
,

UNSEPARATED PAIRS AND FIXED POINTS IN RANDOM
PERMUTATIONS

PERSI DIACONIS, STEVEN N. EVANS, AND RON GRAHAM

Abstract. In a uniform random permutation Π of [n] := {1, 2, . . . , n}, the set
of elements k ∈ [n−1] such that Π(k+1) = Π(k)+1 has the same distribution

as the set of fixed points of Π that lie in [n−1]. We give three different proofs of
this fact using, respectively, an enumeration relying on the inclusion-exclusion

principle, the introduction of two different Markov chains to generate uniform

random permutations, and the construction of a combinatorial bijection. We
also obtain the distribution of the analogous set for circular permutations that

consists of those k ∈ [n] such that Π(k + 1 mod n) = Π(k) + 1 mod n. This

latter random set is just the set of fixed points of the commutator [ρ,Π], where
ρ is the n-cycle (1, 2, . . . , n). We show for a general permutation η that, under

weak conditions on the number of fixed points and 2-cycles of η, the total

variation distance between the distribution of the number of fixed points of
[η,Π] and a Poisson distribution with expected value 1 is small when n is large.

1. Introduction

The goal of any procedure for shuffling a deck of n cards labeled with, say, [n] :=
{1, 2, . . . , n} is to take the cards in some specified original order, which we may take
to be (1, 2, . . . , n), and re-arrange them randomly in such a way that all n! possible
orders are close to being equally likely. A natural approach to checking empirically
whether the outcomes of a given shuffling procedure deviate from uniformity is
to apply some fixed numerical function to each of the permutations produced by
several independent instances of the shuffle and determine whether the resulting
empirical distribution is close to the distribution of the random variable that would
arise from applying the chosen function to a uniformly distributed permutation.

Smoosh shuffling (also known as wash, corgi, chemmy or Irish shuffling) is a
simple physical mechanism for randomizing a deck of cards – see [You11] for an
article that has a brief discussion of smoosh shuffling and a link to a video of
the first author carrying it out, and [Dia13, Wik13] for other short descriptions.
In their forthcoming analysis of this shuffle, [BCD13] use the approach described
above with the function that takes a permutation π ∈ Sn, the set of permutations
of [n] := {1, 2, . . . , n}, and returns the cardinality of the set of labels k ∈ [n − 1]
such that π(k + 1) = π(k) + 1. That is, they count the number of pairs of cards
that were adjacent in the original deck and aren’t separated or in a different relative
order at the completion of the shuffle. For example, the permutation π of [6] given
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by

π =
(

1 2 3 4 5 6 7
5 6 7 4 1 2 3

)
has {k ∈ [6] : π(k + 1) = π(k) + 1} = {1, 2, 5, 6}.

If we write Πn for a random permutation that is uniformly distributed on Sn

and Sn ⊆ [n− 1] for the set of labels k ∈ [n− 1] such that Πn(k + 1) = Πn(k) + 1,
then, in order to support the contention that the smoosh shuffle is producing a
random permutation with a distribution close to uniform, it is necessary to know,
at least approximately, the distribution of the integer-valued random variable #Sn.
Banklader et al. [BCD13] use Stein’s method (see, for example, [CDM05] for a
survey), to show that the distribution of #Sn is close to a Poisson distribution
with expected value 1 when n is large.

The problem of computing P{#Sn = 0} (or, more correctly, the integer
n!P{#Sn = 0}) appears in various editions of the 19th century textbook on com-
binatorics and probability, Choice and Chance by William Allen Whitworth. For
example, Proposition XXXII in Chapter IV of [Whi65] gives

(1.1) P{#Sn = 0} =
n∑
k=0

(−1)k

k!
+

1
n

n−1∑
k=0

(−1)k

k!
.

This formula is quite suggestive. The probability that Πn has no fixed points
is
∑n
k=0

(−1)k

k! by de Montmort’s [dM13] celebrated enumeration of derangements,
and so if we write Tn ⊆ [n− 1] for the set of labels k ∈ [n− 1] such that Πn(k) = k
(that is, Tn is the set of fixed points of Πn that fall in [n−1]), then P{#Tn = 0} =
P{#Sn = 0} because in order for the set Tn to be empty either the permutation
Πn has no fixed points or it has n as a fixed point (an event that has probability
1
n ) and the resulting restriction of Πn to [n− 1] is a permutation of [n− 1] that has
no fixed points.

The following result was pointed out to us by Jim Pitman and shows that much
more is true.

Theorem 1.1. For all n ∈ N, the random sets Sn and Tn have the same distribu-
tion. In particular, for 0 ≤ m ≤ n− 1,

P{#Sn = m} = P{#Tn = m}

=

(
1
m!

n−m∑
k=0

(−1)k

k!

)
n−m
n

+

(
1

(m+ 1)!

n−m−1∑
k=0

(−1)k

k!

)
m+ 1
n

.

Remark 1.2. Perhaps the most surprising consequence of this result is that the
random set Sn ⊆ [n − 1] is exchangeable; that is, conditional on #Sn = m, the
conditional distribution of Sn is that of m random draws without replacement from
the set [n − 1]. This follows because the same observation holds for the random
set Tn by a symmetry that does not at first appear to have a counterpart for Sn.
For example, it does not seem obvious a priori that P{{i, i + 1} ⊆ Sn} for some
i ∈ [n − 2] should be the same as P{{j, k} ⊆ Sn} for some j, k ∈ [n − 1] with
|j − k| > 1.

Remark 1.3. Once we know that Sn and Tn have the same distribution, the formula
given in Theorem 1.1 for the common distribution distribution of #Sn and #Tn

follows from the well-known fact that the probability that Πn has m fixed points is



UNSEPARATED PAIRS AND FIXED POINTS IN RANDOM PERMUTATIONS 3

1
m!

∑n−m
k=0

(−1)k

k! (something that follows straightforwardly from the formula above
for the probability that Πn has no fixed points) coupled with the observation that
#Tn = m if and only if either Πn has m fixed points and all of these fall in [n− 1]
or Πn has m+ 1 fixed points and one of these is n.

