
Confluence Analysis for Distributed Programs: A

Model-Theoretic Approach

William Marczak
Peter Alvaro
Neil Conway
Joseph M. Hellerstein
David Maier

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-171

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-171.html

June 29, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Confluence Analysis for Distributed Programs:
A Model-Theoretic Approach

William R. Marczak1, Peter Alvaro1, Neil Conway1, Joseph M. Hellerstein1, and
David Maier2

1 University of California, Berkeley
2 Portland State University

Abstract. Building on recent interest in distributed logic programming, we take a
model-theoretic approach to analyzing confluence of asynchronous distributed pro-
grams. We begin with a model-theoretic semantics for Dedalus and introduce the
ultimate model, which captures non-deterministic eventual outcomes of distributed
programs. After showing the question of confluence undecidable for Dedalus,
we identify restricted sub-languages that guarantee confluence while providing
adequate expressivity. We observe that the semipositive restriction Dedalus+ guar-
antees confluence while capturing PTIME, but show that its restriction of negation
makes certain simple and practical programs difficult to write. To remedy this,
we introduce DedalusS , a restriction of Dedalus that allows a kind of stratified
negation, but retains the confluence of Dedalus+ and similarly captures PTIME.

1 Introduction

In recent years there has been optimism that declarative languages grounded in Datalog
can provide a clean foundation for distributed programming [1]. This has led to activity
in language and system design (e.g., [2–5]), as well as formal models for distributed
computation using such languages (e.g., [6–8]).

The bulk of this work has presented or assumed a formal operational semantics
based on transition systems and traces of input events. A model-theoretic semantics for
these languages has been notably absent. In a related paper [9], we developed a model-
theoretic semantics for Dedalus, a distributed logic language based on Datalog, in which
the “meaning” of a program is precisely the set of stable models [10] corresponding to
all possible temporal permutations of messages. In the same paper, we demonstrate an
equivalence of these models with all possible executions in a operational semantics akin
to those in the prior literature.

In this paper we take advantage of the availability of declarative semantics to explore
the correctness of distributed programs. Specifically, we address the desire to ensure de-
terministic program outcomes—confluence—in the face of inherently non-deterministic
timings of computation and messaging.

Using our model-theoretic semantics for Dedalus, we can reason about the set of
possible outcomes of a distributed program, based on what we define as its ultimate mod-
els. We also identify restricted sub-languages of Dedalus that ensure a model-theoretic
notion of confluence: the existence of a unique ultimate model for any program in that

sub-language. The next question then is to identify a sub-language that ensures conflu-
ence without unduly constraining expressivity—both in terms of both computational
power, and the ability to employ familiar programming constructs.

A natural step in this direction is to restrict Dedalus to its semi-positive subset, a
language we call Dedalus+. This is inspired in part by the CALM theorem [11, 1, 12],
which established a connection between confluence and monotonicity. However, we note
that this restriction makes common distributed systems tasks difficult to achieve.

We achieve a more comfortable balance between expressive power, ease of pro-
gramming and guarantees of confluence in DedalusS , which admits a controlled use
of negation that draws inspiration from both stratified negation in logic programming,
and coordination protocols from distributed computing. We present the model-theoretic
semantics of DedalusS , and give it an operational semantics by compiling DedalusS

programs into stylized Dedalus programs that augment the original code with “coordina-
tion” rules that effectively implement distributed stratified evaluation. We believe the
result is practically useful—indeed, DedalusS corresponds closely to Bloom, a practical
programming we have used to implement a broad array of distributed systems [13].

2 Dedalus

Dedalus extends Datalog to model the critical semantic issue from asynchronous dis-
tributed computing: asynchrony across nodes. We use a restricted version of Sacca and
Zaniolo’s choice construct [10], interpreted under the stable model semantics, to model
program behaviors. Our use of the stable model semantics induces a potentially infinite
number of distinctions that are not meaningful in an “eventual” sense. Thus, we introduce
the ultimate model semantics as a representation of program output.

We begin this section by reviewing the syntax of Dedalus first presented in Alvaro
et al. [14]. We then review the model-theoretic semantics for Dedalus [9].

2.1 Syntax

Preliminary Definitions We assume an infinite universe U of values. We assume
N = {0, 1, 2, . . .} ⊂ U.

A relation schema is a pair R(k) where R is a relation name and k its arity. A database
schema S is a set of relation schemas. Any relation name occurs at most once in a
database schema. We assume the existence of an order: every database schema contains
the relation schema <(2). Later, we will explain how < is populated.

A fact over a relation schema R(n) is a pair consisting of the relation name R and an
n-tuple (c1, . . . , cn), where each ci ∈ U. We denote a fact over R(n) by R(c1, ..., cn). A
relation instance for relation schema R(n) is a set of facts whose relation is R. A database
instance maps each relation schema R(n) to a corresponding relation instance for R(n).

A rule ϕ consists of several distinct components: a head atom head(ϕ), a set pos(ϕ)
of positive body atoms, a set neg(ϕ) of negative body atoms, a set of inequalities ineq(ϕ)
of the form x < y, and a set of choice operators cho(ϕ) applied to the variables. The
conventional syntax for a rule is:
head(ϕ)← f 1, . . . , f n,¬g 1, . . . ,¬g m, ineq(ϕ), cho(ϕ).

where fi ∈ pos(ϕ) for i = 1, . . . , n and gi ∈ neg(ϕ) for i = 1, . . . ,m.
Dedalus maintains the usual Datalog safety restrictions: every variable symbol V

in a rule must appear in some atom in pos. For readability, we will use the underscore
symbol () to represent a variable that appears only once in a rule.

Spatial and Temporal Extensions Given a database schema S, we use S+ to denote
the schema obtained as follows. For each relation schema r(n) ∈ (S \ {<}), we include a
relation schema rn+1 in S+. The additional column added to each relation schema is the
location specifier. By convention, the location specifier is the first column of the relation.
S+ also includes <(2), and a relation schema node(1): the finite set of node identifiers that
represents all of the nodes in the distributed system. We call S+ a spatial schema.

A spatial fact over a relation schema R(n) is a pair consisting of the relation name R
and an (n + 1)-tuple (d, c1, . . . , cn) where each ci ∈ U, d ∈ U, and node(d). We denote
a spatial fact over R(n) by R(d, c1, ..., cn). A spatial relation instance for a relation
schema r(n) is a set of spatial facts for r(n+1). A spatial database instance is defined
similarly to a database instance.

Given a database schema S, we use S∗ to denote the schema obtained as follows.
For each relation schema r(n) ∈ (S \ {<}) we include a relation schema r(n+2) in S∗. The
first additional column added is the location specifier, and the second is the timestamp.
By convention, the location specifier is the first column of every relation in S∗, and the
timestamp is the second. S∗ also includes <(2) (finite), node(1) (finite), time(1) (infinite)
and timeSucc(2) (infinite), We call S∗ a spatio-temporal schema.

