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Designing a Low Voltage, High Current Tunneling Transistor 
 

Sapan Agarwal, Eli Yablonovitch 

4.1 Introduction 

Tunneling Field Effect Transistors (TFETs) have the potential to achieve a low operating voltage by overcoming the 
thermally limited subthreshold swing voltage of 60mV/decade[1], but results to date have been unsatisfying.  The low 
voltage operation is parameterized by the voltage required to obtain a 10× change in output current, called the subthreshold 
swing voltage, SS.  The best reported subthreshold swing voltage has been measured at a low current density of ~1nA/µm, 
but unfortunately becomes significantly larger as the current increases.  When trying to design a new low voltage switch to 
replace the transistor, there are three major requirements need to be fulfilled:  

 

• The subthreshold swing voltage needs to be much steeper than 60 mV/decade and ideally only a few milli-volts per 
decade to reduce the operating voltage. 

• A large On/Off ratio of around 106/1 is needed to suppress leakage currents 
• A high conductance density around 1mS/μm (or 1mA/μm at 1Volt) is needed so that the switch can be significantly 

smaller than the wire that it drives while maintaining a high speed.  
 

While devices have been built that meet one or two of the three requirements, to date, no logic switch meets all three 
requirements [1, 2].  No one has achieved a steep subthreshold swing voltage at a high conductance.   

 To understand this, we first consider a simple tunneling diode in Sections 4.2-4.6 to understand the essential physics 
of tunneling and then in Sections 4.7-4.9 we consider the additional complexities of building a full transistor.  In TFET’s the 
challenge is complicated by the existence of two switching mechanisms.  The gate voltage can be used to modulate the 
tunneling barrier thickness and thus the tunneling probability [3-6] as shown Fig. 4.1(a-b).  The thickness of the tunneling 
barrier can be controlled by changing the electric field in the tunneling junction.  Alternatively, it is also possible use energy 
filtering or density of states switching as illustrated in Fig. 4.1(c-d).  If the conduction and valence band don’t overlap, no 
current can flow.  Once they do overlap, current can flow. 
 In Section 4.2 we analyze the tunneling barrier thickness modulation mechanism.  In Section 4.3 we analyze the 
energy filtering switch or density of states switch.  After presenting the two switching mechanisms, we analyze in Section 4.4 
the existing device data which shows that experimental performance is still far worse than the Boltzmann limit 60mV/decade. 
This is not even close to achieving a steep subthreshold swing voltage at the current densities of interest.  We propose some 
solutions to achieve better steepness in Section 4.5.  To fulfill all three switch requirements, we introduce in Section 4.6 the 
benefits of quantum confinement or dimensionality.  Up until this point in the chapter, the switch has been analyzed with 
respect to its two-terminal properties.  In Section 4.7, we consider the voltage, subthreshold swing and conductance of a full 
TFET.  In Section 4.8 we analyze the relatively poor gate efficiency which leads to additional unfortunate tradeoffs and in 
Section 4.9 we consider what additional effects can limit the TFET performance. 
 

 
Fig. 4.1:  The two different methods for achieving a steep tunneling transition are illustrated.  First (a, b), the thickness of the tunneling 
barrier can be changed by changing the gate voltage and thus the electric field across the tunneling junction.  Second (c, d), the alignment 
of the conduction and valence band can be used to cut off the available states for current to flow into. 
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4.2 Tunneling barrier thickness modulation steepness 

First we consider the tunneling barrier thickness modulation mechanism.  Applying a voltage bias across a tunneling junction 
can modulate the tunneling barrier thickness and thus the tunneling probability [3-6].  This is illustrated in Fig. 4.1(a-b).  The 
thickness of the tunneling barrier can be controlled by changing the electric field in the tunneling junction.  The difficulty in 
using this method is that at high conductivities there is already a large electric field across the tunneling junction and so the 
voltage bias cannot control the barrier width effectively.  This results in a poor subthreshold swing voltage at high 
conductivities.  Consequently, we will now show that the tunnel barrier thickness modulation mechanism is incapable of 
achieving a steep subthreshold swing voltage at the required high current density: 
 To estimate how steep of a turn on this can give, we need to determine how many millivolts change in potential 
across the barrier, φ, it takes to change the tunneling probability, T, by a decade.  Consequently, we define:  

 
φd

d
Stunnel

)log(1 T
≡  (4.2.1) 

Stunnel is the tunnel swing voltage in mV/decade resulting from tunneling barrier thickness modulation.  The tunneling 
probability, T, is[7]: 
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For simplicity, we will assume that the electric field across the tunneling junction, F, is constant and equal to the peak electric 
field.  The effective mass for tunneling [1, 8, 9] is *

tunnelm 1, and EG is the band gap.  All of the parameters can be collected 
into a single constant, α.  Regardless of the exact shape of the barrier, there will be a constant α such that T=exp(-α/F).  
Combining Eq. (4.2.1) and Eq. (4.2.2) gives: 

 
F

ddF
d
Fd

F
e

Stunnel

φφ
φ
φα /)()log()(1)log(1

2 ×=















×××= T



  (4.2.3) 

To simplify we solved Eq. (4.2.2) for F in terms of log(T).   

 Next we need to evaluate )/)(( φφ ddFF .  For a doped pn-junction the potential will be parabolic and so: 
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In a MOSFET channel the voltage typically decays exponentially and is set by a screening length.  This results in: 
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In transistor structures such as a bilayer TFET[10, 11], the electric field is a constant and determined by the bias across the 
gates.  Consequently: 

1 The tunneling mass can be computed from [8]: 
1

*
,

*
,

* 112

−














+=

zhze
tunnel

mm
m  

The WKB model and reduced mass work well in InAs where there are carriers in the conduction band tunneling to a single valence band.  
However, in silicon and germanium the band gap is indirect and there are many interacting bands and so the WKB model breaks down [9].  
Consequently, we use an experimentally fitted tunneling effective mass derived in [1].  While in [1] a single band tunneling model was 
used, we used a two band tunneling model and consequently we need to adjust the mass accordingly: 
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This gives m*
tunnel=0.043 in InAs and 0.46 in Si. 
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In the best case, φφφ =)/)(( ddFF .  This gives: 
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As we can see from Eq. (4.2.7), the lower the tunneling probability, the steeper the subthreshold swing voltage.  This simple 
equation is likely to be the explanation of all the experimental steep subthreshold swing voltages that have been measured at 
extremely low current densities to date [3, 5, 12]!  Since the steepness gets worse at high tunnel probability or higher 
currents, a steep subthreshold swing voltage at low currents is insufficient for making a practical logic switch.  For a 
reasonable on-state conductance, the tunneling probability should typically be >1%.  
 To align the conduction and valence bands, the on-state φ must be equal to at least the band gap of the 
semiconductor.  Consequently, the tunnel swing voltage Stunnel is too large for different semiconductors: For T=1% in silicon, 
Stunnel=560 mV/decade at the on-state.  In InAs, Stunnel = 177 mV/decade.  These are worse than Boltzmann.  Clearly, 
controlling the barrier thickness of a homojunction will not give a subthreshold swing voltage steeper than 60 mV/decade at 
high current densities. 
 To get a subthreshold swing voltage steeper than 60 mV/decade while maintaining a high on-state current, we need 
to reduce φs to less than 120 mV.  This means that we need an effective tunneling barrier height less than 120 meV.  This can 
be achieved using a Type II heterostructure.  Unfortunately, a small effective band gap requires a steep band edge density of 
states or else the current will pass through the band tail states and never see the barrier.  As we will see in the next section, 
there are states below the band edge that prevent the tunneling junction from fully turning off.  At that point the switching 
becomes controlled by the energy filtering mechanism.  Consequently, modulating the thickness of the tunneling barrier will 
never give a steep subthreshold swing at high current densities! 

4.3 Energy Filtering Switching Mechanism 

It is possible use energy filtering as a switching mechanism.  This is also called density of states switching.  The energy 
filtering switch is illustrated in Fig. 4.1(c-d).  If the conduction and valence band don’t overlap, no current can flow.  Once 
they do overlap, current can flow.  An ideal density of states switch would be designed to switch abruptly from zero-
conductance to the desired on conductance when the conduction and valance band overlap, thus displaying zero subthreshold 
swing voltage [13]. Unfortunately, the band edges are not perfectly sharp and so there is a finite density of states extending 
into the band gap. 
   In order to determine how steep the energy filter switching mechanism is, we need to determine how steep the 
electronic band edges are.  While science has good knowledge on the magnitude of semiconductor bandgaps, there is not 
much information regarding the sharpness of the band edges.  Although there are no good direct measurements of the band 
edge density of states, we can infer it from optical[14] and electronic measurements[15]. 