We present an enumerative proof of Theorem 1.1 in Section 2. Although this
proof is simple, it is not particularly illuminating. We show in Section 3 that the
result can be derived with essentially no computation from a comparison of two
different ways of iteratively generating uniform random permutations.

Theorem 1.1 is, of course, equivalent to the statement that for every subset
S ⊆ [n− 1] the set {π ∈ Sn : {k ∈ [n− 1] : π(k+ 1) = π(k) + 1} = S} has the same
cardinality as {π ∈ Sn : {k ∈ [n− 1] : π(k) = k} = S}, and so if the theorem holds
then there must exist a bijection H : Sn → Sn such that {k ∈ [n− 1] : π(k + 1) =
π(k) + 1} = {k ∈ [n − 1] : Hπ(k) = k}. Conversely, exhibiting such a bijection
proves the theorem, and we present a natural construction of one in Section 4.

The analogue of Sn for circular permutations is the random set consisting of those
k ∈ [n] such that Π(k + 1 mod n) = Π(k) + 1 mod n. We obtain the distribution
of this random set via an enumeration in Section 5 and then present some bijective
proofs of facts suggested by the enumerative results.

Note that the latter random set is just the set of fixed points of the commutator
[ρ,Π], where ρ is the n-cycle (1, 2, . . . , n). In Section 6 we show for a general
permutation η that, under weak conditions on the number of fixed points and 2-
cycles of η, the total variation distance between the distribution of the number of
fixed points of [η,Π] and a Poisson distribution with expected value 1 is small when
n is large.

Remark 1.4. It is clear from Theorem 1.1 that the common distribution of #Sn
and #Tn is approximately Poisson with expected value 1 when n is large. Write
Fn := {k ∈ [n] : Πn(k) = k} for the set of fixed points of the uniform random
permutation Πn and Q for the Poisson probability distribution with expected value
1. It is well-known that the total variation distance between the distribution of
#Fn and Q is amazingly small:

dTV(P{#Fn ∈ ·},Q) ≤ 2n

n!
,

and so it is natural to ask whether the common distribution of #Sn and #Tn is
similarly close to Q. Because P{#Tn 6= #Fn} = 1

n , we might suspect that the
total variation distance between the distributions of #Tn and #Fn is on the order
of 1

n , and so the total variation distance between the distribution of #Sn and Q is
also of that order. Indeed, it follows from (1.1) that

P{#Sn = 0} = P{#Fn = 0}+
1
n

n−1∑
k=0

(−1)k

k!

≥ Q{0} − 2n

n!
+

1
n

n−1∑
k=0

(−1)k

k!
,

and so

dTV(P{#Sn ∈ ·},Q) ≥ e−1

n
+ o

(
1
n

)
.
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2. An enumerative proof

Our first approach to proving Theorem 1.1 is to compute #{π ∈ Sn : π(ki+1) =
π(ki)+1, 1 ≤ i ≤ m} for a subset {k1, . . . , km} ⊆ [n−1] and show that this number
is (n−m)! = #{π ∈ Sn : π(ki) = ki, 1 ≤ i ≤ m}. This establishes that

P{{k1, . . . , km} ⊆ Sn} = P{{k1, . . . , km} ⊆ Tn},

and an inclusion-exclusion argument completes the proof.
We begin by noting that we can build up a permutation of [n] by first taking

the elements of [n] in any order and then imagining that we lay elements down
successively so that the hth element goes in one of the h “slots” defined by the h−1
elements that have already been laid down, that is, the slot before the first element,
the slot after the last element, or one of the h− 2 slots between elements.

Consider first the set {π ∈ Sn : π(k + 1) = π(k) + 1} for some fixed k ∈ [n− 1].
We can count this set by imagining that we first put down k and k + 1 next to
each other in that order and then successively lay down the remaining elements
[n] \ {k, k+ 1} in such a way that no element is ever laid down in the slot between
k and k + 1. It follows that

#{π ∈ Sn : π(k + 1) = π(k) + 1} = 2× 3× · · · (n− 1) = (n− 1)!,

as required.
Now consider the set {π ∈ Sn : π(k + 1) = π(k) + 1 &π(k + 2) = π(k + 1) + 1}

for some fixed k ∈ [n − 2]. We can count this set by imagining that we first put
down k, k + 1 and k + 2 next to each other in that order and then successively lay
down the remaining elements [n] \ {k, k + 1, k + 2} in such a way that no element
is ever laid down in the slot between k and k + 1 or the slot between k + 1 and
k + 2. The number of such permutations is thus 2 × 3 × · · · × (n − 2) = (n − 2)!,
again as required. On the other hand, suppose we fix k, ` ∈ [n− 1] with |j − k| > 1
and consider the set {π ∈ Sn : π(k + 1) = π(k) + 1 & π(`+ 1) = π(`) + 1}. We
imagine that we first put down k and k + 1 next to each other in that order and
then ` and ` + 1 next to each other in that order either before or after the pair
k and k + 1. There are two ways to do this. Then we successively lay down the
remaining elements [n] \ {k, k + 1, `, ` + 1} in such a way that no element is ever
laid down in the slot between k and k + 1 or the slot between ` and ` + 1. There
are 3× 4× · · · × (n− 2) ways to do this second part of the construction, and so the
number of permutations we are considering is 2× 3× 4× · · · × (n− 2) = (n− 2)!,
once again as required.

It is clear how this argument generalizes. Suppose we have a subset
{k1, . . . , km} ⊆ [n− 1] and we wish to compute #{π ∈ Sn : π(ki + 1) = π(ki), 1 ≤
i ≤ m}. We can break {k1, . . . , km} up into r “blocks” of consecutive labels for some
r. There are r! ways to lay down the blocks and then (r+1)×(r+2)×· · ·×(n−m)
ways of laying down the remaining labels [n] \ {k1, . . . , km} so that no label is in-
serted into a slot within one of the blocks. Thus, the cardinality we wish to compute
is indeed r!× (r + 1)× (r + 2)× · · · × (n−m) = (n−m)!.

