
Communication-Avoiding Optimization of Geometric

Multigrid on GPUs

Amik Singh
James Demmel, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-258

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-258.html

December 14, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Samuel Williams, Research Scientist at Lawrence
Berkeley National Laboratory (LBNL) for guiding me throughout the project
and giving valuable feedbacks. Also, I would like to thank my research
adviser Professor James Demmel for his suggestions and feedback for my
project.

Communication-Avoiding Optimization of

Geometric Multigrid on GPUs

Amik Singh

EECS Department, University of California, Berkeley

Abstract – Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems in

a number of different application areas. In this report, we explore communication-avoiding implementations of

Geometric Multigrid on Nvidia GPUs. We achieved an overall gain of 1.2x for the whole multigrid algorithm over

baseline implementation. We also provide an insight into what future GPUs need to have in terms of on chip and

shared memory for these kinds of algorithms to perform even better.

1. Introduction

Traditionally, algorithm design focuses on minimizing floating point operations as the key to performance.

However, as the gap between interprocessor communication and computation continues to grow [8], focus has

shifted to the problem of reducing data movement between various levels of a memory hierarchy or between

different nodes on a parallel machine. Thus, the idea of a “communication-avoiding” (CA) algorithm has become

a concept of critical research importance. CA algorithms may differ from traditional flop-minimizing approaches

as they asymptotically minimize communication, sometimes at the cost of extra flops. Solving a problem in a CA

manner may involve a significant amount of algorithmic innovation.

2. Related Work

We explore the Geometric Multigrid on GPU’s. Bell et al. have explored the performance of algebraic (sparse

rather than structured) multigrid on GPUs [9]. Sellapa et al. explore constant coefficient elliptical partial

differential equations on structured grids [11]. Perhaps the most closely related work is that performed in

Treibig’s, which implements a 2D GSRB on SIMD architectures by separating and reordering the red and black

elements [10], additionally a 3D multigrid on an IA-64 (Itanium) is implemented via temporal blocking. Our work

expands on these efforts by providing a unique set of optimization strategies for GPUs.

3. Multigrid methods

Multigrid (MG) methods provide a powerful technique to accelerate the convergence of iterative solvers for

linear systems and are therefore used extensively in a variety of numerical simulations. Conventional iterative

solvers operate on data at a single resolution and often require too many iterations to be viewed as

computationally efficient. Multigrid simulations create a hierarchy of grid levels and use corrections of the

solution from iterations on the coarser levels to improve the convergence rate of the solution at the finest

level. Ideally, multigrid is an O(N) algorithm; thus, performance optimization on our studied multigrid

implementation can only yield constant speedups.

Figure 2 shows the three phases of the multigrid V-cycle for the solve of Lu
h
 = f

h
. First, a series of smooths

reduce the error while restrictions of the residual create progressively coarser grids.

The smoother is a conventional relaxation such as Jacobi, successive over-relaxation (SOR), or Gauss-Seidel with

Red-Black ordering (GSRB) which we used in our study as it has superior convergence properties. The

restriction of the residual (f
h
 - Lu

h
) is used to define the right-hand side at the next coarser grid. At each

progressively coarser level, the correction (e.g. u
2h

) is initialized to zero. Second, once coarsening stops (the grid

size reaches one or terminated for performance when the whole grid fits into cache), the algorithm switches to

a bottom solver like CG/BiCGStab. But in our case, instead of doing a bottom solver we do a lot of GSRB

relaxations which is equivalent to a bottom solve. Finally, the coarsest correction is interpolated back up the V-

cycle to progressively finer grids where it is smoothed.

Fig 1 : Multigrid Overview

Fig 2 : V-cycle

Nominally, one expects an order of magnitude reduction in the residual per V-cycle. As each level performs

O(1) operations per grid point and 1/8 (in 3D) the work of the finer grid, the overall computation is O(N) in the

number of variables in u. The linear operator can be arbitrarily complex as dictated by the underlying physics,

with a corresponding increase in runtime to perform the smoother computation.

