

where

Ri =
1

n

∑
j 6=i

[
ψ′j(γ

∗(Xj , β̂(i), ηi))− ψ′j(r̃j,(i))
]
XjX

′
jηi , (C-17)

and γ∗(Xj , β̂(i), ηi) is in the (“unordered”) interval (r̃j,(i), r̃j,(i)−X ′jηi)=(εj+X
′
jβ0−X ′j β̂(i), εj+X

′
jβ0−X ′j β̃i).

Proof. The proof and strategy are similar to the corresponding ones in El Karoui (2013). However, since
there are delicate cancellations in the argument, we give all the details of the argument.

We recall that Yi = εi +X ′iβ0.

Since fi(β̂(i)) = 0, and β̃i = β̂(i) + ηi,

f(β̃i) = f(β̃i)−fi(β̂(i)) = − 1

n
Xiψi(Yi−X ′iβ̃i)+

1

n

∑
j 6=i

Xj

[
ψj(Yj −X ′j β̂(i))− ψj(Yj −X ′j(β̂(i) + ηi))

]
+ τηi .

By the mean-value theorem, we also have

ψj(Yj −X ′j β̂(i))− ψj(Yj −X ′j(β̂(i) + ηi)) = ψ′j(r̃j,(i))X
′
jηi +

[
ψ′j(γ

∗(Xj , β̂(i), ηi))− ψ′j(r̃j,(i))
]
X ′jηi ,

where γ∗(Xj , β̂(i), ηi) is in the (“unordered”) interval (Yj−X ′j β̂(i), Yj−X ′j(β̂(i) +ηi)), i.e (r̃j,(i), r̃j,(i)−X ′jηi).
Hence, if Ri is the quantity defined in Equation (C-17),

1

n

∑
j 6=i

Xj

[
ψj(Yj −X ′j β̂(i))− ψj(Yj −X ′j(β̂(i) + ηi))

]
=

1

n

∑
j 6=i

ψ′j(r̃j,(i))XjX
′
jηi +Ri ,

= Siηi +Ri .

In light of the previous simplifications, we have, using

f(β) = fi(β)− 1

n
Xiψi(Yi −X ′iβ) and fi(β̂(i)) = 0 ,

the equality

f(β̃i) = − 1

n
Xiψi(Yi −X ′iβ̃i) + (Si + τ Id)ηi +Ri .

Since by definition, ηi = 1
n(Si + τ Id)−1Xiψi(prox(ciρi)(r̃i,(i))),

(Si + τ Id)ηi =
1

n
Xiψi(prox(ciρi)(r̃i,(i))) .

In other respects,
Yi −X ′iβ̃i = r̃i,(i) − ciψi(prox(ciρi)(r̃i,(i))) .

When ρ is differentiable, x− cψ(prox(cρ)(x)) = prox(cρ)(x) almost by definition of the proximal mapping
(see Lemma F.1). Therefore, Yi −X ′iβ̃i = prox(ciρi)(r̃i,(i)) and

− 1

n
Xiψi(Yi −X ′iβ̃i) + (Si + τ Id)ηi =

1

n
Xi

[
−ψi(prox(ciρi)(r̃i,(i))) + ψi(prox(ciρi)(r̃i,(i)))

]
= 0.

We conclude that
f(β̃i) = Ri .

Applying Lemma B.2, we see that

‖β̂ − β̃i‖ ≤
1

τ
‖Ri‖ .
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C-1.1 On Ri

Clearly, controlling Ri is the key to controlling ‖β̂ − β̃i‖, so we need to develop insights into Ri.

Lemma C.2. We have

‖ηi‖ ≤
1√
nτ

‖Xi‖√
n
|ψi(r̃i,(i))| , (C-18)

and

‖Ri‖ ≤ |||Σ̂|||2 sup
j 6=i

∣∣∣ψ′j(γ∗(Xj , β̂(i), ηi))− ψ′j(r̃j,(i))
∣∣∣ 1√

nτ

‖Xi‖√
n
|ψi(r̃i,(i))| . (C-19)

We note that under our assumptions, we have∣∣ψi(r̃i,(i))∣∣ ≤ ‖ψi‖∞ ≤ CpolyLog(n)

and, using Lemma G.1

sup
i

‖Xi‖√
n

= OLk(sup
i
|λi|) .

Proof. This proof is essentially obvious. We refer the reader to a corresponding one given in El Karoui
(2013) in case details are needed.

C-1.2 On γ∗(Xj , β̂(i), ηi) and related quantities

We now show how to control 1√
n

supj 6=i

∣∣∣ψ′j(γ∗(Xj , β̂(i), ηi))− ψ′j(r̃j,(i))
∣∣∣, which is essential for turning

Equation (C-16) into a useful bound.

Lemma C.3. Suppose, as in our assumption O3, that ψ′i is Li(n)-Lipschitz. Then,

sup
j 6=i

∣∣∣ψ′j(γ∗(Xj , β̂(i), ηi))− ψ′j(r̃j,(i))
∣∣∣ ≤ [ sup

1≤i≤n
Li(n)

]
sup
j 6=i
|X ′jηi| .

Proof. By definition, we have
|γ∗(Xj , β̂(i), ηi)− r̃j,(i)| ≤ |X ′jηi| .

The bound follows immediately, using the fact that ψ′i is Li(n)-Lipschitz.

C-2 Stochastic aspects

Recall that we have by definition

X ′jηi = ψi(prox(ciρi)(r̃i,(i)))
1

n
X ′j(Si + τ Idp)

−1Xi .

We can therefore bound ‖Ri‖ by

‖Ri‖ ≤

[
sup
j 6=i

|X ′j(Si + τ Idp)
−1Xi|

n

]
sup1≤i≤n Li(n)

√
nτ

‖Xi‖√
n
|||Σ̂|||2

(
|ψi(r̃i,(i))||ψi(prox(ciρi)(r̃i,(i))|

)
.

Therefore, we also have

‖Ri‖ ≤

[
sup
j 6=i

|X ′j(Si + τ Idp)
−1Xi|

n

]
Li(n)√
nτ

‖Xi‖√
n
|||Σ̂|||2‖ψi‖2∞ .

This bound on ‖Ri‖ shows that we can control ‖β̂ − β̃i‖ in Lk provided we can control each terms in
the above product in L3k, by appealing to Holder’s inequality and Proposition C.1.

We now turn our attention to the various elements of the bound on ‖Ri‖ and show that we can control
them under our assumptions.
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C-2.1 On supj 6=i |X ′j(Si + τ Id)−1Xi/n|

We will control X ′j(Si + τ Id)−1Xi/n by appealing to Lemma G.2.

Lemma C.4. Suppose Xi’s are independent and satisfy Assumption O4; suppose λi’s satisfy O6. Then

sup
j 6=i
|X ′j(Si + τ Id)−1Xi/n| ≤

1√
n

sup
j 6=i

‖Xj‖
τ
√
n

polyLog(n)

in Lk, for any finite k. Note also that under our Assumption O4, for any finite k,

sup
j 6=i

∣∣‖Xj‖/√n∣∣ = OLk(1) .

Proof. The proof follows from that of Lemma 2.3 in El Karoui (2013). Indeed,

|X ′j(Si + τ Id)−1Xi/n| = |λiλj ||X ′j(Si + τ Id)−1Xi/n| .

The proof of Lemma 2.3 in El Karoui (2013) shows that

sup
j 6=i
|X ′j(Si + τ Id)−1Xi/n| ≤

1√
n

sup
j 6=i

‖Xj‖
τ
√
n

polyLog(n)/c1/2
n

in Lk, when supj 6=i
‖Xj‖
τ
√
n

= OL20(1); this latter result is shown in El Karoui (2013) (see the discussion after

Lemma 2.3 or Lemma G.1 in the current Appendix).
Now our assumptions O6 concerning supi |λi| = OLk(polyLog(n)) guarantee that the bounds we an-

nounced are valid.

C-2.2 Consequences

We have the following result. Recall that ψ′i is assumed to be Lipschitz with Lipschitz constant Li(n).

Proposition C.5. Under Assumptions O1-O6, we have

‖Ri‖ = OLk

(
[sup1≤i≤n Li(n)]‖ψi‖2∞

nτ
polyLog(n)

)
.

Furthermore, the same bound hold for sup1≤i≤n‖Ri‖ with sup1≤i≤n‖ψi‖2∞ (instead of ‖ψi‖2∞) in the right-
hand side.

Proof. The proof follows by aggregating all the intermediate results we had, using Holder’s inequality and
noticing that under our assumptions, |||Σ̂|||2 = OLk(supi λ

2
i c
−1
n ) = OLk(polyLog(n)). This latter result is

shown in Lemma G.4.
The statement concerning sup1≤i≤n‖Ri‖ follows by the same arguments.

We can now prove and state the following result, which relates residuals to leave-one-out-prediction
errors and give a way to do online update from β̂(i) to β̂.

We recall that β̃i is defined in Equation (C-13) on p.20.

Theorem C.6. Under Assumptions O1-O7, we have, for any fixed k, when τ is held fixed and Li(n) ≤
Cnα,

sup
1≤i≤n

‖β̂ − β̃i‖ = OLk(
polyLog(n)

n1−α ) .

In particular, we have

∀1 ≤ i ≤ n ,E
(
‖β̂ − β̃i‖2

)
= O(polyLog(n)/n2−2α) .

Also,

sup
1≤i≤n

sup
j 6=i
|r̃j,(i) −Rj | = OLk(

polyLog(n)

n1/2−α ) .
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Finally,

sup
1≤i≤n

|Ri − prox(ciρi)(r̃i,(i))| = OLk(
polyLog(n)

n1/2−α ) . (C-20)

We note that we could state a slightly finer result involving Li(n) and various powers of ‖ψi‖∞. How-
ever, we will not need such fine results in what follows, so we opt for slightly coarser but easier-to-state
statements.

Proof. The first two results simply follow from our work on ‖Ri‖.
The third result follows from the coarse bound

sup
j 6=i
|r̃j,(i) −Rj | = sup

j 6=i

∣∣∣X ′j(β̂ − β̂(i))
∣∣∣ ≤ sup

j 6=i

∣∣∣X ′j(β̂ − β̃i)∣∣∣+ sup
j 6=i
|X ′j(β̃i − β̂(i))| ,

≤

(
sup

1≤j≤n

‖Xj‖√
n

)
√
n‖β̂ − β̃i‖+ sup

j 6=i
|X ′jηi| ,

and the fact that
(

sup1≤j≤n
‖Xj‖√
n

)
= OLk(polyLog(n)) under our assumptions. Our results on ‖β̂ − β̃i‖

give control of the first term. Control of the second term follows from Lemma C.4 and the assumption
that ψi is bounded by CpolyLog(n).

Let us now turn to the final result, i.e the approximation of the residual Ri by a non-linear function of
the leave-one-out prediction error r̃i,(i). Recall that

Ri = εi +X ′iβ0 −X ′iβ̂ = εi +X ′iβ0 −X ′iβ̃i −X ′i(β̂ − β̃i) .

Now, given the definition of β̃i, we have

X ′iβ̃i = X ′iβ̂(i) + ciψi[prox(ciρi)(r̃i,(i))] .

Hence, since almost by definition, if y = prox(cρ)(x), y + cψ(y) = x, we get

εi +X ′iβ0 −X ′iβ̃i = r̃i,(i) − ciψi[prox(ciρi)(r̃i,(i))] = prox(ciρi)(r̃i,(i)) .

So we have established that

sup
i

∣∣Ri − prox(ciρi)(r̃i,(i))
∣∣ = sup

i

∣∣∣X ′i(β̃i − β̂)
∣∣∣

and the result follows from our previous bounds.

C-3 On the limiting variance of ‖β̂‖2 and ‖β̂ − β0‖2

An interesting consequence of our leave-one-observation-out work is that we can use the ideas and
approximations developed above to show that ‖β̂−β0‖ and ‖β̂‖ are asymptotically deterministic (in other
words, they can be approximated asymptotically by deterministic sequences).

Proposition C.7. Under our assumptions O1-O7,

var
(
‖β̂‖2

)
→ 0 as n→∞ .

Therefore ‖β̂‖2 has a deterministic equivalent in probability and in L2.
More precisely, we have

var
(
‖β̂‖2

)
= O(

polyLog(n)

n1−2α
) .

The same type of results are true for var
(
‖β̂ − β0‖22

)
provided ‖β0‖ = O(polyLog(n)).
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Proof. We use the Efron-Stein inequality Efron and Stein (1981) to show that var
(
‖β̂‖2

)
goes to 0 as

n→∞. In what follows, we rely on our approximations and our assumptions to have enough moments for

all the expectations of the type E
(
‖β̂‖2k

)
to be bounded like polyLog(n)/τ2k. Note that this the content

of our Lemma B.3.
Recall the Efron-Stein inequality (Efron and Stein (1981)) : if W is a function of n independent random

variables, and W(i) is any function of all those random variables except the i-th,

var (W ) ≤
n∑
i=1

var
(
W −W(i)

)
≤

n∑
i=1

E
(
(W −W(i))

2
)
.

In our arguments below, ‖β̂‖2 plays the role of W and ‖β̂(i)‖2 plays the role of W(i).
We first observe that

E
(
|‖β̂‖2 − ‖β̂(i)‖2|2

)
≤ 2

[
E
(
|‖β̂‖2 − ‖β̃i‖2|2

)
+ E

(
|‖β̃i‖2 − ‖β̂(i)‖2|2

)]
.

