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Abstract

Towards Programmable Buildings:
A Study of System Design for Application Portability in Buildings

by
Andrew Krioukov
Masters of Science in Computer Science - Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor David Culler, Chair

Buildings consume 72% of electricity in the U.S. [30] and are a prime opportunity for software
to improve sustainability and unlock new capabilities. Many commercial buildings have
digital controls and extensive sensor networks that can be used to develop novel applications
for saving energy, detecting faults, improving comfort, etc. However, buildings are custom
designed, leading to differences in functionality, connectivity, controls and operation. As a
result today’s building applications are hard to write and non-portable. We present BAS,
an application programming interface and runtime that addresses these issues using a fuzzy
query API, a graph representation of building metadata and a hierarchical driver model for
building components.

We demonstrate and evaluate BAS by exploring three applications enabled by this archi-
tecture. Specifically, we focus on a class of applications that incorporate occupant feedback
into building operation. We develop a personalized lighting control application that uses ex-
isting lighting hardware and saves over 50% of lighting energy. We also develop a ventilation
optimization and a personal HVAC control application, demonstrating that BAS enables
rapid development and scale for building applications.
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Chapter 1

Introduction

Buildings, where we spend over 90% of our time [31] and 72% of our electricity in the U.S. [30],
are a prime opportunity for information technology to improve sustainability. However, the
building sector is slow to innovate, with design lifetimes counted in the decades and limited
budgets for improvements. Though changes in building codes exert some pressure on new
buildings to incorporate new technologies that improve comfort and energy efficiency, little
is generally done to improve existing buildings and their control systems.

Investigation of building applications Achieving portability in building application

Nearly half of existing commercial buildings contain digital control systems that comprise
some of the largest deployed sensor networks, often containing thousands of sensors and
actuators per building. This existing infrastructure is a potential goldmine, enabling new
analyses and applications that can be implemented in software alone. These applications
have the potential to drastically improve building energy use, occupant comfort, reliability
and maintenance (e.g. [13, 17, 27]).

However, today there are a myriad of challenges in developing building applications: the
systems deployed in buildings are a cornucopia of aged technologies speaking a wide array of
protocols; the control systems that govern building operation are vertically-integrated, barely
programmable, and not extensible; and the custom design of buildings and building control
systems by a range of different parties results in a potpourri of naming schemes. Today,
this requires applications to be custom written for each building by an engineer with deep
knowledge of the particular architecture, connectivity, and control operation — effectively,
the building equivalent of programming in assembly.

We present a new system architecture that addresses these problems and enables writing
portable code by providing methods to explicitly and implicitly handle differences in building
designs. A key insight of the design is the use of fuzzy, relativistic queries to allow authors
to express their high-level intent in a way that is inherently portable, as well as support-
ing programmatic exploration of a building’s specific components, allowing applications to
explicitly handle differences amongst buildings. Thus, programmers can alternate between
macro and micro level views of the building to express both general intentions and specific
actions. We also present a hierarchical driver model that efficiently abstracts differences in
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building control systems and provides a consistent API to application developers.

Finally, we explore applications that are enabled by this new framework, specifically
focusing on a class of personal control applications that incorporate occupant feedback into
building operation. We show that by providing a simple user interface that can actuate
the building, we both save energy and make occupants more comfortable. Our prototype
personalized lighting controls saved over 50% of lighting energy over a period of 12 weeks.



Chapter 2

Background

2.1 HVAC Mechanical Systems

Most modern commercial buildings contain extensive systems to ensure occupant health,
safety, and comfort. This includes providing heating, ventilation, and air conditioning
(HVAC), as well as, lighting, security, and fire safety services. These systems are often
networked and can be centrally managed through operator interfaces. However, each system
is often provided by a different vendor and has little interoperability or extensibility beyond
the scope of the original design.

Cooling Tower Fan

Cold Water
Loop L

Outside Air Intake

N+

{; Hot Water
Damper Cooling Coil & Valve Loop
(Economizer) Supply Fan
I (Air Handler Unit)
i Dampers ...
7 ]
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Exhaust Air 7 & Valves
Air from Rooms Air to Rooms

Figure 2.1: A typical HVAC system for a commercial building.

A typical commercial building HVAC system is shown in Figure 2.1. Fresh air is brought
in from the outside to satisfy health requirements and is mixed with return air from the
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building. This mixed air is cooled by passing over cold water coils and blown through ducts
throughout the building. In each thermal zone, typically encompassing 1 to 3 private offices
or 4 to 8 cubicles, the air passes through a variable air volume (VAV) box that dynamically
controls airflow to meet temperature and ventilation requirements. From there, air enters
the occupied space through diffusers. After circulating, air is sucked back through a return
air plenum where a portion is exhausted and the remaining portion is recirculated.

A typical HVAC system for a large office buildings contains thousands of sensors and actu-
ators measuring air and water temperatures, airflow, humidity, and duct pressures through-
out the building. Actuators range from simple on/off relays to variable speed fans and
pumps, water valves, and dampers. A modern HVAC system with digital controls contains
embedded controllers, also known as programmable logic controllers (PLCs), throughout the
building that are used to collect data from these sensors and to run the logic to actuate
active components. These controllers are typically networked to allow communication be-
tween logic running on different PLCs and to allow a level of supervisory control, enabling
an engineer or facility manager to view all sensor data and set configuration parameters (e.g.
set points). The physical layer for building networks is most often RS-485 or Ethernet with
a range of open and closed protocols running on top.

The logic running on embedded controllers is custom written for each building. Histori-
cally these devices were programmed with ladder logic [16]; today, a range of graphical and
text-based programming languages are used. For example, Siemens Apogee systems use the
Powers Process Control Language [29], a BASIC-like interpreted language, while Automated
Logic WebCTRL systems use a graphical tool that consists of “microblocks,” simple func-
tions and logical blocks that can be wired together [3]. All of these systems lack meaningful
high-level abstractions, easy communication with data sources outside the building, and an
environment that allows rapid upgrades. Instead, today’s building applications are hard-
coded in low-level programming languages, requiring an engineer to visit the building for
even minor changes.

Most HVAC vendors follow a stovepipe design with proprietary sensors, actuators, con-
trollers, programming languages, and management software, making upgradability and in-
teroperability a major challenge. Several standards have been established to address these
problems. BACnet [1], standardized in 1995, is the most widely adopted controls standard.
It establishes a common protocol for communicating with controllers, or in some cases with
gateways that translate to internal proprietary protocols.

2.2 Existing Protocols

BAChnet, or the Building Automation and Control Network protocol, is widely deployed and
designed to allow control systems to interoperate. BACnet specifies physical, data link,
network, and application layers. At the physical and link layers BACnet can run over RS-
485, Ethernet or IP. At the application layer, BACnet exposes a set of devices, building
controllers, that are discoverable through a broadcast message. Each device exposes a set of
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objects (points) corresponding to either physical sensors and actuators or virtual inputs and
outputs of the control logic. BACnet objects have a number of properties including name,
description string, unit and present value. These properties can be read and in some cases
written.

Unfortunately, there is no standardization of BACnet point names or values: a variable air
volume box can be represented by tens of points with unrelated names and widely differing
functionality from one vendor versus another. Crucial metadata about the location and
functionality of each point is inconsistently encoded in names, description strings and units.
BAChnet also does not specify a standard way to reprogram building controllers; instead,
writes to BACnet points may override the inputs or outputs of the programmed control
logic.

