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Abstract

Middleboxes are ubiquitous in today’s networks and perform a variety of im-
portant functions, including IDS, VPN, firewalling, and WAN optimization. These
functions differ vastly in their requirements for hardware resources (e.g., CPU cy-
cles and memory bandwidth). Thus, depending on the functions they go through,
different flows can consume different amounts of a middlebox’s resources. While
there is much literature on weighted fair sharing of link bandwidth to isolate flows,
it is unclear how to schedule multiple resources in a middlebox to achieve similar
guarantees. In this paper, we analyze several natural packet scheduling algorithms
for multiple resources and show that they have undesirable properties. We pro-
pose a new algorithm, Dominant Resource Fair Queuing (DRFQ), that retains the
attractive properties that fair sharing provides for one resource. In doing so, we
generalize the concept of virtual time in classical fair queuing to multi-resource
settings. The resulting algorithm is also applicable in other contexts where several
resources need to be multiplexed in the time domain.

1 Introduction

Middleboxes today are omnipresent. Surveys show that the number of middleboxes in
companies is on par with the number of routers and switches [28]. These middleboxes
perform a variety of functions, ranging from firewalling and IDS to WAN optimization



and HTTP caching. Moreover, the boundary between routers and middleboxes is blur-
ring, with more middlebox functions being incorporated into hardware and software
routers [2, 6, 1, 27].

Given that the volume of traffic through middleboxes is increasing [20, 32] and
that middlebox processing functions are often expensive, it is important to schedule
the hardware resources in these devices to provide predictable isolation across flows.
While packet scheduling has been studied extensively in routers to allocate link band-
width [24, 11, 29], middleboxes complicate the scheduling problem because they have
multiple resources that can be congested. Different middlebox processing functions
consume vastly different amounts of these resources. For example, intrusion detec-
tion functionality is often CPU-bound [14], software routers bottleneck on memory
bandwidth when processing small packets [8], and forwarding of large packets with
little processing can bottleneck on link bandwidth. Thus, depending on the processing
needs of the flows going through it, a middlebox will need to make scheduling deci-
sions across multiple resources. This becomes more important as middlebox resource
diversity increases (e.g., GPUs [30] and specialized hardware acceleration [23, 5]).

Traditionally, for a single resource, weighted fair sharing [11] ensures that flows
are isolated from each other by making share guarantees on how much bandwidth
each flow gets [24]. Furthermore, fair sharing is strategy-proof, in that flows cannot get
better service by artificially inflating their resource consumption. Many algorithms,
such as WFQ [11], GPS [24], DRR [29], and SFQ [18], have been proposed to approx-
imate fair sharing through discrete packet scheduling decisions, but they all retain the
properties of share guarantees and strategy-proofness. We would like a multi-resource
scheduler to also provide these properties.

Share guarantees and strategy-proofness, while almost trivial for one resource, turn
out to be non-trivial for multiple resources [16]. We first analyze two natural schedul-
ing schemes and show that they lack these properties. The first scheme is to monitor
the resource usage of the system, determine which resource is currently the bottleneck,
and divide it fairly between the flows [15]. Unfortunately, this approach lacks both
desired properties. First, it is not strategy-proof; a flow can manipulate the scheduler to
get better service by artificially increasing the amount of resources its packets use. For
example, a flow can use smaller packets, which increase the CPU usage of the middle-
box, to shift the bottleneck resource from network bandwidth to CPU. We show that
this can double the manipulative flow’s throughput while hurting other flows. Second,
when multiple resources can simultaneously be bottlenecked, this solution can lead to
oscillations that substantially lower the total throughput and keep some flows below
their guaranteed share.

A second natural scheme, which can happen by default in software router designs,
is to perform fair sharing independently at each resource. For example, packets might
first be processed by the CPU, which is shared via stride scheduling [31], and then
go into an output link buffer served via fair queuing. Surprisingly, we show that even
though fair sharing for a single resource is strategy-proof, composing per-resource fair
schedulers this way is not.