Of course, using the fact that β̂ = β̂ − β̃i + β̃i and |‖β̂‖2 − ‖β̃i‖2|2 = [(β̂ − β̃i)
′(β̂ + β̃i)]

2, and hence
(β̂ − β̃i)′(β̂ + β̃i) = 2(β̂ − β̃i)′β̂ − ‖β̂ − β̃i‖2, we have

|‖β̂‖2 − ‖β̃i‖2|2 = OL1(‖β̂ − β̃i‖4) +

√
OL1(polyLog(n)‖β̂ − β̃i‖4) ,

by the Cauchy-Schwarz inequality, since E
(
‖β̂‖k

)
exists and is bounded by KpolyLog(n)/τk.

Using the results of Theorem C.6, we see that

E
(
|‖β̂‖2 − ‖β̃i‖2|2

)
= O(

polyLog(n)

n2−2α
) = o(n−1) ,

provided α < 1/2.
On the other hand, given the definition in Equation (C-13),

‖β̃i‖2 − ‖β̂(i)‖2 = 2
1

n
β̂′(i)(Si + τ Id)−1Xiψi(prox(ciρi)(r̃i,(i))) +

1

n2
X ′i(Si + τ Id)−2Xiψ

2
i (prox(ciρi)(r̃i,(i))) .

Since β̂(i) and Si are independent ofXi, and |||(Si+τ Id)−1|||2 ≤ 1/τ , β̂′(i)(Si+τ Id)−1Xi = OL2(|λi|‖β̂(i)‖/c
1/2
n ),

using our assumptions O4 on Xi applied to linear forms. Recall also that supi‖ψi‖∞ = O(polyLog(n)).

Therefore, we see that both terms are OL2(polyLog(n)/nc
1/2
n ).

We conclude that then

E

(∣∣∣‖β̃i‖2 − ‖β̂(i)‖2
∣∣∣2) = O(

polyLog(n)

n2
) .

Taking W = ‖β̂‖2 and W(i) = ‖β̂(i)‖2 in the Efron-Stein inequality, we clearly see that

var
(
‖β̂‖2

)
= O

(
polyLog(n)

n1−2α

)
= o(1) .

This shows that ‖β̂‖2 has a deterministic equivalent in probability and in L2.
• About ‖β̂−β0‖. The results are obtained in a similar fashion using our bound on ‖β̂−β0‖ and replacing

everywhere in the arguments ‖β̂‖ by ‖β̂−β0‖, and ‖β̃i‖ by ‖β̃i−β0‖. The condition ‖β0‖ = O(polyLog(n))
plays a role to guarantee in Lemma B.3 that ‖β̂ − β0‖ = OLk(polyLog(n)).

D Leaving out a predictor

In this second step of the proof, we do need at various points that the entries of the vector Xi be
independent, whereas as we showed before, it is not important when studying what happens when we leave
out an observation.
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Let V be the n× (p− 1) matrix corresponding to the first (p− 1) columns of the design matrix X. We
call Vi in Rp−1 the vector corresponding to the first p− 1 entries of Xi, i.e V ′i = (Xi(1), . . . , Xi(p− 1)). We
call X(p) the vector in Rn with j-th entry Xj(p), i.e the p−th entry of the vector Xj . When this does not
create problems, we also use the standard notation Xj,p for Xj(p).

Let us call γ̂ the solution of

γ̂ = argminγ∈Rp−1

1

n

n∑
i=1

ρi(εi − V ′i (γ − γ0)) +
τ

2
‖γ‖2 . (D-21)

Note that

(
γ̂
0

)
is the solution of the original optimization problem (3) when Xi(p) is replaced by 0.

In this part of the paper, we will rely heavily on the following definitions:

Definition. We call the residuals corresponding to this optimization problem {ri,[p]}ni=1, in other words

ri,[p] = εi + V ′i γ0 − V ′i γ̂ .

We call

up =
1

n

n∑
i=1

ψ′i(ri,[p])ViXi(p) , and Sp =
1

n

n∑
i=1

ψ′i(ri,[p])ViV
′
i .

Note that up ∈ Rp−1 and Sp is (p− 1)× (p− 1). We call

ξn ,
1

n

n∑
i=1

X2
i (p)ψ′i(ri,[p])− u′p(Sp + τ Id)−1up , (D-22)

and

Np ,
1√
n

n∑
i=1

Xi(p)ψi(ri,[p]) . (D-23)

We will show later, in Subsubsection D-2.2 that ξn ≥ 0. However, we will use this information from
the beginning and there are no circular arguments.

We consider

bp , β0(p)
ξn

τ + ξn
+

1√
n

Np

τ + ξn
. (D-24)

Note that when ξn > 0, we have

bp − β0(p) =
1
n

∑n
i=1Xi(p)ψi(ri,[p])− τbp

1
n

∑n
i=1X

2
i (p)ψ′i(ri,[p])− u′p(Sp + τ Id)−1up

=
n−1/2Np − τbp

ξn
.

We call

b̃ =

[
γ̂

β0(p)

]
+ [bp − β0(p)]

[
−(Sp + τ Id)−1up

1

]
. (D-25)

The aim of our work in the second part of this proof is to establish Theorem D.10 on p.37, which
shows that ‖b̃− β̂‖ = O(polyLog(n)/n) in Lk. Because the last coordinate of b̃, bp, has a reasonably simple
probabilistic structure and our approximations are sufficiently good, we will be able to transfer our insights
about this coordinate to β̂p, the last coordinate of β̂. This is also true when considering

√
n(bp − β̂p), so

our approximations will be interesting at that scale, too.
The approach and approximating quantities we choose - as well as the intuition behind those choices

- by using variants of the ideas discussed in our work in El Karoui et al. (2011), Bean et al. (2012) and
El Karoui et al. (2013). (Once again, we do not give here a heuritic derivation as it seems inappropriate
for a submission to this journal.)

26



D-1 Deterministic aspects

Proposition D.1. We have

‖β̂ − b̃‖ ≤ 1

τ
|bp − β0(p)| sup

1≤i≤n
|di,p| |||Σ̂|||2

√
‖(Sp + τ Id)−1up‖2 + 1 . (D-26)

where di,p = [ψ′i(γ
∗
i,p)− ψ′i(ri,[p])] and γ∗i,p is in the interval (εi + V ′i γ0 − V ′i γ̂, εi +X ′iβ0 −X ′i b̃).

Furthermore,

‖(Sp + τ Id)−1up‖2 ≤
1

nτ

n∑
i=1

X2
i (p)ψ′i(ri,[p]) =

1

nτ

n∑
i=1

λ2
iψ
′
i(ri,[p])X 2

i (p) . (D-27)

As we saw in Equation (B-8) and Lemma B.2, we have

‖β̂ − b̃‖ ≤ 1

τ
‖f (̃b)‖ ,

where

f (̃b) = − 1

n

n∑
i=1

Xiψi(εi +X ′iβ0 −X ′i b̃) + τ b̃ .

We note furthermore that, by definition of γ̂,

g(γ̂) , − 1

n

n∑
i=1

Viψi(εi + V ′i γ0 − V ′i γ̂) + τ γ̂ = 0p−1 .

The strategy of the proof is to control f (̃b) by using g(γ̂) to create good approximations and then
recalling that g(γ̂) = 0p−1.

Proof. The proof strategy and ideas are tied to the technique developed in El Karoui (2013); however,
because there are a number of delicate cancellations in the argument, we give it in full details. (Naturally,
coming up with good approximating quantities required much work.)

a) Work on the first (p− 1) coordinates of f (̃b)

We call fp−1(β) the first p− 1 coordinates of f(β). We call γ̂ext the p-dimensional vector whose first p− 1
coordinates are γ̂ and last coordinate is β0(p), i.e

γ̂ext =

[
γ̂

β0(p)

]
.

For a vector v, we use the notation vcomp,k to denote the p− 1 dimensional vector consisting of all the
coordinates of v except the k-th.

Clearly,

fp−1(̃b) = fp−1(̃b)− g(γ̂) = − 1

n

n∑
i=1

Vi

[
ψi(εi +X ′iβ0 −X ′i b̃)− ψi(εi + V ′i γ0 − V ′i γ̂)

]
+ τ (̃bcomp,p − γ̂) .

We can write by using the mean value theorem, for γ∗i,p in the interval (εi − V ′i (γ̂ − γ0), εi −X ′i (̃b− β0)),

ψi(εi +X ′iβ0 −X ′i b̃)− ψi(εi + V ′i γ0 − V ′i γ̂) = ψ′i(γ
∗
i,p)X

′
i(γ̂ext − b̃) ,

= ψ′i(ri,[p])X
′
i(γ̂ext − b̃) + [ψ′i(γ

∗
i,p)− ψ′i(ri,[p])]X ′i(γ̂ext − b̃) .

Let us call

di,p = [ψ′i(γ
∗
i,p)− ψ′i(ri,[p])] ,

δi,p = [ψ′i(γ
∗
i,p)− ψ′i(ri,[p])]X ′i(γ̂ext − b̃) ,

Rp = − 1

n

n∑
i=1

di,pViX
′
i(γ̂ext − b̃) .
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We have with this notation

fp−1(̃b) = − 1

n

n∑
i=1

ψ′i(ri,[p])ViX
′
i(γ̂ext − b̃) + τ (̃bcomp,p − γ̂) + Rp , Ap + Rp .

We note that by definition,

γ̂ext − b̃ = [bp − β0(p)]

[
(Sp + τ Id)−1up

−1

]
,

b̃comp,p − γ̂ = −[bp − β0(p)](Sp + τ Id)−1up .

Therefore, X ′i(γ̂ext − b̃) = [bp − β0(p)]
[
V ′i (Sp + τ Id)−1up −Xi(p)

]
, and

Ap = −(bp − β0(p))

(
1

n

n∑
i=1

ψ′i(ri,[p])Vi
[
V ′i (Sp + τ Id)−1up −Xi(p)

]
+ τ(Sp + τ Id)−1up

)
.

Recalling the definition of Sp and up, we see that

Ap = −(bp − β0(p))
(
Sp(Sp + τ Id)−1up − up + τ(Sp + τ Id)−1up

)
= 0p−1 ,

since Sp(Sp + τ Id)−1 + τ(Sp + τ Id)−1 = Id.
We conclude that

fp−1(̃b) = Rp .

b) Work on the last coordinate of f (̃b)

We call [f (̃b)]p the last coordinate of f (̃b). We have shown above that

ψi(εi +X ′iβ0 −X ′i b̃)− ψi(εi + V ′i γ0 − V ′i γ̂) = ψ′i(ri,[p])X
′
i(γ̂ext − b̃) + [ψ′i(γ

∗
i,p)− ψ′i(ri,[p])]X ′i(γ̂ext − b̃).

Recall the notation
δi,p = [ψ′i(γ

∗
i,p)− ψ′i(ri,[p])]X ′i(γ̂ext − b̃) .

Clearly,

ψi(εi +X ′iβ0 −X ′i b̃) = ψi(ri,[p]) + ψ′i(ri,[p])X
′
i(γ̂ext − b̃) + δi,p ,

= ψi(ri,[p]) + ψ′i(ri,[p])[bp − β0(p)]
[
V ′i (Sp + τ Id)−1up −Xi(p)

]
+ δi,p .

We therefore see that

[f (̃b)]p +
1

n

n∑
i=1

Xi(p)δi,p = − 1

n

n∑
i=1

Xi(p)
(
ψi(ri,[p]) + ψ′i(ri,[p])(bp − β0(p))

[
V ′i (Sp + τ Id)−1up −Xi(p)

])
+ τ b̃p ,

= − 1

n

n∑
i=1

Xi(p)ψi(ri,[p])− (bp − β0(p))u′p(Sp + τ Id)−1up

+ (bp − β0(p))
1

n

n∑
i=1

ψ′i(ri,[p])X
2
i (p) + τbp ,

= −

[
1

n

n∑
i=1

Xi(p)ψi(ri,[p])− τbp

]

+ (bp − β0(p))

(
1

n

n∑
i=1

ψ′i(ri,[p])X
2
i (p)− u′p(Sp + τ Id)−1up

)
,

= −
[

1√
n
Np − τbp

]
+ (bp − β0(p))ξn ,

= 0 .

We conclude that

[f (̃b)]p = − 1

n

n∑
i=1

Xi(p)δi,p = − 1

n

n∑
i=1

di,pXi(p)X
′
i(γ̂ext − b̃) .
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Representation of f (̃b)

Aggregating all the results we have obtained so far, we see that

f (̃b) =

(
− 1

n

n∑
i=1

di,pXiX
′
i

)
(γ̂ext − b̃) ,

= −(bp − β0(p))

(
1

n

n∑
i=1

di,pXiX
′
i

)[
(Sp + τ Id)−1up

−1

]
.

We conclude immediately that

‖f (̃b)‖ ≤ |bp − β0(p)| sup
1≤i≤n

|di,p| |||Σ̂|||2
√
‖(Sp + τ Id)−1up‖2 + 1 . (D-28)

This gives Equation (D-26). The rest of the proof follows easily with mild modifications from El Karoui
(2013) and we do not repeat it here.

D-2 Stochastic aspects

From now on, we assume that X (p), is independent of {Vi, εi}ni=1. This is consistent with Assumption
P1. (Recall that Xi = λiXi and therefore Vi = λiVi.) Note that Assumption O4 is satisfied for Vi if it is
satisfied for Xi: convex 1-Lipschitz function of Vi can be trivially made to be convex 1-Lipschitz function
of Xi by simply not acting on the last coordinate of Xi.