Typically the band edge density of states falls off exponentially below the band edge.  We can parameterize this fall 
off with the term SDOS which represents how many millivolts you need to go below the band edge to reduce the density of 
states by a decade.  Below the bandgap, the optical absorption coefficient also falls of exponentially and is called the Urbach 
tail[14].  In intrinsic GaAs, the absorption falls off at 17meV/decade[16].  In intrinsic Si absorption falls off at 
23mV/decade[17].  For electrons, we can hope to see a similar limit on the band edge steepness, SDOS.  This may seem 
promising, but such a steep result has not been vindicated by electrical transport measurements.   
 Electrically measured joint density of states have generally indicated a steepness >90mV/decade, unlike the intrinsic 
optical Urbach measurements which are <60mV/decade in good semiconductors.  We attribute this broadening to the spatial 
inhomogeneity and on heavy doping that appears in real devices.  Effectively, there are many distinct channel thresholds in a 
macroscopic device, leading to threshold broadening.  Fortunately, this can be ameliorated.  We can see this from the optical 
absorption in doped GaAs.  When GaAs is doped with Si to 2×1018/cm3 the absorption falls off at a rate of 
30meV/decade[16].  If the doping is further increased to 1020/cm3, the absorption falls of at a rate worse than 
60meV/decade[18]. This means that if a tunnel switch is heavily doped, it will be unable to employ the density of states 
energy filtering mechanism to achieve a subthreshold swing voltage smaller than 60 mV/decade!  Furthermore, in the doped 
optical absorption measurements, the band edge density of states is reduced by the free carriers screening potential 
fluctuations[19, 20].  Unfortunately, in the depletion region of a TFET, there are no free carriers to screen the potential 
variations and so that the band tails will be even worse in electronic devices. 

4.3.1 Minimum Effective Band Gap 



In addition to limiting the subthreshold swing voltage, the band edge density of states can limit the on/off ratio if the effective 
band gap (tunneling barrier height) is too small.  If we want a particular on-off ratio, the barrier height in the off-state, Eg,eff, 
must be large enough to suppress the band edge density of states, SDOS, by that on-off ratio.  Consequently, we get the 
following limit: 

 )log(, offonDOSeffg IISE ×≥  (4.3.1) 

For instance, if we want to use tunneling barrier width modulation we need a barrier height less than 120 mV.  For six 
decades of on-off ratio, SDOS must be steeper than 120/6 = 20 mV/decade which has not yet been achieved.  Furthermore, the 
steepest turn-on will come from band edge rather than the tunneling barrier thickness modulation if we had 
SDOS = 20 mV/decade.  Consequently, modulating the thickness of the tunneling barrier will never give a steep subthreshold 
swing at high current densities. 

4.4 Measuring the Electronic Transport Band Edge Steepness 

To interpret electrical transport measurements, we need to look at the absolute conductance, I/V versus bias voltage V in a 
tunneling diode.  The absolute conductance is proportional to the tunneling joint density of states.  This is discussed in detail 
in [15].  Investigating the electronic steepness in a two terminal pn-junction measurement allows the band alignment to be 
controlled directly, without concern for gate efficiency.  Both barrier thickness modulation and density of states switching 
changes the resistance of the tunneling junction.  Consequently, we need to measure the change in resistance or conductance 
with bias rather than the change in current with bias.  This can be seen from following model for the tunneling current: 

 ∫ ∂×××−∝ EEDffI JVC )()( T  (4.4.1) 

(fC-fV) is the difference between the Fermi occupation probabilities on the p and n sides.  T is the tunneling probability across 
the junction and DJ(E) is the joint density of states between the valence band on the p-side and the conduction band on the 
n-side.  We are interested in measuring the voltage dependence of the tunneling joint density of states, T×DJ(E), in the 

integrand of Eq. (4.4.1).  Since qVEff VC =∂×−∫ )( , dividing the current by the voltage approximately eliminates the 

effect of the Fermi levels[15].  In a three terminal transistor measurement the source drain bias would control the Fermi levels 
while the gate bias would control T×DJ(E).  This allows us to use a two terminal current voltage measurement to determine 
the joint density of states of a tunnel junction.  Consequently, a two terminal source drain measurement in a TFET can be 
used to interpret the steepness of the tunnel joint density of states, without being limited by the gate efficiency.  We will now 
interpret some specific cases from the experimental literature by plotting I/V versus V: 
 First we consider the 2-terminal current-voltage characteristics of an InAs/AlSb/Al0.12Ga0.88As heterojunction 
backward diode [21].  In this diode the tunneling barrier thickness is fixed by the AlSb thickness and so the tunneling is 
entirely due to the density of states overlapping.  The I-V curves are in Fig. 4.2(a) and the absolute conductance is in 
Fig. 4.2(b).  As seen in Fig. 4.2(a), the current diverges on a semilog plot at V=0, preventing direct interpretation.  Likewise, 
the differential conductance diverges on a semilog plot at the Esaki peak.  Thus a current or a differential conductance plot 
does not give us the information we want.  By contrast, in Fig. 4.2(b), the absolute conductance, I/V, smoothly varies from 
reverse bias, through the origin, to forward bias.   
 The conductance is proportional to tunneling joint density of states, which can be parameterized by the inverse of 
the semilog slope of the conductance, called the semilog conductance swing voltage.  This is equivalent to the steepness of 
the tunneling joint density of states in mV/decade shown by the inverse slope of the diagonal line in Fig. 4.2(b).  In the 
figure, the semilog swing voltage of the absolute conductance is 98mV/decade, and it measures the tunneling joint density of 
states.  It has one of the steepest experimentally measured tunneling joint density of states .This is likely due to the Type III 
band alignment permitting low doping levels ~1.4×1017/cm3 near the junction region.   
 In Fig. 4.2(c), we consider a germanium backward diode [22].  This has the steepest semilog conductance swing 
voltage of 92 mV/decade that we could find in the literature.  Next, In Fig. 4.2(d), we show the current and conductance for 
an InAs homojunction diode at two different doping levels (NA = 1.8x1019; ND = 3x1018 and 1x1019) [23].  When the n-side 
doping is decreased from 1×1019/cm3 to 3×1018/cm3 the absolute conductance I/V swing improves from 570mV to only 
180mV/decade falling far short of our goal.  This clearly illustrates that while smearing the band-edge by doping is very bad, 
but that even the lower doped samples perform poorly. 
 We can apply the same 2-terminal analysis to 3-teminal TFETs.  In a TFET we can either make a 2-terminal source-
drain measurement, or a 3-terminal ID-VG measurement.  In a 3-terminal measurement, the subthreshold swing voltage will 
not give the tunneling joint density of states, since some voltage is lost across the gate oxide. 



 We avoid gate issues by doing a 2-terminal measurement.  If the critical tunneling junction is at the source-channel 
junction, we need to fix the VGate-VDrain voltage while measuring source/drain current versus source/drain voltage (ID-VS).  
Since we want to measure the band edge mechanism without being confounded by the gate modulation mechanism, we leave 
the VGate-VDrain voltage fixed.  As the gate potential will have a strong influence on the channel potential, the drain will not be 
able to effectively control the source-channel junction and so it is best to vary VGS.  If on the other hand the critical tunneling 
is at the channel/drain junction we need to fix the VGate-VSource voltage while measuring source/drain current versus 
source/drain voltage (ID-VD). 
 In Fig. 4.2(e), we fix the VGate-VSource voltage while measuring source/drain current versus source/drain voltage 
(ID-VD) of an In0.53Ga0.47As TFET, that has a poor gate oxide[24].  Effectively, this is a 2-terminal measurement on a 
3-terminal device.  The semilog conductance swing voltage is 165mV/decade.  The corresponding 3-terminal measurement 
shows a worse subthreshold swing voltage ~216 mV/decade.  Since the two terminal measurement is not limited by the gate 
oxide, it reflects the junction’s intrinsic tunneling properties.  This shows the value of a proper 2-terminal measurement to 
analyze a TFETs potential performance when the gate oxide has poor quality.   
 In TFETs, subthreshold swing voltages less than 60 mV/decade have been measured, but only at extremely low 
current densities of ~1nA/µm.  In Backward diodes and Esaki diodes the low current densities have been obscured by trap 
assisted tunneling and forward leakage current.  Moreover, at current densities measured in tunneling diodes, tunneling 
barrier width modulation is weak, and I/V versus V reflects the band edge density of states. 
 Measuring the steepness of the conductance, I/V, in mV/decade of a tunneling diode, or of a TFET source-drain I-V, 
will give the tunneling joint density of states.  This tells us the potential subthreshold swing voltage that we can expect from a 
TFET based on that tunneling junction at reasonable current densities.  Looking at the best tunneling diodes to date, we find 
that they all have a semilog conductance swing voltage worse than 60 mV/decade.  This is because they are macroscopic 
devices with considerable threshold inhomogeneity leading to multiple channels, each with a different threshold, smearing 
the subthreshold swing voltage.  In the next section we suggest some remedies.  

 
Fig. 4.2: (a-b) The current and conductance for an InAs/AlSb/Al0.12Ga0.88As heterojunction diode [21], (c) a Germanium diode [22], and 
(d) InAs diodes [23] are plotted. At V=0, the current diverges on a log plot and so the logarithmic slope is meaningless.  Fortunately, the 
conductance is proportional to the tunneling density of states.  (e) The G=ID/VD versus VD for an In53Ga0.47As TFET is plotted[24].  The 
measured subthreshold swing voltage is 216 mV/decade while the semilog conductance swing voltage is 165 mV/decade.  Since the ID-VD 
characteristic is not limited by the gate oxide, it reflects the junction’s steeper intrinsic tunneling properties. 