3. A Markov chain proof

The following proof proceeds by first showing that the random set Sn is ex-
changeable and then establishing that the distribution of #Sn is the same as the
distribution of #Tn without explicitly calculating either distribution.
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Suppose that we build the uniform random permutations Π1,Π2, . . . sequentially
in the following manner: Πn+1 is obtained from Πn by inserting n + 1 uniformly
at random into one of the n + 1 “slots” defined by the ordered list Πn (i.e. as in
Section 2, we have slots before and after the first and last elements of the list and
n − 1 slots between successive elements). The choice of slot is independent of Fn,
where Fn is the σ-field generated by Π1, . . . ,Πn.

It is clear that the set-valued stochastic process (Sn)n∈N is Markovian with
respect to the filtration (Fn)n∈N. In fact, if we write Sn = {Xn

1 , . . . , X
n
Mn
}, then

P{Sn+1 = {Xn
1 , . . . , X

n
Mn
} \ {Xn

i } |Fn} =
1

n+ 1
, 1 ≤ i ≤Mn,

corresponding to n + 1 being inserted in the slot between the successive elements
Xn
i and Xn

i + 1 in the list,

P{Sn+1 = {Xn
1 , . . . , X

n
Mn
} ∪ {n} |Fn} =

1
n+ 1

,

corresponding to n+ 1 being inserted in the slot to the right of n, and

P{Sn+1 = {Xn
1 , . . . , X

n
Mn
} |Fn} =

(n+ 1)−Mn − 1
n+ 1

.

Moreover, it is obvious from the symmetry inherent in these transition probabil-
ities and induction that Sn is an exchangeable random subset of [n − 1] for all
n. Furthermore, the nonnegative integer valued process (Mn)n∈N = (#Sn)n∈N is
also Markovian with respect to the filtration (Fn)n∈N with the following transition
probabilities:

P{Mn+1 = Mn − 1 | Fn} =
Mn

n+ 1
,

P{Mn+1 = Mn | Fn} =
(n+ 1)−Mn − 1

n+ 1
,

and
P{Mn+1 = Mn + 1 | Fn} =

1
n+ 1

.

Because the conditional distribution of Sn given #Sn = m is, by exchangeability,
the same as that of Tn given #Tn = m for 0 ≤ m ≤ n − 1, it will suffice to show
that the distribution of #Sn is the same as that of #Tn. Moreover, because #Tn

has the same distribution as #{2 ≤ k ≤ n : Πn(k) = k} for all n ∈ N and
#S1 = #T1 = 0, it will certainly be enough to build another sequence (Σn)n∈N
such that

• Σn is a uniform random permutation of [n] for all n ∈ N,
• (Σn)n∈N is Markovian with respect to some filtration (Gn)n∈N,
• (Nn)n∈N := (#{2 ≤ k ≤ n : Σn(k) = k})n∈N is also Markovian with respect

to the filtration (Gn)n∈N with the following transition probabilities

P{Nn+1 = Nn − 1 | Gn} =
Nn
n+ 1

,

P{Nn+1 = Nn | Gn} =
(n+ 1)−Nn − 1

n+ 1
,

and
P{Nn+1 = Nn + 1 | Gn} =

1
n+ 1

.
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We recall the simplest instance of the Chinese restaurant process that iteratively
generates uniform random permutations (see, for example, [Pit06]). Individuals
labeled 1, 2, . . . successively enter a restaurant equipped with an infinite number
of round tables. Individual 1 sits at some table. Suppose that after the first
n−1 individuals have entered the restaurant we have a configuration of individuals
sitting around some number of tables. When individual n enters the restaurant he
is equally likely to sit to the immediate left of one of the individuals already present
or to sit at an unoccupied table. The permutation Σn is defined in terms of the
resulting seating configuration by setting Σn(i) = j, i 6= j, if individual j is sitting
immediately to the left of individual i and Σn(i) = i if individual i is sitting by
himself at some table. Each occupied table corresponds to a cycle of Σn and, in
particular, tables with a single occupant correspond to fixed points of Σn.

It is clear that if we let Gn be the σ-field generated by Σ1, . . . ,Σn, then all of
the requirements listed above for (Σn)n∈N and (Nn)n∈N are met.

4. A bijective proof

As we remarked in the Introduction, in order to prove Theorem 1.1 it suffices to
find a bijection H : Sn → Sn such that {k ∈ [n− 1] : π(k + 1) = π(k) + 1} = {k ∈
[n− 1] : Hπ(k) = k} for all π ∈ Sn.

Not only will we find such a bijection, but we will prove an even more gen-
eral result that requires we first set up some notation. Fix 1 ≤ h < n. Let
ρ ∈ Sn be the permutation that maps i ∈ [n] to i + h mod n ∈ [n]. Next define
the following bijection of Sn to itself that is essentially the transformation fonda-
mentale of [FS70, Section 1.3] (such bijections seem to have been first introduced
implicitly in [Rio58, Chapter 8]). Take a permutation π and write it in cycle form
(a1, a2, . . . , ar)(b1, b2, . . . , bs) · · · (c1, c2, . . . , ct), where in each cycle the leading ele-
ment is the least element of the cycle and these leading elements form a decreasing
sequence. That is, a1 > b1 > · · · > c1. Next, remove the parentheses to form an
ordered listing (a1, a2, . . . , ar, b1, b2, . . . , bs, c1, c2, . . . , ct) of [n] and define π̂ ∈ Sn

by taking (π̂(1), π̂(2), . . . , π̂(n)) to be this ordered listing.
The following result for h = 1 provides a bijection that establishes Theorem 1.1.

Theorem 4.1. For every π ∈ Sn,

{k ∈ [n− h] : ρ̂π−1(k + h) = ρ̂π
−1(k) + 1} = {k ∈ [n− h] : π(k) = k}.

Proof. Suppose for some k ∈ [n− h] that π(k) = k. Then, ρπ(k) = k + h, because
no reduction modulo n takes place. If we write the cycle decomposition of ρπ in the
canonical form described above, then there will be a cycle of the form (. . . , k, k +
h, . . .) because of the convention that each cycle begins with its least element. After
the parentheses are removed to form ρ̂π, we will have ρ̂π(j) = k and ρ̂π(j+1) = k+h
for some j ∈ [n]. Hence, ρ̂π−1(k) = j and ρ̂π

−1(k + h) = j + 1 = ρ̂π
−1(k) + 1.