SOAP, the Simple Object Access Protocol [32], is another commonly used interoper-
ability protocol for control systems. SOAP is a generic RPC interface expressed in XML
and typically run over HT'TP. In building control systems, SOAP is often used to define ba-
sic discovery, read and write methods. For example, Automated Logic systems define String
getValue(String path), String setValue(String path, String newValue), and String[]
getChildren(String path) methods [2]. Hierarchical “path” strings are used to discover
and address specific points. As with BACnet, there is no standardization of names or paths
and no consistent way express metadata. A potpourri of less common protocols including
WirelessHART [35] and Modbus [20] are also in use. These suffer from similar problems of
inconsistent naming, lack of metadata and a lack of meaningful high-level abstractions.

Table 2.1 shows an example of BACnet point names form a large office building, Sutardja
Dai Hall. Names are specified by a controls engineer during the initial configuration of the
system. Most engineers follow a loose convention of acronyms and hierarchical naming. For
example, in Sutardja Dai Hall periods, colons and underscores are used to separate parts of
the name. All points are prefixed by SDH, an acronym for the building name. VAV points
are named with a floor number and identifier — “S4-01” represents the first VAV on the
4th floor. Sensors and actuators pertaining to each VAV follow the name. The underlying
functionality or control logic is not explicitly defined in BACnet and must be found in a
separate manual [28]. In this control system, a single set point (“CTL STPT”) is used
combined with a heating or cooling mode (“HEAT.COOL”). When in heating mode the
VAV will provide hot air while the room temperature (“ROOM TEMP”) is below the set
point, and will provide only minimum required ventilation air otherwise. In cooling mode,
cold air is provided whenever the room temperature is above the set point. In the default
configuration, this mode is switched automatically with a 1 degree hysteresis band.

Table 2.2 shows an analogous list of VAV sense and control points for Bancroft Library,
a large office and library building with an Automated Logic control system and SOAP data
access. Paths have a clear hierarchical structure, but the metadata encoded at each level is
still inconsistent and follows only a loose convention. “doe_vav_c-2-14" indicates the building
name, the Bancroft Library is adjacent to the Doe Library and was previously referred to
as the Doe Library Annex, as well as the device type (VAV), floor (2) and identifier (14).
Within each VAV, the control points use different acronyms for roughly the same set of
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Point Name Meaning
SDH.S4-01:ROOM TEMP [Float] Floor 4, Zone 1, Room Temperature (F)
SDH.S4-01:CTL STPT [Float] Temperature Setpoint (F)
SDH.S4-01:VLV POS [Int] Measured Hot Water Valve Position (%)
SDH.S4-01:VLV CMND [Int] Hot Water Valve Position Setpoint (%)
SDH.S4-01:HEAT.COOL [Boolean| Heating or Cooling Mode
SDH.S4-01:AIR VOLUME [Int] Airflow (CFM)
SDH.AH2A RAT [Float] Air Handler 2A, Return Air Temperature (F)

[

[

[

[

[

SDH.AH2A_MAT Float] Mixed Air Temperature (F)
SDH.AH2A_SAT Float] Supply Air Temperature (F)

SDH.AH2A _SAT.STP Float] Supply Air Temperature Setpoint (F)
SDH.AH2A _CCV Float] Measured Cooling Coil Valve Position (%)
]

SDH.AH2A.SF_VFD:POWER | [Float] Supply Fan VED Measured Power (kW)

Table 2.1: Example BACnet point names and their meanings for Sutardja Dai Hall

sensors as in Sutardja Dai Hall. Finally, the control logic is subtly different. Instead of a set
point and mode selector, the Automated Logic VAV uses two set points one for heating and
one for cooling. When the room temperature falls below the heating set point, the heat is
turned on and when the temperature raises above the cooling set point, cold air is supplied.

Path Meaning
doe_vav_c-2-14 /Istat /zone_temp [Float] Floor 2, Zone 14, Room Temperature (F)
doe_vav_c-2-14/m024 /input_value | [Float] Cooling Setpoint (F)
doe_vav_c-2-14/m023/input_value | [Float] Heating Setpoint (F)

[

[

doe_vav_c-2-14 /rh_vlv_c Int] Hot Water Valve Position Setpoint (%)
doe_vav_c-2-14 /air_flow/flow_input | [Int] Airflow (CFM)

Table 2.2: Example SOAP paths and their meanings for Bancroft Library

Overall, existing building control interfaces provide discovery and basic read /write access
to a large number of points — sensors, actuators and virtual inputs/outputs. However,
today’s interfaces suffer from a lack of metadata, inconsistent naming and a lack of common
representation of similar functionality. To enable rapid development of portable applications,
we must raise the level of abstraction, providing a uniform interface to heterogenous control
implementations.
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Towards Programmable Buildings

3.1 Architecture for Portability

App App App

Query-based API

Driver Driver o g
=}
N N 82
1 5 S
. : : ==
Driver Driver Driver B S
)
Remote -
Building

Interconnect Abstraction

HW HW HW

Figure 3.1: BAS layered architecture.

The Building Application Stack (BAS) is an API and runtime that allow applications
to run on a wide range of buildings. At the same time, BAS aims to minimize the effort
required to set up the system on a new building by factoring out common components and
partially automating metadata collection.

The BAS architecture is shown in Figure 3.1. At the lowest level, BAS interfaces with
the building hardware through existing control protocols. The BAS interconnect abstraction
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layer acts as a hardware interface, exposing all points from different control networks with
different protocols in a uniform way by using the sMAP architecture [7].

While having access to building sensor and actuator points is sufficient for implementing
applications, point names and functionality are very building-specific, thus programming
at this level leads to non-portable code. The BAS driver layer abstracts groups of points
into functional objects with standardized methods. Each driver type must expose at least a
minimum predefined interface. For example, fan drivers expose “get_speed” and “set_speed”
methods. These methods apply to many different fan designs, e.g. variable speed, 3-speed,
or on/off fans. Drivers can be built up hierarchically so that common functionality is imple-
mented once.

The objects exposed by drivers correspond to physical components within the building,
e.g. chillers, light banks, electrical circuits, etc. Drivers abstract the inner workings of
these devices, but since buildings are all constructed differently the functional and spatial
relationships between these objects are crucial. Being able to answer which air handler serves
a particular room or which circuit powers a light bank is key to expressing control actions
in a general way. BAS captures functional relationships in a directed graph of “supplies”
relations, effectively capturing airflow loops, water loops and electrical trees. In addition,
BAS incorporates spatial tags stored in a GIS database, allowing us to answer queries such
as, “select the lights for all rooms near windows” or “select the air handler that supplies
room 123.”

At the highest level, BAS provides a query-based API for writing applications. The API
consists of a selector query for choosing a set of driver objects corresponding to building
components based on object name, type, attributes, functional relationships and spatial
relationships. Each object type has a predefined minimal set of methods, i.e. sensor readings
and actuation capabilities. The application can make use of these guaranteed methods or
discover all available methods. Similarly, objects can be selected with a precise query, e.g.
“the thermostat for room 123,” or by exploring the graph of functional relationships, e.g.
“all temperature sensors upstream of room 123.” Applications access the BAS API through
a web service and can be written in any language.

3.2 Interconnect Abstraction

The interconnect layer provides a RESTful interface that routes sequences of read and write
requests to the underlying building control protocols. It addresses three main challenges in
processing requests from the driver and application levels: interfacing with different building
control protocols, handling network throughput, and maintaining a consistent building state.
By using sMAP [8] to provide this interface, BAS is able to implicitly handle distributed setup
as well as data archiving. Based on extensive deployment experience [6], sSMAP provides
robust support for representing and publishing generalized time series data: any timestamped
sequence of scalar or vector values, as well as actuators.
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A building may contain any one of a number of building control protocols — such as
BACnet [1], OPC [23], LONtalk [11], ALC SOAP [2], and ModBus [20] — each of which may
define or provide their own communication protocol, software library, etc. for the purpose
of reading and writing to a set of points corresponding to aspects of the building. It is the
job of the interconnect layer to handle the implementation details to sufficiently abstract the
reading and writing of points for the driver and application levels. Figure 3.2b shows the
design of the SMAP library used in the interconnect layer. When interfacing with BACnet,
the interconnect layer helpfully removes the need to know the unusual or specific numeric
constants required to correctly formulate a BACnet packet; it exposes the command resource
tree shown in Figure 3.2a.