Naturally, a large amount of the rest of the proof consists in showing that we can bound ‖f (̃b)‖
sufficiently finely for our results to hold true. So we will work on bounding each term in the product
appearing in Equation (D-26) in the rest of this section.

The last term is very easy to bound. In fact, using Equation (D-27), we have

‖(Sp + τ Id)−1up‖2 ≤
1

τ

1

n

n∑
i=1

‖ψ′i‖∞λ2
iX 2

i (p) .

Under Assumption O3, this translates into

‖(Sp + τ Id)−1up‖2 ≤
supi‖ψ′i‖∞

τ

1

n

n∑
i=1

λ2
iX 2

i (p) .

Hence, under assumptions O3-O4 and O6, we see that, for any fixed k and at τ fixed,

‖(Sp + τ Id)−1up‖2 = OLk(polyLog(n)) .

(Note that p does not play a particular role here. If we considered the same quantity when we remove
the k-th predictor, and took the sup over 1 ≤ k ≤ p of the corresponding random variables, the same
inequality would hold, in light of our work in e.g Lemma G.3.)

This guarantees that∥∥∥∥(Sp + τ Id)−1up
−1

∥∥∥∥2

≤ (1 + ‖(Sp + τ Id)−1up‖2) = OLk(polyLog(n)) .

We conclude, using Equation (D-26), that

‖β̂ − b̃‖ = OLk

(
1

τ
polyLog(n)|bp − β0(p)| sup

1≤i≤n
|di,p| |||Σ̂|||2

)
,

provided the terms appearing inside the OLk have enough moments to enable us to use Holder’s inequality.
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Recall that Lemma G.4 gives |||Σ̂|||2 = OLk(polyLog(n)) under our assumptions O1-O7. At a high
level, we expect sup1≤i≤n |di,p| and [bp − β0(p)] to be small, which “should give us” that

‖β̂ − b̃‖ = OLk(polyLog(n) sup
1≤i≤n

|di,p||bp − β0(p)|) .

In fact, we will show in Proposition D.2 that bp − β0(p) = OLk(polyLog(n)[n−1/2 ∨ n−e]) and in
Proposition D.9 that sup1≤i≤n |di,p| = OLk(polyLog(n)[nα−1/2 ∨ nα−e]).

These are the key bounds we will need in showing that ‖β̂ − b̃‖ is small.
We now turn our attention to showing these two results.

D-2.1 On bp − β0(p)

We recall the notations

Np =
1√
n

n∑
i=1

ψi(ri,[p])Xi(p) =
1√
n

n∑
i=1

λiψi(ri,[p])Xi(p) ,

ξn =
1

n

n∑
i=1

ψ′i(ri,[p])X
2
i (p)− u′p(Sp + τ Id)−1up .

Under our assumptions, we have E (Xi) = 0 and cov (Xi) = Idp and hence E
(
X 2
i (p)

)
= 1. Recall that

since we assume that X (p) is independent of {Vi, εi}ni=1, X (p) is independent of {ri,[p]}ni=1.

Proposition D.2. We have

|bp − β0(p)| ≤ 1√
nτ
|Np|+ |β0(p)| .

Furthermore, under assumptions O1-O7 and P1, Np = OLk(polyLog(n)) and therefore, when τ is held
fixed,

|bp − β0(p)| = OLk(polyLog(n)n−1/2 + ‖β0‖∞) .

Proof. From the definition of bp, we see that, when ξn 6= 0

bp − β0(p) =
1√
n

Np

τ + ξn
− τβ0(p)

τ + ξn
.

We will see later, in Subsubsection D-2.2, that ξn ≥ 0 (there is no circular arguments, it is simply more
convenient to postpone the investigation of the properties of ξn). It immediately then follows that

|bp| ≤
1√
nτ
|Np|+ |β0(p)| .

Using independence of X (p) and {Vi, εi}ni=1, we have for instance

E
(
N2
p

)
=

1

n

n∑
i=1

E
(
X 2
i (p)

)
E
(
λ2
iψ

2
i (ri,[p])

)
,

whether the right-hand side is finite or not. Using our bounds on maxλ2
i and supi‖ψi‖∞, we therefore have

E
(
N2
p

)
≤ 1

n

n∑
i=1

E
(
X 2
i (p)

)
‖ψi‖2∞E

(
λ2
i

)
= O(1) = O(polyLog(n)) .

Simple computations also show that Np has as many moments as we need and that for any finite k,
under our assumptions,

Np = OLk(polyLog(n)) .

We therefore have

|bp − β0(p)| ≤ 1√
nτ

OLk(polyLog(n)) + sup
1≤k≤p

|β0(k)| .
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D-2.2 On ξn

Let us write ξn using matrix notations. Let Dψ′i(r·,[p])
be the n× n diagonal matrix such that

Dψ′i(r·,[p])
(i, i) = ψ′i(ri,[p]) .

We also denote by X(p) is the last column of the design matrix X. Then we have

ξn =
1

n
X(p)′D

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

X(p) , (D-29)

where

M = Idn −
D

1/2
ψ′i(r·,[p])

V
√
n

(
1

n
V ′Dψ′i(r·,[p])

V + τ Id

)−1 V ′D
1/2
ψ′i(r·,[p])√
n

. (D-30)

This simply comes from elementary linear algebra and representing up and Sp in matrix form. For example,
nu′p = X(p)′Dψ′i(r·,[p])

V .
We are now ready to investigate in more detail the properties of ξn.

Lemma D.3. We have
ξn ≥ 0 .

Furthermore, under Assumptions O1-O7 and P1, if Dλi is the diagonal matrix with i-th entry λi,∣∣∣∣ξn − 1

n
trace

(
DλiD

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

Dλi

)∣∣∣∣ = OLk( sup
1≤i≤n

λ2
iψ
′
i(ri,[p])/(

√
ncn)) . (D-31)

Proof. Let us first focus on

M = Idn −
1

n
D

1/2
ψ′i(r·,[p])

V (
V ′Dψ′i(r·,[p])

V

n
+ τ Id)−1V ′D

1/2
ψ′i(r·,[p])

.

The first part of the proof is very similar to the corresponding arguments in El Karoui (2013). When
τ > 0, it is clear that all the eigenvalues of M are strictly positive, i.e M is positive definite. Indeed, if the

singular values of n−1/2D
1/2
ψ′i(r·,[p])

V are denoted by σi, the eigenvalues of M are τ/(σ2
i + τ).

Therefore, since ξn = 1
nv
′Mv with v = D

1/2
ψ′i(r·,[p])

X(p), ξn ≥ 0.

Since M is symmetric and has eigenvalues between 0 and 1, we also have, using e.g Lemma V.1.5 in
Bhatia (1997),

0 � D1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

� Dψ′i(r·,[p])
.

The matrix M is independent of X (p) under Assumption P1. Dψ′i(r·,[p])
is also independent of X (p).

Of course, we have X(p) = DλiX (p), where Dλi is the diagonal matrix with i-th entry λi.
Since Xp satisfy the necessary concentration assumptions under Assumption P1, we can now appeal to

Lemma G.3 to obtain∣∣∣∣ 1nX(p)′D
1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

X(p)− 1

n
trace

(
DλiD

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

Dλi

)∣∣∣∣ = OLk(
1
√
ncn

sup
1≤i≤n

λ2
iψ
′
i(ri,[p])) .

We now take a slight detour from the aim of showing that we have a very good approximation of β̂
through b̃ by working on finer properties of ξn and bp. These properties will be essential in establishing
the validity of the system (4).

To get a finer understanding of ξn, we now focus on the properties of

1

n
trace

(
DλiD

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

Dλi

)
.

The previous lemma shows clearly why this is natural.
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About 1
ntrace

(
DλiD

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

Dλi

)
Lemma D.4. Let us call Sp = 1

n

∑n
i=1 ψ

′
i(ri,[p])ViV

′
i and Sp(i) = Sp − 1

nψ
′
i(ri,[p])ViV

′
i . Let us also call

cτ,p =
1

n
trace

(
(Sp + τ Id)−1

)
,

ζi =
1

n
V ′i (Sp(i) + τ Id)−1Vi − λ2

i cτ,p .

Then we have under Assumptions O1-O7 and P1, if M is the matrix defined in Equation (D-30),∣∣∣∣ 1n trace (Idn −M)−
(

1

n
trace

(
DλiD

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

Dλi

))
cτ,p

∣∣∣∣ ≤ [sup
i
|ζi|
]

1

n

n∑
i=1

ψ′i(ri,[p]) . (D-32)

We also have
1

n
trace (Idn −M) =

p− 1

n
− τcτ,p .

Proof. We call di,i = ψ′i(ri,[p])/n. Of course, by using the Sherman-Morrison-Woodbury formula (see e.g
Horn and Johnson (1990), p.19),

Mi,i = 1− di,iV ′i (V ′Dψ′i(r·,[p])
V/n+ τ Id)−1Vi ,

= 1− di,i
V ′i (Sp(i) + τ Id)−1Vi

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
,

=
1

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
.

Recall that we are interested in 1
n

∑
i λ

2
iψ
′
i(ri,[p])Mi,i = 1

ntrace
(
DλiD

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

Dλi

)
. Note that,

since trace (AB) = trace (BA),

trace (Idn −M) = trace
(
(Sp + τ Id)−1Sp

)
= p− 1− τtrace

(
(Sp + τ Id)−1

)
= p− 1− nτcτ,p .

This shows the second result of the lemma.
On the other hand,

trace (Idn −M) =
∑
i

(1−Mi,i) =
∑
i

di,i
V ′i (Sp(i) + τ Id)−1Vi

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
. (D-33)

With our definitions, we have, since λ2
i cτ,p + ζi = 1

nV
′
i (Sp(i) + τ Id)−1Vi,

1

n
trace (Idn −M) =

(
1

n

∑
i

λ2
iψ
′
i(ri,[p])Mi,i

)
cτ,p +

1

n

∑
i

ψ′i(ri,[p])
ζi

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
.

It immediately follows that∣∣∣∣∣ 1ntrace (Idn −M)−

(
1

n

∑
i

λ2
iψ
′
i(ri,[p])Mi,i

)
cτ,p

∣∣∣∣∣ ≤
[
sup
i
|ζi|
]

1

n

∑
i

ψ′i(ri,[p]) ,

as announced.

The previous result will be especially useful as an approximation result if we can show that ζi’s are
small, since assumption P2 - which we will use later - implies that 1

n

∑n
i=1‖ψ′i‖∞ cannot be too large. This

is what we do in the next few pages.
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Controlling ζi

The main problem that arises when trying to control ζi is the fact that rj,[p] appearing in Sp(i) depend
on Vi. This prevents us from using concentration of quadratic forms results such as those shown in Lemma
G.3. So further approximations arguments are needed. Of course, the idea of using a leave-two-out residuals
to approximate {rj,[p]}j 6=i immediately comes to mind. Hence our work in Section C will later play a key
role in showing that ζi’s are small.

Lemma D.5. Suppose we can find {r(i)j,[p]}j 6=i independent of (λi,Vi) and Kn such that

sup
i

sup
j 6=i
|ψ′j(r

(i)
j,[p])− ψ

′
j(rj,[p])| ≤ Kn

Then

sup
i
|ζi| = OLk

([
1

τ2
Kn|||Σ̂|||2 +

polyLog(n)

τ
√
ncn

+
1

nτ

]
polyLog(n)

)
, (D-34)

provided Kn has 3k uniformly bounded moments.

Proof. We call

AMi,p =
1

n

∑
j 6=i

ψ′j(r
(i)
j,[p])VjV

′
j .

Then, using for instance the first resolvent identity, i.e A−1 −B−1 = A−1(B −A)B−1, we see that

|||(Sp(i) + τ Id)−1 − (AMi,p + τ Id)−1|||2 ≤
1

τ2
Kn|||Σ̂|||2 ,

since ||| 1n
∑

i ViV
′
i |||2 ≤ |||Σ̂|||2. In particular,∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi −

1

n
V ′i (AMi,p + τ Id)−1Vi

∣∣∣∣ ≤ ‖Vi‖2n

1

τ2
Kn|||Σ̂|||2 .

However, since AMi,p is independent of (λi,Vi), we can use Lemma G.3 and see that, since Vi = λiVi,

sup
1≤i≤n

∣∣∣∣ 1nV ′i (AMi,p + τ Id)−1Vi −
λ2
i

n
trace

(
(AMi,p + τ Id)−1

)∣∣∣∣ = OLk(
polyLog(n)

τ
√
ncn

sup
1≤i≤n

λ2
i ) ,

by using the fact that λmax((AMi,p + τ Id)−1) ≤ 1
τ .

Using the operator norm bound we gave above, we also have∣∣∣∣ 1ntrace
(
(AMi,p + τ Id)−1

)
− 1

n
trace

(
(Sp(i) + τ Id)−1

)∣∣∣∣ ≤ 1

τ2
Kn|||Σ̂|||2

p

n
.

We conclude that

sup
1≤i≤n

∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi −
λ2
i

n
trace

(
(Sp(i) + τ Id)−1

)∣∣∣∣ = (D-35)

OLk

([
1

τ2
Kn|||Σ̂|||2 sup

1≤i≤n

[
p

n
+
‖Vi‖2

n

]
+

polyLog(n)

τ
√
ncn

]
[ sup
1≤i≤n

λ2
i ∨ 1]

)
. (D-36)

Now, it is clear that under O1 and O4, sup1≤i≤n‖Vi‖2/n = OLk(1) and finally

sup
1≤i≤n

∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi −
λ2
i

n
trace

(
(Sp(i) + τ Id)−1

)∣∣∣∣ = OLk

([
1

τ2
Kn|||Σ̂|||2 +

polyLog(n)

τ
√
ncn

]
[ sup
1≤i≤n

λ2
i ∨ 1]

)
.