Conversely, suppose for some k ∈ [n − h] that ρ̂π−1(k + h) = ρ̂π
−1(k) + 1, so

that ρ̂π−1(k) = j and ρ̂π
−1(k + h) = j + 1 for some j ∈ [n]. Then, ρ̂π(j) = k

and ρ̂π(j + 1) = k + h. The canonical cycle decomposition of ρπ is obtained by
taking the ordered listing (ρ̂π(1), ρ̂π(2), . . . , ρ̂π(n)), placing left parentheses before
each element that is smaller than its predecessors to the left, and then inserting
right parentheses as necessary to produce a legal bracketing. It follows that ρπ
must have a cycle of the form (. . . , k, k + h, . . .), and hence ρπ(k) = k + h. Thus,
π(k) = k, as required. �
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Remark 4.2. We give the following example of the construction of ρ̂π−1 from π for
the benefit of the reader. Suppose that n = 7 and

π =
(

1 2 3 4 5 6 7
7 2 6 4 1 3 5

)
,

so that π has canonical cycle decomposition

(4)(3, 6)(2)(1, 7, 5).

For h = 1,

ρπ =
(

1 2 3 4 5 6 7
1 3 7 5 2 4 6

)
.

The canonical cycle decomposition of ρπ is

(2, 3, 7, 6, 4, 5)(1).

Thus,

ρ̂π =
(

1 2 3 4 5 6 7
2 3 7 6 4 5 1

)
.

and

ρ̂π
−1 =

(
1 2 3 4 5 6 7
7 1 2 5 6 4 3

)
.

Note that it is indeed the case that

{k ∈ [6] : π(k) = k} = {2, 4} = {k ∈ [6] : ρ̂π−1(k + 1) = ρ̂π
−1(k) + 1}.

Remark 4.3. It follows from Theorem 4.1 and the argument outlined in Remark 1.3
that the probability the random variable #{k ∈ [n − h] : Πn(k + h) = Πn(k) + 1}
takes the values m is

m+h∑
`=m

(
1
`!

n−∑̀
k=0

(−1)k

k!

) (
n−h
m

)(
h

`−m
)(

n
`

)
for 0 ≤ m ≤ n− h.

5. Circular permutations

A question closely related to the ones we have been considering so far is to ask
for the distribution of the random set

Un := {k ∈ [n] : Πn(k + 1 mod n) = Πn(k) + 1 mod n}.

That is, we think of our deck [n] as being “circularly ordered”, with n followed by 1,
and ask for the distribution of the number of cards that are followed immediately by
their original successor when we lay the shuffled deck out around the circumference
of a circle.

Proposition 5.1. The random set Un is exchangeable with

P{#Un = m} =
1
m!

(
n−m−1∑
h=0

(−1)h
1
h!

n

(n−m− h)
+ (−1)n−m

1
(n−m)!

n

)
for 0 ≤ m ≤ n.
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Proof. Consider a subset {k1, . . . , km} ⊆ [n]. We wish to compute

#{π ∈ Sn : π(ki + 1 mod n) = π(ki) + 1 mod n, 1 ≤ i ≤ m}.
When m = n this number is clearly n and when m = 0 it is n!. Consider 1 ≤
m ≤ n. For some positive integer r we can break {k1, . . . , km} up into r “runs” of
labels that are “consecutive” modulo n; that is we can write {k1, . . . , km} as the
disjoint union of sets {`1, `1 + 1, . . . , `1 + s1 − 1} {`2, `2 + 1, . . . , `2 + s2 − 1}, . . .,
{`r, `2+1, . . . , `r+sr−1}, where all additions are mod n and `i+si 6= `j for i 6= j.
This leads to r disjoint “blocks” {`1, `1 +1, . . . , `1 +s1}, . . ., {`r, `2 +1, . . . , `r +sr}
of labels that must be kept together if we take the permutation and join up the last
element of the resulting ordered listing of [n] with the first to produce a circularly
ordered list. There are (r − 1)! ways to circularly order the blocks. Initially this
leaves r slots between the r blocks when we think of them as being ordered around
a circle. Also, there are initially n −m − r labels that are not contained in some
block. It follows that there are then r × (r + 1) × · · · × (n − m − 1) ways of
laying down the remaining n − m − r elements of [n] that aren’t in a block so
that no element is inserted into a slot within one of the blocks. Finally, there
are n places between the n circularly ordered elements of [n] where we can cut
to produce a permutation of [n]. Thus, the cardinality we wish to compute is
(r − 1)!× r × (r + 1)× · · · × (n−m− 1)× n = (n−m− 1)!× n.

We see that

P{{k1, . . . , km} ⊆ Un} =


1, m = 0,

1
(n−m)(n−m+1)···(n−1) , 1 ≤ m ≤ n− 1,

1
(n−1)! , m = n.

Consequently, by inclusion-exclusion,

P{Un = {k1, . . . , km}} =
n−m−1∑
h=0

(−1)h
(
n−m
h

)
1

(n−m− h)(n−m− h+ 1) · · · (n− 1)

+ (−1)n−m
1

(n− 1)!

=
(n−m)!
(n− 1)!

n−m−1∑
h=0

(−1)h
1
h!

1
(n−m− h)

.+ (−1)n−m
1

(n− 1)!

In particular, Un is exchangeable and

P{#Un = m} =
(
n

m

)(
(n−m)!
(n− 1)!

n−m−1∑
h=0

(−1)h
1
h!

1
(n−m− h)

+ (−1)n−m
1

(n− 1)!

)

=
1
m!

(
n−m−1∑
h=0

(−1)h
1
h!

n

(n−m− h)
+ (−1)n−m

1
(n−m)!

n

)
.

�

Remark 5.2. As expected, P{Un = m} converges to the Poisson probability e−1 1
m!

as n→∞.