4.5 Correcting Spatial Inhomogeneity 

So far the prospects of designing a steep tunneling junction at high current densities seems quite bleak.  Modulating the 
thickness of the tunneling barrier will not work and a band edge density of states steeper than 60 mV/decade has not been 
measured in electrical transport.  In order to get better performance, novel geometries that provide spatial homogeneity, 
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eliminate doping, and promote atomic perfection are needed.  Modulation doping that moves the dopants away from the 
tunneling junction may help, but the ideal geometry would use electrostatic doping through gates.  This can be achieved 
through the bilayer[10, 11] structure in Fig. 4.3(a) or alternatively, one could try to make lateral double gate structure as 
shown in Fig. 4.3(b).  Additional structures that remove doping from the tunneling junction and preserve the material quality 
are needed. 
 In addition to eliminating the doping, we need to eliminate any other sources of spatial inhomogeneity.  This can 
come from rough heterojunctions, atomic thickness fluctuations, or any other non-ideality.  Making small devices that 
encompass a single quantum wavefunction will still be inhomogeneous from device to device, but a single device will be 
more likely to show the intrinsic energy sharpness which has not yet been measured by electrical transport.   
 Alternately, the electrical transport measurements can be performed at low temperature, sharpening up the 
individual energies, and providing an opportunity to measure the discrete levels of the inhomogeneous distribution.  Such a 
low temperature device would not be practical for use as a switch, but would provide scientific information about the 
inhomogeneities. 
 Part of the inhomogeneity arises from thickness fluctuations in conventional quantum wells.  There have now 
emerged monolayer semiconductors such as MoS2 that can precisely define the layer thickness, hopefully eliminating the 
problems of spatial homogeneity.   
 

 
Fig. 4.3 (a) A bilayer TFET is shown.  By applying opposite biases to both the N and P gates, both an electron and a hole channel form in 
the undoped channel, allowing band to band tunneling as shown.  (b) A lateral TFET with both P and N gates is shown.  The tunneling 
junction at the center of the channel is formed electrostatically without dopants.  By eliminating doping in both stuctures, a steep density of 
states can be achieved. 

4.6 PN-Junction Dimensionality 

To further improve the performance of a tunneling junction, we need to maximize the on-state conductance and minimize the 
overdrive voltage.  (The overdrive voltage is the extra voltage needed beyond the subthreshold regime to get the desired 
conductance.)  This is strongly dependent on the actual geometry of the tunneling junction.  Fortunately, confining the 
carriers in the tunneling direction provides four benefits that help achieve this [25].   
 

1. The carrier velocity is increased and set by the confinement energy.   
2. A higher electron energy can increase the tunneling probability.   
3. Shrinking the region in which the electron is allowed will cause a greater percentage of the electron density to be in 

the barrier and thus the tunneling wave-function overlap increases. 
4. Reducing the dimensionality results in a sharper density of states which reduces the overdrive voltage needed to get 

the full conductance. 
 

Whenever specifying a pn junction it is also necessary to specify the dimensionalities of the respective p, and n 
regions.  In Fig. 4.4 we show nine different possible pn junction dimensional combinations.  In the following sections we 
analyze each of these devices and ask which are the most promising for adaptation into a TFET? 
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Fig. 4.4:  We identify nine distinct dimensionality possibilities that can exist in pn junctions.  Each of the different tunneling pn junction 
dimensionalities shown have different turn on characteristics. 

4.6.1 1d-1dend Junction 

A 1d-1dend pn junction describes tunneling within a nanowire [26] or carbon nanotube [27]  junction as schematically 
represented in Fig. 4.4(a).  Tunneling is occurring from the valence band on the p-side to the conduction band on the n-side.  
For a transistor, the gate is not shown as there are many possible gate geometries.  The band diagram across this junction is 
given by Fig. 4.5(a).   
 In analyzing all of the devices, we consider a direct gap semiconductor with a small gate bias.  In particular we 
consider the regime near the band overlap turn-on where a small change in voltage (kbT/q or less) will result in a large change 
in the density of states but only a small change in the tunneling barrier thickness.  Consequently, we assume that the 
tunneling probability is roughly a constant, T, and will not change significantly for small changes in the control voltage.  
Initially, we also assume the tunneling probability is independent of energy and can be given by an energy averaged 
tunneling probability.  We will discuss the energy dependence T(E) in the next section.  The tunneling probability, T, is the 
probability that an electron in a given mode tunnels through the barrier and end up on the other side.  It is often given by a 
WKB approximation: ( )∫= kdxexpT .  

 We also define VOL=qEOL to be the overlap voltage between the conduction and valence bands as shown in 
Fig. 4.5(a).  In order to keep the analysis as simple and general as possible we will use the band overlap voltage, VOL in all of 
the analyses instead of VG or VSD.  Making these approximations allows us to focus on the effects of changing the 
dimensionality and discover some new insights into tunneling in reduced dimensionality systems. 
 The 1d-1dend current can be derived as an adaptation of the normal quantum of conductance, 2q2/h, approach.  The 
band diagram for the typical quantum of conductance is shown in Fig. 4.5(b).  The current flow is controlled by the 
difference in the Fermi levels, which is VSD, as shown.  Current is given by charge  × velocity × density of 1d states.  Since 
the energy dependence of the velocity and 1d density of states exactly cancel, we get the quantum of conductance: 
I=(2q2/h)×VSD×T. 
 Now to properly consider the transition from conduction band to valence band, we look at the band diagram given in 
Fig. 4.5(a).  Initially, we consider the situation where the valence band on the p-side of the junction is completely full and the 
conduction band on the n-side is completely empty.  This would correspond to non-degenerate doping, VSD>kbT/q and 
VSD>VOL. 
 As shown in Fig. 4.5(a), the band edges cut off the number of states that can contribute to the current.  Unlike a 
single band 1d conductor, the overlap voltage VOL determines the amount of current that can flow.  Consequently, it is VOL 
and not VSD that controls the current: 
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Fig. 4.5: (a) Energy band diagram for the tunnel pn junction showing that the relevant voltage is the overlap voltage and not the source 
drain voltage.  (b) Energy band diagram for a typical 1d quantum of conductance showing that the relevant voltage is the source drain 
voltage. 

4.6.1.1 Small Source Drain Bias Limit 

Instead of assuming that there is a large bias across the tunneling junction, we can also consider the opposite limit where 
VSD<4kbT/q.  To account for the small voltage we need to multiply by the Fermi occupation difference (fc – fv).  In this small 
bias regime everything of interest occurs within a kbT or two of energy.  Consequently, we can optionally Taylor 
expand fc - fv: 
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Thus the ultimate effect of the small differential Fermi occupation factors is to multiply the low temperature current by the 
factor qVSD/4kbT.  We can therefore write a conductance for small source drain biases: 
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This is true for all of the following devices to be considered in next sections as well.  Thus we will continue to make the 
approximation that the valence band is full and the conduction band is empty when calculating the potential current flow.  
The exact integral over the Fermi functions is discussed in Chapter 6 for the 1d-1dend case. 
 Eq. (4.6.4b) illustrates a fundamental tradeoff between switching voltage and switch conductance.  Even if the 
tunneling probability is 1, the conductance will be limited by qVOL/4kbT.  For biases less than 4kbT, the conductance is 
reduced due to the thermal distribution of carriers.  We can express this as a voltage-resistance product that will be limited 
to >2hkT/q3.  The voltage-resistance product says that low voltage switches inherently have high resistance, while high-
conductivity switches will also require high voltage.   

4.6.1.2 Fermi’s Golden Rule Derivation 

The current can be derived in a different manner using the transfer Hamiltonian method [25, 28-31].  We do this as an 
alternative to employing the more modern channel conductance approach.  The transfer Hamiltonian method was first used 
by Oppenheimer to study the field emission of hydrogen[31].  It was then expanded by Bardeen[28] for tunneling in 
superconductors and then the case of independent electrons was considered by Harrison[30].  The transfer Hamiltonian 
method is just an application of Fermi’s golden rule with a clever choice of states and perturbing Hamiltonian.  The current 
density is given by Fermi’s golden rule: 
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The calculation of the matrix element Mfi is in done in [25] and [30] and is given by: 
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In this equation, kα,i and kα,f are the α-component of the wave-vector in the initial and final states respectively.  LZ,i and LZ,f 
are the lengths along the tunneling direction of the initial and final sides of the junction.  Using this method allows us to 
extend the transfer Hamiltonian approach to the trickier reduced dimensionality cases by simply summing over fewer states.  
When quantum confinement is used in the tunneling direction, two effects will result in a large matrix element and thus a 
higher conductance.  First, kZ will be set to a large value corresponding to the increased velocity due to confinement.  Second, 
LZ will also be shorter.  By shrinking the region in which the electron is allowed, a greater percentage of the electron density 
is in the barrier and thus the tunneling wave-function overlap increases. 

4.6.2 Energy Dependent Tunneling Probability 

A significant energy dependence arises at low energies where the WKB approximation breaks down.  The tunneling 
probability approaches zero as the energy approaches zero.  At small energies relative to the barrier height, the wave function 
begins to approach infinite barrier boundary conditions, where it is almost zero amplitude at the barrier.  Therefore the 
tunneling probability has to approach zero at low energy. 
 The 1 band tunneling probability through a rectangular barrier, as shown in Fig. 4.5(b), can be found be matching 
boundary conditions using propagation matrices[32], is given by: 
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We considered the situation where the initial and final energy, Ez,i and Ez,f respectively, are different as shown in Fig. 4.5(b).  
The barrier height relative to the tunneling energy, E, is given by ΔV.  The barrier width is WB.  The wavevector in the 
tunneling barrier is given by: Vm∆= 2κ .  For a typical barrier the sinh term will be large and so we get: 
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At small energies, E<<ΔV, we get: 
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Thus we see that there is an energy dependent pre-factor to the WKB exponential.  As the energy goes to zero, the tunneling 
probability goes to zero. 
 Since the exact form of the tunneling probability will be dependent on the barrier shape, we will continue to assume 
that an averaged tunneling probability, 〈T(E)〉, can be used when calculating the current in the following sections.  This still 
captures the key voltage dependence.  The main result to remember is that at small overlap voltages the initial turn-on will be 
limited by the tunneling turn on. 