A spatio-temporal fact over a relation schema R(n) is a pair consisting of the relation
name R and an (n + 2)-tuple (d, t, c1, . . . , cn) where each ci ∈ U, d ∈ U, t ∈ U, node(d),
and time(t). We denote a spatial fact over R(n) by R(d, t, c1, ..., cn).

A spatio-temporal relation instance for relation schema r(n) is a set of spatio-temporal
facts for r(n+2). A spatio-temporal database instance is defined similarly to a database
instance; in any spatio-temporal database instance, time(1) is mapped to the set containing
a time(t) fact for all t ∈ N, and timeSucc(2) to the set containing a timeSucc(x,y) fact for
all y = x + 1, (x, y ∈ N).

We will use the notation f@t to mean the spatio-temporal fact obtained from the
spatial fact f by adding a timestamp column with the constant t.

A spatio-temporal rule over a spatio-temporal schema S∗ is a rule of one of the
following three forms:
p(L,T,W)← b1(L,T,X1), ..., bl(L,T,Xl), ¬c1(L,T,Y1), ..., ¬cm(L,T,Ym),

node(L), time(T), ineq(ϕ).
p(L,S,W)← b1(L,T,X1), ..., bl(L,T,Xl), ¬c1(L,T,Y1), ..., ¬cm(L,T,Ym),

node(L), time(T), timeSucc(T,S), ineq(ϕ).
p(D,S,W)← b1(L,T,X1), ..., bl(L,T,Xl), ¬c1(L,T,Y1), ..., ¬cm(L,T,Ym),

node(L), time(T), time(S), choice((L, T, B),(S)), node(D), ineq(ϕ).

In the rules above, B is a tuple containing all the distinct variable symbols in X1, . . . ,
Xl, Y1, . . . , Ym. The variable symbols D and L may appear in any of W, X1, ..., Xl, Y1,

..., Ym, whereas T and S may not. Head relation name p may not be time, timeSucc, or
node. Relations b1, ..., bl, c1, ..., cm may not be timeSucc, time, or <.

The first kind is a deductive rule, the second an inductive rule, and the last an
asynchronous rule. The last two kinds of rules are collectively called temporal rules.

The use of a single location specifier and timestamp in rule bodies corresponds to
considering deductions that can be evaluated at a single node at a single point in time.

The choice construct is from Saccà and Zaniolo [10] and is used to model the fact
that the network may arbitrarily delay, re-order, and batch messages. We use the causality
rewrite of Alvaro et al. [9], which restricts choice in the following way: a message sent
by a node x at local timestamp s cannot cause another message to arrive in the past
of node x (i.e., at a time before local timestamp s). Intuitively, the causality constraint
rules out models corresponding to impossible executions, in which effects are perceived
before their causes. Full details about choice and the causality constraint are available in
a companion paper [9].

A Dedalus program is a finite set of causally rewritten spatio-temporal rules over
some spatio-temporal schema S∗.

Syntactic Sugar The restrictions on timestamps and location specifiers suggest a
natural syntactic sugar that omits boilerplate usage of timestamp attributes and location
specificers, as well as the use of node, time, timeSucc, and choice in rule bodies. Example
deductive, inductive, and asynchronous rules are shown below.
p(W)← b1(X1), ..., bl(Xl), ¬c1(Y1), ..., ¬cm(Ym).

p(W)@next← b1(X1), ..., bl(Xl), ¬c1(Y1), ..., ¬cm(Ym).

p(W)@async← b1(X1), ..., bl(Xl), ¬c1(Y1), ..., ¬cm(Ym).

In any rule, the body location specifier can be accessed by including a variable
symbol or constant prefixed with # as any body atom’s first argument. In asynchronous
rules, the head location specifier can be accessed in a similar manner in the head atom,
as shown in the following rule.
p(#D,L,W)@async← b(#L,D,W), ¬c(#L,L).

The head and body location specifiers are D and L respectively. D may appear in the
body, L may appear in the head, and L may appear duplicated in the body.

2.2 Semantics

We only consider Dedalus programs whose deductive rules are syntactically stratified.
An input schema SI for a Dedalus program P with spatio-temporal schema S∗ is a

subset of P’s spatial schema S+. Every input schema contains the node relation; we will
not explicitly mention the presence of node when detailing an input schema. A relation
in SI is called an EDB relation. All other relations are called IDB.

An EDB instance E is a spatial database instance that maps each EDB relation
r to a finite spatial relation instance for r. The active domain of an EDB instance E
for a program P is the set of constants appearing in E and P. Every EDB instance
maps the < relation to a total order over its active domain. We can view an EDB
instance as a spatio-temporal database instance K . For every r(d,c1,...,cn) ∈ E, the
fact r(d,t,c1,...,cn) ∈ K for all t ∈ N. Intuitively, EDB facts “exist at all timesteps.”

We refer to a Dedalus program together with an EDB instance as a Dedalus instance.
The behavior of a Dedalus program can be viewed as a mapping from EDB instances to
spatio-temporal database instances. We use the stable model semantics to describe this
mapping. Intuitively, there is a one to one correspondence between stable models and
values for timestamps for all messages that obey the causality rewrite [9].

Example 1. Take the following Dedalus program with input schema {q}. Assume the
EDB instance is {node(n1), q(n1)}.
p(#L)@async← q(#L).

Let the power set of X be denoted P(X). For each S ∈ P(N\ {0}), where |S | = |N|, the
following are exactly the stable models: {node(n1)} ∪ {p(n1,i) | i ∈ S } ∪ {q(n1,i) | i ∈ N}.

Since q is part of the input schema, it is true at every time. Every time involves a
separate choice of time for p, which must be later than time 0. The causality constraint
rules out elements of the power set with finite cardinality [9].

Ultimate Models Stable models highlight uninteresting temporal differences that may
not be “eventually” significant. Intuitively, there would be different stable models for
different message orderings, even when those orderings were not meaningful because
they represented some commutative operation. An example appears in Appendix F. In
order to rule out such behaviors from the output, we will define the concept of an ultimate
model to represent a program’s “output.”

An output schema for a Dedalus program P with spatio-temporal schema S∗ is a
subset of P’s spatial schema S+. We denote the output schema as SO.