The exchangeability of Un leads to the question of whether there is a bijection
between the sets

#{π ∈ Sn : π(k′i + 1 mod n) = π(k′i) + 1 mod n, 1 ≤ i ≤ m}
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and
#{π ∈ Sn : π(k′′i + 1 mod n) = π(k′′i ) + 1 mod n, 1 ≤ i ≤ m}

for two subsets {k′1, . . . , k′m} and {k′′1 , . . . , k′′m} of [n] that must exist has a nice de-
scription. Rather than pursue this question directly, we give a bijective explanation
of the following interesting consequence of Proposition 5.1 from which the desired
bijection can be readily derived.

Observe that

P{Un = {k1, . . . , km}} =
n−m−1∑
h=0

(−1)h
(
n−m
h

)
1

(n−m− h) · · · (n− 1)

+ (−1)n−m
1

(n− 1)!
,

whereas

P{Un−m = ∅} =
n−m−1∑
h=0

(−1)h
(
n−m
h

)
1

(n−m− h) · · · (n−m− 1)

+ (−1)n−m
1

(n−m− 1)!
,

so that

(5.1) (n− 1)!P{Un = {k1, . . . , km}} = (n−m− 1)!P{Un−m = ∅}.

Let ρ ∈ Sn be the permutation that maps i ∈ [n] to i+ 1 mod n ∈ [n]. Define
an equivalence relation on Sn be declaring that π′ and π′′ are equivalent if and only
if ρkπ′ = π′′ for some k ∈ {0, 1, . . . , n − 1}. We call the set of equivalence classes
the circular permutations of [n] and denote this set by Cn. Note that #Cn =
(n−1)!. We will write σ ∈ Cn as an ordered listing (σ(1), . . . , σ(n)) of [n], with the
understanding that the listings produced by a cyclic permutation of the coordinates
also represent σ: a permutation π ∈ Sn is in the equivalence class σ if for some
k ∈ {0, 1, . . . , n− 1} we have π(i) = σ(i+ k mod n) for i ∈ [n]. We can also think
of (σ(1), . . . , σ(n)) as the cycle representation of a permutation σ̃ of [n] consisting
of a single n-cycle (that is, the permutation σ̃ sends σ(i) to σ(i+1 mod n)). Hence
we can also regard Cn as the set of n-cycles in Sn.

If π ∈ Sn, then the set

{j ∈ [n] : π−1(j + 1 mod n) = π−1(j) + 1 mod n}

is unchanged if we replace π by an equivalent permutation. We denote the common
value for the equivalence class σ ∈ Cn to which π belongs by Θn(σ). In terms of
the n-cycle σ̃ ∈ Sn associated with σ,

Θn(σ) = {j ∈ [n] : σ̃(j) = j + 1 mod n}.

The identity (5.1) is equivalent to the identity

(5.2) #{τ ∈ Cn : Θn(τ) = {k1, . . . , km}} = #{σ ∈ Cn−m : Θn(σ) = ∅}

for any subset {k1, . . . , km} ⊆ [n], and we will give a bijective proof of this fact.
Consider σ ∈ Cn−m with Θn−m(σ) = ∅. Suppose that we have indexed

{k1, . . . , km} so that k1 < k2 < . . . < km. Note that ki ∈ [n−m+ i] for 1 ≤ i ≤ m.
We are going to recursively build circular permutations σ = σ0, σ1, . . . , σm with
σi ∈ Cn−m+i and Θn−m(σi) = {k1, k2, . . . , ki} for 1 ≤ i ≤ m.
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Suppose that σ = σ0, . . . , σi have been built. Either ki+1 ≤ n − m + i or
ki+1 = n−m+ i+1. In the first case, let j∗ ∈ [n−m+ i] be such that σi(j∗) = ki+1

and define σi+1 = (σi+1(1), . . . , σi+1(n−m+ i+ 1)) by setting

σi+1(j) =



σi(j), if j ≤ j∗ and σi(j) ≤ ki+1,
σi(j) + 1, if j ≤ j∗ and σi(j) > ki+1,
ki+1 + 1, if j = j∗ + 1,
σi(j − 1), if j > j∗ + 1 and σi(j) ≤ ki+1,
σi(j − 1) + 1, if j > j∗ + 1 and σi(j) > ki+1.

On the other hand, if ki+1 = n−m+ i+ 1, then let j∗ ∈ [n−m+ i] be such that
σi(j∗) = 1 and define σi+1 = (σi+1(1), . . . , σi+1(n−m+ i+ 1)) by setting

σi+1(j) =


σi(j), if j < j∗,
ki+1 = n−m+ i+ 1, if j = j∗,
σi(j − 1), if j > j∗.

It is not difficult to check in either case that a cyclic permutation of the coordinates
in the chosen representation of σi induces a cyclic permutation in the coordinates
of σi+1, and so σi 7→ σi+1 is a well-defined map from Cn−m+i to Cn−m+i+1. It is
clear that Θn−m+i+1(σi+1) = {k1, . . . , ki+1}.

It remains to show that each of the maps σi 7→ σi+1 is invertible. Suppose
we have the circular permutation σi+1 ∈ Cn−m+i+1 with Θn−m+i+1(σi+1) =
{k1, . . . , ki+1}. The circular permutation σi ∈ Cn−m+i is recovered as follows.
If ki+1 ≤ n−m+ i, then let j∗ ∈ [n−m+ i+ 1] be such that σi+1(j∗) = ki+1 and
and define σi = (σi(1), . . . , σi(n−m+ i)) by setting

σi(j) =


σi+1(j), if j ≤ j∗ and σi+1(j) ≤ ki+1,
σi+1(j)− 1, if j ≤ j∗ and σi+1(j) > ki+1 + 1,
σi+1(j + 1), if j > j∗ + 1 and σi+1(j) ≤ ki+1,
σi+1(j + 1)− 1, if j > j∗ + 1 and σi+1(j) > ki+1 + 1.