In the band-to-band tunneling case, the probability will still be given by Eq. (4.6.8) if we assume a rectangular 
barrier.  The only change is that Ez,i is the hole energy and Ez,f is the electron energy as shown in Fig. 4.5(a).  This can be 
found by computing the tunneling matrix element used in Eq. (4.6.5).  VOL represents the available kinetic energy.  When 
there is no confinement in the tunneling direction, such as the 1d-1dend case, the tunneling probability, Eq. (4.6.9), will be 
maximized when Ez,i =Ez,f  = qVOL/2: 
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This means that the tunneling probability will be linearly proportional to VOL at turn-on and a finite VOL of ΔV/8 is needed for 
the pre-factor to reach 1.  Once the prefactor is 1, we assume the WKB approximation is valid. 
 There is also a secondary energy dependence that affects the tunneling probability.  In the 3-dimensional WKB 
approximation, a large transverse energy will reduce the tunneling probability.  Since the transverse energy is limited by the 
available overlap voltage, VOL, at threshold the tunneling problem becomes more 1-dimensional, and the transverse energy 
can be neglected.  The impact of accounting for the transverse energy on the 1d-1dend 2d-2dedge and 3d-3d cases is discussed 
in Chapter 6 



4.6.3 3d-3d Bulk Junction 

A 3d-3d junction simply means a pn junction or heterojunction where there is a bulk semiconductor on either side of the 
sample.  A generalized schematic of the tunneling junction is shown in Fig. 4.4(g). 
 The 3d bulk current can be derived from a few simple considerations.  The junction is a large 2d surface and can be 
considered to be a 2d array of 1d channels.  The 2d array is defined by the transverse k-states that can tunnel.  Each 1d 
channel is equivalent to the 1d-1d case described in the previous section and will conduct with a quantum of conductance 
times the tunneling probability.  The differential current density can therefore be written as: 

 E
h
qNI  states ∂×××=∂ ⊥ T2   (4.6.11) 

The number of transverse states is the number of k-states within the maximum transverse energy at a given energy and is 

given by the number of 2d states: )2()( 2πAmEN =⊥ .  A is the area of the tunneling junction.  The transverse energy is 
limited by the closest band edge and peaks in the middle of the overlap.  Integrating Eq. (4.6.11) gives: 
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               =No. of 2d Channels  ×  1d Conductance 
This is the same as taking the appropriate limits of Kane’s tunneling theory [7] (except for a factor of π2/9). 

4.6.4 2d-2dedge Junction 

A 2d-2dedge junction is shown in Fig. 4.4(d).  The derivation of the current is almost identical to the 3d-3d case, except that 
instead of having a 2d array of 1d channels we now have a 1d array of 1d channels.  Therefore the current is: 
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                      =No. of 1d Channels  ×  1d Conductance 
Where LX is the length of the junction. 

4.6.5 0d-1d Junction 
A 0d to 1d junction represents tunneling from a quantum dot to a nanowire as shown in Fig. 4.4(b).  We consider two 
different 0d-1d systems.  First we will assume that there is an electron in the quantum dot and find the rate at which it escapes 
into the end of a 1d wire.  We analyze this junction as building block for the 2d-3d and 1d-2d junctions.  To build a real 
0d-1d device, we also need to electrically contact the quantum dot.  Therefore we consider a more realistic situation that 
includes this.  This becomes a single electron transistor (SET) as shown in Fig. 4.6. 

The rate at which an electron escapes from the quantum dot into a nanowire is given by the field ionization of a 
single state such as an atom.  In Gamow’s model of alpha particle decay [33], the particle is oscillating back and forth in its 
well and it attempts to tunnel on each round trip oscillation.  If the dot has a length of LZ along the tunneling direction, the 
electron will travel a distance of 2LZ between tunneling attempts.  Its momentum is given by pZ=mvZ= Zk  where kZ=π/LZ in 

the ground state.  Using m/kE ZZ 222= , the time between tunneling attempts is τ=2LZ/vz=h/2Ez.  The tunneling rate per 
second is R=(1/τ)×〈T〉.  This can be converted to a current by multiplying by the electron charge, and a factor 2 for spin to 
give: 

 T××= ZE
h
qI 4   (4.6.14) 

This is the same result that one obtains from the transfer Hamiltonian method.  
 To include coupling into the dot, we add a second nanowire to supply current, as shown in Fig. 4.6 and form a 
“single electron transistor” [34].  We assume that the second nanowire has the same tunneling probability/coupling strength 
to the quantum dot as the original one.  Unlike a conventional SET, we want the current to be high enough and the dot be 
large enough that we do not see any coulomb blockade effects.  The tunneling event out of the dot follows sequentially after 
tunneling in.  Consequently, the current is cut in half: 
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As seen in Fig. 4.6(e), the tunneling occurs at a single energy and will result in a sharp turn on once the bands overlap.  This 
is one of the key benefits of quantum confinement.  The current density is concentrated in a narrow energy range which 
allows for a smaller VOL.  The can be contrasted with the 1d-1dend case, Eq. (4.6.1), where the current flows over the entire 
energy range corresponding qVOL.  The width of the 0d-1d energy range will be given by the broadening of the energy level 
in the quantum dot.  This broadening can be extrinsically caused by any inhomogeneities in the lattice such as defects, 
dopants, or phonons.  Even without these effects, simply coupling to the dot to the nanowires causes a significant amount of 
broadening.  Each contact will broaden the level by γ0 for a total broadening of 2γ0[35]: 
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In the limit that T→1, the 0d-1d case will become the 1d-1dend case with a perfect quantum of conductance: I=2q2/h×VOL.  

However, in a realistic situation T<<1, and so we can use quantum confinement to concentrate the current at a single energy 
and significantly reduce VOL. 
 The quantum confinement also has an added benefit of increasing the tunneling probability itself.  This can be seen 
from Eq. (4.6.9)   In the 1d-1dend case, Ez,i and Ez,f are both limited by VOL.  In the 0d-1d case, only Ez,f will be limited by VOL.  
Ez,i can be set to a large value by the quantum confinement. 
 

 
Fig. 4.6: (a) A 0d-1d junction converted into a more realistic 1d single electron transistor (SET) structure.  (b) Band diagram corresponding 
to the SET.  (c) An alternate SET structure with a p-type contact (d) Band diagram corresponding to the alternate SET (e) All the current is 
concentrated around a single energy, which allows for a small overlap voltage VOL, and thus a small overdrive voltage VOV. 

4.6.6 2d-3d Junction 

A 2d-3d tunneling junction is typical in vertical tunneling junctions where the tunneling occurs from the bulk to a thin 
confined layer [3].  The thin layer can either be a thin inversion layer or a physically separate material [3, 36, 37].  A 
generalized schematic of this tunnel junction is shown in Fig. 4.4(h). 
 The derivation for this case is very similar to the 3d-3d case.  As in that section, the junction is a large 2d surface 
and can be considered to be a 2d array of 1d tunneling problems.  However, this case does not represent the typical 1d 
quantum of conductance.  The 1d problem is better described by tunneling from a quantum dot to a nanowire as shown in 
Fig. 4.4(b). 

To find the 2d-3d current, we simply multiply the 0d-1d result, Eq. (4.6.14), by the number of 2d channels to get a 
current of: 
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Here, EZ is the confinement energy of the 2d layer.  We only included transverse states for a transverse energy up to qVOL/2.  
For transverse energies larger than that, no state exists on both sides of the junction with the same total energy.  This is the 
exact same result that comes from the transfer Hamiltonian method.  Compared to the bulk 3d-3d case, confining one side of 
the junction resulted in the replacement of qVOL with 4EZ.  The quantum confinement can also increase the tunneling 
probability by fixing the electron energy in the quantum well and thus Ez,i in Eq. (4.6.9). 
 Current can flow in along the transverse direction as shown in Fig. 4.4(h).  Other methods such as tunneling into the 
quantum well can also be considered for making electrical contact. 

4.6.7 1d-2d Junction 
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A 1d-2d junction describes tunneling between the edge of a nanowire and a 2d sheet as shown in Fig. 4.4(e).  The derivation 
for this case is almost identical to the 2d-3d case.  The only difference is that instead of a 2d array of 1d tunneling, we now 
have a 1d array of 1d tunneling.  Thus the current is: 
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 Comparing to the 2d-2d edge overlap formula, confining one side of the junction resulted in the replacement of qVOL 
with 3EZ and an increased 〈T〉 by fixing Ez,i in Eq. (4.6.9).  