Let ^� map spatio-temporal database instances T to spatial database instances. For
every spatio-temporal fact r(p,t,c1,...,cn) ∈ T , the spatial fact r(p,c1,...,cn) ∈ ^�T
if relation r is in SO and ∀s . (s ∈ N ∧ t < s) ⇒ (r(p,s,c1,...,cn) ∈ T). The set of
ultimate models of a Dedalus instance I is {^�(T) | T is a stable model of I}. Intuitively,
an ultimate model contains exactly the facts in relations in the output schema that are
eventually always true in a stable model.

Note that an ultimate model is always finite because of the finiteness of the EDB,
the safety conditions on rules, the restrictions on the use of timeSucc and time, and the
prohibition on binding timestamps to non-timestamp attributes. A Dedalus program only
has a finite number of ultimate models for the same reason.

Example 2. For Example 1 with SO = {p}, there are two ultimate models: {} and {p(n1)}.
The latter corresponds to an element of the power set S such that ∃x .∀y . (y > x)⇒ (y ∈
S). The former corresponds to an element S that does not have this property.

3 Refining Dedalus

Dedalus can express a broad class of distributed systems but this flexibility comes at
a cost. As we have shown, a Dedalus program may have multiple ultimate models.
However, it is often desirable to ensure that a program has a single, deterministic output,
regardless of non-determinism in its behavior.

Example 3. A simple asynchronous marriage ceremony:
i do(X)@async← i do edb(X).
runaway()← ¬i do(bride), i do(groom).

runaway()← ¬i do(groom), i do(bride).

runaway()@next← runaway().
i do(X)@next← i do(X).

The intended meaning of the program is that the marriage is off (runaway() is true) if one
party says “I do” and the other does not. However, the Dedalus program as given does not
match this specification. Any stable model where i do(groom) and i do(bride) disagree
in their first chosen timestamps yields an ultimate model containing runaway(). If the
votes are assigned the same timestamp, the ultimate model does not contain runaway().
See Appendix A for a version of this example involving asynchrony.

In this case, there is a preferred model where negation is not applied to a set until
its content has been fully determined. This is akin go the notion of a perfect model
in Datalog. Typically, a programmer would induce this preferred model by inserting
coordination code (e.g., voting or consensus between all communicating agents) to
ensure that there are no outstanding messages in flight, before applying a summarizing
operation like negation.

In the remainder of this section, we explore the aspects of Dedalus that allow such
ambiguities and propose a restricted language Dedalus+ that rules them out (but com-
plicates the specification of programs). In Section 4, we consider a different language—
DedalusS —that allows relatively intuitive program specifications like our examples, but
narrows their interpretation to a single, “preferred” model.

3.1 Problems with Dedalus

A Dedalus program is confluent if, for every EDB instance, it has a single ultimate
model. A program that is not confluent is diffluent. Confluence is a desirable, albeit
conservative, correctness property for a distributed program. A program that is confluent
produces deterministic output despite any non-deterministic behaviors that might occur
during its execution. For example, if we could show that a data replication protocol was
confluent, we could prove a version of the commonly desired property that all replicas be
“eventually consistent” after all messages have been delivered [15, 16]. Confluence may
be viewed as a specialization of the more general notion of consistency of distributed
state.

Lemma 1. Confluence of Dedalus programs is undecidable.

This result is hardly surprising, as confluence is defined over all EDB instances. Another
symptom of Dedalus being “too big” a language is its expressive power.

Lemma 2. Dedalus subsumes PSPACE.

3.2 Dedalus+

Distributed programs that produce non-deterministic output or have exponential runtimes
are often undesirable. Since checking for confluence in Dedalus is undecidable, we
present a restriction of Dedalus that allows only confluent programs and prove that it
captures exactly PTIME.

A Dedalus program is semipositive if the ¬ symbol is only used on EDB relations. A
Dedalus program P has guarded asynchrony if for every relation p appearing in the head

of an asynchronous rule, the program P has a rule p(X)@next ← p(X). The language of
semipositive Dedalus programs with guarded asynchrony is called Dedalus+.

To show that all Dedalus+ programs are confluent, we begin by showing that
Dedalus+ programs are temporally inflationary: if a stable model of a Dedalus+ in-
stance contains a spatio-temporal fact f@t, then it also contains f@t+1 (and thus the
ultimate model contains f).

Lemma 3. Dedalus+ programs are temporally inflationary.

Theorem 1. Dedalus+ programs are confluent.

Since a Dedalus+ program has a unique ultimate model, the specific choice of values
for timestamps does not affect the ultimate model. In particular, we can assume that the
timeSucc of the body timestamp is always chosen.

Corollary 1. DefineA(P) to be the program transformation that converts every asyn-
chronous rule ϕ of Dedalus+ program P into an inductive rule by undoing the causality
and choice rewrites, dropping the choice operator, and adding timeSucc(T,S) to pos(ϕ).
Then, the ultimate model ofA(P) is the same as the ultimate model of P.

Of course, there are confluent Dedalus programs not in Dedalus+ (see Appendix E).
Not only are Dedalus+ programs confluent, but they also capture exactly PTIME.

Lemma 4. Define the program transformation I(P) in the following way: in every
inductive rule of Dedalus+ program P—except any basic persistence rule for a relation
that appears in the head of an asynchronous rule—remove the timeSucc(T,S) body atom,
and replace all instances of the variable S with the variable T. The ultimate model of
I(P) is the same as the ultimate model of P.

Theorem 2. Dedalus+ captures exactly PTIME.

4 DedalusS

The marriage program from Example 3 uses IDB negation to determine the truth value of
runaway, and is thus not directly expressible in Dedalus+. To avoid using IDB negation,
we can rewrite the program to “push down” negation to the EDB relations groom i do and
bride i do, and then derive the runaway IDB relation positively as shown in Example 4.

While the rewrite is straightforward, a majority of the program’s rules need to be
modified. Note that since Example 4 is in Dedalus+, it is confluent; therefore, it is not
subject to the non-deterministic output observed in the original program (Example 3).

Example 4. An asynchronous marriage ceremony without IDB negation:
i dont(X)@async← ¬i do edb(X).

runaway()← i dont(bride).
runaway()← i dont(groom).
runaway()@next← runaway().
i dont(X)@next← i dont(X).

Programs involving negation of recursion, such as the distributed garbage collection
program presented in Appendix B, present a more difficult problem, as negation must
be pushed down through recursion. The best known techniques for this may result in
unacceptable overhead as they involve doubling the arity of relations.

In general, the restriction of negation to EDB relations presents a significant barrier
to expressing practical programs. In this section, we introduce DedalusS , an extension
of Dedalus+ that allows stratified IDB negation. As one might expect, DedalusS retains
the benefits of Dedalus+. We provide an operational semantics for DedalusS , based on
the one for Dedalus [9], inspired by coordination protocols from distributed systems.