Control of 1
ntrace

(
(Sp(i) + τ Id)−1

)
− 1

ntrace
(
(Sp + τ Id)−1

)
Using the Sherman-Woodbury-Morrison formula, we have

(Sp(i) + τ Id)−1 − (Sp + τ Id)−1 =
ψ′i(ri,[p])

n

(Sp(i) + τ Id)−1ViV
′
i (Sp(i) + τ Id)−1

1 +
ψ′i(ri,[p])

n V ′i (Sp(i) + τ Id)−1Vi
.
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After taking traces, we see that

0 ≤ trace
(
(Sp(i) + τ Id)−1

)
− trace

(
(Sp + τ Id)−1

)
≤ 1

τ
,

since V ′i (Sp(i) + τ Id)−2Vi ≤ 1
τ V
′
i (Sp(i) + τ Id)−1Vi.

Therefore,

0 ≤ 1

n
trace

(
(Sp(i) + τ Id)−1

)
− 1

n
trace

(
(Sp + τ Id)−1

)
≤ 1

nτ
.

We conclude that

sup
1≤i≤n

|ζi| = OLk

([
1

τ2
Kn|||Σ̂|||2 +

polyLog(n)

τ
√
ncn

+
1

nτ

]
[ sup
1≤i≤n

λ2
i ∨ 1]

)
,

provided we can use Holder’s inequality. In effect, this requires Kn to have 3k moments.

D-2.3 Control of Kn

A natural choice for r
(i)
j,[p] defined in Lemma D.5 is to use a leave one out estimator of γ̂, where the i-th

observation (and hence Vi) is ommitted. Hence, all the work done in Theorem C.6 becomes immediately
relevant.

Lemma D.6. Suppose we use for {r(i)j,[p]}j 6=i the residuals we would get by using a leave-one-out estimator

of γ̂, i.e excluding (Vi, εi) from problem (D-21).
With the notations of Lemma D.5, we have under assumptions O1-O7 and P1

Kn = OLk

(
n2α−1/2polyLog(n)

)
.

In particular, for any fixed τ ,

sup
i
|ζi| = OLk

(
n2α−1/2polyLog(n)

)
Proof. Let us call δn(i) random variables such that

sup
j 6=i
|r(i)j,[p] − rj,[p]| ≤ δn(i) .

Applying Theorem C.6 with Rj = rj,[p] and r̃j,(i) = r
(i)
j,[p], we get

sup
i

(δn(i)) = OLk

(
polyLog(n)

n1/2−α

)
.

The control of Kn follows immediately by using our assumptions on ψ′i, specifically the fact that it is
Cnα-Lipschitz.

Important remark: the previous remark has important consequences for ci defined in Equation
(C-14). Indeed, we have the following corollary.

Corollary D.7. Let ci be defined as in Equation (C-14) and cτ be defined as in Equation (A-7). Then,
under assumptions O1-O7 and P1, we have

sup
i
|ci − λ2

i cτ | = OLk(n2α−1/2polyLog(n)) . (D-37)

The corollary follows from drawing analogy between these quantities and the situation investigated in
Lemmas D.4, D.5, and D.6; we now give a detailed proof.

34



Proof. We have now established that

sup
i
| 1
n
V ′i (Sp(i) + τ Id)−1Vi − λ2

i cτ,p| = OLk(
polyLog(n)

n1/2−2α
) .

Recalling the notation

cτ =
1

n
trace

[ 1

n

n∑
i=1

ψ′i(Ri)XiX
′
i + τ Idp

]−1
 ,

we see that this quantity is the analog of cτ,p when we use all the predictors and not only (p− 1) of them.
Indeed, ci in Equation (C-14) is defined, in the notation of the proof of Lemma D.5 as an analog of

1
nV
′
i (AMi,p + τ Id)−1Vi, with the role of {r(i)j,[p]}j 6=i being played by the residuals obtained from the leave-

one-out estimate of β̂, excluding (Xi, εi) from the problem. Lemma D.5 in connection with Theorem
D.10 shows that supi | 1nV

′
i (AMi,p + τ Id)−1Vi−λ2

i cτ,p| = OLk(polyLog(n)/n1/2−2α) under our assumptions.
Passing from the p−1 dimensional version of this result, i.e Lemma D.5, to the p-dimensional version gives
the approximation stated in the corollary.

We therefore see that
sup
i
|ci − λ2

i cτ | = OLk(n2α−1/2polyLog(n)) .

D-2.4 Further results on ξn and bp

We can combine all the results we have obtained so far in the following proposition.

Proposition D.8. We have, under Assumptions O1-O7 and P1,∣∣∣∣cτ,p(ξn + τ)− p− 1

n

∣∣∣∣ = OLk

(
polyLog(n)

n1/2−2α

)
. (D-38)

Furthermore, under Assumptions O1-O7 and P1-P3, since ‖β0‖∞ = O(n−e),

( p
n

)2
nE
(
[bp − β0(p)]2

)
=

1

n

n∑
i=1

E
(
[cτ,pλiψi(ri,[p])]

2
)

+ nτ2β2
0(p)E

(
c2
τ,p

)
+ o(1) . (D-39)

Both equations in this proposition are very important for this paper. The first one gives us a very
precise idea of the behavior of ξn in terms of cτ,p, which we will see in Section E is relatively easy to
understand. This first equation is also a stepping stone towards the first equation of the System (4).

The second equation, on the other hand, is a stepping stone towards the second equation of System (4)
in our main theorem, Theorem 2.1.

Proof. • First equation
The proof of Equation (D-38) consists just in aggregating all the previous results and noticing that cτ,p ≤
(p− 1)/(nτ) and therefore remains bounded. Indeed, we have

p− 1

n
− τcτ,p =

1

n
trace (Id−M) ≥ 0 .

This latter quantity was approximated in Lemma D.4 by(
1

n
trace

(
D

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

))
cτ,p .

And in Lemma D.3, we approximated ξn by
(

1
ntrace

(
D

1/2
ψ′i(r·,[p])

MD
1/2
ψ′i(r·,[p])

))
. This gives the result of

Equation (D-38), by simply keeping track of the approximation errors we make at each step.
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• Second equation
Recall that by definition (see Equations (D-24) and (D-23)),

√
n [(τ + ξn)bp − ξnβ0(p)] = Np =

1√
n

n∑
i=1

λiψi(ri,[p])Xi(p) .

Therefore,

cτ,p
√
n [(τ + ξn)[bp − β0(p)] + τβ0(p)] =

1√
n

n∑
i=1

cτ,pλiψi(ri,[p])Xi(p) ,

or

cτ,p
√
n(τ + ξn)[bp − β0(p)] =

1√
n

n∑
i=1

cτ,pλiψi(ri,[p])Xi(p)− cτ,p
√
nτβ0(p) .

We note that cτ,pλiψi(ri,[p]), which depends only on {λi,Vi, εi}ni=1, is independent of {Xi(p)}ni=1. (If needed,
see the definition of cτ,p in Lemma D.4.)

Since Xi(p)’s are independent with mean 0 and variance 1, we conclude that

E
(
c2
τ,pn(τ + ξn)2 [bp − β0(p)]2

)
=

1

n

n∑
i=1

E
(
[cτ,pλiψi(ri,[p])]

2
)

+ nτ2β2
0(p)E

(
c2
τ,p

)
.

Given the result in Equation (D-38) and our bound on
√
n[bp − β0(p)] in Proposition D.2, this means

that ( p
n

)2
nE
(
[bp − β0(p)]2

)
=

1

n

n∑
i=1

E
(
[cτ,pλiψi(ri,[p]]

2
)

+ nτ2β2
0(p)E

(
c2
τ,p

)
+ o(1) .

In this last equation, we make use of Proposition D.2 and Assumption P3 since under this assumption
n‖β0‖2∞polyLog(n)n2α−1/2 → 0. This is what allows us to replace cτ,p(τ + ξn) by p/n without loss of
accuracy in going from the second-to-last to the last equation.

We now need to control di,p to show that our approximation of β̂ by b̃ in Proposition D.1 will yield
sufficiently good results that they can be used to prove Theorem 2.1.

D-2.5 On di,p

Recall the definition
di,p = [ψ′i(γ

∗
i,p)− ψ′i(ri,[p])] ,

where γ∗i,p ∈ (ri,[p], ri,[p] + νi), with

νi = [bp − β0(p)]X ′i

[
(Sp + τ Id)−1up

−1

]
= [bp − β0(p)]πi .

(The fact that γ∗i,p ∈ (ri,[p], ri,[p] + νi) follows from writing the definition of Yi −X ′i b̃.)
We have the following result.

Proposition D.9. We have, under Assumptions O1-O7 and P1-P3, at fixed τ ,

sup
i
|di,p| = OLk

(
polyLog(n)nα

n1/2 ∧ ne

)
.

Proof. Recall the definition
di,p = [ψ′i(γ

∗
i,p)− ψ′i(ri,[p])] ,

where γ∗i,p ∈ (ri,[p], ri,[p] + νi), with νi defined above. Therefore,

πi = V ′i (Sp + τ Id)−1up −Xi(p) .
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Recall that up = 1
nV
′Dψ′i(r·,[p])

X(p). We can also rewrite it as

up =
1

n
V ′Dλ2iψ

′
i(r·,[p])

X (p) .

Using independence of X (p) with {(Vi, εi)}ni=1, and our concentration assumptions on X (p) formulated
in P1, we see that according to Lemma G.2, we have

sup
i
|V ′i (Sp + τ Id)−1up| = OLk

(
polyLog(n)

c
1/2
n

sup
i
‖ 1

n
Dλ2iψ

′
i(r·,[p])

V(Sp + τ Id)−1Vi‖

)
,

where we look at V ′i (Sp + τ Id)−1up as a linear form in X (p). Note that we have absorbed the supi |λi| in
the polyLog(n) term.

Now,

‖ 1

n
Dλ2iψ

′
i(r·,[p])

V(Sp + τ Id)−1Vi‖2 =
1

n
V ′i(Sp + τ Id)−1

V ′D2
λ2iψ

′
i(r·,[p])

V

n
(Sp + τ Id)−1Vi .

Notice that Sp =
V ′D

λ2
i
ψ′
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V

n . Hence,
V ′D2

λ2
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V

n � |||Dλ2iψ
′
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|||2Sp and we conclude that
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V ′i(Sp + τ Id)−1

V ′D2
λ2iψ

′
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(Sp + τ Id)−1Vi ≤

‖Vi‖2

nτ
|||Dλ2iψ
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|||2 =
‖Vi‖2

nτ
sup
i
λ2
iψ
′
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We also note that supi |Xi(p)| = OLk(polyLog(n)/
√
cn) under O4, O6 and P1, using the results of Sub-

section G. So we conclude that

sup
i
|πi| = OLk

(
polyLog(n)

c
1/2
n

[
1 +

√
sup
i
λ2
iψ
′
i(ri,[p]) sup

i

‖Vi‖2
nτ

])
,

= OLk

(
polyLog(n)

c
1/2
n

[
1 +

√
sup
i
λ2
iψ
′
i(ri,[p])

])
,

= OLk (polyLog(n)) .

Recalling that |bp − β0(p)| = OLk(n−1/2polyLog(n) + ‖β0‖∞), we finally see that

sup
i
|νi| = OLk

(
polyLog(n)√

n ∧ ne

)
Under our assumption that ψ′i is Cnα-Lipschitz, we see that

sup
i
|di,p| = OLk

(
polyLog(n)nα

n1/2 ∧ ne

)
.

D-3 Final conclusions

We can now gather together our approximation results in the following Theorem.

Theorem D.10. Under Assumptions O1-O7 and P1-P3, we have, for any fixed τ > 0,

‖β̂ − b̃‖ ≤ OLk

(
polyLog(n)nα

[n1/2 ∧ ne]2

)
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In particular,

√
n(β̂p − bp) = OLk

(
polyLog(n)nα+1/2

[n1/2 ∧ ne]2

)
,

sup
i
|X ′i(β̂ − b̃)| = OLk

(
polyLog(n)nα+1/2

[n1/2 ∧ ne]2

)
,

sup
i
|Ri − ri,[p]| = OLk

([
polyLog(n)√

n ∧ ne

]
∨

[
polyLog(n)nα+1/2

[n1/2 ∧ ne]2

])
.

We note that the index p in the previous theorem plays no particular role and similar results holds
when p is replaced by 1 ≤ k ≤ p.

Proof. The Theorem is just the aggregation of all of our results, using the key bound on ‖β̂ − b̃‖ in
Proposition D.1.

The last statement is the only one that might need an explanation. With the notations of the proof of
Proposition D.9, we have Ri − ri,[p] = X ′i (̃b − β̂) − νi. The results on supi |νi| in the proof of Proposition

D.9 as well as the bound on supi |X ′i (̃b− β̂)| give us the announced result.

Combining the results of Equation (D-39) and the previous theorem, we see that under Assumptions
O1-O7 and P1-P4,( p

n

)2
nE
(

(β̂p − β0(p))2
)

=
1

n

n∑
i=1

E
(
[cτ,pλiψi(ri,[p])]

2
)

+ nτ2β2
0(p)E

(
c2
τ,p

)
+ o(1) .