4.6.8 0d-0d Junction 

This case represents tunneling from a filled valence band quantum dot to an empty conduction band quantum dot.  It is 
schematically represented in Fig. 4.4(c).  In order to create a meaningful device, the quantum dots need to be coupled to 
contacts to pass current in and out of the device.  Consequently, we consider the structure in Fig. 4.7 
 Current will only flow when the confined energy levels in each dot are aligned.  This can be seen from Fig. 4.7(d).  
The two dots will only couple if the density of states in each dot overlaps.  This results in an I-V curve that resembles a delta-
function as shown in Fig. 4.7(e).  We can estimate the peak current by considering the coupling strength between each dot 
and its contact as well as the coupling between dots.  For simplicity, we will assume that the dots and contacts are symmetric.  
The coupling strength or broadening due to each contact is given by Eq. (5.5.17):  
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Tcontact represents the tunneling probability between the contact and a dot. 
The coupling strength between each dot is the matrix element between the dots and is given by Eq. (4.6.6).  Since 

we have a single level in each dot, we can simplify the matrix element by using kZ=π/LZ and *22 2/ mkE ZZ = : 
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T is the single barrier tunneling probability between the two dots.  In order to maximize the current we want all the coupling 

strengths to be equal: 0if |M| γ= .  Since T∝|M| if it is possible to design the central barrier to have 0if |M| γ> .  

Unfortunately, doing this will cause the dots to strongly couple and will result in a level splitting that reduces the current.  
Consequently, we want to design γ0 to be large and then design 0if |M| γ= .  This means that the tunneling rate through each 

barrier is the same and given by /0γ .  Since we have a three step tunneling process the peak current will be given by: 
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The width of the tunneling peak is given by the broadening of the confined level, 2γ0.  Additional broadening mechanisms 
such as electron-phonon interactions can further broaden the turn on and reduce the peak current by smearing out the levels 
and reducing the coupling strength between the dots.  As with the 0d-1d case, in the limit that T→1, the 0d-0d case will 
become the 1d-1dend case with a perfect quantum of conductance: I=2q2/h×VOL.  However, in a realistic situation T<<1, and 
so we can use quantum confinement to concentrate the current at a single energy and significantly reduce VOL.   

The 0d-0d peak current is almost identical to the 0d-1d case from Eq. (4.6.15) with the exception of a factor of 2/3 
as this is now a 3 step tunneling process instead of a 2 step process.  The key difference arises when evaluating Tcontact.  If we 
design the 0d-0d system as shown in Fig. 4.7(b) both the initial and final tunneling energy is non-zero and set by the quantum 
confinement.  This means that the prefactor in the tunneling probability in Eq. (4.6.9) can be close to 1 and so an additional 
overlap voltage is not needed to increase the tunneling probability.  Nevertheless, this also means that the subthreshold swing 
voltage will be determined only by the sharpness of the confined energy levels and not the band edge.  Alternatively, we can 
design the 0d-0d system so that the nanowire band edges line up with the confined energy levels as shown in Fig. 4.7(c).  In 
this case, the subthreshold swing voltage will be determined by the sharper of the band edge or the confined level.  However, 
we will lose the increased tunneling probability as the energy in the nanowire will be low.  Overall we see that by using the 
0d-0d structure in Fig. 4.7(b) we may be able to have an advantage over 0d-1d through the increased tunneling probability.  
On the other hand, the delta-function like shape of the I-V curve shown in Fig. 4.7(e) may make it difficult to design a 



conventional logic circuit. 

 
Fig. 4.7: The properties of a 0d-0d junction that is coupled to nanowire contacts are shown.  (a) Schematic representation of the junction (b) 
Band diagram of the junction.  Tunneling only occurs at a fixed energy when the two confined levels overlap.  The fixed tunneling energy 
results in a higher tunneling probability.  The subthreshold swing voltage will be determined by the sharpness of the levels.  (c) Alternate 
band diagram that shows the nanowire band edges aligned with the confined levels.  In this case, the subthreshold swing voltage will be 
determined by the sharper of the level or the nanowire band edge.  Conversely, the tunneling probability will be lower as the energy in the 
nanowires is low.  (d) Tunneling only occurs when the density of states in each dot is aligned. (e) The I-V curve resembles a delta function 
when the levels align. 

4.6.9 2d-2dface Junction 

A 2d-2dface junction describes tunneling from one quantum well to another through the face of the quantum well.  This can be 
seen in resonant interband tunnel diodes [38-40].  The junction is schematically represented in Fig. 4.4(i).  This is one of the 
most interesting cases as it is the closest to a step function turn-on. 
 The step function turn on can be seen by considering the conservation of transverse momentum and total energy.  
This depicted in Fig. 4.8(a).  The lower paraboloid represents all of the available states in k-space on the p side of the 
junction and the upper paraboloid represents the available k-space states on the n side of the junction.  In order for current to 
flow the initial and final energy, and wave-vector k, must be the same and so the paraboloids must overlap.  However, as seen 
in the right part of Fig. 4.8(a), they can only overlap at a single energy.  Furthermore, the joint density of state pairs between 
valence and conduction band is a constant in energy.  Thus the number of state pairs that tunnel is a constant regardless of the 
overlap energy as seen in Fig. 4.8(b). 
 The current can be computed by using Fermi’s golden rule.  Due to the conservation of transverse momentum, every 
initial state is coupled to only one final state.  Current can flow into each quantum state, along the quantum well, or through 
the face of the quantum well.  We simply need to sum Eq. (4.6.5) over all initial states or final states: 
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Plugging in the 0d-0d matrix element, Eq. (4.6.20), converting the sum to an integral, and assuming a full valence band and 
empty conduction band gives: 
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Finally evaluating the integral over the delta function gives an additional factor of ½ as OLtfi qVEEE −=− 2 : 
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The main change in going from 3d-3d to 3d-2d is that the energy factor qVOL became EZ.  Likewise, in going from 
the 3d-2d to 2d-2dface the other energy factor qVOL also became EZ.  Thus for each confined side of the junction the relevant 
energy changes from the overlap energy to the confinement energy.  Consequently the 2d-2dface case has the same current as a 
3d-3d case if ZOL EqV 22= .  In practice EZ can be much larger than qVOL, providing the 2d-2dface case with a significant 
current boost.  The quantum confinement also increases the tunneling probability itself as seen from Eq. (4.6.9).  The pre-
factor in the tunneling probability is no longer dependent on VOL and is instead set to a large value by the quantum 
confinement. 
 Following the joint density of states, the current takes the form of a step function with respect to the gate voltage.  
This is because all of the tunneling current is concentrated near a single energy.  This is similar to the step function case of 
quantum well optical transitions.  As soon as the bands overlap, the current immediately turns on.  However, various 
broadening mechanisms will smear out the step-like turn-on function and this will be discussed later. 
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Fig. 4.8:  Various characteristics of a 2d-2dface junction. (a) There is only a single tunneling energy because of the simultaneous 
conservation of energy and momentum.  The energy versus wave vector paraboloids on each side of the junction only intersect at a single 
energy. (b) Even though the overlap of the density of states increases with increasing overlap voltage, there is only a single energy, 
indicated by the dotted line, at which the electrons tunnel.  

4.6.10 1d-1dedge Junction 

A 1d-1dedge junction represents two nanowires overlapping each other along the edge as shown in Fig. 4.4(f).  This junction is 
similar to the 2d-2dface junction.  The current can be found by summing over 1d set of transverse states in Eq. (4.6.22).  The 
resulting current is: 
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As in the 2d-2dface case the tunneling only occurs at a single energy due to the conservation of momentum and energy.  Since 
we are now dealing with 1d nanowires, the number of transverse states follows a 1d density of states which follows a OL/1 V  
dependence.  This predicts a step function turn on followed by a reciprocal square root decrease.  This seemingly implies that 
the initial conductance will be infinite.  However, the contact series resistance will limit the conductance and various 
broadening mechanisms will limit the peak conductance. 

4.6.11 Tradeoff between Current, Device Size, and Level Broadening 

When a level on the p-side of a junction interacts with a level on the n-side of the junction it is possible for the two levels to 
interact strongly and repel each other.  In most cases this is not a problem as the interaction between any two particular 
levels goes to zero when the devices get larger and any small amount of level broadening will wash out the level repulsion.  
In the case of very large contact regions leading to the tunnel junction, the large normalization volume of the wave functions 
guarantees that individual level repulsion matrix elements are negligible.   
 In contrast, the 0d-0d, 1d-1dedge and 2d-2dface cases have a finite extent along the tunneling direction, restricting the 
normalization volume.  This means that the tunnel interaction matrix element, |Mf i|, can take on a large finite value.  If this 
interaction is too large, the two interacting levels will be strongly coupled and all the perturbation results in this paper will 
fail.  The strong coupling will cause the interacting levels to repel each other and consequently limit the current.  To prevent 
this and wash out the level repulsion, the level broadening, γ, needs to be greater than the level repulsion matrix element: 

 T××=> fZ,iZ,fi EE
π

M 1γ  (4.6.26) 

The broadening γ is typically caused by coupling to the contacts or by various scattering mechanisms.  Unfortunately, this 
level broadening also smears out the sharp turn on of the 1d-1dedge and 2d-2dface junctions.  Since the tunneling current is 
proportional to the matrix element, |Mf i|, there is a fundamental tradeoff between the level broadening and the tunneling 
current.  The greater the on-state current, the more the level needs to be broadened to allow the electrons to escape into the 
contact.  The 1d-1dend, 2d-2dedge and 3d-3d junctions can be thought of as the limit where the levels are completely broadened 
into a continuous band.  In the limit that T→1, we cannot do better than a perfect quantum of conductance from the 1d-1dend 
2d-2dedge and 3d-3d cases.  However, any realistic device will have T<<1, and so we can use the quantum confinement to 
increase the matrix element and to engineer the tradeoff between the broadening and the on-current to get a sharper turn on. 