4.1 Safe IDB Negation

The stratified semantics for logic programs with negation is both intuitive and corre-
sponds to common distributed systems practices: negation is not applied until the negated
relation is “done” being computed. After some preliminary definitions, we introduce a
semantics for stratifiable Dedalus programs.

The PDG of a Dedalus program P with spatio-temporal schema S∗ is a directed
graph with one node per relation; each node i has a label L(i). If node i represents relation
p, then L(i) = p. There is an edge from the node with label q to the node with label p
if relation p appears in the head of a rule with q in its body. If some rule with p in the
head and q in the body is asynchronous (resp. inductive), then the edge is said to be
asynchronous (resp. inductive). If some rule with p in the head has ¬q in its body, then the
edge is said to be negated. Collectively, asynchronous and inductive edges are referred
to as temporal edges. The PDG does not contain nodes for the node, timeSucc, or time
relations, or any relation introduced in the causality [9] or choice [10] rewrites.

DedalusS is the language of Dedalus programs with guarded asynchrony whose
PDG does not contain any cycles through negation. As is standard, a DedalusS program
can be partitioned into strata. The stratum of a relation r is the largest number of negated
edges on any path from r. Each stratum of an n-stratum DedalusS program can be viewed
as a Dedalus+ program. Stratum i’s program, Pi, consists of all rules whose head relation
is in stratum i. The output schema of Pi contains all relations in stratum i + 1, and Pi’s
EDB contains all relations in stratum j < i. P0’s EDB contains all EDB relations. Pn’s
output schema contains all relations in P’s output schema.

The ultimate model of a DedalusS program is the ultimate model Pn(. . . P1(P0(E)) . . .),
obtained by a stratum-order evaluation.

Since a DedalusS program is a straightforward composition of Dedalus+ programs,
we can apply several previous results. Note that DedalusS programs are temporally
inflationary.

Corollary 2. DedalusS programs are confluent.

Note that every Dedalus+ program is a DedalusS program, and every DedalusS

program has a constant number of strata in the size of its input. Thus we have:

Corollary 3. DedalusS programs capture exactly PTIME.

4.2 Coordination rewrite

While the model-theoretic semantics of DedalusS are clear, its negation semantics are
different than those of Dedalus. Thus, we cannot directly apply the correspondence to a
distributed operational semantics in Alvaro et al. [9]. Fortunately, we can rewrite any
DedalusS program to a Dedalus program.

Given a DedalusS program S , the coordination rewrite P(S) of S is the Dedalus
program obtained by adding p done() to the body of any rule in S that contains a ¬p(...)
atom and adding rules to define p done() as described below.

We will see that p done() has the property that in any stable modelM if p done(l,t) ∈
M, then p done(l,s) ∈ M for all timestamps s > t. Furthermore, if p done(l,t) ∈ M,
then p(l,s,c1,...,cn) ∈ M implies that p(l,t,c1,...,cn) ∈ M for all timestamps s > t.
Intuitively, p done() is true when the content of p is sealed (henceforth unchanging).

A collapsed PDG of a Dedalus program P is the graph obtained by replacing each
strongly connected component of the PDG of P with a single node i, such that L(i)
comprises the set of all relations from the component. If a strongly connected component
has any asynchronous edges, we call the resulting collapsed node async recursive. Each
node in the collapsed PDG whose label contains a relation names in SO is called an
output node. Note that a collapsed PDG is acyclic.

For EDB relations p, the rule for p done is p done(). For IDB relations p, we present
p done() for non-async-recursive nodes and async recursive nodes separately.

Non-Async-Recursive Nodes For non-async-recursive nodes, we compute a done fact
for each rule, then collate these into a done fact for each relation. The done fact for a
deductive rule is true when all of the relations in the body of the rule are henceforth
unchanging. We assume guarded asynchrony applies to the rules in this section.

Let i be a non-async-recursive node. Repeat the following for each element of
p ∈ L(i). Assume the rules in P with head relation p are numbered 1, . . . , ip.

The rule for p done() is: p done()← r1 done(), ..., rip done().

Let the nodes in the collapsed PDG connected via incoming edges to node i be
denoted by E(i). Let the relations

⋃
k∈E(i) L(k) be named p1, . . . , piq . For each rule 1 ≤

j ≤ ip in P with head relation p, handle rule j according to the cases below.
Deductive: Add the rule: r j done()← p1 done(), ..., piq done().

Asynchronous: For an asynchronous rule, we need to ensure that there are no messages
that have not yet been delivered, before we derive r j done(). We do this by adding rules
to record all sent messages, and rules for receivers to send acknowledgements back to
senders. When a sender has received an acknowledgement for each sent message, and
there are no more messages to send, he indicates this to the receiver. In the vacuous case
where a sender has no messages to send to a receiver, he also indicates this to the receiver.
When a receiver has been notified by all nodes that there are no in-flight messages, he
can derive r j done(). The rules to express this protocol are in Appendix D.

Async Recursive Nodes The difficulty with a relation p in an async recursive node
is that r is done when all messages have been received in the node, and all messages

have been received if p is done. To circumvent this circular dependency, we introduce a
specialized two-phase voting protocol.

Consider an async recursive node i. Let the asynchronous rules with head relations
in L(i) be numbered 1, . . . , ip. Add the rule: all acki() ← r1 done(), ..., rip done().

For each rule j, add the rules for asynchronous rules shown in Appendix D, except
for the last two rules. Instead write:
r j not done()← p j to send(X), ¬p j ack(X).
r j done()← ¬r j not done().

We perform a two-round voting protocol among the nodes; the node with the minimum
identifier is the master. We assume that guarded asynchrony does not apply to the
relations in the head of any asynchronous rule in the following protocol. The rules shown
below begin the first round of voting. Nodes vote complete 1i if all acki is true—if they
have no outstanding unacknowledged messages. Votes are sent to the master.
not node min(L1)← node(L1), node(L2), L2 < L1.
node min(L)← ¬not node min(L), node(L).

start round 1i()← node min(#L,L), ¬round 1i().

round 1i()@next← start round 1i().

round 1i()@next← round 1i(), ¬start round 2i().

vote 1i(#N)@async← start round 1i(), node(N).

complete 1i(#M,N)@async← vote 1i(#N), all acki(#N), node min(#N,M).

incomplete 1i(#M,N)@async← vote 1i(#N), ¬all acki(#N), node min(#N,M).

To persist votes until round 1 begins again, these rules are instantiated for k = 1 and 2.
complete ki(N)@next← complete ki(N), ¬start round 1i().

incomplete ki(N)@next← incomplete ki(N), ¬start round 1i().