4. Experimental Setup

We use NVIDIA’s GPUs to do our experiments. NVIDIA provides CUDA as the programming paradigm to write

programs on GPU. For our experiments we use Dirac GPU cluster at National Energy Research Scientific

Computing Center (NERSC). Dirac is a 50 node GPU cluster with NVIDIA Fermi chips. Each GPU node also

contains 2 Intel 5530 2.4 GHz, 8MB cache, 5.86GT/sec QPI Quad core Nehalem processors (8 cores per node)

and 24GB DDR3-1066 Reg ECC memory. We use Tesla C2050 Fermi GPU whose specifications are given below in

table 1.

Form Factor 9.75" PCIe x16 form factor

of CUDA Core 448

Frequency of CUDA Cores 1.15 GHz

Double Precision floating point
performance (peak)

515 Gflops

Single Precision floating point performance
(peak)

1.03 Tflops

Total Dedicated Memory 3GB GDDR5

Memory Speed 1.5 GHz

Memory Interface 384-bit

Memory Bandwidth 144 GB/sec

Power Consumption 238W TDP

5. Problem Specification

The problem size is fixed to 256
3
 nodes on the finest grid. We construct a compact multigrid solver benchmark

on GPU that creates a global 3D domain partitioned into subdomains sized to proxy those found in real MG

applications. So, the 256
3

nodes are divided into sixty four, 64
3

subdomains. All subdomains must explicitly

exchange ghost zones with their neighboring subdomains, ensuring an effective communication proxy of MG

codes.

We use a single-precision, finite volume discretization of the variable-coefficient operator L = aαI + b∇β∇ with

periodic boundary conditions as the linear operator within our test problem. Here a and b are scalar variable

coefficients while α and β are vectors. Variable-coefficients are an essential (yet particularly challenging) facet

as most real-world applications demand it. The right-hand side (f) for our benchmarking is sin(πx)sin(πy)sin(πz)

on the [0,1] cubical domain. The u, f, and α are cell-centered data, while the β’s are face centered. Figure 3

shows the 3-D stencil representation of the grid.

Table 1 :- Specifications of Tesla C2050 Fermi GPU

We structure a truncated V-cycle where restriction stops at the coarsest level of 4
3
. We fix the number of V-

cycles at 10 and perform two relaxations at each level down the V-cycle, 24 relaxations at the bottom, and two

relaxations at each level up the V-cycle.

Our relaxation scheme uses Gauss-Seidel Red-Black (GSRB) which offers superior convergence compared to

other methods. It consists of two grid smooths per relaxation each updating one color at a time, for a total of

eight smooths per subdomain per level per V-cycle. The pseudocode for the resultant inner operation is shown

in Figure 4. A similar calculation is used for calculating the residual. Nominally, these operators require a one

element deep ghost zone constructed from neighboring subdomain data. However, in order to leverage

communication aggregation and communication avoiding techniques, we also explore a 4-deep ghost zone that

enables optimization at the expense of redundant computation.

The data structure within a level for a subdomain is a list of equally-sized grids (arrays) representing the

correction, right-hand side, residual, and coefficients each stored in a separate array. Our implementations

ensure that the core data structures remain relatively unchanged with optimization. Although it has been

shown that separation of red and black points into separate arrays can facilitate SIMDization [25], our

benchmark forbids such optimizations as they lack generality and challenge other phases.

Fig 4 : Smoothing Operation

Fig 3 : 3-D stencil representation of grid

6. Single Precision Implementation

Baseline :-

The baseline implementation refers to the 1 deep ghost zone implementation. Our 256
3
 grid is divided into 64

sub-grids of size 64
3
 at finest level. The levels go down till the size of each subgrid is 4

3
. So with 1 deep ghost

zones the grid sizes and array sizes at each level are :-

Level Grid Size Array Size

0 64
3
 66

3

1 32
3
 34

3

2 163 183

3 8
3
 10

3

4 4
3
 6

3

At each level the smoothing operation (figure 3) is done 4 times. After each smoothing the ghost zone cells are

explicitly communicated with neighboring sub-grids. To do a smoothing operation at level 0, 663 subgrid is

divided into smaller regions of 18x18x66 grids. Each of these 18x18x66 grids is updated by 18x18 thread block.