Another major broadening limit occurs for the 1d-2d, 2d-3d, 1d-1dedge and 2d-2dface cases when the transverse 
dimensions are reduced.  Consider the 1d-1dedge case shown in Fig. 4.4(f).  The current is flowing in along extended 
nanowires in the x-direction.  At low energies, the wavelength along the x-direction will be very long and so only the tail of 
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the wavefunction will fit overlap region between the two quantum wires.  In order to get a good transverse momentum 
matching at least half a wavelength needs to fit in the overlap region.  Consequently, the turn on will be broadened by the 
energy corresponding to xL2=λ : 
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 (4.6.27) 

The same limit applies for the 1d-2d, 2d-3d and 2d-2dface case.  This means that these cases will lose their abrupt turn on if 
the transverse dimensions are too small.  For extremely small dimensions 0d-1d or 0d-0d may be more favorable.  
Alternatively, tunneling contacts could be used, but a different broadening limit given by Eq. (4.6.19) will apply. 

4.6.12 Comparing the Different Dimensionalities 

Now that we have considered many different tunneling junction geometries, we’ve plotted a comparison of the different cases 
in Fig. 4.9.  To plot the figures we used a reasonable tunneling probability of 1%.  We assumed confinement energies of 
130 meV, an effective mass of 0.1 and overlap lengths of 20 nm.  There are four different broadening mechanisms that will 
limit the initial turn on, as indicated by the dotted lines.  Using the above constants, the broadening mechanisms and the 
affected dimensionalities are summarized below: 

• Transverse momentum matching: Eq. (4.6.27).   
o 1d-2d, 2d-3d, 1d-1dedge, 2d-2dface, ------------ γ=9.4 meV 

• Matrix Element Broadening: Eq. (4.6.26).  
o 0d-0d, 1d-1dedge and 2d-2dface ----------------- γ=4.1 meV 

• Contact Broadening: Eq. (4.6.19) 
o 0d-0d, and 0d-1d -------------------------------- γ=0.8 meV 

• Tunneling Probability Turn-On: Eq. (4.6.9) 
o 1d-1dend, 2d-2dedge and 3d-3d ------------------ γ=12.5 meV 
o 0d-1d, 1d-2d and 2d-3d ------------------------ γ=0.6 meV 

To estimate the tunneling probability turn-on, we assume a barrier height of ΔV=100 meV, which assures a good on/off ratio 
as discussed in Section 4.3.1.  The 1d-1dend, 2d-2dedge and 3d-3d are unconfined in the tunneling direction and so we can set 
the prefactor in Eq. (4.6.10) equal to 1: 8VOL/ΔV=1.  This gives VOL=γ=12.5 meV.  For the 0d-1d, 1d-2d and 2d-3d cases, one 
side of the junction is confined and so we need to use Eq. (4.6.9) with 2/, OLfz qVE =  and set the prefactor in Eq. (4.6.9) 

equal to 1: 12/16 , =∆VqVE OLiz .  This gives VOL=γ=0.6 meV.  The broadening due to contacts is twice the broadening 

from a single contact given by Eq. (4.6.19). 
 For each dimensionality, the largest form of broadening will dominate.  For the 1d-2d, 2d-3d, 1d-1dedge and 2d-2dface 
junctions, the turn-on will be limited by the transverse momentum matching.  The 1d-1dend, 2d-2dedge and 3d-3d junctions are 
limited by the turn on of the tunneling probability.  The 0d-1d and 0d-0d are limited by the contact broadening. 

The turn-on conductance versus overlap control voltage VOL can be seen in Fig. 4.9 for all of the cases.  The initial 
broadened turn on is represented by the dotted lines.  For the 0d-0d case the entire line-shape is due to the broadening and is 
thus unknown, but the calculated width and height are still represented in the figure. 
 The nanowire based devices shown in Fig. 4.9(a) have the lowest conductance as they only tunnel at a single point.  
However, we see that introducing quantum confinement can still help increase the conductance when the tunneling 
probability is low.  We also see that for the parameters chosen, the 0d-1d case captures all the benefits of the quantum 
confinement, while the 0d-0d case is a narrow pulse with a slightly lower peak conductance.  In some situations, when the 
tunneling probability requires a larger voltage to turn on, the 0d-0d case can have a higher initial peak. 
 The edge tunneling devices shown in Fig. 4.9(b) have a higher conductance as the have a larger tunneling length.  
Consequently, we also normalize the current to the tunneling length.  In these cases, maximizing the quantum confinement on 
both sides of the junction results in the highest conductance.  The same applies for the area tunneling devices shown in 
Fig. 4.9(c). 

Overall, we see that using quantum confinement in the tunneling direction can significantly increase the 
conductance and thus reduce the overdrive voltage when the tunneling probability is low.   



 
Fig. 4.9: The conductance curves for the different dimensionalities are plotted using the following parameters: 〈T〉=1%, EZ=130meV, 
LX=20nm, m*=0.1me and ΔV=100meV.  The dotted lines represent the initial broadened turn on where the lineshape is uncertain.  (a) The 
1d-1dend, 0d-1d and 0d-0d cases are plotted. (b) The 2d-2dedge, 1d-2d and 1d-1dedge cases are plotted.  (c) The 3d-3d, 2d-3d and 2d-2dface 
cases are plotted. 
 

4.7 Building a Full Tunneling Field Effect Transistor 

Now that we have analyzed how to make a good tunneling junction we can consider what happens when we try to build a 
TFET.  In considering the performance of a full TFET, one has to consider the subthreshold regime, gate efficiency, and any 
overdrive voltage needed to achieve the full on-state.  While the voltage response is exponential over most of the drive range, 
it invariably saturates as the switch approaches the on-state.  The overdrive voltage represents the extra voltage needed to 
achieve the full on-state after saturation has set in. 
 We can understand many of the design issues by considering three simple TFET structures that capture the essential 
physics behind most TFETs to date.  We only analyze n-channel TFETs, where the gate modulates the n-type side of the pn-
junction, since the analysis is almost identical for p-channel TFETs.  Fig. 4.10(a) shows a double gate TFET with identical 
gates such that the tunneling occurs laterally at a single point at the source channel junction.  The key design issues will be 
similar for other point tunneling devices such as nanowires or even single gate TFETs[12, 27].  Fig. 4.10(b) shows a vertical 
tunneling TFET where the gate overlaps the source.  The gate inverts the source and a tunneling junction is formed within the 
source.  A variety of schemes to optimize the vertical tunneling such as creating a doped pocket or using a vertical 
heterojunction have been tested, but they all operate on similar principles [3, 36, 37] and will face similar issues.  Fig. 4.10(c) 
shows a newer device concept called the electron hole bilayer TFET [10, 11].  By applying opposite biases to both the N and 
P gates, both an electron and a hole channel form, allowing band to band tunneling as shown in Fig. 4.10(f).  In all of the 
designs, the gate workfunction can be engineered to correctly set the threshold voltage. 
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Fig. 4.10:  Three representative tunneling FET designs are shown.  (a) Lateral, (b) vertical and (c) bilayer TFETs are illustrated.  The 
direction of tunneling for the lateral, vertical and bilayer is shown in (d), (e) and (f) respectively.  The band diagrams parallel to the 
direction of tunneling is given in (g), (h) and (i) respectively. 

4.7.1 Minimum Voltage Required 

The operating voltage is given by: 

 ( )offonOVDD IILogSSVV /×+=  (4.7.1) 

Here we explicitly include the overdrive voltage, VOV, and the subthreshold swing voltage, SS, as VOV can be a significant part 
of the total voltage in a steep slope device.  Ion/Ioff is the ratio of the on and off state currents.  VOV is the extra voltage required 
after the conduction and valance band are aligned to get the desired on-state conductivity and is given by: 
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 EOL is the overlap between the conduction and valence band edge as shown in Fig. 4.1(c) and 4.1(d).  EOV is the 
minimum energy overlap, EOL, required to get the desired on-state conductivity.  Typically, the conductance increases as EOL 
increases as there are more states that contribute to the tunneling current and so a minimum energy overlap EOV is needed.  
Fortunately, EOV can be significantly reduced by confining the carriers in the tunneling direction as discussed in Section 4.6. 
 The next factor in computing VOV is the gate efficiency, ηgate.  Only a fraction of the voltage applied on the gate, VG, 
contributes to changing EOL.  The gate efficiency can divided into two terms: 
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φS is the surface potential under the gate.  The standard electrostatic gate efficiency (ηel) is just the change in the surface 
potential (φS) with respect to the gate bias (VG): 

 Gsel dVd /φη =  (4.7.4) 

 There is also a quantum confinement efficiency (ηquant) for vertical and bilayer TFETs.  In these structures a 
triangular quantum well is formed under the gate and the effective band edge is raised to the quantum level E1e shown in 
Fig. 4.10(h) and Fig. 4.10(i).  In the bilayer, both sides of the tunneling junction are confined as shown in Fig. 4.10(i).  If the 
bias on the gate is increased, the triangular quantum well gets narrower and the energy level E1e increases.  This works 
against the gate bias reduces the change in the confined eigenstate energy overlap (EOL).  Consequently, we need to multiply 
by an additional quantum confinement efficiency: 
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  So far we have assumed the tunneling process limits the current, but there is an additional requirement that channel 
have enough charge to conduct the current (i.e. the MOSFET in a TFET needs to be on as well) which is typically true in 
short channel TFETs.  In a long channel device where a significant amount of charge is needed, the standard MOSFET 
electrostatics could dominate the overdrive voltage and needs to be accounted for.  This would result in a very low ηel and 
increased EOV. 