Since p did not play any particular role as compared to any other index in our analysis, the same result
holds when p is replaced by k, 1 ≤ k ≤ p.

Dividing the previous expression by n on both sides and summing over all the indices 1 ≤ k ≤ p, we
finally get

( p
n

)2
E
(
‖β̂ − β0‖22

)
=

1

n

p∑
k=1

[
1

n

n∑
i=1

E
(
[cτ,kλiψi(ri,[k])]

2
)]

+ τ2
p∑

k=1

β2
0(k)E

(
c2
τ,k

)
+ o(1) . (D-40)

Our aim now is to further simplify the above expression to get the second equation of our system.

D-3.1 On cτ,p and cτ

We now show that cτ,k’s are all close to the same quantity, which turns out to be cτ .

Proposition D.11. We have, under Assumptions O1-O7 and P1-P3,

sup
1≤k≤p

|cτ − cτ,k| = OLk

([
polyLog(n)nα√

n ∧ ne

]
∨

[
polyLog(n)n2α+1/2

[n1/2 ∧ ne]2

]
∨ polyLog(n)

n

)
.

Of course, we also have 0 ≤ cτ ≤ p/(nτ) and 0 ≤ cτ,k ≤ p/(nτ).

Proof. Let us recall the notation

S =
1

n

n∑
i=1

ψ′i(Ri)XiX
′
i .

If we call Γ = 1
n

∑n
i=1 ψ

′
i(Ri)ViV

′
i and a = 1

n

∑n
i=1 ψ

′
i(Ri)X

2
i (p), we see that

S =

(
Γ v
v a

)
.
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According to Lemma H.2, we see that, since cτ = 1
ntrace

(
(S + τ Idp)

−1
)
,

|cτ −
1

n
trace

(
(Γ + τ Idp−1)−1

)
| ≤ 1

n

1 + a/τ

τ
.

It is clear that under our assumptions, a = OLk(polyLog(n)), since

a =
1

n

n∑
i=1

λ2
iX 2

i (p)ψ′i(Ri) ≤ polyLog(n)
1

n

n∑
i=1

λ2
iX 2

i (p) = OLk(polyLog(n)) ,

(using e.g our work in Section G). Since ψ′i is Cnα-Lipschitz and

sup
i
|Ri − ri,[p]| = OLk

([
polyLog(n)√

n ∧ ne

]
∨

[
polyLog(n)nα+1/2

[n1/2 ∧ ne]2

])
,

we have

sup
i
|ψ′i(Ri)− ψ′i(ri,[p])| = OLk

([
polyLog(n)nα√

n ∧ ne

]
∨

[
polyLog(n)n2α+1/2

[n1/2 ∧ ne]2

])
.

Hence, using arguments similar to the ones we have used in the proof of Lemma D.5 (i.e first resolvent
identity, etc...), we see that∣∣∣∣ 1ntrace

(
(Γ + τ Id)−1

)
− 1

n
trace

(
(Sp + τ Id)−1

)∣∣∣∣ = OLk

([
polyLog(n)nα√

n ∧ ne

]
∨

[
polyLog(n)n2α+1/2

[n1/2 ∧ ne]2

])
.

Since cτ,p = 1
ntrace

(
(Sp + τ Id)−1

)
, the result we announced follows immediately.

We note that p did not play a particular role here and hence taking the sup over those indices only adds
a polyLog(n) term to the approximation. Hence our approximation is valid also for sup1≤k≤n |cτ−cτ,k|.

We are now ready to prove the last proposition of this section, which will help us get the second equation
of our System (4).

Proposition D.12. Under Assumptions O1-O7 and P1-P4,( p
n

)2
E
(
‖β̂ − β0‖22

)
=
p

n

1

n

n∑
i=1

E
(
[cτλiψi(prox(cτλ

2
i ρi)(r̃i,(i)))]

2
)

+ τ2‖β0‖2E
(
c2
τ

)
+ o(1) . (D-41)

Furthermore, when all λi’s are non-zero,

1

n

n∑
i=1

E
(
[cτλiψi(prox(cτλ

2
i ρi)(r̃i,(i)))]

2
)

=
1

n

n∑
i=1

E

(
[r̃i,(i) − prox(cτλ

2
i ρi)(r̃i,(i))]

2

λ2
i

)

Proof. In light of the result in Proposition D.11 and Assumption P3 which guarantees that ‖β0‖22 is
uniformly bounded in p and n, we see that

p∑
k=1

β2
0(k)E

(
c2
τ,k

)
=

p∑
k=1

β2
0(k)E

(
c2
τ

)
+ o(1) = ‖β0‖22E

(
c2
τ

)
+ o(1) .

Using Theorems C.6 and D.10, Equation (D-40) implies that( p
n

)2
E
(
‖β̂ − β0‖22

)
=
p

n

1

p

p∑
k=1

[
1

n

n∑
i=1

E
(
[cτ,kλiψi(ri,[k])]

2
)]

+ τ2‖β0‖22E
(
c2
τ

)
+ o(1) .

Using Theorem D.10 and our bound on ‖ψ′i‖∞ from Assumption O3, we see that

1

p

p∑
k=1

E
(
[cτ,kλiψi(ri,[k])]

2
)

=
1

p

p∑
k=1

E
(
[cτ,kλiψi(Ri)]

2
)

+ o(1) .
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Thanks to Proposition D.11 we also have

1

p

p∑
k=1

E
(
[cτ,kλiψi(Ri)]

2
)

=
1

p

p∑
k=1

E
(
[cτλiψi(Ri)]

2
)

+ o(1) .

In light of Equation (C-20) and Assumption O3, we have

1

n

n∑
i=1

E
(
[cτλiψi(Ri)]

2
)

=
1

n

n∑
i=1

E
(
[cτλiψi(prox(ciρi)(r̃i,(i)))]

2
)

+ o(1)

Using Lemma F.2 and specifically the computation of the derivative of prox(cρ)(x) with respect to c,
we see that, by using Corollary D.7, we can re-express the previous equation as

1

n

n∑
i=1

E
(
[cτλiψi(Ri)]

2
)

=
1

n

n∑
i=1

E
(
[cτλiψi(prox(cτλ

2
i ρi)(r̃i,(i)))]

2
)

+ o(1) ,

since Equation (D-37) in Corollary D.7, gives supi |ci − λ2
i cτ | = OLk(n2α−1/2polyLog(n)).

When λi’s are all different from 0, we can rewrite this equation as

1

n

n∑
i=1

E
(
[cτλiψi(Ri)]

2
)

=
1

n

n∑
i=1

E

(
[cτλ

2
iψi(prox(cτλ

2
i ρi)(r̃i,(i)))]

2

λ2
i

)
+ o(1)

Finally, since almost by definition,

∀x ∈ R , x = prox(cρ)(x) + cψ(prox(cρ)(x)) ,

we have

1

n

n∑
i=1

E

(
[cτλ

2
iψi(prox(cτλ

2
i ρi)(r̃i,(i)))]

2

λ2
i

)
=

1

n

n∑
i=1

E

(
[r̃i,(i) − prox(cτλ

2
i ρi)(r̃i,(i))]

2

λ2
i

)
.

E Last steps of the proof

We now reach the last steps of the proof and two imporant tasks remain. The first one is understanding
the limiting behavior of r̃i,(i) and showing that it behaves like εi+λirρ(κ)Zi in the limit, where Zi ∼ N (0, 1).
With a little bit of further work, the corresponding results will give us in connection with Proposition D.12
the second equation of our main system (4).

The second main task is then to show that cτ is asymptotically deterministic, i.e it converges towards
a non-random number.

E-1 On the asymptotic distribution of r̃i,(i)

We have the following lemma.

Lemma E.1. Under Assumptions O1-O7 and P1-P4, as n and p tend to infinity, r̃i,(i) = Yi −X ′iβ̂i,(i)

behaves like εi + λi

√
E
(
‖β̂ − β0‖2

)
Zi, where Zi ∼ N (0, 1) is independent of εi and λi, in the sense of

weak convergence.
Furthermore, if i 6= j, r̃i,(i) and r̃j,(j) are asymptotically (pairwise) independent. The same is true for

the pairs (r̃i,(i), λi) and (r̃j,(j), λj)
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Proof. We recall that Xi = λiXi and hence r̃i,(i) = Yi −X ′iβ̂(i) = εi − λiX ′i (β̂(i) − β0).

• First part The only problem is of course showing that (β̂(i)−β0)′Xi is approximatelyN (0,E
(
‖β̂ − β0‖2

)
).

Recall that β̂(i) is independent of Xi and that Xi has mean 0, cov (Xi) = Idp and that, for any finite k, the
first k absolute moments of its entries are assumed to be bounded uniformly in n.

Recall that we showed in Proposition C.7 that var
(
‖β̂ − β0‖2

)
→ 0. Thanks to Lemma B.3, we also

know that E
(
‖β̂ − β0‖2

)
is uniformly bounded. Furthermore, in the proof of Proposition C.7, we showed

that E
(
‖β̂‖2 − ‖β̂(i)‖2

)
→ 0 and that E

(
‖β̂ − β0‖2 − ‖β̂(i) − β0‖2

)
→ 0.

Let us now show that (β̂(i)− β0)′Xi behaves like N (0,E
(
‖β̂(i) − β0‖2

)
). We employ a similar strategy

as was done in El Karoui (2013) but give the argument in details since it requires some new work.
We need a simple generalization of the standard Lindeberg-Feller theorem (see e.g Stroock (1993)).

Indeed, if an,p(k) are random variables with
√∑p

k=1 an,p(k)2 = An, E
(
A2
n

)
remains bounded in n, and

an,p(k)′s are independent of Xi, we see that: a) if Z ∼ N (0, Idp), independent of an,p(k), then a′n,pZ ∼ AnN
where N ∼ N (0, 1) and independent of An (conditionally and unconditionally on an,p); b) Theorem 2.1.5
and its proof in Stroock (1993) hold provided

∑n
i=1 E

(
|an,p(k)|3

)
= o(1). The proof simply needs to be

started conditionally on an,p, and the final moment bounds are then taken unconditionally. This very mild
generalization gives, if φ is a C3 function, with bounded 2nd and third derivatives,

∀ε > 0 ,
∣∣E (φ(a′n,pXi)

)
−E (φ(AnN))

∣∣ ≤ K (ε‖φ(3)‖∞E

(
p∑

k=1

an,p(k)2

)
+
‖φ(2)‖∞

ε

p∑
k=1

E
(
|an,p(k)|3

))
,

where K is a constant that depends on the second and third absolute moments of the entries of Xi. It is
therefore independent of n and p under our assumptions on Xi.

To make matters clearer, we allow ourselves to use the notation vk or v(k) to refer to the k-th coordinate
of the vector v.

In our setting, an,p(k) = β̂(i)(k)− β0(k). Recall that we have shown that

β̂(p)− β0(p) = OLk

(
polyLog(n)nα

[n1/2 ∧ ne]2

)
.

The same arguments we used apply also to β̂(i)(p), the p-th coordinate of the leave-one-out estimate β̂(i).
So it is clear that

E
(
|β̂(i)(p)− β0(p)|3

)
= O

(
polyLog(n)n3α

[n1/2 ∧ ne]6

)
.

We conclude that

E

(
p∑

k=1

|β̂(i)(k)− β0(k)|3
)

= O

(
polyLog(n)n3α+1

[n1/2 ∧ ne]6

)
= o(1) .

This, in connection with Corollary 2.1.9 in Stroock (1993), shows that (β̂(i)−β0)′Xi behaves asymptotically

like ‖β̂(i) − β0‖N in the sense of weak convergence.

Since ‖β̂(i)−β0‖−E
(
‖β̂(i) − β0‖

)
→ 0 in probability and E

(
‖β̂(i) − β0‖

)
remains bounded under our

assumptions, Slutsky’s lemma guarantees that

(β̂(i) − β0)′Xi behaves like E
(
‖β̂(i) − β0‖

)
N

asymptotically, in the sense of weak convergence - by which we mean that the difference of their charac-
teristic functions goes to 0. Using the fact, which can be shown using results in the proof of Proposition

C.7, that E
(
‖β̂(i) − β0‖

)
−E

(
‖β̂ − β0‖

)
→ 0 and Slutsky’s lemma, we see that

(β̂(i) − β0)′Xi behaves like E
(
‖β̂ − β0‖

)
N ,
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in the sense of weak convergence.
We note that the same reasoning applies when replacing an,p(k) = β̂(i)(k) − β0(k) by ãn,p(k) =

λi[β̂(i)(k)− β0(k)], provided λi has 3 moments. This shows that

λi(β̂(i) − β0)′Xi = (β̂(i) − β0)′Xi behaves like E
(
‖β̂ − β0‖

)
λiN ,

This shows the first part of the lemma.
• Second part For the second part, we use a leave-two-out approach, namely we use the approximation

r̃i,(i) = εi+X
′
iβ0−β̂′(i)Xi = εi+X

′
iβ0−β̂′(ij)Xi+oLk(1) and similarly for r̃j,(j) (this is clear from Theorem 2.2;

β̂(ij) is computed by solving Problem (3) without (Xi, εi) and (Xj , εj)). It is clear that r̃i,(i) and r̃j,(j) are
asymptotically independent conditional on X(ij), i.e all the predictors except Xi and Xj . But because their

dependence on X(ij) is only through ‖β̂(ij)−β0‖, which is asymptotically deterministic by arguments similar
to those used in the proof of Proposition C.7, we see that r̃i,(i) and r̃j,(j) are asymptotically independent.