The devices inside buildings often communicate over a specialized physical layer that
may not be immediately compatible with TCP/IP. A building’s control protocol will usually
provide some mechanism for communicating with these devices, but the implied intricacies
of such a mechanism are often too complex to be accounted for at a higher level in BAS. By
handling the construction of packets and managing network throughput at the interconnect
layer, the driver layer does not require extensive knowledge of various network protocols.

Furthermore, the interconnect layer handles all end-to-end reliability on behalf of the
drivers. The utility of the higher abstraction layers is made with the guarantee of a consistent
building state, so despite the multi-tiered indirection between an application and its points
of actuation, the end-view of a building will be correct.

—

sMAP Profile f

5| 5
HTTP Server Ell e
ol o
S|l
Metadata Cache €% 8
S|lE
&3
/data/ # all timeseries and collections ol |
{
"Contents" : ["sensor0"], Library Interface
“Metadata” : { “SourceName” : “Example sMAP Source” }, | T \
I I
iRt SENsErE i Modbus Driver ! i BACnet Driver !
{ "Contents” :["channel0"] }, [ _.______.' | _.______.'
/data/sensor@/channel® I I
{
"uuid" : "a7f63910-ddc6-11e0-8ab9-13c4da852bbc", RS-485 BACnet/IP
"Readings" : [ [1315890624000, 12.5 ] 1 I I
}
/reports/ # data destinations
(a) Resource tree exported by sMAP. (b) The sMAP library exposes dataand meta-

data over HTTP.
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3.3 Fuzzy Queries

#FLOOR All floor areas

#LIGHT > $Floor 1 All lights on the first floor

#AREA < $Lightbank 1 Zones served by light bank 1

#AH > $Room 123 All air handlers that serve Room 123

#AREA < #AH > $Room 234 Areas served by the same air handler as Room 234
#ELECMETER > #AREA < $Air Handler 1 | Power meters for zones served by AH1

Table 3.1: Example BAS queries showing fuzzy and relative lookups. A > B means A that
feed into or supplies B; X < Y means the X that is fed by or supplied by Y. Operators are
right associative.

The BAS query interface is designed to allow application authors to select objects based
on type, attributes and functional or spatial relationships. This allows authors to describe
the particular sensor or actuator that the application requires rather than hardcoding a name
or tag that may not apply in differently designed buildings.

Queries are expressed in terms of names indicated with a $ prefix, tags starting with #
and relationships indicated by < and > operators with A > B meaning that A supplies or
feeds into B. For example, an air handler might supply variable air volume (VAV) boxes
that supply rooms; a whole building power meter may feed into multiple breaker panels that
supply different floors. Query strings are evaluated right to left (right associativity) with the
left-most operand indicating the object to return. Table 3.1 lists example queries.

Internally, BAS stores a directed graph of objects to answer queries. Figure 3.2 shows a
partial rendering of functional and spatial graph for one of our two test buildings. Objects
are exposed by drivers and can be low-level (e.g. damper, sensor, fan) or high-level (e.g. air
handler, chilled water loop). Directed edges indicate the flow of air, water, electricity, etc.
Edges are purposefully unnamed to allow for buildings with many different designs to be
represented without introducing new names. Tags are automatically applied based on the
type of driver instantiated and the interface it implements. Tags describe the object type
and functionality. They are intentionally low-level and are not meant to uniquely identify
objects. The intent is to use relationships to select objects in a general way. For example, a
supply air temperature sensor can be selected as #TEMP < #COOL < $Air Handler 1, that
is, the temperature sensor down stream of the cooling element in Air Handler 1. This allows
the application to run with both a standard temperature sensor built into the air handler as
well as a less common building design with a temperature sensor installed in the duct work
or at a VAV input. A partial list of tags is show in Table 3.2.

In addition to functional relationships, BAS also stores spatial data. Spatial areas are
defined as polygons on floor maps of the building and stored in a GIS database [24]. Areas
are defined for the regions served by a given duct or VAV box and for lighting zones. These
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r——======== L
| Electrical ! HVAC Domain (#HVAC) l
! Domain ! ! A Hand :
| (#ELEC) | ir Handler !
! ! : Outside T Cooli T :
\ [Building | 11 Air Seer:ggr > Fan %Oo'i?g S:r?;gr !
| | Electrical | 1! || Damper !
'l Meter Ly J/ \ |
| |
: | i Constant Flow Chilleg Water Lopp Vv VAV i
: ¥ T | Damper | | Damper || |
I 1 emp V 17 |
| | Submeter ! Sensor ¥ Temp Heating Heating i
| . Sensor Cail Coil |
 NITT— .~ v v ||
I - . - I
| Submeter | ! Chiller ——| Cooling Airflow Airflow |
! i [— Tower |
X&‘ ________________________________ |
=== - i B e N S &
| ' Spatial Domain (#AREA)
! Light | 1 T m=m == s
! h : ] TH ad TP l
! Relay ki N AR NS g N N
l : |
| " [N} > 0
i | Light 1 P
| | Relay o -
: P |
l IE)ighting H T pa| M
! omain I o - - -
| (#LIGHTING) i l FT] ol 3]

|

Figure 3.2: Partial functional and spatial representation of our test building. Directed edges
indicate a supplies or feeds into relationship. BAS queries are executed by searching the
graph.

functional areas do not always align with logical spaces such as hallways, offices or the
cubicles assigned to a research group. BAS allows logical areas to be defined for use in the
query system. By default the query system treats all intersecting areas as logically linked. If
a region named $BAS Cubicle was defined, then the query #LIGHT > $BAS Cubicle would
return all light zones that overlap with the BAS cubicle area. Spatial areas can be easily
added or modified by updating the underlaying GIS database.

Queries are evaluated with a graph traversal algorithm. Starting at the right-most
operand, all objects matching the tags or object names are added to the search list. Next,
we search all incoming edges or all outgoing edges based on the operator (< or >) for objects
that match the left hand operand. Each search is preformed recursively in a breadth-first
way. Visited objects are tracked to prevent infinite loops. Searches are limited to objects
in the domains of the two operands, to search across a third domain it must be speci-
fied explicitly. For example, to find lights for zones served by Air Handler 1 the query is
#LIGHT > #AREA < $Air Handler 1; #AREA must be specified explicitly to search through
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the spatial domain. Intersecting spatial areas are treated as bidirectionally linked for the
purposes of query execution.

#ELEC All objects in electrical domain
#HVAC All objects in the HVAC domain
#AREA All areas in the spatial domain
#LIGHT All objects in lighting domain
#FLOOR All floors

#SEN All sensors

#ACT All actuators

#RELAY Relays

#DMP Dampers

#VLV Valves

#ELECMETER | Electrical meters

#AH Air handlers

Table 3.2: Partial list of object tags. Tags describe the types of primitive objects. Queries
use tags and functional or spatial relationships to find objects.

3.4 Drivers

In order to provide a fuzzily-searchable query interface for device discovery, measurement and
actuation, BAS must be able to provide a sufficiently concrete method of defining a building
that does not drastically limit the portability or generalizability of any of its components.
BAS exploits the high-level functional similarities between buildings to define a set of high
and low-level driver interfaces that encompass the range of possible internal components in
a given building. The goal of this structure is to facilitate the adherence of a building to a
common, exposed API on top of which portable applications can be built.