4.7.2 Subthreshold Swing Voltage 

The next step is to find the subthreshold swing voltage.  The ideal TFET would rely upon a sharp band edge and would 
switch abruptly from zero-conductance to the desired on-conductance when the electron and hole eigenstate energies overlap.  
Unfortunately the band-edges are not perfectly sharp and thus there is a finite density of states extending into the band gap, 
smearing out the desired abrupt response.  Conventional TFET modeling does not account for the smeared band edge density 
of states. 
 We consider the following simple model for the tunneling current in order to understand the various contributions to 
the Subthreshold Swing Voltage (SS): 

 ∫ ∂×××−∝ EEDffI JVC )()( T  (4.7.6) 

(fC-fV) is the difference in the Fermi occupation probabilities of the conduction and valence bands, T is the transmission 
probability of a tunneling electron and DJ(E) is the joint density of states.  Below the band edge, E’C, the density of states in 
the conduction band, DC(E), is given by: 

 '/)(
0 ,)( 0

'
C

qVEE
CC EEeDED C <×= −−  (4.7.7) 

Here DC0 is a constant prefactor for the electron density of states and E’C is the electron eigenstate energy.  We assume that 
the density of states falls off exponentially below the band edge with a semilog slope of V0 and has a prefactor of DC0.  An 
exponential falloff is typical of band edges as seen in the optical absorption edge [18].  Above the band edge the density of 
states will simply be given by the 1d, 2d or 3d density of states depending on the device geometry.  Similarly, the valence 
band edge density of states above the valence band edge, EV’, will be given by: 
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Here DV0, is a constant prefactor for the hole density of states and E’V is the hole eigenstate energy.  For simplicity, we take 
the exponential slope, V0, to be the same for conduction and valence band edges. 

 Now we consider the situation where the electron and hole eigenstates are not aligned as shown in Fig. 4.1(c).  
Ideally, no current would flow, but due to the band tails, an overlapping density of states exists as shown in Fig. 4.11.  
Combining the conduction and valence band density of states to get a joint density of states gives: 
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EOL is the overlap energy between the electron and hole eigenstates and is given by E'V-E'C as shown in Fig. 4.1(c).  Since the 
joint density of states has a maximum plateau in the bandgap region between E'C and E'V, we can approximate the current 
integral as: 
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where the tunneling pre-factor is:  
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Thus we have arrived at a simplified model for the tunneling current when band tails are present.  Now we can compute the 



subthreshold swing voltage (SS) using the definition: 

 )log(/ IddVSS G≡  (4.7.12) 

Plugging Eq. (4.7.10) into Eq. (4.7.12) gives: 
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In the first term we took the derivative with respect to the surface potential, φS, since tunneling transmission probability, T, 
depends sensitively on this potential.  In the second term we took the derivative with respect to EOL as the band edge density 
of states depends on the band alignment.  Finally, the subthreshold swing voltage in Eq. (4.7.13) can be expressed in the 
following form by replacing each term with the appropriate symbol to highlight the four contributing factors: 
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ηel  and ηquant  are the electrostatic and quantum confinement efficiencies given by Eq. (4.7.4) and Eq. (4.7.5) respectively.  
SDOS is the semilog slope of the joint band edge density of states in mV/decade that was discussed in Section 4.3:  
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Here we redefine Stunnel to be the semilog slope measuring how steeply the tunneling conductance pre-factor changes with 
respect to the voltage across the body, VBody: 
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It is given in mV/decade and I0 is given by Eq. (4.7.11).  Stunnel is the steepness that results from changing the thickness of the 
tunneling barrier with a changing bias.  Since we are interested in the derivative of the log of Itunnel, any value proportional to 
it can also be used.  To good approximation, we can just consider the tunneling probability, T, instead of Itunnel as we did in 
Section 4.2 

 A small subthreshold swing voltage can be achieved by having either a small Stunnel or a small SDOS and a good gate 
efficiency.   

 

 
Fig. 4.11: The conduction and valence band density of states, DC(E) and DV(E), are shown.  Below the band edges the density of states 

falls off exponentially.  The joint density of states, DJ(E) is also shown. 

4.7.3 On-State Conductance 

Now that we know how to minimize the voltage we need to maximize the on-state conductance.  This is discussed thoroughly 
in two review articles [1, 2] and Chapter 5.  Typically there are two methods that are used to increase the conductance.  The 
first is to increase the tunneling area by using a vertical TFET or a bilayer TFET.  In these structures, tunneling occurs over a 
larger overlap region rather than just at the source-channel junction.  The second method is to minimize the tunneling barrier.  
This can be achieved by either reducing the tunneling barrier height or the tunneling barrier width.  Oftentimes heavy doping 
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is used to shrink the tunneling barrier width.  As we saw in Section 4.3 this causes SDOS to increase and ruins the subthreshold 
swing voltage.  Because of this, many experimental results with a high conductivity have a terrible subthreshold swing 
voltage.  Consequently, new methods such as the bilayer are needed to control the tunneling barrier width.  The tunneling 
barrier height can also be reduced by using a smaller band gap material or by using a heterojunction to create a smaller 
effective band gap for tunneling.  However, even the minimum effective band gap is limited by the band edge density of 
states as we saw from Eq. (4.3.1).  If we want a particular on-off ratio, the barrier height in the off-state, Eg,eff, must be large 
enough to suppress the band edge density of states, SDOS, by that on-off ratio.   
 In Section 4.5 we introduced a new method to increase the conductance.  When the tunneling probability is low 
quantum confinement in the direction of tunneling will increase the conductance. 

4.8 Maximizing the gate efficiency 

In addition to having a small Stunnel or a small SDOS we need to maximize the gate efficiency, ηel and ηquant to minimize the 
voltage.  Since this is very geometry dependent we will consider the three TFET structures, lateral, vertical and bilayer 
separately. 

 
Fig. 4.12:  The circuit models for the lateral (a), vertical (b) and bilayer (c) TFETs are shown. 

4.8.1 Lateral TFET gate efficiency 

In Fig. 4.12(a) we show the circuit model for the lateral TFET.  Here we assumed that the body is sufficiently thin that the 
entire channel will invert.  Like a FinFet or nanowire transistor the electrostatics of this device can be very good.  If channel 
is sufficiently long, the gate capacitance, CG, will be much larger than the source and drain capacitances, CS and CD, as only 
the gate capacitance and the quantum capacitance, CQ, scale with length.  This means that we only need to consider CG and 
CQ to compute the gate efficiency.  Since there are two gates, the gate capacitance per unit area is given by: 
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 εOX is the permittivity of the gate oxide and tOX is the thickness of the gate oxide.  The quantum capacitance is simply the 
voltage needed to add to add more charge to the channel.  The charge in the channel, Qn, is given by the 2D quantum charge 
and depends on where the Fermi level is relative to the band edge.  The charge is given by the following equation for an n-
channel device: 
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∆EFn is given by EC-EF.  m*
e,t is the electron effective mass in the transverse direction.  In computing the quantum 

capacitance, we assumed a small source drain bias such that we can assume a single Fermi level.  We make the same 
assumption for the vertical and bilayer TFETs as well.  The quantum capacitance is given by: 
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The overall gate efficiency is just a voltage divider between CG and CQ and is given by ( )GQGel CCC +=η .  

 In the subthreshold regime CQ→0 and so the gate efficiency will approach 1 as long as CG>>CS and CD.  In the 
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overdrive regime, the gate efficiency depends on the Fermi level position and the effective mass.  Since the channel needs 
some charge to conduct current, as given by conventional MOSFET electrostatics, the Fermi level position in the on-state 
should be set by the minimum required charge to get a given channel conductance.  A lower effective mass will also decrease 
the quantum capacitance and thus increase the gate efficiency in the overdrive regime. 
 For lateral TFETs the quantum confinement efficiency, ηquant, is 1.  This is because the confinement energy in the 
channel is just set by the geometry and does not change with bias. 
 Overall, we see that a well-designed lateral TFET can have a gate efficiency near 1 in the subthreshold regime, 
similar to well-designed FinFet and nanowire transistors.  In the overdrive regime, the gate efficiency is limited by the 
quantum capacitance and can be improved by reducing the effective mass and using the minimum required charge in the 
channel. 