After this high-level explanation, let us now give a detailed proof. The arguments we gave above apply
to β̂(ij) as they did to β̂(i). In particular, since

E

(
p∑

k=1

|β̂(ij)(k)− β0(k)|3
)

= O(
polyLog(n)n3α+1

[n1/2 ∧ ne]6
) = o(1) ,

we also have
p∑

k=1

|β̂(ij)(k)− β0(k)|3 = oP (1).

Of course, β̂(ij) depends only on {X(ij), ε(ij)}. We call P(ij) the joint probability measure P(ij) =
∏
k 6=(i,j) PXk,εk ,

i.e probability computed with respect to all our random variables except (Xi, εi) and (Xj , εj) (we slightly
abuse notation and do not index this probability measure by n for the sake of clarity).

So we have found En(ij), depending only on (X(ij), ε(ij)), such that P(ij)(E
n
(ij))→ 1 and

∑p
k=1 |β̂(ij)(k)−

β0(k)|3 = o(1) when (X(ij), {εk}k 6=(i,j)) ∈ En(ij). The arguments we gave above (treating an,p’s as determin-

istic quantities) then imply that, when (X(ij), ε(i,j)) ∈ En(ij),

(β̂(ij) − β0)′Xi|(X(ij), ε(ij)) behaves like ‖β̂(ij) − β0‖N .

Let us now use characteristic function arguments. Let αi = (β̂(ij) − β0)′Xi and αj = (β̂(ij) − β0)′Xj
Let (wi, wj) ∈ R2 be fixed and

χ(wi, wj) = E
(

eı(w1αi+w2αj)
)

= E
(

eı(w1αi+w2αj)
[
1En

(ij)
+ 1[En

(ij)
]c

])
.

Since P ([En(ij)]
c) = P(ij)([E

n
(ij)]

c) → 0, we can just focus on E
(

eı(w1αi+w2αj)1En
(ij)

)
, since the modulus of

the functions we are integrating is bounded by 1.
Now

E
(

eı(w1αi+w2αj)1En
(ij)

)
= E

(
1En

(ij)
E
(

eı(w1αi+w2αj)|X(ij), ε(ij)

))
,

since 1En
(ij)

is a deterministic function of (X(ij), ε(ij)). Independence of Xi and Xj implies that

E
(

eı(w1αi+w2αj)|X(ij), ε(ij)

)
= E

(
eıw1αi |X(ij), ε(ij)

)
E
(
eıw2αj |X(ij), ε(ij)

)
.

Also, our conditional asymptotic normality arguments above imply that

1En
(ij)

[
E
(
eıw1αi |X(ij), ε(ij)

)
− e−w

2
1/2‖β̂(ij)−β0‖2

]
→ 0

in P(ij)-probability. We therefore have

1En
(ij)

[
E
(

eı(w1αi+w2αj)|X(ij), ε(ij)

)
− e−(w2

1/2+w2
2/2)‖β̂(ij)−β0‖2

]
→ 0

42



in P(ij)-probability.
So we conclude that

E
(

1En
(ij)

eı(w1αi+w2αj)
)
−E

(
1En

(ij)
e−(w2

1/2+w2
2/2)‖β̂(ij)−β0‖2

)
→ 0 .

Since P (En(ij))→ 1 and ‖β̂(ij)−β0‖2 is asymptotically deterministic by arguments similar to those used
in the proof of Proposition C.7, we see that

E
(

1En
(ij)

e−(w2
1/2+w2

2/2)‖β̂(ij)−β0‖2
)
− e−[(w2

1/2+w2
2/2)E(‖β̂(ij)−β0‖2)] → 0 .

Therefore,

E
(

eı(w1αi+w2αj)
)
−E (eıw1αi) E (eıw2αj )→ 0 .

This proves that αi and αj are asymptotically independent. It easily follows that the same is true for r̃i,(i)
and r̃j,(j).

The same leave-two-out approach also shows asymptotic pairwise independence of the pairs (λi, r̃i,(i))

and (λj , r̃j,(j)), since β̂(ij) is independent of λi and λj under Assumption O6, which guarantees independence
of the λi’s.

The lemma is shown.

E-2 On the asymptotic behavior of cτ

We are now in position to show that cτ = 1
ntrace

(
(S + τ Idp)

−1
)

is asymptotically deterministic. This
result will require several steps.

Lemma E.2. We work under Assumptions O1-O7, P1-P4 and F2-F4.
Consider the random function

gn(x) =
1

n

n∑
i=1

1

1 + xλ2
iψ
′
i(prox(xλ2

i ρi)(r̃i,(i)))
, defined for x ≥ 0.

Let B > 0 be in R+. We have, for any (x, y) ∈ R2
+, and x ≤ B, y ≤ B

sup
(x,y):|x−y|≤η,x≤B,y≤B

|gn(x))− gn(y)| ≤ η 1

n

n∑
i=1

(
λ2
i ‖ψ′i‖∞ +B Li(n)λ4

i ‖ψi‖∞
)
.

In particular, under P2 and F3-F4 we have, for C a constant independent of n and p,

P ∗

(
sup

(x,y):|x−y|≤η,x≤B,y≤B
|gn(x)− gn(y)| > δ

)
≤ η

δ
C . (E-42)

Hence, gn is stochastically equicontinuous on [0, B] for any B > 0 given.

We used the notation P ∗ above to denote outer probability and avoid a discussion of potential measure
theoretic issues associated with taking a supremum over a non-countable collection of random variables
(see e.g van der Vaart (1998), Section 18.2). We refer the reader to e.g Pollard (1984) for more details
on stochastic equicontinuity. (While we could probably avoid appealing to abstract concepts like outer
measures here, we use this approach because it is a standard tool in empirical process theory and helps us
avoid side measurability discussions that would distract us from the main focus of our proof.)

Proof. Let us consider the function, defined for x ≥ 0,

h(i)
u (x) =

1

1 + xλ2
iψ
′
i(prox(xλ2

i ρi)(u))
=

∂

∂u
prox(xλ2

i ρ)(u) .

The last equality comes from Lemma F.3.
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We have, since ψ′i is non-negative because ρi is convex,∣∣∣h(i)
u (x)− h(i)

u (y)
∣∣∣ ≤ |xλ2

iψ
′
i(prox(xλ2

i ρi)(u))− yλ2
iψ
′
i(prox(yλ2

i ρi)(u))| ∧ 1 .

Therefore, since x, y ≥ 0,∣∣∣h(i)
u (x)− h(i)

u (y)
∣∣∣ ≤ λ2

i |x− y|ψ′i(prox(xλ2
i ρi)(u)) + λ2

i y|ψ′i(prox(xλ2
i ρi)(u))− ψ′i(prox(yλ2

i ρi)(u))| .

In particular, if |x− y| ≤ η, and x ∨ y ≤ B

sup
y:|x−y|≤η;x∨y≤B

∣∣∣h(i)
u (x)− h(i)

u (y)
∣∣∣ ≤ λ2

i ηψ
′
i(prox(xλ2

i ρi)(u))

+Bλ2
i sup
y:|x−y|≤η,x∨y≤B

|ψ′i(prox(xλ2
i ρi)(u))− ψ′i(prox(yλ2

i ρi)(u))| .

Under assumption O3, ψ′i is Li(n)-Lipschitz, with Li(n) ≤ Cnα. Therefore, for xi, yi ≥ 0,

|ψ′i(prox(xiρi)(u))− ψ′i(prox(yiρi)(u))| ≤ Li(n)|prox(xiρi)(u)− prox(yiρi)(u)| .

We recall that, according to Lemma F.2,

∂

∂x
prox(xρi)(u) = − ψi(prox(xρi)(u))

1 + xψ′i(prox(xρi)(u))
.

Hence,

sup
x
| ∂
∂x

prox(xρi)(u)| ≤ ‖ψi‖∞ .

We finally conclude that

|ψ′i(prox(xiρ)(u))− ψ′i(prox(yiρ)(u))| ≤ [Li(n)‖ψi‖∞|xi − yi|] ∧ 2‖ψ′i‖∞ .

We therefore have, when x ∨ y ≤ B

sup
y:|x−y|≤η

∣∣∣h(i)
u (x)− h(i)

u (y)
∣∣∣ ≤ λ2

i ηψ
′
i(prox(xλ2

i ρi)(u)) +Bλ4
i Li(n)‖ψi‖∞η .

Therefore,

sup
(x,y):|x−y|≤η,x∨y≤B

∣∣∣h(i)
u (x)− h(i)

u (y)
∣∣∣ ≤ λ2

i η‖ψ′i‖∞ + ηBLi(n)λ4
i ‖ψi‖∞ .

This analysis shows that for x given, if |x− y| ≤ η and x ∨ y ≤ B, we have

sup
(x,y):|x−y|≤η,x≤B,y≤B

|gn(x))− gn(y)| ≤ η 1

n

n∑
i=1

(
λ2
i ‖ψ′i‖∞ +BLi(n)λ4

i ‖ψi‖∞
)
.

Under assumptions P2 and F3-F4, we can now take expectations and get the result in L1, since all the
terms on the right hand side are bounded in L1 under those assumptions.

We have established stochastic equicontinuity of gn(x) on [0, B].

Lemma E.3. Let us call Gn(x) = E (gn(x)). Let B > 0 be given. For any given x0 ≤ B,

gn(x0)−Gn(x0) = oL2(1) .

Under Assumptions O1-O7, P1-P4 and F1-F5, we also have

E∗

(
sup

0≤x≤B
|gn(x)−Gn(x)|

)
→ 0 .
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Proof. Under assumptions F1 and F5, we can divide the index set {1, . . . , n} into K subsets A1, . . . , AK ,
where K is finite (with n), in which (Xi, εi)i∈Aj play a symmetric role. Hence, var (gn(x0)) can be expressed
as a sum of variances and covariances of finitely many functions of finitely many random variables (λi, r̃i,(i)):

for those random variables, we just need to pick a representative in each subset {Aj}Kj=1.
We note that since ψ′i is Lipschitz and hence continuous, gn is an average of bounded continuous

functions of the random variables of interest to us.
Asymptotic pairwise independence of (λi, r̃i,(i))’s, and the fact that ψ′i can only be one of finitely many

functions imply that
var (gn(x0))→ 0

and therefore gives the first result.
Let us now pick ε > 0. By the stochastic equicontinuity of gn and our bound in Equation (E-42), we

can find x1, . . . , xK , independent of n, such that for all x ∈ [0, B], there exists l such that, when n is large
enough,

E (|gn(x)− gn(xl)|) ≤ ε .

Note that
|gn(x)−Gn(x)| ≤ |gn(x)− gn(xl)|+ |gn(xl)−Gn(xl)|+ |Gn(xl)−Gn(x)| .

We immediately get

E∗

(
sup

0≤x≤B
|gn(x)−Gn(x)|

)
≤ 2ε+ E

(
sup

1≤l≤K
|gn(xl)−Gn(xl)|

)
.

Because K is finite, the fact that for all l, |gn(xl) − Gn(xl)| → 0 in L2 implies that sup1≤l≤K |gn(xl) −
Gn(xl)| → 0 in L2. In particular, if n is sufficiently large,

E

(
sup

1≤l≤K
|gn(xl)−Gn(xl)|

)
≤ ε .

The lemma is shown.

Lemma E.4. Assume O1-O7, P1-P4 and F1-F5. Call cτ = 1
n trace

(
(S + τ Idp)

−1
)
. Call as before

gn(x) =
1

n

n∑
i=1

1

1 + xλ2
iψ
′
i(prox(xλ2

i ρi)(r̃i,(i)))
.

Then cτ is a near solution of
p

n
− τx− 1 + gn(x) = 0 ,

i.e p
n − τcτ − 1 + gn(cτ ) = oLk(1), when 3α− 1/2 < 0.
Asymptotically, near solutions of

δn(x) ,
p

n
− τx− 1 + gn(x) = 0 ,

are close to solutions of

∆n(x) =
p

n
− τx− 1 + E (gn(x)) = 0 .

More precisely, call Tn,ε = {x : |∆n(x)| ≤ ε}. Note that Tn,ε ⊆ (0, p/(nτ) + ε/τ). For any given ε, as
n→∞, near solutions of δn(xn) = 0 belong to Tn,ε with high-probability.

Our assumptions concerning the possible distributions of ε′is, specifically F1, guarantee that as n→∞,
there is a unique solution to ∆n(x) = 0.

Hence cτ is asymptotically deterministic.
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Proof. Note that gn(x) ≤ 1.
Let δn be the function

δn(x) =
p

n
− τx− 1 + gn(x) ,

and ∆n(x) = E (δn(x)). Call xn a solution δn(xn) = 0 and xn,0 a solution of ∆n(xn,0) = 0. Since 0 ≤ gn ≤ 1,
we see that xn ≤ p/(nτ), for otherwise, δn(x) < 0. The same argument shows that if x > (p/n + ε)/τ ,
∆n(x) < −ε and x /∈ Tn,ε. Similarly, near solutions of δn(x) = 0 must be less or equal to (p/n+ ε)/τ .
• Proof of the fact that cτ is such that δn(cτ ) = o(1)

An important remark is that cτ is a near solution of δn(x) = 0. This follows most clearly for arguments we
have developed for cτ,p so we start by giving details through arguments for this random variable. Recall
that in the notation of Lemma D.4, we had

p− 1

n
− τcτ,p =

1

n
trace (Idn −M) .