BAS driver interfaces define common APIs for high-level objects whose functionality
depends on and consists of a certain set of lower-level components, e.g. a certain type of
air handler may contain an outside air damper, a set of temperature sensors, a cooling coil
valve, etc, but it retains a level of functional congruity with different types of air handlers
that may contain different components. The low-level BAS driver interfaces define these
fundamental components in terms of their basic type: sensors, dampers, valves, fans and so
forth.

Each of these interfaces is then implemented by one or more classes whose code handles
the combination of device-specific functionality to provide the logic for the interface. The
ability of the drivers to support multiple classes for a given interface means that BAS remains
extensible enough to integrate any custom interface for any esoterically-designed building
component — provided that the logic exposes the expected API — as well as promoting
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Node [[Abstract Class]]
add_upstream(node)
add_downstream(node)
list_methods(): list implemented methods
get_upstream(depth): return nodes upstream
get_downstream(depth): return nodes downstream
On/Off Fan
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s
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Interfaces Drivers Implementing Interface Example Instances

Figure 3.3: Interfaces for lower-level devices specify methods for general equipment types
to be implemented in equipment-specific classes. Classes are instantiated with references to
the actual hardware.

reusability and portability. As seen in Figure 3.3, each of the driver implementation classes
contains custom logic that adapts the specifics of a type of equipment to the expected
interface.

For the high-level drivers, the interface specifies the expected components in terms of
descriptive tags; any instance of that driver must provide instances of the requisite low-level
driver classes to populate that instance’s functionality. These descriptive tags distinguish
between the functional roles of the objects and classify them in a manner that enables the
query interface to discover and traverse them in terms of their functional relationships to
other objects. Tags are predefined and documented by BAS to ensure portability. Objects
are described by lists of these tags, joined by underscores (see example below). Basic func-
tionality for these objects is provided by the Node abstract class which endows objects with
an awareness of the network graph, granting them the ability to establish themselves in
relation to objects around them.

Once the objects for a building are fully populated and instantiated, BAS creates the net-
work graph for the purpose of the query interface. The high-level objects use their sets of ex-
pected lower-level objects in order to pre-construct internal network graphs, which are incor-
porated into the comprehensive graph by linking lower-level objects to each other by calling
object.add_upstream(target_object) and object.add_downstream(target_object).
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#instantiate atr handler object

ahul = ahu(’A%ir Handler 1°, {
’OUT_AIR_DMP’: Damper(’SDH.PXCM-01 SDH.AH1A_0AD’),
’MIX_AIR_TMP_SEN’: TmpSen(’SDH.PXCM-08 SDH.AH1A_MAT’),
COOL_VLV’ : Valve(’SDH.PXCM-01 SDH.AH1A_CCV’),
’SUP_FAN’ : VfdFan(’SDH.PXCM-01 SDH.AH1A.SF_VFD’),
’SUP_AIR_TMP_SEN’ : TmpSen(’SDH.PXCM-01 SDH.AH1A_SAT’)
)

#link air handler object into the network graph

ahul[’COOL_VLV’] .add_upstream(cold_water_loop[’PUMP’])

ahul [ ’SUP_FAN’] .add_downstream(vavi[’DMP’])

ahul [ ’SUP_FAN’] .add_downstream(vav2[’DMP’])

—_
w

Figure 3.4: Instantiating a simplified air handler

Example: Simplified Air Handler

In this simplified case, the type of air handlers found in the BACnet-based building contain
an outside air damper, a mixed air temperature sensor, a cooling coil valve, a supply fan and
a supply air temperature sensor. In order to create an instance of this type of air handler, it
is first necessary to create instances of these expected components. Once these are provided
in the instantiation of the air handler, the particular BAS air handler class knows how to
incorporate the API for each component into the expected logic for the general air handler
API.

BAS defines low-level driver interfaces for dampers, sensors, valves and fans, and the
BAS implementation for the building contains interface-compliant classes that provide the
necessary BACnet-specific logic for reading from and writing to the necessary points for each
of these drivers. The exact point names for each object are provided upon instantiation of
that object.

3.5 Autopopulation

In order to port applications between buildings, BAS must be correctly configured for each
building, requiring some amount of work to be done to catalog or discover exactly what
devices are in the building, how they are logically and functionally connected, and how these
logical pieces affect the spatial aspects of the building. Automating this process is an area of
ongoing work. Our initial approach is to use existing interfaces for object discovery combined
with drivers we wrote for different building components and an image recognition technique
for importing functional and spatial relationships from existing documents.

Most building control protocols provide some method for device discovery. This usually
takes the form of providing a list of all devices that can be read from and/or written to over
the internal network. Unfortunately, for some protocols such as BACnet, device discovery
takes the form of a whois packet broadcast over the local subnet, meaning that in the absence
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Figure 3.5: Example of parsing an image to identify air handlers, VAV boxes, and dampers

of having a machine on the building subnet, the discovery method is unable to return any
results. It is possible, however, to construct packets that take into account the internal
structure of the building network, and thus conduct a device discovery query remotely. We
scan a given IP for valid gateway devices and then search for internal sub-networks by
examining the error codes returned by BACnet.

Once we have a list of devices on the internal building network, we can use the building’s
naming schema to identify objects by type, name, and location. The reality is that most
building control protocols do not enforce the inclusion of much of this metadata, leading
to incomplete and sometimes inconsistent catalogs of building devices. Despite the wide
variability in the quality of existing building metadata, BAS can automatically construct at
least a partial representation of the building, drastically reducing the overhead for initializing
a building, depending on the structure of the internal network and the amount of metadata
provided.

In some cases it is possible to extract data from the existing building management system
to construct the functional and spatial relationships. For example, the ALC WebCTRL [3]
automation system provides a SOAP interface that contains an internal geographically or-
ganized tree of all the building’s devices, helpfully combining the processes of discovery and
geo-tagging.

Other representations of the building such as IFCs [15] or EnergyPlus models [12] could
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be used to automatically load building metadata. However, these are not often available. As
a fallback method we use computer vision techniques on architectural diagrams to recognize
various types of objects on a floor plan, noting their location and relationship.

The example in Figure 3.5 uses only a few lines of the OpenCV Python library to extract
VAV objects from a ductwork diagram by nature of their shape using the built-in template
matching functionality. Combining this with OCR, it is possible to extract the geospatial
coordinates, names and functional relationship of VAVs.

3.6 Applications and Evaluation

The power of BAS lies in its ability to be easily adapted from one building to another,
bridging the common functionality between different hardware implementations, communi-
cation protocols, and building control systems. Here, we will examine the deployment of two
applications on two buildings with different control systems, implemented with and without
BAS.

The first building is approximately 100k sq. feet and has 7 floors. It contains large open
cubicle areas for graduate students and private offices for faculty and administrators. It also
contains a cafe, auditorium and several classrooms. It runs a Siemens control system with
over 8000 available sensor and actuator points exposed over BACnet. The second building
is approximately 75k sq. feet in size and has 6 floors with office areas and a library area.
The control system is ALC, which supports both low-level BACnet access and a higher-level
SOAP interface, exposing over 5000 points.

Occupant HVAC Control App

The occupant HVAC control application allows occupants to temporarily blow hot or cold
air into a room. The logic is simple. For a given room, the corresponding damper and, in
the case of a request for heating, heating element are opened for a limited time. Then, the
damper and heating defaults are restored.