4.8.2 Vertical TFET gate efficiency 

The key tunneling junction in a vertical TFET is given by the band diagram in Fig. 4.10(h).  It can be modeled as a simple 
MOS capacitor.  In doing so, we are neglecting the details of the 2d electrostatics and focusing on only the essential 
switching action.  A fair bit of engineering is required to ensure that vertical TFET actually behaves like a 1d MOS 
capacitor[41, 42].  If the 2d electrostatics are designed incorrectly different regions of the device can turn on at different 
biases and smear out the subthreshold swing voltage.  Nevertheless, before we even get to that stage of design, we need to 
understand what the inherent tradeoffs in a vertical architecture are.  Consequently, we consider the simplest 1d model shown 
in Fig. 4.10(h).  The circuit model is given in Fig. 4.12(b). 
 First, we find the quantum confinement efficiency, ηquant by finding dEOL/dφS.  We choose to measure the potential 
from the bulk conduction band edge such that the total band bending = φS.  The overlap energy EOL is given by: 
 )(1 seGsOL EEE φφ −−=  (4.8.4) 

Here E1e is the confinement energy in the triangular well and EG is the band gap.  Plugging this into the definition of ηquant, 
Eq. (4.7.5) we get:  
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Thus we need to find dE1e/dφS.  We can approximate the potential well as a triangular quantum well whose slope is set by the 
peak electric field in the MOS capacitor.  Assuming an infinite triangular well will result in an over-estimate of the 
confinement energy, but it is sufficient for a first approximation.  Consequently, the ground state energy is given by: 
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m*
e,z is the electron effective mass in the tunneling direction.  The peak electric field is set by the level of band bending, φS, 

and by the doping, Nd: 
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The permittivity of the semiconductor is εS.  Plugging Eq. (4.8.7) into Eq. (4.8.6) and evaluating dE1e/d(q×φS) gives: 
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Finally, we can use Eq. (4.8.8) in Eq. (4.8.5) to evaluate the quantum efficiency.  To estimate ηquant we consider Silicon 

)92.0( *
, =zem  with EOL=0 and ND=1017, 1018, 1019 and 1020/cm3.  We find ηquant = 0.98, 0.97, 0.93 and 0.88 respectively.  In 

InAs ( 023.0*
, =zem ), ηquant = 0.91, 0.84 and 0.77 for ND=1017, 1018 and 1019/cm3 respectively.  As we can see, lowering the 

doping will help increase the quantum efficiency, but it will result in a longer depletion width and thus a thicker tunneling 
barrier and lower current. 
 Now we can find the electrostatic gate efficiency.  The key difference from a lateral TFET is that we have a 
depletion capacitance in parallel with the quantum capacitance as shown in in Fig. 4.12(b).  Once again, ηel is given by a 



simple voltage divider: ( )GDEPQGel CCCC ++=η .  The gate capacitance is simply given by oxoxG tC ε= .  The 

depletion capacitance is given by: 
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WDEP is the depletion region width.  The quantum capacitance is given by Eq. (4.8.3) but reduced by ηquant as the confinement 
energy level shifts with bias: 
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Thus we see that in the subthreshold regime the electrostatic efficiency is limited by the depletion capacitance, while in the 
overdrive regime the quantum capacitance will typically limit the efficiency.  In addition to improving ηquant, minimizing the 
doping will reduce the depletion capacitance and thus increase ηel.  In the subthreshold regime, ηel is typically 80-90%.  As 
with the lateral TFET, minimizing the transverse effective mass and the channel charge will result in a lower quantum 
capacitance and thus a higher overdrive gate efficiency.  
 Overall, we see that like a conventional planar MOSFET the vertical TFET has subthreshold gate efficiency less 
than 1 due to the depletion capacitance.  Vertical TFETs also suffer slightly from a lower quantum efficiency due to the need 
for heavy doping to maintain a thin tunneling barrier and a large band bending of at least EG.  Conversely, vertical TFETs do 
enable a larger tunneling area and thus a higher conductance. 

4.8.3 Bilayer TFET gate efficiency 

The band diagram for the bilayer TFET is shown in Fig. 4.10(i) and the circuit model is shown in Fig. 4.12(c).  As seen in the 
band diagram the electrons and holes are both quantized, which will result in a lower quantum gate efficiency, ηquant, than 
vertical TFET.  Furthermore, since a different voltage is applied to the top and bottom gates, the applied voltage will be split 
over two gate oxides resulting in a lower electrostatic gate efficiency.  Nevertheless, a bilayer structure will allow for the 
highest on state conductance.  Furthermore, as we will see in Section 4.4, not having doping in the tunneling junction will 
significantly improve the subthreshold swing voltage and should more than compensate for the gate efficiency. 
 To compute the quantum and electrostatic gate efficiencies we first need to redefine the efficiencies Eq. (4.7.4) and 
Eq. (4.7.5) to refer to the voltage across the body, Vbody, rather than the surface potential: 

 
body

OL
quant dV

dE
q
1

=η  (4.8.11) 

 1/ Gbodyel dVdV=η  (4.8.12) 

In the lateral and vertical TFETs the potential of the p-side of the junction is fixed by the source and so we only need to know 
how the surface potential changes.  However, in a bilayer TFET, the potential on the p-side, V2, is not fixed and so it is more 
convenient to compute the efficiency relative to Vbody.  We also consider the situation where the bias on the n-gate, VG1, is 
changed while the bias on the p-gate, VG2, is held constant.   
 We can find ηquant by using the definition of EOL to take the derivative of the overlap energy: 

 )( 11 heGBodyOL EEEqVE ++−=  (4.8.13) 

This definition can be seen from Fig. 4.10(i).  The triangular well confinement energies are given by: 
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Evaluating Eq. (4.8.11) using Eq. (4.8.13) gives: 
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 Next we consider the electrostatic efficiency, ηel.  It can be optimized by engineering the bilayer thickness and 
quantum capacitances.  Maximizing the electrostatic efficiency means maximizing dVBody/dVG1.  As VBody = V1-V2, we want to 
maximize dV1/dVG1 while minimizing dV2/dVG1.  The voltages are labeled on the circuit diagram in Fig. 4.12(c).  V1 and V2 



are the n-channel and p-channel potential, respectively.  Consequently, we want the body to be as thick as possible to isolate 
V2 from VG1 and minimize the body capacitance CS in the voltage divider.  Additionally, we want to minimize the influence 
of the drain voltage on the n-channel by minimizing the electron quantum capacitance, CQn, and thus the electron density.  
Since we want to fix V2, we want to maximize the influence of the source on the p-channel by maximizing the hole quantum 
capacitance, CQp, and increase the hole density until the p-side is degenerate.  Therefore, choosing the biases / work functions 
to control the carrier densities will allow us to improve the electrostatic efficiency, especially when thicker gate oxides are 
used. 
 Unfortunately, the carrier density and body thickness are constrained by the required on-state conductance.  The 
fewer electrons present in the channel, the lower the channel conductance and the thicker the body, the lower the tunneling 
probability.  Thus, we need to optimize these tradeoffs to maximize the device performance.  Furthermore, computing the 
electrostatic efficiency, ηel, needs to be done numerically as the carrier densities depend on the potentials V1 and V2 which 
both change with gate bias.  This is done in detail in [43]. 
 As seen in [43], when the bilayer body thickness is optimized for a reasonable on-state current, Si, Ge and InAs have 
an overall gate efficiency of 40-50%, with both quantum and electrostatic efficiencies of around 60-70%.   While the bilayer 
has a lower gate efficiency than lateral and vertical TFETs, it will have the highest on-state conductance and it has an 
undoped tunneling junction which will lead to significantly sharper band edges. 

4.9 Other Design Issues to Avoid 

When designing a TFET there are several additional issues that can prevent a small subthreshold swing voltage.  The first 
issue that affects many experimental results is trap assisted tunneling.  This process occurs when an electron tunnels to a trap 
in the band gap and is then thermally excited out of the trap.  This can result in a temperature dependent subthreshold swing 
voltage as well as temperature dependent threshold shifts [24, 44-46].  It also increases the subthreshold swing voltage by 
preventing the tunneling from turning off.  High quality interfaces and semiconductors are needed to avoid creating states 
within the band gap that can lead to trap assisted tunneling. 
 Another important design issue is to avoid is graded junctions and poor electrostatics.  If different regions of the 
channel start tunneling at different biases, we will get a superposition of I-V curves with different thresholds.  This means 
that the overall subthreshold swing voltage will be smeared out and will be far worse.  This can be seen in a variety of 
simulation studies [41, 42].  Similarly, spatial inhomogeneity can smear out the subthreshold swing voltage. 
 Finally, a short channel length will result in source to drain tunneling or contact broadening which will increase the 
subthreshold swing voltage [47].  In order to suppress direct source to drain tunneling, TFETs will need a channel length 
longer than a corresponding MOSFET in the same material system.  This is because TFETs are designed to have a 
subthreshold swing voltage less than 60 mV/decade and consequently need a stronger suppression of the direct source to 
drain tunneling. 

4.10 Conclusions 

After analyzing the different factors that contribute to the operation of a TFET we find that there are 4 key design issues to 
consider: 

1) Modulating the tunneling barrier thickness does not work.  It cannot give a steep subthreshold slope at high current 
density, unless we have an even steeper density of states 

2) We must eliminate doping, spatial inhomogeneity, and preserve material quality to get a steep density of states 
3) Quantum confinement in the tunneling direction increases the tunneling conductance and 2d-2d tunneling (bilayer 

type structures) have the highest conductance. 
4) Lateral tunneling structures tend to have the best gate efficiency, while bilayer structures have the worst gate 

efficiency 
 

 While it is clear that a steep band edge density of states is needed, to date, there have been no electronic 
measurements of a steep band edge density of states.  Fortunately, optical as well as the electronic measurements available 
indicate that eliminating doping in the tunneling junction may allow us to achieve the steep density of states required.  
Bilayer based structures provide an opportunity to achieve this and a high conductance, but unfortunately suffer from a lower 
gate efficiency.  A double gate lateral structure shown in Fig. 4.3 is an alternative that could eliminate doping and potentially 
have a higher gate efficiency.  Unfortunately such a structure will have a lower conductance as it does not take advantage of 
quantum confinement or the larger tunneling area of the bilayer.  To eliminate other forms of spatial inhomogeneity, 
atomically precise semiconductors such as monolayer semiconductors might be needed. 
 Overall, there are still some tradeoffs that need to be engineered, but by respecting the design principles above it 



should be possible to make a good TFET with a steep subthreshold swing voltage at high current densities.  
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