To count votes, we assume the following rules are instantiated for k = 1 and 2. Round
1 is restarted if some node votes incomplete 1i in round 1—i.e., it has an outstanding
unacknowledged message – or incomplete 2i in round 2.
recv ki(N)← complete ki(N).

recv ki(N)← incomplete ki(N).

not all recv ki()← node(N), ¬recv ki(N).

not all comp ki()← node(N), ¬complete ki(N).

start round 1i()← ¬not all recv ki(), not all comp ki().

Once a node has received a vote 1i vote solicitation, it starts keeping track of whether it
has sent any messages in the async recursive component; this information is erased if
another vote 1i solicitation is received. The causality constraint ensures that ¬all acki()

is true if a message is sent, as messages cannot be instantly acknowledged.
senti()← ¬all acki().

senti()@next← senti(), ¬vote 1i().

Round 2 is started by the master if no node has an outstanding message.
start round 2i()← ¬not all recv 1i(), ¬not all comp 1i(), node min(#L,L).

The voting for round 2 is shown below. Nodes vote incomplete 2i if they have sent any
messages since the last vote 1i solicitation. Recall that any incomplete 2i votes result in
the protocol restarting with round 1.
vote 2i(#N)@async← start round 2i(), node(N).

complete 2i(#M,N)@async← vote 2i(#N), all acki(#N), ¬senti(#N), node min(#N,M).

incomplete 2i(#M,N)@async← vote 2i(#N), senti(#N), node min(#N,M).

The entire async recursive node i is done when all nodes have voted complete 2i.

done recursioni()← ¬not all recv 2i(), ¬not all comp 2i().

Finally, for every relation p ∈ L(i), add the rule: p done() ← done recursioni().

This program transformation produces a Dedalus+ program equivalent to any DedalusS

program. The rules for computing p done have the desired effect.

Lemma 5 (Sealing). Assume a DedalusS program S with relation p. The Dedalus pro-
gram P(S) contains a relation p done with the following property: in any of its stable
modelsM, if p done(l,t) ∈ M, then p done(l,s) ∈ M for all timestamps s > t. Further-
more, if p done(l,t) ∈ M, then p(l,s,c1,...,cn) ∈ M implies that p(l,t,c1,...,cn) ∈ M

for all timestamps s > t.

The above Lemma implies that the ultimate model of DedalusS program S is the
same as the ultimate model of Dedalus program P(S), as relations in lower strata are
complete before higher strata rules are satisfiable. See Appendix C for an example of
applying the program transformation P.

In distributed systems, global computation barriers are commonly enforced by pro-
tocols based on voting: the two-phase commit protocol from distributed databases is a
straightforward example [17]. In the protocol from the program transformation P, every
agent responsible for a fragment of the global state must “vote” that every message
they send to the coordinator has been acknowledged. The coordinator must tally these
votes and ensure that the vote is unanimous for all agents. If the protocol completes
successfully, the coordinator may proceed past the barrier.

5 Related Work

The purely declarative semantics of Dedalus, based on the reification of logical time
into facts, are close in spirit and interpretation to Statelog [18], the languages proposed
by Cleary and Liu [19–21], and work in temporal deductive databases [22].

Significant recent work ([2–5]) has focused on using deductive database languages
extended with networking primitives to specify and implementing network protocols and
distributed systems. Theorem 1 resembles the correctness proof of “pipelined semi-naive
evaluation” for distributed Datalog presented by Loo et al. [23]. In general, however, the
language extensions proposed in much of this prior work added expressivity and domain
applicability but compromised declarativity, making formal analysis difficult [24, 7].

Recently, Ameloot et al. explored Hellerstein’s CALM theorem using relational
transducers [6]. They proved that monotonic first-order queries are exactly those queries
that can be computed in a coordination-free fashion using transducers. Some of their
assumptions differ from ours—for example, they assume that all messages sent by a
node are multicast to a fixed neighbor set, whereas Dedalus permits arbitrary unicast.

Abiteboul et al. recently proposed Webdamlog [12], another distributed variant of
Datalog that bears many similarities to Dedalus. They demonstrate that Webdamlog has
an operational semantics similar to the operational semantics in Dedalus [9], and provide
conservative conditions for confluence based on a variant of (node-local) stratification.
Our work additionally provides a model-theoretic semantics for DedalusS that corre-
sponds to the operational semantics. DedalusS programs (which are guaranteed to be
confluent) also admit a broader use of negation—ensured via a synthesized coordination
protocol—than the stratification conditions of Webdamlog.

References
1. Hellerstein, J.M.: The Declarative Imperative: Experiences and Conjectures in Distributed

Logic. SIGMOD Rec. 39 (September 2010) 5–19
2. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J.M., Sears, R.C.: BOOM

Analytics: Exploring Data-centric, Declarative Programming for the Cloud. In: EuroSys.
(2010)

3. Belaramani, N., Zheng, J., Nayate, A., Soulé, R., Dahlin, M., Grimm, R.: PADS: A policy
architecture for distributed storage systems. In: NSDI. (2009)

4. Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.: The
design and implementation of a declarative sensor network system. In: SenSys. (2007)

5. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrish-
nan, R., Roscoe, T., Stoica, I.: Declarative networking. Communications of the ACM 52(11)
(2009) 87–95

6. Ameloot, T.J., Neven, F., Van den Bussche, J.: Relational Transducers for Declarative
Networking. In: PODS. (2011)

7. Navarro, J.A., Rybalchenko, A.: Operational Semantics for Declarative Networking. In:
PADL. (2009)

8. Pérez, J.A., Rybalchenko, A., Singh, A.: Cardinality abstraction for declarative networking
applications. In: CAV. (2009)

9. Alvaro, P., Ameloot, T.J., Hellerstein, J.M., Marczak, W., Van den Bussche, J.: A Declar-
ative Semantics for Dedalus. Technical Report UCB/EECS-2011-120, EECS Department,
University of California, Berkeley (Nov 2011)

10. Saccà, D., Zaniolo, C.: Stable Models and Non-Determinism in Logic Programs with Negation.
In: PODS. (1990) 205–217

11. Alvaro, P., Conway, N., Hellerstein, J.M., Marczak, W.R.: Consistency Analysis in Bloom: a
CALM and Collected Approach. In: CIDR. (2011)

12. Abiteboul, S., Bienvenu, M., Galland, A., Antoine, E.: A rule-based language for web data
management. In: PODS. (2011)

13. : Bloom programming language. http://www.bloom-lang.org
14. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.: Dedalus:

Datalog in Time and Space. In: Proceedings of the Datalog 2.0 Workshop (to appear). (2011)
15. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser, C.H.: Man-

aging update conflicts in Bayou, a weakly connected replicated storage system. In: SOSP.
(1995)

16. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.W.: Session
Guarantees for Weakly Consistent Replicated Data. In: Proceedings of the Third International
Conference on Parallel and Distributed Information Systems. PDIS ’94, Washington, DC,
USA, IEEE Computer Society (1994) 140–149

17. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. (1993)
18. Lausen, G., Ludäscher, B., May, W.: On active deductive databases: The statelog approach.