Figure 3.6 shows the implementation in Python using a BACnet library. BACnet com-
mands require cumbersome low-level arguments: device name, object instance number, prop-
erty and data type; this information is not necessarily easy to access. The application must
contain an explicit building-specific mapping of which dampers and heating valves control
each room, along with which internal BACnet object and value type those objects are. BAC-
net points have cryptic names and do not contain any spatial awareness of the building itself.
This code could be additionally augmented with consistency checking that verifies that the
writes were received correctly by the appropriate devices, as BACnet uses UDP and thus is
inherently unreliable.

If this application were to be deployed to any other building, the devices and objects
would have to be rewritten to point to the new building’s BACnet IP router. The instance
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#Using direct BACnet
import bacnet
import time
dampers = {
’Room 444°: (’SDH.PXCM-11’,°SDH.S4{-03:DMPR POS’, °’SDH.S4-03:VLV POS’),
’Room 446°: (’SDH.PXCM-11’,°SDH.S/-05:DMPR POS’, °SDH.S4-05:VLV P0OS’),
’Room 448’ : (’SDH.PXCM-11’,°SDH.S4{-09:DMPR POS’, °’SDH.S4-09:VLV POS’),
}
def cool_room(room_number) :
damper = dampers [room_number]
device = bacnet.find(name=damper[0]) #bacnet.find(’SDH.PXCM-11’)
object = bacnet.find(name=damper[1]) #bacnet.find(’SDH.S4-05:DMPR POS’)
bacnet.write_prop(device, object_type=bacnet.0BJECT_ANALOG_OUTPUT, \
instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
value=100, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)
time.sleep(1000)
bacnet.write_prop(device, object_type=bacnet.0BJECT_ANALOG_OUTPUT, \
instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
value=1, value_type=bacnet.BACNET_APPLICATION_TAG_NULL)

def warm_room(room_number) :

damper = dampers [room_number]

device = bacnet.find(name=damper [0]) #bacnet.find(’SDH.PXCM-11’)

object = bacnet.find(name=damper[1]) #bacnet.find(’SDH.S4-05:DMPR POS’)

heating = bacnet.find(name=damper[2]) #bacnet.find(’SDH.S4-05:VLV POS’)

bacnet.write_prop(device, object_type=bacnet.0BJECT_ANALOG_OUTPUT, \
instance_number=heating.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
value=100, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)

time.sleep(60)

bacnet.write_prop(device, object_type=bacnet.0BJECT_ANALOG_OUTPUT, \
instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
value=100, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)

time.sleep(1000)

bacnet.write_prop(device, object_type=bacnet.0BJECT_ANALOG_OUTPUT, \
instance_number=object.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
value=1, value_type=bacnet.BACNET_APPLICATION_TAG_NULL)

bacnet.write_prop(device, object_type=bacnet.0BJECT_ANALOG_QUTPUT, \
instance_number=heating.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
value=1, value_type=bacnet.BACNET_APPLICATION_TAG_NULL)

Figure 3.6: BACnet-specific occupant controlled HVAC application code.

numbers as well as the property, value and object types would have to be double checked to
ensure correctness, and the point names would have to be changed.

Figure 3.7 shows the functionally equivalent application written using BAS. The increased
readability is immediately obvious. BAS encodes spatial relationships, so finding VAVs
corresponding to a space is trivial. BAS drivers expose convenient methods for setting
airflow and heating in a standard way that applies to all VAVs. The application makes no
reference to the specific communication protocol nor to the specific point names. This app
could be ported to a completely different building and run without further configuration
of the application itself, provided that BAS is correctly installed on the given building.
Figure 3.8 shows this application running on our building with Siemens controls. The app
warms an enclosed office area in response to an occupant request.
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#Using BAS

import appstack

import time

api = appstack.Appstack()

def cool_room(room_number) :
vav = api(’#VAV > /s’ ¥ room_number)
vav.set_airflow(100)

time.sleep(1000)
vav.clear_airflow()

def warm_room(room_number) :

vav = api(’#VAV > /s’ ¥ room_number)

if ’set_heat’ in vav.list_methods():
vav.set_heat (100)
time.sleep(60)
vav.set_airflow(100)
time.sleep(1000)
vav.clear_heat ()
vav.clear_airflow()

Figure 3.7: BAS implementation

of occupant HVAC
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Figure 3.8: Trace of the occupant HVAC control app running on one of our buildings. The
heating coil and airflow increase to maximum, rapidly warming the room.

Ventilation Optimization App

The ventilation optimization application is based on the observation that many buildings
are over-ventilated; California Title 24 [5] requires 15 CFM of fresh air per person in the
building, but the fraction of fresh air taken into the building varies from 30% to 100% of the
supply air depending on the economizer (outside air damper) position. As a result, airflow
rates are often set assuming minimum fresh air intake. The ventilation optimization app
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#Using direct BACnet
import bacnet
#damper setpoints for each outside atir damper
oad_to_dmp_stpts = {
’SDH.PXCM-01 SDH.AH1A_OAD’: [
’SDH.PXCM-04 SDH.S1-20:CTL FLOW MIN’,
’SDH.PXCM-04 SDH.S1-19:CTL FLOW MIN’ ,
R N
’SDH.PXCM-01 SDH.AH1B_O0AD’: [
’SDH.PXCM-11 SDH S2-04:CTL FLOW MIN’,
.0,
’SDH.PXCM-08 SDH.AH2A_OAD’ : [
’SDH.PXCM-11 SDH.S4-03:CTL FLOW MIN’ ,
o]
}
for oad in oad_to_dmp_stpts.keys():
device = bacnet.find(name=oad)
oad_airflow = bacnet.read_prop(device, object_type=bacnet.0BJECT_ANALOG_OUTPUT, \
instance_number=device.instance_number, property=bacnet.PRDP_PRESENT_VALUE)
for dmp in oad_to_dmp_stpts[oad]:
damper = bacnet.find(name=dmp)
old_setpoint = bacnet.read_prop(device, object_type=bacnet.0BJECT_ANALOG_OUTPUT, \
instance_number=damper.instance_number, property=bacnet.PRUP_PRESENT_VALUE)
new_setpoint = old_setpoint / oad_airflow
bacnet.write_prop(device, object_type=bacnet.0BJECT_ANALOG_QUTPUT,\
instance_number=damper.instance_number, property=bacnet.PROP_PRESENT_VALUE, \
value=new_setpoint, value_type=bacnet.BACNET_APPLICATION_TAG_REAL)

Figure 3.9: Ventilation optimization app implemented on our first building using BACnet.

adjusts the minimum airflow rates for all VAV boxes in the building based on the fraction
of fresh air their corresponding air handler brings in.

It is immediately evident in the writing of this application that some knowledge of the
layout of the HVAC system is required in order to adjust each VAV by the correct amount.
Figures 3.9 and 3.10 show this application implemented on our Siemens and ALC buildings
respectively. Note the hardcoding of associations between VAVs and air handlers, the cryptic
point names and the control protocol specific actuation code. Porting the application from
one building to another required a complete rewrite of the read/write logic, not just the
point names.

The same application implemented using BAS is shown in 3.11. Using relative queries
simplifies the code by dynamically finding the corresponding economizers, VAV boxes and
dampers; thus, porting the application from our first building to the second required no
change in the actual code.