Recently, a multi-resource allocation scheme that provides share guarantees and
strategy-proofness, called Dominant Resource Fairness (DRF) [16], was proposed. We
design a fair queueing algorithm for multiple resources that achieves DRF allocations.



The main challenge we address is that existing algorithms for DRF provide fair sharing
in space; given a cluster with much larger number of servers than users, they decide
how many resources each user should get on each server. In contrast, middleboxes
require sharing in time; given a small number of resources (e.g., NICs or CPUs) that can
each process only one packet at a time, the scheduler must interleave packets to achieve
the right resource shares over time. Achieving DRF allocations in time is challenging,
especially doing so in a memoryless manner, i.e., a flow should not be penalized for
having had a high resource share in the past when fewer flows were active [24]. This
memoryless property is key to guaranteeing that flows cannot be starved in a work-
conserving system.

We design a new queuing algorithm called Dominant Resource Fair Queuing (DRFQ),
which generalizes the concept of virtual time from classical fair queuing [11, 24] to
multiple resources that are consumed at different rates over time. We evaluate DRFQ
using a Click [22] implementation and simulations, and we show that it provides better
isolation and throughput than existing schemes.

To summarize, our contributions in this work are three-fold:

1. We identify the problem of multi-resource fair queueing, which is a generalization
of traditional single-resource fair queueing.

2. We provide the first analysis of two natural packet scheduling schemes—bottleneck
fairness and per-resource fairness—and show that they suffer from problems in-
cluding poor isolation, oscillations, and manipulation.

3. We propose the first multi-resource queuing algorithm that provides both share
guarantees and strategy-proofness: Dominant Resource Fair Queuing (DRFQ).
DRFQ implements DRF allocations in the time domain.

2 Motivation

Others have observed that middleboxes and software routers can bottleneck on any of
CPU, memory bandwidth, and link bandwidth, depending on the processing require-
ments of the traffic. Dreger et al. report that CPU can be a bottleneck in the Bro
intrusion detection system [14]. They demonstrated that, at times, the CPU can be
overloaded to the extent that each second of incoming traffic requires 2.5 seconds of
CPU processing. Argyraki et al. [8] found that memory bandwidth can be a bottleneck
in software routers, especially when processing small packets. Finally, link bandwidth
can clearly be a bottleneck for flows that need no processing. For example, many
middleboxes let encrypted SSL flows pass through without processing.

To confirm and quantify these observations, we measured the resource footprints
of several canonical middlebox applications implemented in Click [22]. We devel-
oped a trace generator that takes in real traces with full payloads [4] and analyzes
the resource consumption of Click modules using the Intel(R) Performance Counter
Monitor API [3]. Figure 1 shows the results for four applications. Each application’s
maximum resource consumption was normalized to 1. We see that the resource con-
sumption varies across modules: basic forwarding uses a higher relative fraction of
link bandwidth than of other resources, redundancy elimination bottlenecks on mem-



BN CPU [ Memory mEN Networkl

ININ

Basic Flow Mon. Red. Elim. IPSec
Middlebox Modules

Utilization
coooor
oNbdo®O

Figure 1: Normalized resource usage of four middlebox functions implemented in
Click: basic forwarding, flow monitoring, redundancy elimination, and IPSec encryp-
tion.

ory bandwidth, and IPSec encryption is CPU-bound.

Many middleboxes already perform different functions for different traffic (e.g.,
HTTP caching for some flows and basic forwarding for others), and future software-
defined middlebox proposals suggest consolidating more functions onto the same de-
vice [28, 27]. Moreover, further functionality is being incorporated into hardware ac-
celerators [30, 23, 5], increasing the resource diversity of middleboxes. Thus, packet
schedulers for middleboxes will need to take into account flows’ consumption across
multiple resources.

Finally, we believe multi-resource scheduling to be important in other contexts too.
One such example is multi-tenant scheduling in deep software stacks. For example, a
distributed key-value store might be layered on top of a distributed file system, which
in turn runs over the OS file system. Different layers in this stack can bottleneck on
different resources, and it is desirable to isolate the resource consumption of different
tenants’ requests. Another example is virtual machine (VM) scheduling inside a hy-
pervisor. Different VMs might consume different resources, so it is desirable to fairly
multiplex their access to physical resources.