In: Transactions and Change in Logic Databases. (1998) 69–106
19. Cleary, J.G., Utting, M., Clayton, R.: Data Structures Considered Harmful. In: Australasian

Workshop on Computational Logic. (2000)
20. Liu, M., Cleary, J.: Declarative Updates in Deductive Databases. Journal of Computing and

Information 1 (1994) 1435–1446
21. Lu, L., Cleary, J.G.: An Operational Semantics of Starlog. In: Proc. Principles and Practice

of Declarative Programming, Springer-Verlag (1999) 131–162
22. Chomicki, J., Imieliński, T.: Temporal Deductive Databases and Infinite Objects. In: PODS.

(1988) 61–73
23. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrish-

nan, R., Roscoe, T., Stoica, I.: Declarative Networking: Language, Execution and Optimiza-
tion. In: SIGMOD. (2006)

24. Mao, Y.: On the declarativity of declarative networking. In: NetDB. (2009)
25. Gaifman, H., Mairson, H., Sagiv, Y., Vardi, M.Y.: Undecidable Optimization Problems for

Database Logic Programs. Journal of the ACM 40 (July 1993) 683–713
26. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co. (1979)

A Example: sugared and unsugared Dedalus rules

Example 5. A distributed marriage ceremony in (sugared) Dedalus
i do(#P, X)@async← i do edb(X), priest(P).
runaway()← ¬i do(, bride), i do(, groom).

runaway()← ¬i do(, groom), i do(, bride).

runaway()@next← runaway().
i do(X)@next← i do(X).

Example 6. The same program in unsugared Dedalus
i do(#P, S, X)← i do edb(L, T, X), priest(P), node(L), node(P), time(T),

time(S), choice((L, T, X), (S)).

runaway(L, T)← ¬i do(L, T, bride), i do(L, T, groom), time(T), node(L).

runaway(L, T)← ¬i do(L, T, groom), i do(L, T, bride), time(T), node(L).

runaway(L, S)← runaway(L, T), time(T), node(L), timeSucc(T, S).
i do(L, T, X)← i do(L, T, X), time(T), node(L), timeSucc(T, S).

Example 5 extends the asynchronous (but local) marriage ceremony presented in
Example 3 to include physical distribution. Each participant has access to a relation
priest containing the address of the ceremony coordinator; the first rule of the program
forwards i do records from participators to the coordinator. Note the physical distribu-
tion has no effect on the semantics of the program—uncertainty in message timing and
ordering were already captured by the async rule in Example 3.

Example 6 presents the same Dedalus program in its unsugared form.

B Distributed Garbage Collection Program

Example 7. Distributed garbage collection:
addr(Addr)@async← addr edb(Addr).
refers to(#M, Src, Dst)@async← local ptr edb(#N, Src, Dst), master(#M).
refers to(Src, Dst)@next← refers to(Src, Dst).
reach(Src, Dst)← refers to(Src, Dst).
reach(Src, Next)← reach(Src, Dst), refers to(Dst, Next).
garbage(Addr)← addr(Addr), root edb(Root), ¬reach(Root, Addr).
garbage(Addr)@next← garbage(Addr).

Example 7 presents a simple garbage collection program for a distributed memory
system. Each node manages a set of pointers and forwards this information to a central
master node. The master computes the set of transitively reachable addresses; if an
address is not reachable from the root address, it can be garbage collected. For simplicity,
we assume that each node owns a fixed set of pointers, stored in the EDB relation
local ptr edb.

This more complicated example suffers from the same ambiguity as the marriage
ceremony presented previously. While the program has an ultimate model corresponding
to executions in which garbage is not computed until the transitive closure of refers to has
been fully determined (i.e., after all messages have been delivered), it also has ultimate
models corresponding to executions in which garbage is “prematurely” computed. When
garbage is computed before all the refers to messages have been delivered, there is a
correctness violation: reachable memory addresses appear in the garbage relation.

C Transformed Garbage Collection Program

Applying the program transformation P to the garbage collection pr ogram from Exam-
ple 7 results in the addition of the following rules.

Example 8. Synthesized rules for the garbage collection program:
refers to to send(M, Src, Dst)← local ptr edb(N, Src, Dst), master(M).
refers to send(#M, L, Src, Dst)@async← refers to to send(#L, M, Src, Dst).
refers to ack(#N, L, Src, Dst)← refers to send(#L, N, Src, Dst).
refers to done node(#M, N)@async← local ptr edb done(#N), master(#N, M),

(∀X.ref ers to to send(#N, M, X)⇒ refers to ack(#N, M, X)).
refers to done(M)← (∀N.node(N)⇒ refers to done node(M, N)).
reach done()← refers to done(), (∀N.node(N)⇒ local ptr edb done(N)).

One rule from the original program must also be rewritten to include the new subgoal
reach done:

Example 9. Garbage collection rewrite
garbage(Addr)← addr edb(Addr), root edb(Root), ¬reach(Root, Addr),

reach done().

As we have shown, the resulting program has a single ultimate model. This mod
el corresponds exactly with one of the ultimate models of the original program fr om
Example 7: the model in which ¬reach is not evaluate d until reach is fully determined.
The rewrite has effectively forced an evaluation strategy analogous to stratum-order
evaluation in a centralized Datalog program.

Note also that the rewrite code is a generalization of the “coordination” co de that
a Dedalus programmer could have written by hand to ensure that the local relation
refers to is a faithful representation of global state.

D Asynchronous Rule Rewrite in the Non-Async-Recursive Case

For each asynchronous rule:
p(#N,W)@async← b1(#L,X1), ..., bl(#L,Xl), ¬c1(#L,Y1), ..., ¬cm(#L,Ym).

add the following set of rules:
p j to send(N,W)← b1(#L,X1), ..., bl(#L,Xl), ¬c1(#L,Y1), ..., ¬cm(#L,Ym).

p j to send done()← b1 done(), ..., bl done(), c1 done(), ..., cm done().

p j send(#N,L,X)@async← p j to send(#L,N,X).

p j ack(#N,L,X)@async← p j send(#L,N,X).
r j done node(#L,N)@async← p1 done(#N), ..., piq done(#N),(

∀X.p j to send(#N,L,X)⇒ p j ack(#N,L,X)
)
.

r j done()←
(
∀N.node(N)⇒ r j done node(N)

)
.