On the other hand, if ki+1 = n −m + i + 1, then let j∗ ∈ [n −m + i + 1] be such
that σi+1(j∗) = ki+1 = n−m+ i+ 1 and define σi = (σi(1), . . . , σi(n−m+ i)) by
setting

σi(j) =

{
σi+1(j), if j < j∗,
σi+1(j + 1), if j ≥ j∗.

Example 5.3. Here are two examples of the construction described above. Suppose
that n = 6, σ = (3, 1, 6, 5, 7, 2, 4), m = 3 and {k1, k2, k3} = {3, 5, 6}. Then,

σ1 = (3,4, 1, 7, 6, 8, 2, 5)

σ2 = (3, 4, 1, 8, 7, 9, 2, 5,6),

and
σ3 = (3, 4, 1, 9, 8, 10, 2, 5, 6,7).

Suppose that n = 6, σ = (6, 1, 3, 5, 4, 7, 2), m = 3 and {k1, k2, k3} = {5, 8, 9}. Then,

σ1 = (6,7, 1, 3, 5, 4, 8, 2),

σ2 = (6, 7,9, 1, 3, 5, 4, 8, 2),
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and
σ3 = (6, 7, 9,10, 1, 3, 5, 4, 8, 2).

Remark 5.4. Note that
#{σ ∈ Cn : Θn(σ) = ∅}

= (n− 1)!P{Un = ∅}
n−1∑
h=0

(−1)h
(
n

h

)
(n− h− 1)!

+ (−1)n.

The values of this quantity for 1 ≤ n ≤ 10 are

0, 0, 1, 1, 8, 36, 229, 1625, 13208, 120288.

Recall that the number of permutations of [n] with no fixed points (that is, the
number of derangements of n) is given by

D(n) = n!
n∑
j=0

(−1)j

j!

and values of this quantity for 1 ≤ n ≤ 10 are

0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961.

A comparison of these sequences suggests that

(5.3) D(n) = #{σ ∈ Cn : Θn(σ) = ∅}+ #{σ ∈ Cn+1 : Θn+1(σ) = ∅},

and this follows readily from the observation that(
n+ 1
h+ 1

)
(n− h− 1)!−

(
n

h

)
(n− h− 1)!

=
n!

h!(n− h)!
(n− h− 1)!

[
n+ 1
h+ 1

− 1
]

=
n!

h!(n− h)!
(n− h− 1)!

n− h
h+ 1

=
n!

(h+ 1)!
.

A bijective proof of (5.3) follows from Corollary 2 of [Bar13], where it is shown
via a bijection that

(5.4) D(n) = #{σ ∈ Cn+1 : σ̃(j) 6= j + 1, j ∈ [n]}.

If σ ∈ Cn+1 is such that σ̃(j) 6= j + 1 for j ∈ [n], then either σ̃(j) 6= j + 1 mod n
for j ∈ [n+ 1], so that Θn+1(σ) = ∅, or σ̃(j) 6= j + 1 for j ∈ [n] and σ̃(n+ 1) = 1.
The set of σ in the latter category are in a bijective correspondence with the set of
τ ∈ Cn such that Θn(τ) = ∅ via the bijection that sends a σ ∈ Cn+1 to the τ ∈ Cn
given by

τ̃(j) =

{
σ̃(j), if σ̃(j) 6= n+ 1,
σ(n+ 1) = 1, if σ̃(j) = n+ 1.
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The identity (5.4) has the following probabilistic interpretation: if Πn is a uni-
form random permutation of [n] and Γn+1 is a uniform random n+1-cycle in Sn+1,
then

P{#{k ∈ [n] : Πn(k) = k} = 0} = P{#{k ∈ [n] : Γn+1(k) = k + 1} = 0}.

It is, in fact, the case that the two random sets Fn := {k ∈ [n] : Πn(k) = k}
and Gn := {k ∈ [n] : Γn+1(k) = k + 1} have the same distribution. We will
show this using an argument similar to that in Section 3. Suppose that Π1,Π2, . . .
are generated using the Chinese Restaurant Process and Γ2,Γ3, . . . are generated
recursively by constructing Γn+1 from Γn by picking K uniformly at random from
[n] and replacing (. . . ,K,Γn(K), . . .) in the cycle representation of Γn by (. . . ,K, n+
1,Γn(K), . . .). It is clear that the random set Fn is exchangeable. The process
G2,G3, . . . is Markovian: writing Nn := #Gn and Gn = {Y n1 , . . . , Y nNn}, we have

P{Gn+1 = {Y n1 , . . . , Y nNn} \ {Y
n
i } |Gn} =

1
n
, 1 ≤ i ≤ Nn,

corresponding to n+ 1 being inserted immediately to the right of Yi,

P{Gn+1 = {Y n1 , . . . , Y nNn} ∪ {Y
n
i } |Gn} =

1
n
,

corresponding to n+ 1 being inserted immediately to the right of n, and

P{Gn+1 = {Y n1 , . . . , Y nNn} |Gn} =
n−Nn − 1

n
.

It is obvious from the symmetry inherent in these transition probabilities and in-
duction that Gn is an exchangeable random subset of [n] for all n. It therefore
suffices to show that Nn+1 has the same distribution as Mn := #Fn. Observe that
M1 = N2 = 1. It is clear that N2, N3, . . . is a Markov chain with the following
transition probabilities

P{Nn+1 = Nn − 1 |Nn} =
Nn
n
,

P{Nn+1 = Nn |Nn} =
n−Nn − 1

n
,

and

P{Nn+1 = Nn + 1 |Nn} =
1
n
.

It follows from the Chinese Restaurant construction that

P{Mn+1 = Mn − 1 |Mn} =
Mn

n+ 1
,

P{Mn+1 = Mn |Mn} =
(n+ 1)−Mn − 1

n+ 1
,

and

P{Mn+1 = Mn + 1 |Mn} =
1

n+ 1
,

and so Mn and Nn+1 do indeed have the same distribution for all n.
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6. Random commutators

If we write ρ for the permutation of [n] given by ρ(i) = i + 1 mod n, then the
random set Un of Section 5 is nothing other than

{i ∈ [n] : ρΠn(i) = Πnρ(i)}
or, equivalently, the set

{i ∈ [n] : ρ−1Π−1
n ρΠn(i) = i}.