3 Background

Designing a packet scheduler for multiple resources turns out to be non-trivial due to
several problems that do not occur with one resource [16]. In this section, we review
these problems and provide background on the allocation scheme we ultimately build
on, DRF. In addition, given that our goal is to design a packet queuing algorithm that
achieves DRF, we cover background on fair queuing.

3.1 Challenges in Multi-Resource Scheduling
Previous work on DRF identifies several problems that can occur in multi-resource
scheduling and shows that several simple scheduling schemes lack key properties [16].

Share Guarantee: The essential property of fair queuing is isolation. Fair queuing
ensures that each of n flows can get a guaranteed % fraction of a resource (e.g., link
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Figure 2: Performing fair sharing based on a single resource (NIC) fails to meet the
share guarantee. In the steady-state period from time 2—11, flow 2 only gets a third of
each resource.

bandwidth), regardless of the demand of other flows [24].! Weighted fair queuing
generalizes this concept by assigning a weight w; to each flow and guaranteeing that
flow ¢ can get at least = Wi of the sole resource, where W is the set of active flows.

jew 'll)j

We generalize this guarantee to multiple resources as follows:

Share Guarantee. A backlogged flow with weight w; should get at least 2“’71”
jew Wi
fraction of one of the resources it uses.

Surprisingly, this property is not met by some natural schedulers. As a strawman,
consider a scheduler that only performs fair queueing based on one specific resource.
This may lead to some flows receiving less than % of all resources, where n is the total
number of flows. As an example, assume that there are two resources, CPU and link
bandwidth, and that each packet first goes through a module that uses the CPU, and
thereafter is sent to the NIC. Assume we have two flows with resource profiles (2, 1)
and (1, 1); that is, packets from flow 1 each take 2 time units to be processed by the
CPU and 1 time unit to be sent on the link, while packets from flow 2 take 1 unit of
both resources. If the system implements fair queuing based on only link bandwidth,
it will alternate sending one packet from each flow, resulting in equal allocation of link
bandwidth to the flows (both flows use one time unit of link bandwidth). However,
since there is more overall demand for the CPU, the CPU will be fully utilized, while
the network link will be underutilized at times. As a result (see Figure 2), the first flow
receives % and % of the two resources, respectively. But the second flow only gets % on
both resources, violating the share guarantee.

Strategy-Proofness: The multi-resource setting is vulnerable to a new type of ma-
nipulation. Flows can manipulate the scheduler to receive better service by artificially
inflating their demand for resources they do not need.?

For example, a flow might increase the CPU time required to process it by sending
smaller packets. Depending on the scheduler, such manipulation can increase the flow’s
allocation across all resources. We later show that in several natural schedulers, greedy
flows can as much as double their share at the cost of other flows.

1By “flow.” we mean a set of packets defined by a subset of header fields. Administrators can choose
which fields to use based on organizational policies, e.g., to enforce weighted fair shares across users (based
on IP addresses) or applications (based on ports).

2Note that there are manipulations that cannot be prevented at the scheduler level, such as a user using
many different flows. Such cases must be mitigated through mechanisms orthogonal to the scheduler [10].
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Figure 3: Bottleneck fairness can be manipulated by users. In (b), flow 1 increases its
CPU usage per packet to shift the bottleneck to CPU, and thereby gets more bandwidth
too.

These types of manipulations were not possible in single-resource settings, and
therefore received no attention in past literature. It is important for multi-resource
schedulers to be resistant to them, as a system vulnerable to manipulation can incen-
tivize users to waste resources, ultimately leading to lower total goodput.

The following property discourages the above manipulations:

Strategy-proofness. A flow should not be able to finish faster by increasing the
amount of resources required to process it.