The first rule stores messages to be sent at the body (source’s) location specifier,
so the source can check whether all messages have been acknowledged. The original
destination location specifier is stored as an ordinary column in the p j to send relation
(indicated by the absence of #). Note that because this first rule is a deductive rule,
as well as the only rule defining p j to send, the p j to send relation is done at the same

time as the body relations of the first rule, as shown in the second rule. The third rule
copies messages to the correct destination location specifier, while including the location
specifier of the source (L). The fourth derives acknowledgments at the source’s location
specifier. The fifth rule (at the source) derives a r j done node fact at a node when the
source has an p j ack for each p j send. Note that the causality constraint ensures that the
timestamp chosen for each r j done node message is greater than any timestamp before
the stable model satisfies the body of the rule. The final rule (at the destination) asserts
that rule j is done once r j done node has been received from all nodes—intuitively, the
rule is done when all messages from all nodes have been received.

The formula ∀X.φ(W,X) where φ(W, X) is of the form p(W,X) ⇒ q(W,X) translates to
forallφ(W), and the following rules are added:

pφ min(W,X)← p(W,X), ¬pφ succ(W,¯,X), pφ succ done().
pφ max(W,X)← p(W,X), ¬pφ succ(W,X,¯), pφ succ done().
pφ succ(W,X,Y)← p(W,X), p(W,Y), X < Y, ¬pφ not succ(W,X,Y),

pφ not succ done().

pφ not succ(W,X,Y)← p(W,X), p(W,Y), p(W,Z), X < Z, Z < Y.

forallφ ind(W,X)← pφ min(W,X), q(W,X).

forallφ ind(W,X)← forallφ ind(W,Y), pφ succ(W,Y,X), q(W,X).

forallφ(W)← forallφ ind(W,X), pφ max(W,X).

The first four rules above compute a total order over the facts in pφ. The final three
rules iterate over the total order of pφ, and checking each pφ to see if q also holds. If q
does not hold for any p, iteration will cease. However, if q holds for all p then forallφ is
true.

We additionally need to add a rule for the vacuous case of the universal quantification.
In general, we cannot write forallφ(W) ← ¬p(W,¯), p done()., because the variables in W
do not obey our safety restrictions. Thus, for every rule r that contains ∀X.φ(W,X) in its
body, we must duplicate r, replacing the ∀ clause with the atom ¬p(W, ¯).

Note also that we are abusing notation for the < relation. We previously defined < as a
binary relation, but it is easy to define a 2n-ary version of < that encodes a lexicographic
ordering over n-ary relations. Here, we use < to refer to the latter.

E Example of a Diffluent Dedalus+ Program

Example 10. A confluent Dedalus program that is not a Dedalus+ program.
b(#N, I)@async← b edb(#L, I).
b(I)@next← b(I), ¬dequeued(I).
b lt(I, J)← b(I), b(J), I < J.
dequeued(I)@next← b(I), ¬b lt(, I), b lt(,).

Any instance of this program has a single ultimate model in which b() (at all nodes)
contains the highest element in b edb() according to the order <. Thus it is confluent, but
the program uses IDB negation and does not have guarded asynchrony.

F Example of Unimportant Differences in Stable Models

Example 11. Take the following Dedalus program with input schema {q}. The program
determines whether two values, c1 and c2 “arrive” at the same time. Assume the EDB
instance is {node(n1), q(n1,c1), q(n1,c2)}.
p(#L,X)@async← q(#L,X), ¬r(#L,X).
r(X)@next← q(X).
r(X)@next← r(X).
concurrent()← p(n1,c1), p(n1,c2).
concurrent()@next← concurrent().

For each s, t ∈ N, the following is a stable model:

{q(n1,i,c1), q(n1,i,c2) | i ∈ N} ∪ {node(n1), p(n1,s,c1), p(n1,t,c2)} ∪

{r(n1,i,c1), r(n1,i,c2) | i ∈ N \ {0}}{concurrent(n1,i) | i ∈ N ∧ s ≤ i} if s = t

These are the only stable models of the instance. Since q is part of the input schema,
q facts are true at every time. By the rules, r facts are true at every time except time
0. Thus, there is only one choice of head timestamp for p for each value of q’s second
argument—this choice corresponds with a body timestamp of 0. If these choices are the
same, then concurrent() is true at all timestamps afterwards.

However, note that while the specific values of s and t are unimportant in terms of
the eventual contents of the concurrent relation, there are different stable models for each
of these choices. Intuitively, we do not want these “intermediate” temporal behaviors
that are not eventually significant, to differentiate program outputs.

G Proof of Lemma 1

Proof. Using the construction presented by Gaifman et al. [25], it is possible to write
a Datalog program that encodes any two-counter machine’s transition relation and an
arbitrarily long finite successor relation in the EDB, and define a 0-ary output relation
accept that is true if and only if the two-counter machine accepts and the transition and
successor relations are valid. As the construction is possible in Datalog, it is also possible
in Dedalus.

We add the following rules to the construction, to non-deterministically decide
whether to run the machine or not:
message(0)@async.
message(1)@async.
run machine()← message(0), message(1).
accept()← message(0), ¬message(1), input valid().
accept()← ¬message(0), message(1), input valid().

Note that the first two lines are actually rules.
For valid inputs, the ultimate model is accept() if and only if either message(0)

and message(1) are assigned the same timestamp and the machine accepts, or if the
timestamps are different. For invalid inputs, all ultimate models are empty.

If we could decide confluence for this program, we could decide whether there is
any valid input for which an arbitrary two-counter machine halts in an accepting state.

H Proof of Lemma 2

Below, we show how to write the PSPACE-complete Quantified Boolean Formula (QBF)
problem [26] in Dedalus. Since Dedalus is closed under first-order reductions and QBF
is PSPACE-complete under first-order reductions, we have that PSPACE ⊆ Dedalus.

We assume that the QBF formula is in prenex normal form: Q1x1Q2x2 . . .Qnxn(x1, . . . , xn).
The textbook recursive algorithm for QBF [26] involves removing Q1 and recursively
calling the algorithm twice, once for F1 = Q2x2 . . .Qnxn(0, x2, . . . xn) and once for
F2 = Q2x2 . . .Qnxn(1, x2, . . . , xn) for x1. If Q1 = ∃, then the algorithm returns F1 ∨ F2;
if Q1 = ∀, then F1 ∧ F2.

The leaves of the tree of recursive calls can each be represented as an n-bit binary
number, where bit i holds the value of xi. Assume the left child of a node at depth i of
the recursive call tree represents binding xi to 0, and the right child 1.

Our algorithm is intuitively similar to a postorder traversal of this recursive call tree.
Recursively, first visit the left node, then visit the right node, then visit the root. If we
are visiting a leaf node, we evaluate the formula for the given variable binding and store
a 0 or 1 at the node depending on whether the formula is false or true for that particular
binding. If we are visiting a non-root node at level i, we apply the quantifier Qi to the
values stored in the child nodes. Even though the recursive call tree is exponential in
size, we only require O(n) space due to the sequentiality of the traversal.