Now, according to Equation (D-33),

1

n
trace (Idn −M) = 1− 1

n

n∑
i=1

1

1 + ψ′i(ri,[p])
1
nV
′
i (Sp(i) + τ Id)−1Vi

.

According to Lemmas D.4, D.5 and D.6, we have

sup
i

∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi − λ2
i cτ,p

∣∣∣∣ = OLk

(
polyLog(n)

n1/2−2α

)
.

Of course, when x ≥ 0 and y ≥ 0, |1/(1 + x)− 1/(1 + y)| ≤ |x− y| ∧ 1. Hence, we see that∣∣∣∣∣ 1n
n∑
i=1

1

1 + ψ′i(ri,[p])
1
nV
′
i (Sp(i) + τ Id)−1Vi

− 1

n

n∑
i=1

1

1 + ψ′i(ri,[p])λ
2
i cτ,p

∣∣∣∣∣ ≤
sup

1≤i≤n

∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi − λ2
i cτ,p

∣∣∣∣ 1

n

n∑
i=1

‖ψ′i‖∞ .

We conclude that

p/n− τcτ,p − 1 +
1

n

n∑
i=1

1

1 + λ2
i cτ,pψ

′
i(ri,[p])

= OLk(n−1/2+2αpolyLog(n)) .

Exactly the same computations can be made with cτ , so we have established that

p/n− τcτ − 1 +
1

n

n∑
i=1

1

1 + cτλ2
iψ
′
i(Ri)

= OLk(n−1/2+2αpolyLog(n)) . (E-43)

Now we have seen in Theorem 2.2 that

sup
i
|Ri − prox(ciρi)(r̃i,(i))| = OLk(n−1/2+αpolyLog(n)) .

Through our assumptions on ψ′i, this of course implies that

sup
i
|ψ′i(Ri)− ψ′i[prox(ciρi)(r̃i,(i))]| = OLk(n−1/2+2αpolyLog(n))

We have furthermore noted that supi |ci − λ2
i cτ | = OLk(n−1/2+2αpolyLog(n)) in Corollary D.7. Using

Lemma F.2, this implies that∣∣prox(ciρi)(r̃i,(i))− prox(λ2
i cτ )(r̃i,(i))

∣∣ ≤ ‖ψi‖∞|ci − λ2
i cτ |
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and hence ∣∣ψ′i[prox(ciρi)(r̃i,(i))]− ψ′i[prox(λ2
i cτρi)(r̃i,(i))]

∣∣ = OLk

(
‖ψi‖∞n−1/2+3αpolyLog(n)

)
.

Gathering everything together, we get∣∣ψ′i(Ri)− ψ′i(prox(λ2
i cτρi)(r̃i,(i)))

∣∣ = OLk([‖ψi‖∞ + 1]n−1/2+3αpolyLog(n))

So we have established that δn(cτ ) = OLk(n−1/2+3αpolyLog(n)).
• Final details

Note that for any given x, δn(x)−∆n(x) = oP (1) by using Lemma E.3. In our case, with the notation of
this lemma, B = p/(nτ) + η/τ , for η > 0 given.

This implies that, for any given ε > 0

sup
x∈(0,p/(nτ)+η/τ ]

|δn(x)−∆n(x)| < ε ,

with high-probability when n is large. Therefore, for any ε > 0, if xn is a solution of δn(xn) = 0,

|∆n(xn)| ≤ ε with high-probability.

This exactly means that xn ∈ Tn,ε with high-probability. The same argument applies for near solutions of
δn(x) = 0, which, for any ε > 0 must belong to Tn,ε as n → ∞ with high-probability. Of course, there is
nothing random about Tn,ε which is a deterministic set. Note that Tn,ε is compact because it is bounded
and closed, using the fact that Gn = E (gn) is continuous.

If Tn,0 were reduced to a single point, we would have established the asymptotically deterministic
character of cτ .

Given our work concerning the limiting behavior of r̃i,(i) and our assumptions about εi’s, we see that
Lemma H.1 applies to limn→∞∆n(x) under assumption F1. Therefore, as n → ∞, Tn,0 is reduced to a
point and cτ is asymptotically non-random. (Note that assumption F1 is stated in terms of the properties
of densities of random variables of the form εi+rZi where Zi is N (0, 1), independent of εi and r is arbitrary;
Assumption F1 also gives us guarantees for εi+ rλiZi at λi given by a simple change of variable. The Wi’s
appearing in Lemma H.1 are of the form εi + |λi|rZi, so assumption F1 is all we need for Lemma H.1 to
apply. )

E-3 Proof of Theorem 2.1

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1
As we had noted in El Karoui et al. (2011),

∂

∂t
prox(cρ)(t) = prox(cρ)′(t) =

1

1 + cψ′(prox(cρ)(t))
.

So ∆n can be interpreted as

∆n(x) =
p

n
− τx− 1 +

1

n

n∑
i=1

E
(
prox(xλ2

i ρi)
′(r̃i,(i))

)
.

The fact that cτ is asymptotically arbitrarily close to the root of ∆n(x) = 0 gives us the first equation in
the system appearing in Theorem 2.1. The second equation of the system comes from Equation (D-41).
Theorem 2.1 is shown, with cρ(κ) being the limit of cτ .

E-4 About ci’s, ξn, Np, and the limiting distribution of β̂(p)

Theorem 2.1 as well as many of our intermediate results have interesting consequences for various
quantities we encountered. Let us now state them.

When we use the expression “under our assumptions”, we mean assumptions O1-O7, P1-P4 and
F1-F5.
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E-4.1 On ci’s

Recall that in Corollary D.7 we had shown that under our assumptions O1-O7 and P1-P4

sup
i
|ci − λ2

i cτ | = OLk(polyLog(n)n2α−1/2) .

Since we have now shown that cτ has a deterministic limit cρ(κ), we have the following lemma.

Lemma E.5. We have under our assumptions O1-O7 and P1-P4

sup
i
|Ri − prox(λ2

i cτρi)(r̃i,(i))| = OLk(n2α−1/2polyLog(n)) .

Hence, under (all of) our assumptions we have asymptotically, for any given i

|Ri − prox(λ2
i cρ(κ)ρi)(r̃i,(i))| = oL1(1) .

If we furthermore assume that λi’s are uniformly bounded, we have

sup
1≤i≤n

|Ri − prox(λ2
i cρ(κ)ρi)(r̃i,(i))| = oLk(1)

Proof. Recall Lemma F.2 implies that

sup
x∈R
|prox(c1ρ)[x]− prox(c2ρ)[x]| ≤ ‖ψ‖∞|c1 − c2| .

Therefore, Corollary D.7 implies that

sup
1≤i≤n

|prox(λ2
i cτρi)(r̃i,(i))− prox(ciρi)(r̃i,(i))| ≤ sup

i
‖ψi‖∞ sup

i
|ci − λ2

i cτ | = OLk(polyLog(n)n2α−1/2) .

So in light of Theorem C.6 we conclude that

sup
i
|Ri − prox(λ2

i cτρi)(r̃i,(i))| = OLk(n2α−1/2polyLog(n))

Since cτ is bounded by p/(nτ) and therefore so is cρ(κ), we see that converge in probability of cτ to
cρ(κ) implies convergence in Lk for any k. Using Holder’s inequality, we therefore see that

E

(
sup
x∈R
|prox(λ2

i cτρi)[x]− prox(λ2
i cρ(κ)ρi)[x]|

)
≤
√

E ((cτ − cρ(κ))2) E
(
λ4
i

)
.

This gives us the second result of the lemma.
The last result is shown by simply remarking that

sup
i

sup
x∈R
|prox(λ2

i cτρi)[x]− prox(λ2
i cρ(κ)ρi)[x]| ≤ (sup

i
λ2
i )|cτ − cρ(κ)| .

E-4.2 On ξn

We have the following lemma.

Lemma E.6. Under our assumptions, ξn → ξ in probability, where ξ is deterministic.
Furthermore, ξn is bounded in L1 and hence in probability.
We also have

ξn =
p− 1

ncτ,p
− τ + oP (1) =

p− 1

ncτ
− τ + oP (1) ,

and cτ,p as well as cτ are bounded away from 0 in probability.
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We note that using the last result and arguments in the proof below, we see that, with the notations
of Theorem 2.1

ξ =
p− 1

ncρ(κ)
− τ .

Proof. The proof follows easily from the result of Proposition D.8 which gives us that

cτ,p(ξn + τ)− p− 1

n
= OLk(n−1/2+2αpolyLog(n)) = oP (1) .

Since we have shown that cτ,p convergences to a deterministic constant (recall that cτ − cτ,p → 0), we see
that it is also the case for ξn. Note also that ξn ≤ 1

n

∑n
i=1X

2
i (p)‖ψ′i‖∞, so E (ξn) remains bounded under

our assumptions.
To get the last result of the lemma, we just need to show that we can divide in the above display by

cτ,p and still have something that converges to 0. We now show that cτ,p is bounded below. Note that

cτ,p −
p− 1

n(ξn + τ)
= oP (1) .

Since ξn is bounded in probability, we see that p−1
n(ξn+τ) is bounded away from 0 in probability, which

guarantees that cτ,p is bounded away from 0 in probability.
The results involving cτ immediately follow by appealing to Proposition D.11.

E-4.3 On Np

Recall that by definition, we had

Np =
1√
n

n∑
i=1

Xi(p)ψi(ri,[p]) .

We have the following result.

Lemma E.7. Under our assumptions, Np is asymptotically N (0, v2
n), with

v2
n =

1

n

n∑
i=1

E
(
λ2
iψ

2
i (prox(cτλ

2
i ρi)(r̃i,(i)))

)
.

Furthermore, there exists v such that v2
n → v2, so that

Np =⇒ N (0, v2) .

As the proof makes clear, we can replace in the asymptotic statements above v2
n by

v̂2
n =

1

n

n∑
i=1

λ2
iψ

2
i (prox(cτλ

2
i ρi)(r̃i,(i))) .

Proof. Note that we can write

Np =
1√
n

n∑
i=1

Xi(p)λiψi(ri,[p]) .

Under our assumptions Xi(p)’s are independent and independent of {λiψi(ri,[p])}ni=1. The mild generaliza-
tion of the Lindeberg-Feller argument given in the proof of Lemma E.1 now applies, using in the notation
of that lemma an,p(k) = n−1/2λiψi(ri,[p]) and recalling that |ψi(ri,[p])| ≤ ‖ψi‖∞. Since λi’s have 4 uniformly
bounded moments under our assumptions, the fact that

Np behaves like AnN (0, 1)
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follows immediately, whereA2
n =

∑n
k=1 a

2
n,p(k) = 1

n

∑n
i=1 λ

2
iψ

2
i (ri,[p]). We note that E

(
A2
n

)
≤ 1

n

∑n
i=1‖ψi‖2∞ =

O(1) under our assumptions.
Work similar to the one done in the proof of Proposition D.12 shows that under our assumptions

A2
n −

1

n

n∑
i=1

λ2
iψ

2
i [prox(cτλ

2
i ρi)(r̃i,(i))] = oL2(1) .

Asymptotic pairwise independence of (λi, r̃i,(i)) and (λj , r̃j,(j)) - see Lemma E.1 - in connection with As-
sumption F5 guarantees that

var

(
1

n

n∑
i=1

λ2
iψ

2
i [prox(cτλ

2
i ρi)(r̃i,(i))]

)
→ 0 .

We conclude that A2
n is asymptotically deterministic and so is An. By Slutsky’s lemma we have

Np behaves like N (0, v2
n)

where

v2
n =

1

n

n∑
i=1

E
(
λ2
iψ

2
i [prox(cτλ

2
i ρi)(r̃i,(i))]

)
,

since E
(
A2
n

)
− v2

n → 0.
We note that under our assumptions cτ has limit cρ(κ) and ψi is a bounded continuous function (one

of only finitely many possible functions). Also, λi’s have 4 moments. Therefore, since r̃i,(i) behaves
asymptotically like εi + λirρ(κ)Zi, where Zi ∼ N (0, 1) independent of εi and rρ(κ) is deterministic, we see
that v2

n has a limit v2. Of course,

v2 = lim
n→∞

1

n

n∑
i=1

E
(
λ2
iψ

2
i [prox(cρ(κ)λ2

i ρi)(r̃i,(i))]
)
.

In the notation of Theorem 2.1, we can rewrite v2 as

v2 = lim
n→∞

1

n

n∑
i=1

E
(
λ2
iψ

2
i [prox(cρ(κ)λ2

i ρi)(Wi)]
)

• Minor technical point: it is true that λ2
iψ

2
i [prox(cρ(κ)λ2

i ρi)(r̃i,(i))]) is not a bounded continuous
function of (λi, r̃i,(i)). However, [λ2

i ∧M ]ψ2
i [prox(cρ(κ)λ2

i ρi)(r̃i,(i))]) is, for any M . Since λi has 4 moments,
it is easy to see that

E
(∣∣[λ2

i ∧M ]ψ2
i [prox(cρ(κ)λ2

i ρi)(r̃i,(i))])− λ2
iψ

2
i [prox(cρ(κ)λ2

i ρi)(r̃i,(i))])
∣∣) ≤ E

(
λ4
i

)
M2

‖ψi‖2∞ .

This standard approximation/uniform integrability argument shows that

E
(
λ2
iψ

2
i [prox(cρ(κ)λ2

i ρi)(r̃i,(i))]
)
−E

(
λ2
iψ

2
i [prox(cρ(κ)λ2

i ρi)(Wi)]
)
→ 0,

since M can be chosen arbitrarily large.