As a concrete example, consider the scheduling scheme proposed by Egi ef al. [15],
in which the middlebox determines which resource is bottlenecked and divides that
resource evenly between the flows. We refer to this approach as bottleneck fairness.
Figure 3 shows how a flow can manipulate its share by wasting resources. In (a),
there are three flows with resource profiles (10, 1), (10, 14) and (10, 14) respectively.
The bottleneck is the first resource (link bandwidth), so it is divided fairly, resulting
in each flow getting one third of it. In (b), flow 1 increases its resource profile from
(10, 1) to (10, 7). This shifts the bottleneck to the CPU, so the system starts to schedule
packets to equalize the flows’ CPU usage. However, this gives flow 1 a higher share of
bandwidth as well, up from % to almost % In similar examples with more flows, flow
1 can almost double its share.

We believe the networking domain to be particularly prone to these types of ma-
nipulations, as peer-to-peer applications already employ various techniques to increase
their resource share [26]. Such an application could, for instance, dynamically adapt
outgoing packet sizes based on throughput gain, affecting the CPU consumption of
congested middleboxes.

3.2 Dominant Resource Fairness (DRF)

The recently proposed DRF allocation policy [16] achieves both strategy-proofness and
share guarantees.

DRF was designed for the datacenter environment, which we briefly recapitulate.
In this setting, the equivalent of a flow is a job, and the equivalent of a packet is a
job’s task, executing on a single machine. DRF defines the dominant resource of a
job to be the resource that it currently has the biggest share of. For example, if a
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Figure 4: DREF allocation for jobs with resource profiles (4,1) and (1, 3) in a system
with equal amounts of both resources. Both jobs get % of their dominant resource.

job has 20 CPUs and 10 GB of memory in a cluster with 100 CPUs and 40 GB of
memory, the job’s dominant resource is memory, as it is allocated % of it (compared
to % for CPU). A job’s dominant share is simply its share of its dominant resource,
e.g., i in this example. Informally, DRF provides the allocation that “equalizes” the
dominant shares of different users. More precisely, DRF is the max-min fair allocation
of dominant shares.

Figure 4 shows an example, where two jobs run tasks with resource profiles (4 CPUs, 1 GB)
and (1 CPU, 3 GB) in a cluster with 2000 CPUs and 2000 GB of memory. In this case,
job 1’s dominant resource is CPU, and job 2’s dominant resource is memory. DRF al-
locates (1500 CPUs, 375 GB) of resources to job 1 and (500 CPUs, 1500 GB) to job 2.
This equalizes job 1’s and job 2’s dominant shares while maximizing the allocations.

We have described the DRF allocation. Ghodsi et al. [16] provide a simple algo-
rithm to achieve DRF allocations in space (i.e., given a cluster of machines, compute
which resources on which machines to assign to each user). We seek an algorithm that
achieves DRF allocations in time, multiplexing resources across incoming packets. In
Section 5, we describe this problem and provide a queuing algorithm for DRF. The
algorithm builds on concepts from fair queuing, which we review next.

3.3 Fair Queuing in Routers

Fair Queuing (FQ) aims to implement max-min fair allocation of a single resource
using a fluid-flow model, in which the link capacity is infinitesimally divided across
the backlogged flows [11, 24]. In particular, FQ schedules packets in the order in
which they would finish in the fluid-flow system.

Virtual clock [33] was one of the first schemes using a fluid-flow model. It, how-
ever, suffers from the problem that it can punish a flow that in the past got better service
when fewer flows were active. Thus, it violates the following key property:

Memoryless scheduling. A flow’s current share of resources should be indepen-
dent of its share in the past.

In the absence of this memoryless property, flows may experience starvation. For
example, with virtual clock, if one flow uses a link at full rate for one minute, and a
second flow becomes active, then only the second flow is serviced for the next minute,



until their virtual clocks equalize. Thus, the first flow starves for a minute.’

The concept of virtual time was proposed to address this pitfall [24]. Instead
of measuring real time, virtual time measures the amount of work performed by the
system. Informally, a virtual time unit is the time it takes to send one bit of a unit-
weight flow in the fluid-flow system. Thus, it takes [ virtual time units to send a packet
of length [. Thus, virtual time progresses faster than real-time when fewer flows are
active. In general, assuming a flow with weight w, it takes /w virtual time units to
send the packet in the fluid-flow system.