Porting BAS

In configuring BAS to run on two buildings as different as the BACnet-based and ALC-
based buildings mentioned above, there is a surprisingly small amount of work to be done
considering the differences between them. The most accessible programmatic interface to
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#Using ALC SOAP
import suds
url_to_wsdl = ’http://...... ’
client = suds.client.Client(url)
air_handlers = {
‘#doe_basement/#doe_base_equipment/#doe_ah-c’: [
‘#doe_vav_c-2-13/air_flow/flow_tadb’,
‘#doe_vav_c-2-14/air_flow/flow_tab’,
...
‘#doe_penthouse/#doe_ah-bi_ah-b2_rf-1’: [
‘#doe_vav_b-5-01/air_flow_bl/flow_tadb’,
4]
}
for ahu in air_handlers.keys():
oad_airflow = client.getValue(ahu+’/oa_damper’)
for vav in air_handlers([ahu]:
0ld_damper_airflow = client.getValue(vav+’/m269’)
new_damper_airflow = old_damper_airflow / oad_airflow
client.setValue(vav+’/m269’, new_damper_airflow)

Figure 3.10: Ventilation optimization app implemented on our second building using SOAP.

the first is through BACnet; the particular implementation allows for direct access to many
individual components within the building, but lacks much of the location-aware metadata
that is useful to BAS. Conversely, the ALC-based building provides a SOAP (Simple Object
Access Protocol) interface over BACnet, which allows BAS to glean a considerable degree of
location-aware metadata, but does not allow as fine-grained control over individual devices.

#Using BAS
import appstack
api = appstack.Appstack()
ah_dampers = api(’#0UT_AIR_DMP > #AH’)
for dmp in ah_dampers:
for vav in api(’#VAV < £/s’ % dmp.name):
vav.set_min_airflow(vav.min_fresh_air() / dmp.get_percent_open())

Figure 3.11: Ventilation optimization app implemented in BAS and executable on both
buildings.

In practice, configuring BAS to run the application in Figure 3.11 above required only
some adjustment of the damper and heating valve drivers to communicate with the specific
control protocol of the building in question, which was greatly simplified by the abstractions
already provided by the interconnect layer (about 5 LOC per driver). While it could be
argued that the BACnet specific code in Figure 3.9 could be configured to run on a different
(yet still BACnet controlled) building with changes on the order of 5 LOC, this configuration
would have to be done on an application-by-application basis, whereas BAS only requires
configuration once per building. The hierarchical nature of BAS drivers means that only
low-level drivers (e.g. damper, valve, fan, etc.) need to be ported, while high-level drivers
(e.g. air handler) generally remain unchanged.
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3.7 Related Work

Several approaches have been proposed for organizing building metadata. Tree structures are
most commonly used today [3, 9]. In this approach, related sensor and actuator points are
grouped hierarchically. For example, in one of our buildings HVAC equipment is grouped by
location and function: /basement/hot water plant/boiler/steam flow and power meters
are grouped by panel and breaker: /main breaker/panel 41/floor4 lighting/real _power.
Hierarchies provide a single, “precomputed” way to explore the data. This works well for
answering some queries, e.g. “what loads are on panel 41,” but cannot handle more complex
queries, e.g. “which circuits power room 123’s outlets and lights.”

The next approach is to use predefined classes or entity-relationship models for common
building components. Industry Foundation Classes [15] specify models for structural, me-
chanical and electrical aspects of buildings. IFCs are intended to describe building design
and facilitate sharing of information among design and construction teams. IFC includes
classes for HVAC equipment and a connectivity model for building a directed graph of ob-
jects [4]. BAS models the active sensor and actuator components, while IFC focuses on the
design specification without linking this to the running controls. BAS uses a similar connec-
tivity model, but eliminates the need for rigid predefined classes by using tags and a driver
model that only requires implementing basic read/actuate methods for each driver type.

Project Haystack [25] uses a list of tags and rules about their use to describe building
components. The tagging approach is very flexible and overcomes the rigid structure of fixed
object classes or hierarchies. However, tagging schemes like Haystack cannot encode the full
range of functional and spatial relationships. Queries are limited to the relationships that
are manually tagged. In BAS, relationships are queried by traversing a graph structure.

All of these efforts focus on describing building data, while BAS crucially provides meth-
ods for actively controlling the building and raises the level of abstraction to allow control
to be implemented portably. We share the same vision as [19] of enabling building appli-
cations. [19] focuses on integrating existing metadata from multiple sources and devising a
common data representation for use by applications. BAS is complementary and is focused
on how applications can conveniently make use of available building controls portably and
at a higher level of abstraction (driver API), how to make applications automatically adjust
to different building designs (fuzzy queries and exploration) and how to execute applications
on a new building (interconnect and runtime platform).
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Chapter 4

Gaining Personal Control

4.1 Putting People in the Loop

A class of powerful building applications enabled by the BAS architecture give people in-
creased control over the built environment. Buildings are fundamentally designed for people
and yet today, occupant feedback rarely factors into building operation. The BAS archi-
tecture makes it easy to write portable user-facing building applications and to incorporate
external data into building controls.

We present a personalized lighting application built upon a traditional commercial build-
ing automated lighting control system. It embodies three important design principles: indi-
vidual empowerment with localized human-centered resolution, token effort for consumption,
and return to a low-power state. These principles are actualized in the design and implemen-
tation of a simple “shared virtual light switch” application for smartphones and browsers
that provides lighting control on each individual lighting zone in a large open-office academic
research environment. Occupants began using this facility on their own (with enthusiasm)
before the second slide of the presentation intended to introduce it. They continued to use
it twelve weeks later and have cut their energy consumption for lighting in half by easily
exploiting the part time, part space, partial power nature of individual needs.

We all understand how to turn on and off a light by “fipping the switch” or “pushing
the button” and have been well trained to avoid waste through countless repetitions of “turn
off the light when you leave the room.” It is a natural interface, typically associated with
the act of entering and leaving a modest sized space. And yet, in commercial buildings we
typically lose this simple form of personal control; instead, lighting is controlled automatically
through schedules and overrides, sometimes augmented with motion detectors or daylight
sensors. Often, a single lighting zone is shared by several occupants and is situated within a
large space without a natural association between the particular region over which we want
to exert control and the means for doing so. And, as a result lights are often on when they
are not needed.
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Baseline Usage Model
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Figure 4.1: Floormap of the 7th floor showing a large open collaboratory and a smaller area
of individual offices. The collaboratory is broken into 4 independently controllable lighting
zones. Side zones 1 and 4 have large windows facing West and East respectively. Zone 1 is
a common space used for meetings; all other zones consist of individual desks.

This situation was addressed explicitly in the design of our target building — Sutardja Dai
Hall, the headquarters of the Center for Information Technology in the Interest of Society, a
large, seven floor building with large open “collaboratories,” in addition to traditional offices,
classroom, labs, and an experimental semiconductor manufacturing facility. Figure 4.1 shows
a typical floor plan (floor 7) with its large collaboratory spanning the east-west extent of
the building, elevator access in the center of the north side, and individual office space along
the north side. It was a design goal to have a green building consistent with the mission of
the center. Collaboratories were divided into multiple sub-zones, typically five per floor. A
typical working zone has three lighting power settings, low, medium, and high. A BACnet-
based WattStopper automated lighting control system [33] was deployed throughout the
building to control these zones and several switches (a pair for each zone and a pair for
all zones on the floor) were placed on the north wall of the collaboratory. Through the
automated lighting control system, the facility manager programmed the lights to a schedule
in which all zones of a floor are on high, the maximum brightness setting, during weekdays
from 10 am till 7 pm. The lights were off during nights and weekends, unless someone pushed
one of the wall’s override switches, which causes the whole floor or the associated zone to be
on for a period of three hours, depending on which switch was pressed. It is also possible to
specify the lighting level by pushing an appropriate combination of (unlabeled) switch pairs,
but this is rarely used.