E-4.4 Asymptotic normality of β̂p

One of the aims of the previous results was to lead to a fluctuation result for β̂p.

Proposition E.8. We have, with the notation of the previous lemmas,

√
n[(τ + ξn)β̂p − β0(p)ξn] =⇒ N (0, v2) .

Furthermore, provided β0(p) = O(n−1/2), we also have

√
n[(τ + ξ)β̂p − β0(p)ξ] =⇒ N (0, v2) .
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The proof of the proposition we give below shows that ξ in the previous display can be replaced by
any quantity ωn such that ξn − ωn = oP (1). This in particular the case if we choose ωn = p/(ncτ ) − τ ,
according to Lemma E.6.

The main advantage of this ωn is that it is computable from the data. And we can therefore test the
null hypothesis that β0(p) = 0, since we can approximate v2 by 1

n

∑n
i=1 λ

2
iψ

2
i [prox(cτλ

2
i ρi)(r̃i,(i))] according

to the proof of Lemma E.7.

Proof. Recall that we have shown in Theorem D.10 that

√
n(β̂p − bp) = oP (1) .

Recall that we showed that ξn = OLk(1) under our assumptions. It is easy to verify that the same is true
for ξ, its limit. We also see that √

n(τ + ξn)(β̂p − bp) = oP (1) .

Recall that by definition, √
n[(τ + ξn)bp − ξnβ0(p)] = Np .

So we conclude, using Slutsky’s lemma that

√
n[(τ + ξn)β̂p − ξnβ0(p)] =⇒ N (0, v2) .

When β0(p) = O(n−1/2), we see that

√
n(ξ − ξn)(β0(p)) = oP (1) .

Furthermore, in this setting
√
nbp = OP (1) and hence

√
nβ̂p = OP (1). We conclude that then

√
nβ̂p(ξn − ξ) = oP (1) .

Therefore, √
n[(τ + ξn)β̂p − ξnβ0(p)] =

√
n[(τ + ξ)β̂p − ξβ0(p)] + oP (1)

and we get the second result of the proposition through Slutsky’s lemma.

F Notes on the proximal mapping

In this section of the Appendix we remind the reader of elementary properties of the proximal mapping.
The proofs, when needed, can be found in e.g El Karoui (2013).

Lemma F.1. Almost by definition, we have

prox(cρ)(x) + cψ(prox(cρ)(x)) = x .

Let ρ be differentiable and such that ψ changes sign at 0, i.e sign(ψ(x)) = sign(x) for x 6= 0. Then,

prox(cρ)(0) = 0 .

Furthermore,
|ψ(prox(cρ)(x))| ≤ |ψ(x)| .

Also,
|ψ(prox(cρ)(x))| ≤ |x|/c .

We will also need the following simple result.
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Lemma F.2. Suppose x is a real and ρ is twice differentiable and convex. Then, for c > 0, we have

∂

∂c
prox(cρ)(x) = − ψ(prox(cρ)(x))

1 + cψ′(prox(cρ)(x))
.

and
∂

∂c
ρ(prox(cρ)(x)) = − ψ2(prox(cρ)(x))

1 + cψ′(prox(cρ)(x))
.

In particular, at x given c→ ρ(prox(cρ)(x)) is decreasing in c.

We also make the following observation, which is useful to obtain a compact representation for the
system of equations (4).

Lemma F.3. We have
∂

∂x
prox(cρ)(x) =

1

1 + cψ′(prox(cρ)(x))
.

Moreover, at c fixed, when ψ′ is continuous, x→ 1
1+cψ′(prox(cρ)(x)) is a bounded, continuous function of x.

A proof of the first fact follows immediately from the well-known representation (see Moreau (1965))

prox(cρ)(x) = (Id + cψ)−1(x) .

The second result is also immediate, since ψ′ ≥ 0.
We finally make notice of the following simple fact.

Lemma F.4. The function c→ [cψ(prox(cρ)(x))]2 (defined on R+) is increasing, for any x.

Examples : for the sake of concreteness, we now give a couple examples of proximal mappings.

1. if ρ(x) = x2/2, prox(cρ)[x] = x
1+c .

2. if ρ(x) = |x|, prox(cρ)[x] = sgn(x)(|x| − c)+, i.e the “soft-thresholding” function.

G On convex Lipschitz functions of random variables

In this section, we provide a brief reminder concerning convex Lipschitz functions of random variables.
The proofs can be found in El Karoui (2013)

Lemma G.1. Suppose that {Xi}ni=1 ∈ Rp satisfy the following concentration property: ∃Cn, cn such that
for any Gi, a convex, 1-Lipschitz (with respect to Euclidean norm) function of Xi,

P (|Gi(Xi)−mi| ≥ t) ≤ Cn exp(−cnt2) ,

where mi is deterministic.
Let us now fix {Fi}ni=1, n functions which are convex and 1-Lipschitz in Xi. Then if Fn = supi |Fi(Xi)−

mi|, we have, even when the Xi’s are dependent:

1. if un =
√

log(n)/cn, E (Fn) ≤ un + Cn/(2
√
cn
√

log n) =
√

logn√
cn

(1 + Cn/(2 log n)). Similar bounds

hold in Lk for any finite given k.

2. when Cn ≤ C, where C is independent of n, there exists K, independent of n such that Fn/un ≤ K
with overwhelming probability, i.e probability asymptotically smaller than any power of 1/n.

3. mi can be chosen to be the mean or the median of Fi(Xi).

In particular,
Fn = O(polyLog(n)/

√
cn)

in probability and any Lk, k fixed and given.
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We note that similar techniques can be used to extend the result to situations where we have P (|Gi(Xi)−
mi| ≥ t) ≤ Cn exp(−cntβ), with β 6= 2. Of course, the order of magnitudes of the bounds then change: in

particular, wherever
√
cn appears, it would have to be replaced by c

1/β
n . But since under our assumptions

1/c is at most polyLog(n), this would effectively have no impact on our results.
We now turn our attention to a slightly more complicated setting.
We recall that we denote by X(i) = {X1, . . . , Xi−1, Xi+1, . . . , Xn}. If I is a subset of {1, . . . , n} of size

n − 1, we call XI the collection of the corresponding Xi random variables. We call XIc the remaining
random variable.

Lemma G.2. Suppose Xi’s are independent and satisfy the concentration inequalities as above. Con-
sider the situation where FIk(·) is a convex Lipschitz function of 1 variable; FIk(ξ) depends on X through
XIk only and we call LIk the Lipschitz constant of FIk(·) (at XIk given). LIk is assumed to be ran-
dom, since XIk is. Call mFIk

= mFi(XIc
k

)|XIk , m being the mean or the median. As before, call Fn =

supj=1,...,n |FIj (XIcj
) −mFIj

| Then Fn = O(
√

log n/cn sup1≤j≤n LIj ) in probability and in
√
L2k, i.e there

exists K > 0, independent of n, such that

E
(
Fnk

)
≤ K(

√
log n/cn)k

√√√√E

(
sup

1≤j≤n
L2k
Ij

)
.

Hence, Fn is polyLog(n)/c
1/2
n sup1≤j≤n LIj in

√
L2k.

We repeatedly use the following lemma in the proof.

Lemma G.3. Suppose the assumptions of the previous Lemma are satisfied. Consider QIj = 1
nX
′
Icj
MIjXIcj

,

where MIj is a random positive-semidefinite matrix depending only on XIj whose largest eigenvalue is
λmax,Ij . Assume that E (Xi) = 0, cov (Xi) = Idp and ncn →∞. Then, we have in Lk,

sup
1≤j≤n

∣∣∣∣QIj − 1

n
trace

(
MIj

)∣∣∣∣ = OLk(
polyLog(n)
√
ncn

sup
1≤j≤n

λmax,Ij ) .

The same bound holds when considering a single QIj without the polyLog(n) term.

On the spectral norm of covariance matrices

Lemma G.4. Suppose Xi’s are independent random vectors in Rp, satisfying O4, and having mean 0 and
covariance Idp. Suppose that λi’s satisfy O6. Let Σ̂ = 1

n

∑n
i=1XiX

′
i. Then,

|||Σ̂|||2 = OP (polyLog(n)c−1
n ) .

The results hold also in Lk.

Proof. The proof is exactly similar to that given in El Karoui (2013), which gives, following a simple
adaption of the well-known ε-net argument explained e.g in Talagrand (2003), Appendix A.4 that

||| 1
n

n∑
i=1

XiX ′i |||2 = OLk(c−1
n ) .

It is clear that

|||Σ̂|||2 ≤ ( sup
1≤i≤n

λ2
i )|||

1

n

n∑
i=1

XiX ′i |||2 ,

and the result follows immediately.
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H Miscellaneous results

H-1 An analytic result

We now study the roots of F (x) = 0, where

F (x) =
p

n
− τx− 1 +

1

n

n∑
i=1

E
(
(prox(xλ2

i ρi))
′(Wi)

)
where Wi’s are random variables and (prox(xρ))′(t) = ∂

∂tprox(xρ)(t) = 1
1+xψ′(prox(xρ)(t)) .

We now show that under mild conditions on Wi’s this equation has a unique solution. We allow Wi to
depend on the random variables λi’s.

Lemma H.1. Suppose that Wi’s have smooth densities fi(t, λi) with sign(f ′i(x, λi)) = −sign(x). Suppose
further that lim|t|→∞ |t|fi(t, λi) = 0 and that sign(ψi(x)) = sign(x). Then, if

Fi(x) =
p

n
− τx− 1 + E

(
(prox(xλ2

i ρ))′(Wi)
)
,

the function Fi is decreasing, with F ′i (x) ≤ −τ . Hence, the same applies to F .
In particular, the equation F (x) = 0 has a unique solution.

Proof. We call
Gi(x) , E

(
(prox(xλ2

i ρi))
′(Wi)

)
,

and
Gi(x, λi) , E

(
(prox(xλ2

i ρi))
′(Wi)|λi

)
Of course,

E
(
(prox(xλ2

i ρ))′(Wi)|λi
)

=

∫
(prox(xλ2

i ρ))′(t)fi(t, λi)dt.

Using contractivity of the proximal mapping (see Moreau (1965)) we see that lim|t|→∞ prox(xλ2
i ρi)(t)fi(t, λi) =

0 under our assumptions.
Integrating the previous equation by parts, we see that

Gi(x, λi) = −
∫

(prox(xλ2
i ρi))(t)f

′
i(t, λi)dt .

To compute G′i(x, λi), we differentiate under the integral sign (under our assumptions the conditions of
Theorem 9.1 in Durrett (1996) are satisfied) to get

G′i(x, λi) =

∫
ψi(prox(xλ2

i ρi)(t))f
′
i(t, λi)

1 + xλ2
iψ
′
i(prox(xλ2

i ρi)(t))
dt .

Under our assumptions, sign(ψi(prox(xλ2
i ρi)(t))) = sign(t) and sign(f ′i(t, λi)) = −sign(t), so that

∀t 6= 0, sign(ψi(prox(xλ2
i ρi)(t))f

′
i(t, λi)) = −1 .

Since the denominator of the function we integrate is positive, we conclude that

G′i(x, λi) ≤ 0 and G′i(x) ≤ 0 .

Since F ′i (x) = −τ +G′i(x), we see that F ′i (x) ≤ −τ < 0. Therefore Fi is a decreasing function on R+. Of
course, prox(0ρ)(t) = t, so that Fi(0) = p/n and limx→∞ Fi(x) = −∞, since, for instance,

0 ≤ prox(xρ)′(t) =
1

1 + xψ′[prox(xρ)(t)]
≤ 1 .

So we conclude that the equation Fi(x) = 0 has a unique root. (Since Fi is differentiable, Fi is of course
continuous.)

We note that

F (x) =
1

n

n∑
i=1

Fi(x) .

Therefore, F (0) = p/n and F ′(x) ≤ −τ . So F is decreasing, differentiable and hence has a unique root.
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Remark: the conditions on the density of W are satisfied in many situations. For instance if Wi =
ε+ rλiZ, where ε is symmetric about 0 and log-concave, Z is N (0, 1), independent of λi and ε, and r > 0,
it is clear that the density of W satisfies the conditions of our lemma. Similar results hold under weaker
assumptions on ε of course. For more details, we refer the reader to e.g Karlin (1968), Prékopa (1973),
Ibragimov (1956), and Dharmadhikari and Joag-Dev (1988).

In particular, we recall Theorem 1.6 in Dharmadhikari and Joag-Dev (1988) which says that the con-
volution of two symmetric unimodal distributions on R is unimodal. Hence, when ε has a symmetric and
unimodal distribution, so does Wi = ε+λirZ, for any r. This is for instance the case when ε has a Cauchy
distribution.

H-2 A linear algebraic remark

We need the following lemma at some point in the proof.

Lemma H.2. Suppose the p× p matrix A is positive semi-definite and

A =

(
Γ v
v′ a

)
.

Here a ∈ R. Let τ be a strictly positive real. Call Γτ = Γ + τ Idp−1. Then we have

trace
(
(A+ τ Idp)

−1
)

= trace
(
Γ−1
τ

)
+

1 + v′Γ−2
τ v

a+ τ − v′Γ−1
τ v

.

In particular, ∣∣trace
(
(A+ τ)−1

)
− trace

(
Γ−1
τ

)∣∣ ≤ 1 + a/τ

τ
.

The proof is simple and we refer the reader to El Karoui (2013) for details if needed.
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