This is just the set of fixed points of the commutator [ρ,Πn] = ρ−1Π−1
n ρΠn. In

this section we investigate the asymptotic behavior of the distribution of the set of
fixed points of the commutators [ηn,Πn] for a sequence of permutations (ηn)n∈N,
where ηn ∈ Sn.

Write χn : Sn → {0, 1, . . . , n} for the function that gives the number of fixed
points (i.e. χn is the character of the defining representation of Sn). It follows
from of [Nic94, Corollary 1.2] (see also of [LP10, Theorem 25]) that if Π′n and Π′′n
are independent uniformly distributed permutations of [n], then the distribution of
χn([Π′n,Π

′′
n]) is approximately Poisson with expected value 1 when n is large.

The results of [Nic94, LP10] suggest that if n is large and ηn is a “generic” element
of Sn, then the distribution of χn([ηn,Πn]) should be close to Poisson with expected
value 1. Of course, such a result will not hold for arbitrary sequences (ηn)n∈N. For
example, if ηn is the identity permutation, then χn([ηn,Πn]) = n. The behavior
of χn([ηn,Πn]) for a deterministic sequence (ηn)n∈N does not appear to have been
investigated in the literature. However, we note that if Π̃n is an independent
uniform permutation of [n], then

χn([ηn,Πn]) = χn(η−1
n Π−1

n ηnΠn)

= χn(Π̃−1
n η−1

n Π−1
n ηnΠn Π̃n)

= χn(Π̃−1
n η−1

n Π̃n Π̃−1
n Π−1

n ηnΠn Π̃n).

= #{i ∈ [n] : Un(i) = Vn(i)},
where

Un := Π̃−1
n ηnΠ̃n

and
Vn := Π̃−1

n Π−1
n ηnΠn Π̃n

are independent random permutations of [n] that are uniformly distributed on the
conjugacy class of ηn. Since Un has the same distribution as U−1

n , we see that
χn([ηn,Πn]) is distributed as the number of fixed points of the random permutation
UnVn and we could, in principle, determine the distribution of χn([ηn,Πn]) if we
knew the the distribution of the conjugacy class to which UnVn belongs. Given a
partition λ ` n, write Cλ for the conjugacy class of Sn consisting of permutations
with cycle lengths given by λ and let Kλ be the element

∑
π∈Cλ π of the group

algebra of Sn. If Cν is another conjugacy class with cycle lengths µ ` n, then,
writing ∗ for the multiplication in the group algebra, Kλ ∗Kµ =

∑
ν`n c

ν
λµKν for

nonnegative integer coefficients cνλµ. Denote by γn ` n the partition of n given by
the cycles lengths of ηn. If we knew cνγnγn for all ν ` n, then we would know the
distribution of the conjugacy class to which UnVn belongs and hence, in principle
the distribution of χn([ηn,Πn]). Unfortunately, the determination of the coefficients
cνλµ appears to be a rather difficult problem. The special case when λ = µ = n
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(that is, the conjugacy class of n-cycles is being multiplied by itself) is treated in
[Boc80, Sta81, Gou90] and fairly explicit formulae for some other simple cases are
given in [BG92, Gou94], but in general there do not seem to be usable expressions.

In order to get a better feeling for what sort of conditions we will need to im-
pose on (ηn)n∈N to get the hoped for Poisson limit, we make a couple of simple
observations.

Firstly, it follows that if we write fn := χn(ηn) for the number of fixed points of
ηn, then

E[χn([ηn,Πn])] = nP{Un(i) = Vn(i)} = n

[(
n− fn
n

)2 1
n− 1

+
(
fn
n

)2
]
,

and so it appears that we will at least require some control on the sequence (fn)n∈N.
A second, and somewhat more subtle, potential difficulty becomes apparent if

we consider the permutation ηn that is made up entirely of 2-cycles (so that n
is necessarily even). In this case, Un(i) = Vn(i) if and only if Un(Un(i)) = i =
Vn(Vn(i)), and so χn([ηn,Πn]) is even. Going a little further, we may write m =
n/2, take ηn to have the cycle decomposition (1,m+ 1)(2,m+ 2) · · · (m, 2m), and
note that χn([ηn,Πn]) = #{i ∈ [n] : Un(i) = Vn(i)} has the same distribution
as #{i ∈ [n] : Un(i) = ηn(i)} = 2#{i ∈ [m] : Un(i) = ηn(i)} = 2Mn, where
Mn :=

∑m
i=1 Ini, with Ini the indicator of the event {Un(i) = ηn(i)}. It is not

difficult to show that

E[Mn(Mn − 1) · · · (Mn − k + 1)] =
m(m− 1) · · · (m− k + 1)

(2m− 1)(2m− 3) · · · (2m− 2k + 1)

→ 1
2k

as m→∞,

and so the distribution of χn([ηn,Πn])/2 converges to a Poisson distribution with
expected value 1

2 .
Returning to the case of a general permutation ηn and writing tn for the number

of 2-cycles in the cycle decomposition of ηn, it seems that in order for the distribu-
tion of the random variable χn([ηn,Πn]) to be close to that of a Poisson random
variable with expected value 1 when n is large we will need to at least impose suit-
able conditions on fn and tn. It will, in fact, suffice to suppose that fn and tn are
bounded as n varies, as the following result shows.

Theorem 6.1. Suppose that a, b > 0. There exists a constant K that depends on
a and b but not on n ∈ N such that if Π is uniformly distributed on Sn and η ∈ Sn

has at most a fixed points and at most b 2-cycles, then the total variation distance
between the distribution of the number of fixed points of the commutator [η,Π] and
a Poisson distribution with expected value 1 is at most K

n .

Proof. As we have observed above, the number of fixed points of [η,Π] has the same
distribution as #{i ∈ [n] : U(i) = V (i)}, where U and V are independent random
permutations that are uniformly distributed on the conjugacy class of η. We will
write χ for χn to simplify notation.