Note that this 18x18 thread block is responsible for updating the inner 16x16x64 block. The mapping is shown

schematically in figure 5. Each 18x18 thread block sweeps over 66 elements in the z direction in wavefront

approach. Figure 6 shows the wavefront approach wherein only one smoothing operation is shown. We load in 3

planes into local register memory and do computation for the central plane of 18X18 points before loading in

the next plane. The time taken for smoothing at the finest level was 1.03 seconds whereas total time to solve

multigrid was 1.83 seconds.

Fig 5 : Division of 66 cubed grid Fig 6 : Wavefront approach for

baseline implementation

Table 2 :- Grid and array sizes at different levels for baseline

Communication Avoiding (CA) implementation :-

In our CA version we have 4 deep ghost zones for every sub-grid we have. So the sub-grid size at each level is:-

Level Grid Size Array Size

0 64
3
 72

3

1 32
3
 40

3

2 16
3
 24

3

3 8
3
 16

3

4 4
3
 12

3

Our smoothing kernel does 4 smooths in one pass. So we save on loading grids 4 times from global GPU memory

to local memory of each thread. Ideally one should attain a decrease in memory bandwidth consumption for the

smoothing operation by 0.25 and hence a speedup of 4 times for the smoothing operation only, but we have to

account for extra ghost zones to be loaded. So even if we attain the maximum possible bandwidth our ideal

speedup for the smoothing kernel should be (4*66*66*66)/(72*72*72) which is nearly equal to 3x. The time

consumed in other operations such as restriction and interpolation remains same as we don’t have to deal with

ghost zones for these operations (Table 4 and 5).

The maximum thread block size on Nvidia GPUs can be 1536. So, we can’t have the entire grid assigned to one

thread block. We also need to have multiple thread blocks for maximum utilization of GPU cores. While dividing

the smoothing operation into different thread blocks we have to load ghost zones for each sub-divided portion.

Hence we also have to pay the price to load more extra memory in our thread blocks to save on inter-thread

block communication for each of the CUDA thread blocks. For example, at level 0, 72
3

is divided into small

nx*ny*72 thread blocks. For nx = 16 and ny = 16 the mapping is as shown below in figure 7. This 16x16x72 block

is only responsible for updating inner 8x8x64 thread block. So, just to do smoothing on 8x8x72 grid we have to

load in nearly 4 times the size of this block. There is no other way to save on inter thread block computation in

CUDA but to do these redundant computations.

For nx = 16 and ny = 16, the amount of global memory accessed at level 0 is 16*16*72*(8*8) (words per

variable). The baseline implementation accesses 4*66*66*66 in 4 smoothing operations which is fixed. So, by

changing nx and ny we can change the ratio of memory accessed in CA versus memory accessed in baseline.

Figure 8 shows the theoretical ratio (data to be loaded) and the measured ratio of time to solve. The data

normalized series is the amount of data we have to load in our CA version compared to the baseline

implementation. This data normalized curve is similar our time normalized curve which shows the measured run

times. But we could not go beyond 24*24 thread block size. The Fermi GPU which we use has a maximum of 32K

registers per streaming multiprocessor. To store in all the running planes (wavefront approach) we use about 56

registers per thread. Also as per CUDA programming guide each thread block is run on a single streaming

multiprocessor only. So, the maximum number of threads we can have in a thread block are 32K/56 ~ 585. So

we could only run a maximum of 24*24 = 576 threads in a thread block. The figure however also shows the

expected data to be loaded for bigger thread block sizes and we believe the run time should also vary according

to that. The points shown with red dotted lines are hypothetical as such the current GPU’s cannot run such big

thread blocks. Also the ideal time to run a CA version should be ¼ times that of baseline.