First, we iterate through all of the n-bit binary numbers, one per timestamp. We
assume that the order over the variables is such that the leftmost variable in the formula
(the high-order bit) is the x1 (the first), and the rightmost is xn (the last). Thus, our
addition is “backwards” in that it propagates carries from xi to xi−1:
carry(V)← var last(V).
one(V)@next← carry(V), ¬one(V).
one(V)@next← one(V), ¬carry(V).
carry(U)← carry(V), one(V), var succ(U, V).

At each timestep, we check whether the current assignment of values to the variables
makes the formula true. We omit these rules for brevity. If the formula is true, then
formula true() is true at that timestep.

The following rules handle how nodes set their values to either 0 or 1. Note that we
only require 2n bits of space for this step: each depth 1, . . . , n in the recursive call tree
has two one-bit registers (labelled by constant symbols a and b) representing the current
values of the children in the traversal.
var sat in associates a depth with a given truth value (0 or 1). This value is placed

into var sat at depth V in register a if a is empty, or b otherwise. Once a value is placed
in register b, it is deleted in the immediate next timestamp. As we will see later, before
with this deletion, the parent node applies its quantifier to the values in the two registers.

The truth value at depth n (denoted by var last) is the truth value of the formula
(formula true()) for the assignment of variables at the current timestep.
var sat in(V, 1)← formula true(), var last(V).
var sat(a, V, B)@next← var sat in(V, B), ¬var sat(, V,).
var sat(b, V, B)@next← var sat in(V, B), var sat(a, V,)..
var sat(N, V, B)@next← var sat(N, V, B), ¬var sat(b, V,).

var sat left in associates a value with the parent of a given depth. This is used for
propagating the result of the quantifier application to the parent. The cases for existential
(exists) and universal (forall) quantifiers are clear.
var sat in(N, U, B)← var sat left in(V, B), var succ(U, V).
var sat left in(vn, 1)← exists(vn), var sat(, vn, 1).
var sat left in(vn, 0)← exists(vn), var sat(a, vn, 0), var sat(b, vn, 0).
var sat left in(vn succ, 1)← forall(vn), var sat(a, vn, 1), var sat(b, vn, 1).
var sat left in(vn succ, 0)← forall(vn), var sat(, vn, false).

Finally, the entire formula is satisfiable(1) (satisfiable) if the output of the first
quantifier is 1, and satisfiable(0) (unsatisfiable) if the output of the first quantifier is 0.
satisfiable(B)← var sat left in(V, B), var first(V).

I Proof of Lemma 3

Proof. Consider a derivation tree for f@t: a finite tree of instantiated (variable-free) rules,
where negation only occurs at the leaves. Note that the instantiated head atom, as well as
every instantiated body relation, is a spatio-temporal fact

The tree’s root is some instantiated rule with f@t in its head. A node has one child
node for each body fact: the child node contains an instantiated rule with the fact in
its head—if the body fact’s relation does not appear in the head of any rule, then the
corresponding node contains just the fact, and is a leaf node. The leaves of the tree are
instantiated EDB facts.

For the moment, we assume that every fact has a unique derivation tree. Multiple
derivation trees are easy to handle—simply repeat the following process for each tree.

If the relation of f is EDB, or appears in the head of an asynchronous rule, then
the lemma holds by definition of Dedalus+. Assume some stable model contains f@t
and not f@t+1. Thus, if the rule is inductive (resp. deductive), then for some child of f@t,
call it g@t-1 (resp. g@t), the fact g@t (resp. g@t+1) is not in the stable model. Inductively
proceed down the tree, at each step going to a node whose relation does not appear in
the head of an asynchronous rule. However, the path will eventually terminate at a leaf
node providing a contradiction, because facts at leaf nodes are either EDB or negated
EDB, meaning that they exist at all timestamps, or they are one of time, timeSucc, or <,
which also exist at all timestamps.

J Proof of Theorem 1

Proof. Towards a proof by contradiction, consider a Dedalus+ program that induces
two ultimate modelsU1,U2 for some EDB. Without loss of generality, there must be a
spatial fact f, such that f ∈ U1 and f < U2.

Recall that if spatial fact f is in some ultimate model, then for some t0 ∈ N, there is
some stable model that contains f@t for all t ¿ t0.

Consider a derivation tree for f@t0 in any stable model that yields U1. Again, for
simplicity, we assume uniqueness of this derivation tree. For some child of f@t0, call it
g@s, for all stable models that yieldU2 there is no r such that g@r is in the stable model
by Lemma 3. Continue traversing the tree, at each step picking such a g. Eventually, the
traversal terminates at an EDB node, leading to a contradiction.

K Proof of Lemma 4

Proof. Note that by Lemma 3, I(P) is inflationary. The proof proceeds similarly to the
proof of Lemma 3—there is some fact inU1 but notU2; we consider a derivation tree
for this fact in any stable model; it must be the case that some child fact of the parent
does not appear in any stable model forU2 (by Lemma 3). We inductively repeat the
procedure, and discover that in order for the fact to be absent fromU1, the EDB must be
different, which is a contradiction.

L Proof of Theorem 2

Proof. First we apply Corollary 1 to rewrite asynchronous rules as inductive rules. Then,
we convert all inductive rules into deductive rules using Lemma 4. Since all rules are
deductive, there is a unique stable model, which is also the same for every timestamp.

Consider removing the timestamp attributes from all relations, and thus the time
relations from the bodies of all rules. The result is a Datalog program with EDB negation.
Its minimal model is exactly the ultimate model of the single-timestep Dedalus+ program.

In the other direction, it is clear that we can encode any Datalog program with
EDB negation in Dedalus+ using deductive rules; the ultimate model coincides with the
minimal model of the Datalog program.

M Proof of Lemma 5

Proof. We assume that p1 done(), ..., piq done() have the properties mentioned in the
Lemma.

Clearly, p done() has the properties mentioned in the Lemma for the deductive case.
In the asynchronous case, p done() is similarly correct; the causality constraint

implies that the timestamp on acknowledgments is later than the timestamp on the facts
they acknowledge, and thus the timestamp on each node’s r j node done fact is greater
than the timestamp on the acknowledged facts. Thus, before a node concludes p done(),
that node has all p facts.

In the asynchronous recursive case, the causality constraint ensures that every re-
sponse in the second round is received at a time greater than every response in the first
round. Thus, between at least the last response of the first round and the last response of
the second round, no node has outstanding messages and no node sends a message. This
implies that no node ever sends a message again.