Virtual time turns out to be expensive to compute exactly, so a variety of algorithms
have been proposed to implement FQ efficiently by approximating it [11, 24, 18, 29, 9].
One of the main algorithmic challenges we address in our work is to extend this concept
to multiple resources that are consumed at different rates over time.

4 Analysis of Existing Policies

We initially explored two natural scheduling algorithms for middleboxes. The first
solution, called bottleneck fairness, turns out to lack both strategy-proofness and the
sharing guarantee. The second, called per-resource fairness, performs fair sharing
independently at each resource. This would happen naturally in routers that queue
packets as they pass between different resources and serve each queue via fair sharing.
We initially pursued per-resource fairness but soon discovered that it is not strategy-
proof.

4.1 Bottleneck Fairness

In early work on resource scheduling for software routers, Egi et al. [15] point out that
most of the time, only one resource is congested. They therefore suggest that the system
should dynamically determine which resource is congested and perform fair sharing on
that resource. For example, a middlebox might place new packets from each flow into
a separate queue and serve these queues based on the packets’ estimated CPU usage if
CPU is a bottleneck, their memory bandwidth usage if memory is a bottleneck, etc.

This approach has several disadvantages. First, it is not strategy-proof. As we
showed in Section 3.1, a flow can nearly double its share by artificially increasing its
resource consumption to shift the bottleneck.

Second, when neither resource is a clear bottleneck, bottleneck fairness can rapidly
oscillate, affecting the throughput of all flows and keeping some flows below their
share guarantee. This can happen readily in middleboxes where some flows require
expensive processing and some do not. For example, consider a middlebox with two
resources, CPU and link bandwidth, that applies IPsec encryption to flows within a
corporate VPN but forwards other traffic to the Internet. Suppose that an external flow
has a resource profile of (1, 6) (bottlenecking on bandwidth), while an internal flow has
(7,1). If both flows are backlogged, it is unclear which resource should be considered
the bottleneck.

3 A workaround for this problem would be for the first flow to never use more than half of the link capacity.
However, this leads to inefficient resource utilization during the first minute.
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Figure 5: Example of oscillation in bottleneck fairness. Note that flow 3 stays below 5

share of both resources.

Indeed, assume the system decides that the first resource is the bottleneck and tries
to divide it evenly between the flows. As a result, the first resource will process seven
packets of flow 1 for every single packet of flow 2. Unfortunately, this will congest the
second resource right away, since processing seven packets of flow 1 and one packet
of flow 2 will generate a higher demand for resource 2 than resource 1, i.e., 7(1,6) +
(7,1) = (14,43). Once resource 2 becomes the bottleneck, the system will try to
divide this resource equally. As a result, resource 2 will process six packets of flow 2
for each packet of flow 1, which yields an overall demand of (1, 6)+6(7, 1) = (43,12).
This will now congest resource 1, and the process will repeat.

Such oscillation is a problem for TCP traffic, where fast changes in available band-
width leads to bursts of losses and low throughput. However, bottleneck fairness also
fails to meet share guarantees for non-TCP flows. For example, if we add a third flow
with resource profile (1, 1), bottleneck fairness always keeps its share of both resources
below %, as shown in Figure 5. This is because there is no way, while scheduling based
on one resource, to increase all the flows’ share of that resource to % before the other
gets congested.

4.2 Per-Resource Fairness (PF)

A second intuitive approach is to perform fair sharing independently at each resource.
For example, suppose that incoming packets pass through two resources: a CPU, which
processes these packets and then an output link. Then one could first schedule packets
to pass through the CPU in a way that equalizes flows’ CPU shares, by performing fair
queuing based on packets’ processing times, and then place the packets into buffers in
front of the output link that get served based on fair sharing of bandwidth.