Table 3 :- Grid and array sizes at different levels for CA

Fig 7 : Mapping of grid onto thread blocks

Fig 8 : Results and Prediction

Table 4 and Table 5 show our best CA implementation and baseline time analysis for different operations at

different levels respectively. We were able to decrease the total smoothing time by 1.6x (1.1861/0.7425). The

time for other kernels (residual, restriction and interpolation) is almost same within the errors of experiment

level 0 1 2 3 4

 size 72^3 40^3 24^3 16^3 12^3 Total

smooth (s) 0.6287 0.0774 0.0112 0.0063 0.0188 0.7425

avoiding RAW (s) 0.0549 0.0100 0.0026 0.0011 0.0000 0.0687

residual (s) 0.1158 0.0143 0.0022 0.0006 0.0000 0.1328

restriction (s) 0.0112 0.0019 0.0006 0.0004 0.0000 0.0141

interpolation (s) 0.0232 0.0036 0.0009 0.0005 0.0000 0.0283

communication (s) 0.3101 0.1162 0.0625 0.0416 0.0792 0.6095

Total (s) 1.0890 0.2134 0.0775 0.0494 0.0980 1.5272

level 0 1 2 3 4

 size 66^3 34^3 18^3 10^3 6^3 Total

smooth (s) 1.0343 0.1062 0.0191 0.0056 0.0209 1.1861

residual (s) 0.1149 0.0129 0.0018 0.0005 0.0000 0.1301

restriction (s) 0.0103 0.0017 0.0006 0.0004 0.0000 0.0129

interpolation (s) 0.0218 0.0035 0.0009 0.0005 0.0000 0.0266

communication (s) 0.2305 0.0833 0.0440 0.0327 0.0804 0.4710

Total (s) 1.4118 0.2075 0.0663 0.0397 0.1014 1.8268

level 0 1 2 3 4

Raw CA Gflops 34.91 45.37 60.84 27.88 40.85

Useful CA Gflops 13.34 13.54 11.70 2.60 1.31

Baseline (Gflops) 8.11 9.87 6.86 2.93 1.23

level 0 1 2 3 4

Raw CA GB/s 43.21 48.78 50.55 26.63 22.59

Useful CA GB/s 24.31 33.87 50.55 26.63 22.59

Baseline GB/s 45.53 60.36 50.02 29.25 10.15

runs as all these operations are exactly identical for both the versions. The avoiding RAW time in the CA version

depicts the time we have to copy back our data to the original grid from a redundant grid used for concurrency

purposes while doing 4 smooths in a GPU kernel. The communication time refers to the explicit exchange of

ghost zones between different subgrids. The communication time is a bit more in the CA version because we

have to communicate 4 deep ghost zones compared to 1 deep ghost zones in case of baseline version. Overall

Table 4 :- Time spent at different stages by CA version

Table 5 :- Time spent at different stages by baseline version

Table 6 :- Gflops for the smoothing operation

Table 7 :- Bandwidth utilization

we were able to make some improvement in the total running time of multigrid solve. Table 6 shows the floating

point operations done per second in the smoothing kernel of both the CA and baseline version. Raw flops

include the operations done on ghost zones. The useful flops are the flops done on actual grid points divided by

two because we commit only one of either red or black at each point. With other stages forming a significant

time for the overall multigrid solve, even if we achieve ideal speedup for the CA version we can reduce the

smoothing time to 0.395 sec (1.1861/3) and the total time to solve the multigrid to 1.18 sec (instead of 1.5272

seconds). So, the net speedup in the ideal case would be around 1.55x (1.8268/1.18) only. With limited

resources on GPU, we achieve an overall speedup of 1.2x only. Note that our baseline implementation is itself

optimized in the sense that it uses a wavefront approach to do the smoothing operation. Table 7 shows the

bandwidth utilization of the smoothing operation at different levels. The peak bandwidth of the machine we use

is 97.6 GB/s with ECC on.

7. Comments

We also explored the Double Precision implementation but with so many registers required in the single

precision implementation itself, the DP version performed very poorly. Table 7 shows the run time of double

precision CA version. One would expect to see a two-fold increase in runtime (due to doubling of memory to be

level 0 1 2 3 4

 size 72^3 40^3 24^3 16^3 12^3 total

smooth (s) 3.360116 0.472085 0.069302 0.009616 0.027259 3.938378

avoiding RAW (s) 0.04511 0.006516 0.001823 0.000933 0 0.054381

residual (s) 0.092837 0.013105 0.002034 0.000564 0 0.10854

restriction (s) 0.010477 0.001715 0.000547 0.000366 0 0.013105

interpolation (s) 0.025945 0.003732 0.000712 0.000461 0 0.03085

communication (s) 0.176513 0.064105 0.034783 0.023547 0.050514 0.349462

Total (s) 3.665889 0.554742 0.107379 0.034553 0.077791 4.440354

0

200

400

600

800

1000

1200

0 One Two Three

S
iz

e
 (

K
B

)