This program defines our baseline usage model, in place prior to this study for a year and
a half since initial building occupation. Generally, occupants disliked this facility-controlled
lighting schedule. The lights were on all day long, regardless of occupancy, but when the
lights shut off after working hours, someone would have to run over to the north wall and
push the physical override button every hour. Generally, that turned the entire collaboratory
on high, since few could figure out the per-zone switches or the proper incantation for
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intermediate lighting levels. Various efforts were made to incorporate motion sensors, as
well as daylighting sensors in the end zones, but these were disabled after occupants grew
frustrated with improper control actions, such as flapping their arms to keep the lights on
while trying to concentrate.

A Personalized Automated Lighting Control Alternative

We learned of this less-than-optimal situation while engaged in a variety of deep energy
efficiency efforts with this building, which included development of a rich infrastructure for
energy usage monitoring and simple web-services based control (described below). The light-
ing control frustration provided an opportunity to test the ease of application development
on our infrastructure, while benefitting the people in the building and hopefully saving some
energy. Since prior studies have shown occupants are happier with direct personal con-
trols [14, 22|, we gave them a virtual light switch, accessible by their smartphone or browser.
As illustrated in Figure 4.2, one click to locate the floor in the building and one to identify
the zone, provides the “action page.” There, a click on the “Reset Timer” button turns on
the lights for a period of time. This page can be bookmarked or placed on the wall paper for
easy access. In addition, QR~codes in the zone contain the URL and so take the smartphone
directly to the action page with a camera snap.
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Figure 4.2: Screenshot of the personalized lighting control interface. Users select a zone by
clicking on the floormap and then press the reset timer button to activate the lights and
select a desired brightness level.

Other prior studies indicate that people react poorly to extremely bright or excessively
dim environments [21]. Embracing the principle of personal empowerment in a shared setting
as an opportunity for energy savings, the action page also makes it easy to specify the light
level or turn it off. The action is experienced by all in the lighting zone and whoever is viewing
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the action page. Although these stakeholders may have different preferences, we do not
automate the resolution in contrast to more complex personal lighting control systems [34,
26]. The occupants are all present in a small physical area and can resolve lighting preference
discrepancies through human-to-human interaction. The webpage reflects only the resultant
action. It also provides a simple history of power usage for lighting in the zone and a sense
of the cost associated with the available options going forward.

The user does have to expend a token amount of personal energy (clicking the reset
button) to keep the lights on, thereby continuing to consume electric power. We introduced
the personalized lighting controls in an informal meeting (on a Friday afternoon) with occu-
pants of the fourth floor and discussed the trade-offs of a bit more irritation for more energy
savings, and vice versa. The collective compromise was to use a three hour timer during
working hours and a one hour timer all other times. This achieves the principle of quiescence
at low power at a relatively fine grain, because each zone, if left alone for a couple of hours
will go off.

At that introduction, lighting controls were switched from facility manager control to
personal control-and were left that way since. A community exchange, replete with Facebook
pages and tweets, has formed around lighting usage in the collaboratory and there is a sense of
pride in the achieved improvement. The early adopters have become advocates in spreading
the facility to other floors. A new plateau of lighting energy usage has been obtained, in
part because there is no extra effort to be efficient. Somebody pushing a button somewhere
every so often is mandatory to keep consuming. However, we do see that people make the
extra effort to turn lights off when they are the last to leave the zone, even with a timer.
We note that this was not intended to be a “human factors” study nor a deep examination
of human-computer-building interface design. We have not performed a latitudinal study
and can not claim that our findings are representative of open office space in general, nor
have we performed a longitudinal study. We built a simple, principled tool quickly to gain
experience with an infrastructure intended to support innovation in energy applications and
asked an interested community to give it a try. Here we report on how it was built and how
it has worked so far.

4.2 Physical Infrastructure

The study was conducted in a new, seven-floor, 140,000 sq. ft. building located at a lat-
itude of 38 degrees north. The lower three floors contain building system infrastructure,
classrooms, administrative offices, instructional labs, restaurant facilities, server and com-
munications facilities, and an auditorium. Attached to the building on the fifth floor is a
large semiconductor manufacturing facility, which shares chilled water and power with the
rest of the building, but is otherwise self-contained. Floors four through seven have large
“collaboratories” of open office spaces stretching the east-west extent of the building with
glass walls at the east and west ends providing the only day lighting. As illustrated by
Figure 4.1 for the fourth floor, this bay is divided into five primary zones along the east-west
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extent. Additional zones cover kitchen, entry, and various floor-specific areas. The end zones
are utilized largely as meeting areas. Workspaces fill the middle three zones, with multiple
research groups forming contiguous blocks. The number of lighting fixtures varies with zone
size. A fixture typically contains three T-8 fluorescent tubes and two ballasts; one illumi-
nates a single tube for low lighting, the other two tubes for medium, and both together for
high.

The building as a whole consumes 800-850 kW, with the fabrication facility accounting
for approximately 600 kW. The HVAC system is controlled by a proprietary Siemens Apogee
Insight BMS that contains over 6,000 points spanning two cooling towers, two centrifugal
chillers, one evaporative chiller, two office air-handling units, 16 fab air-handling units, and
130 variable air valves. A portion of these points are accessible over BACNet [1] through
a BMS add-on. Floor-by-floor power meters were installed to measure lighting and recep-
tacle load as part of larger energy management effort. Lighting is controlled by a separate
WattStopper lighting control system that provides a facilities management console and a
BACNet interface. Overall, the power consumption of the office portion of the building is
roughly 143 kW, with 20 kW on average for lighting. Power consumption per collaboratory
in its typical “all zones on high” mode is shown in Table 4.1. Measured power consumption
is 25 watts per tube.

Floor | Area (sq. ft.) | Zones | Peak Power (kW)
4 10,654 5 7.3
5 10,923 ) 6.5
6 9,599 2 2.5
7 7,102 4 4.9

Table 4.1: Lighting power in collaboratories.

4.3 Implementation

1 import appstack

2 api = appstack.Appstack()

3

4 def set_lights(room_number, level):

5 lights = api(’#LIGHT > /s’ Y room_number)
6  for light in lights:

7 light.set_brightness(level)

Figure 4.3: BAS implementation of personalized lighting controls.

The personalized lighting control application is implemented on top of BAS. When
a user selects a lighting zone, e.g. Zone 1, a BAS query for #LIGHT > $Zonel is exe-
cuted to select the appropriate building object. Control actions are enacted by calling
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set_brightness(percent) on the object. Figure 4.3 show a partial implementation of the
lighting control app.

At the application layer, the personalized lighting controls consist of a web app written
in Django [10] that provides the user-facing interface with a control process that enacts the
desired light settings. The web application provides screens for selecting the appropriate
building, floor, and zone. It then shows the action screen with the current timer countdown
value and brightness setting. When a user hits “Reset Timer” or modifies the brightness
settings an asynchronous JavaScript (AJAX) call is made to the server which records the
change in a database. Since multiple users may access the web application simultaneously,
a consistent view of the current settings is essential. This is done through periodically
polling the server settings in JavaScript and reflecting any changes on the page. Finally, an
independent control process on the server periodically reads the light settings recorded in the
database and turns on and off the appropriate bulbs by interacting with the WattStopper
controller through the sMAP interface.

For security, the web application ties the existing campus Central Authentication Service
(CAS) for access. Users login with the same account used to access the wireless Internet or
register for classes. If users are already logged in to a different campus service, they will not
be prompted to login again. We currently do not restrict access to exclusively the occupants
of a specific floor or even building. Students and visitors are constantly coming and going so
maintaining an access list would be prohibitively difficult. Instead, we track users accessing
the system by their CAS accounts and have the ability to block any abusers of the system. In
the past month and a half of operation there has been no reported abuse. Tracking accesses
also allows us to gather statistics about how occupants are using the controls and the number
of unique users.