Let FU and TU be the random subsets of [n] that are, respectively, the fixed
points of U and the elements that belong to the 2-cycles of U . Define FV and TV
similarly. Set

N := #{i ∈ [n] : U(i) = V (i), i /∈ FU ∪ TU ∪ FV ∪ TV }.
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Observe that

P{U(i) = V (i), i /∈ FU ∪ TU ∪ FV ∪ TV } =
(
n− f − 2t

n

)2 1
n− 1

,

so

P{χ([η,Π]) 6= N} ≤ E[χ([η,Π])]− E[N ]

= n

[(
n− f
n

)2 1
n− 1

+
(
f

n

)2

−
(
n− f − 2t

n

)2 1
n− 1

]
.

In particular, nP{χ([η,Π]) 6= N} is bounded in n.
Let I, J be chosen elements uniformly without replacement from [n] and inde-

pendent of the permutations U and V . Set

A := {(I, J) ∩ (FU ∪ TU ∪ FV ∪ TV ) = ∅}

and

W := N1A.

Note that

P{W 6= N} ≤ P(Ac) = 1−
(
n− f − 2t

n

n− f − 2t− 1
n− 1

)2

,

so that nP{W 6= N}, and hence nP{W 6= χ([η,Π])}, is bounded in n.
It will therefore suffice to show that the total variation distance between the

distribution of W and a Poisson distribution with expected value 1 is at most a
constant muliple of 1

n . We will do this using Stein’s method. More precisely, we
will use the version in [CDM05, Section 1] that depends on the construction of an
exchangeable pair; that is, another random variable W ′ such that (W,W ′) has the
same distribution as (W ′,W ).

Build another random permutation V ′ by interchanging I and J in the cycle
representation of V . If, using a similar notation to that above, we set

N ′ := #{i ∈ [n] : U(i) = V ′(i) i /∈ FU ∪ TU ∪ FV ′ ∪ TV ′}

and

W ′ := N ′1A,

then (W,W ′) is clearly an exchangeable pair. We can represent the permutations
U and V when the event A occurs as in Figure 6.1.

We have

W ′ = W

− 1{U−1(I) = V −1(I)} ∩A− 1{U(I) = V (I)} ∩A
− 1{U−1(J) = V −1(J)} ∩A− 1{U(J) = V (J)} ∩A
+ 1{U−1(I) = V −1(J)} ∩A+ 1{U(J) = V (I)} ∩A
+ 1{U−1(J) = V −1(I)} ∩A+ 1{U(I) = V (J)} ∩A.

(6.1)
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I 

J 

U(I) U-1(I) 

V(I) V-1(I) 

V-1(J) 

U-1(J) U(J) 

V(J) 

Figure 6.1. The effect of the permutations U and V on the ele-
ments I and J when the event A occurs. The solid arrows depict
the action of U and the dashed arrows depict the action of V .
The components of the triple (U−1(I), I, U(I)) are distinct. The
same is true of the components of the triples (V −1(I), I, V (I)),
(U−1(J), J, U(J)), and (V −1(J), J, V (J)). However, it may hap-
pen that U(I) = V (I), U(I) = V (J), etc.

Note that

P
(
{U−1(I) = V −1(I)} ∩A | (U, V )

)
= P ({U(I) = V (I)} ∩A | (U, V ))

= P
(
{U−1(J) = V −1(J)} ∩A | (U, V )

)
= P ({U(J) = V (J)} ∩A | (U, V ))

=
(
n− f − 2t

n

n− f − 2t− 1
n− 1

)2
W

n− 1

=
W

n
+Xn,
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where Xn is a random variable such that if we set bn := E[|Xn|], then n2bn is
bounded in n. Furthermore,

P
(
{U−1(I) = V −1(J)} ∩A | (U, V )

)
=

n∑
k=1

P
(
{U−1(I) = V −1(J) = k} ∩A | (U, V )

)
=

n∑
k=1

P ({I = U(k), J = V (k)} ∩A | (U, V ))

= n

(
n− f − 2t

n

n− f − 2t− 1
n− 1

)2(
n− 1
n

1
n− f − 2t− 1

)2

=
1
n

+ cn,

where cn is a constant such that n2cn is bounded in n, and similar arguments show
that

P ({U(J) = V (I)} ∩A | (U, V ))

= P
(
{U−1(J) = V −1(I)} ∩A | (U, V )

)
= P ({U(I) = V (J)} ∩A | (U, V ))

= n

(
n− f − 2t

n

n− f − 2t− 1
n− 1

)2(
n− 1
n

1
n− f − 2t− 1

)2

=
1
n

+ cn.

Suppose we can show that the probability of the intersection of any two of the
events whose indicators appear on the right-hand side of (6.1) is at most a constant
dn, where n2dn is bounded in n, then

E
[∣∣∣W − n

4
P{W ′ = W − 1 | (U, V )}

∣∣∣] ≤ nbn + 7ndn

E
[∣∣∣1− n

4
P{W ′ = W + 1 | (U, V )}

∣∣∣] ≤ n|cn|+ 7ndn.

It will follow from the main result of [CDM05, Section 1] that the total variation
distance between the distribution of W and a Poisson distribution with expected
value 1 is at most C

n for a suitable constant C, and hence, as we have already
remarked, the same is true (with a larger constant) for the distribution of χ([η,Π]).

Consider the event {U−1(I) = V −1(I)}∩{U(I) = V (I)}∩A, which we represent
diagrammatically in Figure 6.2. The probability of this event is(

n− f − 2t
n

n− f − 2t− 1
n− 1

)2 1
n− 2

1
n− 3

.

As another example, consider the event {U−1(J) = V −1(I)} ∩ {U(I) = V (J)} ∩A,
which we represent diagrammatically in Figure 6.3. The probability of this event
is also (

n− f − 2t
n

n− f − 2t− 1
n− 1

)2 1
n− 2

1
n− 3

.

Continuing in this way, we see that, as required, the probability of the intersection
of any two of the events whose indicators appear on the right-hand side of (6.1) is
at most a constant dn, where n2dn is bounded in n. �
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I 

J 

Figure 6.2. Diagram for the event

{U−1(I) = V −1(I)} ∩ {U(I) = V (I)} ∩A.
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