Number of ghost zones

Working Set CPU

Working Set GPU

Fig 9 : Working set of memory on CPU and GPU

Table 7 :- Time spent at different stages by double precision CA version

loaded), but the run time of this double precision version is nearly three times that of single precision

implementation due to register spilling on GPU cores. We speculate that if in future GPUs more registers are

available to address this issue, then our DP version would also perform well. Also for such multigrid algorithms

and higher order stencil operations GPUs need to have much large memory space in terms of local registers and

some mechanism to tackle inter-thread block communication to save redundant memory operations. Figure 9

shows the working set of data for CPU and GPU for different ghost zones. The working set is different because

for the GPU we have to load in extra elements for each thread block to avoid inter-thread block communication.

We don’t have to deal with that issue on a CPU. If we try this CA approach on a Sandy Bridge CPU which has 20

MB of L3 cache, almost all data fits in L3 cache. Moreover the L2 cache (256 KB) and L1 cache (64 KB) are also

very large compared to what GPU’s have (48 KB of shared + L1 cache) per streaming multiprocessor. This shows

GPU’s are starved for on-chip memory and for writing efficient higher order stencil algorithms GPU’s need to

have a larger set of on-chip memory.

8. Acknowledgement

I would like to thank Samuel Williams, Research Scientist at Lawrence Berkeley National Laboratory (LBNL) for

guiding me throughout the project and giving valuable feedbacks. Also, I would like to thank my research adviser

Professor James Demmel for his suggestions and feedback for my project.

9. References

 [1] S. Williams, D. Kalamkar, A. Singh, A. Deshpande, B. Van Straalen, M. Smelyanskiy, A. Almgren, P. Dubey, J.

Shalf, L. Oliker, “Optimization of Geometric Multigrid for Emerging Multi- and Manycore Processors”,

Supercomputing (SC), November 2012.

[2] Dirac Website. http://www.nersc.gov/users/computational-systems/dirac/

[3] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-D blocking optimization for stencil computations

on modern CPUs and GPUs. In Proceedings of the 2010 ACM/IEEE International Conferencefor High Performance

Computing, Networking, Storage and Analysis, SC’10, pages 1–13, Washington, DC, USA, 2010. IEEE Computer

Society.

[4] S. Sellappa and S. Chatterjee. Cache-efficient multigrid algorithms. International Journal of High Performance

Computing Applications, 18(1):115–133, 2004.

[5] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The potential of the Cell processor for

scientific computing. In Proceedings of the 3rd Conference on Computing Frontiers, New York, NY, USA, 2006.

[6] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske. Efficient temporal blocking for stencil

computations by multicore-aware wavefront parallelization. In International Computer Software and

Applications Conference, pages 579–586, 2009.

[7] N. Bell, S. Dalton, and L. Olson. Exposing fine-grained parallelism in algebraic multigrid methods. NVIDIA

Technical Report NVR-2011-002, NVIDIA Corporation, June 2011.

[8] Graham, S. L., Snir, M., and Patterson, C. A., Eds. 2004. Getting up to Speed: The Future of Supercomputing.

Report of National Research Council of the National Academies Sciences. The National Academies Press,

Washington, D.C. 289 pages, http://www.nap.edu.

[9] N. Bell, S. Dalton, and L. Olson. Exposing fine-grained parallelism in algebraic multigrid methods. NVIDIA

Technical Report NVR-2011-002, NVIDIA Corporation, June 2011.

[10] J. Treibig. Efficiency improvements of iterative numerical algorithms on modern architectures. PhD thesis,

2008.

[11] S. Sellappa and S. Chatterjee, “Cache-efficient multigrid algorithms,” International Journal of High

Performance Computing Applications, vol. 18, no. 1, pp. 115–133, 2004.