4.4 Energy Savings

We first deployed the personalized automated lighting application on one floor, the fourth.
This was to gain confidence in the infrastructure and experience with the approach, as well
as to provide an empirical control group within a living laboratory. Half the research groups
situated on that floor focus on energy and climate issues, contributing to user enthusiasm.
We enabled the system on May 13, 2011 with a local member of the floor serving as the
point of contact. With changes in work pattern and season, we expected to use the other
floors as a reference in assessing the impact on electrical energy consumption. The system
was actively used with 40 unique users in the first two weeks.

We use two methods of obtaining the lighting power consumption. Our building has
per-floor lighting circuit sub-metering which provides us with total floor lighting power con-
sumption every 5 seconds. This does include lights outside the collaboratories that we are
investigating. To estimate collaboratory power we obtain relay states (i.e. on/off) for all
lights in the collaboratory and multiply by the number of bulbs controlled by each relay
and the typical power consumption of a light bulb. From this we obtain the collaboratory
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Figure 4.4: Lighting power of 4th floor and 7th floors showing a 47% reduction in energy
use due to PLC.
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Figure 4.5: Tth floor lighting use for each hour of the day averaged over three weeks, before
and after installing PLC.

lighting power. Combining these two, relatively fine grained monitoring streams allows us
to isolate the factors contributing to savings.

Figure 4.4 shows the measured total floor lighting power usage for the 4th and 7th
floors before and after deploying personalized lighting controls (PLC). The 4th floor personal
controls were enabled on May 13th and are followed by a 47% reduction in the average weekly
power consumption. Over the same time period, power consumption for unchanged floors
(e.g. floor 7 shown in figure) remained constant, suggesting that PLC was the cause of
the 4th floor power drop. Some weeks later, we also deployed personal controls on floor 7,
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resulting in a 50% drop in power consumption.

Week Avg. Floor | Avg. Collab. | Collab.
Power (kW) Power (kW) Savings (%)
Before 3.47 2.84 -
5/13 1.83 1.19 5%
5/20 1.47 0.90 -68%
5/27 1.44 0.87 -69%
6/3 1.86 1.04 -63%
6/10 1.97 1.34 -53%
6/17 1.64 1.00 -65%
6/24 1.65 0.90 -68%
71 1.20 0.71 “75%
7/8 1.37 0.84 -11%
7/15 1.78 1.09 -61%

Table 4.2: Fourth floor energy savings over time. The energy savings do not drop off with
time.

Woek Avg.  Floor | Avg. Collab. | Collab.
Power (kW) | Power (kW) | Savings (%)
Before 3.31 2.62 -
7/15 1.66 0.99 -62%
7/22 1.78 1.27 -52%

Table 4.3: Seventh floor energy savings over time.

Table 4.2 shows the total and only collaboratory weekly lighting power consumption of
the 4th floor over the duration of the study. Savings of the collaboratory lighting power range
from 53% to 75% compared to the week before installation. These savings are retained over
the 10 weeks shown and vary primarily with holidays and occupant activity. Table 4.3 shows
similar energy savings achieved on the 7th floor, demonstrating that PLC can be applied in
other settings and works equally well with occupants that are not focusing on energy and
climate issues.

Note that providing a relatively tight monitoring envelope around the subsystem under
test is quite important. While the power savings of 1.6 kW per floor is significant it would
be lost in the background of the other 825+25 kW of usage in the entire building. At the
same time, finer grain monitoring allows us to isolate the factors contributing to the savings.

Source of Savings

To understand the source of energy savings we first explore the typical lighting use before the
installation of personalized lighting controls. Figure 4.5a shows the fraction of time lights
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were on, on average, for each zone for each hour of the day taken over a three week period
before the installation of the new personalized controls on the 7th floor. An automated
schedule was used to keep all lighting zones on high brightness from 10am to 7pm. At other
hours occupants used the override buttons to keep the lights on. Most zones are on at the
same time suggesting that occupants used the whole floor switches rather than the per-zone
switches. The 6am spike in lighting use is due to janitors regularly cleaning the floor at that
time. When on, the light brightness settings were set to maximum 98% of the time.

[ Jtow

0 25 50 75 100
% at Each Setting

Figure 4.6: Brightness levels before and after PLC

We compare lighting use after installation of the personalized controls to this baseline
to understand where the energy savings are coming from. Fundamentally, there are three
sources of potential savings: part space (not illuminating all the zones when only some are
needed), part time (allowing a zone to go off if unneeded), and part power (utilizing medium
or even low brightness settings).

Figure 4.5b shows the lighting use after installation of PLC. Lights in zone 1, a meeting
area near large windows, are now nearly always off, yielding large part space savings. In
zones, 2 through 4, the lights are turned on later as occupants arrive at different times and
turned off earlier in some cases. Zone 4 has only a few occupants so lights are often off
even during working hours. Finally, brightness levels are set significantly lower than before
as shown in Figure 4.6. The average brightness setting is medium yielding significant part
power savings.

Figure 4.7 shows the breakdown of energy use before and after PLC. Energy is broken
down by time: working hours (9am to 6pm), non-working hours (labeled evenings), weekends
and by zone. For each zone and time, the full bar represent average weekly energy use before
PLC implementation and the white bar represents the energy use after implementation. The
difference, energy savings, is shaded indicating part power and part time savings. Overall, the
majority of energy is saved from keeping lights on part time rather than on lower brightness
levels. However, during working hours in the cubicle zones brightness settings make up most
of the savings. The meeting area in zone 1 is kept off most of the time, however, those energy
savings are dwarfed by turning off the large cubicle zone 3 slightly earlier in the evenings
and on slightly later in mornings.
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Figure 4.7: Breakdown of energy use and savings. Full bars represent the baseline weekly
energy use before PLC. Shaded regions show sources of energy savings. The white bars show
weekly energy consumption after PLC, labeled with the percent of baseline energy.

4.5 Enabling Extensions

Within one week of enabling PLC we observed that building occupants were independently
creating applications on top of it. One student wrote a short Linux script to automatically
extend the lighting control timer only when he was actively using his laptop and connected to
one of the wireless access points on his floor. We encouraged this type of rapid development
by providing an easy to use web service API.

We subsequently extended this idea by developing a cross-platform application with a
graphical user interface. Occupants can now optionally download this alternative interface
to the PLC on their laptops. The program asks users to input their typical seating zone and
brightness preference. It then uses a combination of activity detection and coarse-grained
WiFi localization, based on per-floor BSSID fingerprints, to determine when the lights should
be kept on.

Alternative occupancy detection techniques could just as easily be programmed to control
the lights using this simple web interface, enabling support for buildings with or without
occupancy sensing hardware.
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Chapter 5

Conclusion

Modern commercial buildings contain some of largest deployed sensor networks, often con-
sisting of thousands of sensors and actuators. This infrastructure has the potential to enable
a wealth of applications that change the way we interact with buildings, reduce energy
consumption, support grid operation, improve reliability and maintenance.

The main challenge is to make applications portable and easy to develop. All buildings
are designed differently and building controls are inconsistent in naming, function and avail-
able features. Today this requires developers to have detailed knowledge of each building’s
architecture, HVAC design, control network and hardware functionality.

BAS abstracts these details, allowing application authors to select building components
with fuzzy queries and use standardized methods built up through a hierarchy of drivers to
read or actuate the building. BAS queries are key to portability; they allow authors to select
components in terms of functional or spatial relationships that are implicitly portable.

We demonstrate three control applications implemented using BAS, a ventilation opti-
mization app and an occupant temperature control app and a personalized lighting control
application. We show that BAS applications are much shorter, easier to understand and do
not change form building to building. We also demonstrate how these applications can have
a real energy impact, saving over half of lighting power.
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