Although this approach is simple, we found that it is not strategy-proof. For ex-
ample, Figure 6(a) shows two flows with resource profiles (4,1) and (1, 2) that share
two resources. The labels of the packets show when each packet uses each resource.
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Figure 6: Example of how flows can manipulate per-resource fairness. A shaded box
shows the consumption of one packet on one resource. In (b), flow 1 increases per-
packet resource use from (4,1) to (4,2) to get a higher share of resource 1 (2 as
opposed to %).

For simplicity, we assume that the resources are perfectly divisible, so both flows can
use a resource simultaneously. Furthermore, we assume that the second resource can
start processing a packet only after the first one has finished it, and that there is only a
1-packet buffer for each flow between the resources. As shown in Figure 6(a), after the
initial start, a periodic pattern with a length of 7 time units emerges. As a result, flow
1 gets resource shares (2, 1), i.e., it gets 2 of the first resource and + of the second
3 6
)

resource. Meanwhile, flow 2 gets resource shares (;, 7

Suppose flow 1 artificially increases its resource consumption to (4,2). Then per-
resource fair queuing gives the allocation in Figure 6(b), where flow 1’s share is (%, %>

and flow 2’s share is <%, %) Flow 1 has thus increased its share of the first resource by
16%, while decreasing flow 2’s share of this resource by 22%.

This behavior surprised us, because fair queuing for a single resource is strategy-
proof. Intuitively, flow 1 “crowds out” flow 2 at the second resource, which is the
primary resource that flow 2 needs, by increasing its share, and this causes the buffer
for flow 2’s packets between the two resources to be full more of the time. This leaves
more time for flow 1 at the first resource.

We found that the amount by which flows can raise their share with per-resource
fairness is as high as 2, which provides substantial incentive for applications to ma-
nipulate the scheduler. We discuss an example in Section 8.2.1. We have also simulated
other models of per-resource fairness, including ones with bigger buffers and ones that
let multiple packets be processed in parallel (e.g., as on a multicore CPU), but found
that they give the same shares over time and can be manipulated in the same way.

Finally, from a practical viewpoint, per-resource fairness is hard to implement in
systems where there is no buffer between the resources, e.g., a system where scheduling
decisions are only taken at an input queue, or a processing function that consumes CPU
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and memory bandwidth in parallel (while executing CPU instructions). Our proposal,
DRFQ, is directly applicable in these settings.

5 Dominant Resource Fair Queuing

The goal of this section is to develop queuing mechanisms that multiplex packets to
achieve DRF allocations.

Achieving DRF allocations in middleboxes turns out to be algorithmically more
challenging than in the datacenter context. In datacenters, there are many more re-
sources (machines, CPUs, etc) than active jobs, and one can simply divide the resources
across the jobs according to their DRF allocations at a given time. In a packet system,
this is not possible because the number of packets in service at a given time is usually
much smaller than the number of backlogged flows. For example, on a communication
link, at most one packet is transmitted at a time, and on a CPU, at most one packet
is (typically) processed per core. Thus, the only way to achieve DRF allocation is to
share the resources in time instead of space, i.e., multiplex packets from different flows
to achieve the DRF allocation over a longer time interval.

This challenge should come as no surprise to networking researchers, as scheduling
a single resource (link bandwidth) in time was a research challenge receiving consider-
able attention for years. Efforts to address this challenge started with idealized models
(e.g., fluid flow [11, 24]), followed by a plethora of algorithms to accurately and effi-
ciently approximate these models [29, 18, 9].

We begin by describing a unifying model that accounts for resource consumption
across different resources.

5.1 Packet Processing Time

The mechanisms we develop generalize the fair queueing concepts of virtual start and
finish times to multiple resources, such that these times can be used to schedule packets.

To do this, we first find a metric that lets us compare virtual times across resources.
Defining the unit of virtual time as the time it takes to process one bit does not work
for all resource types. For example, the CPU does not consume the same amount of
time to process each bit; it usually takes longer to process a packet’s header than its
payload. Furthermore, packets with the same size, but belonging to different flows,
may consume different amounts of resources based on the processing functions they
go through. For example, a packet that gets handled by the IPSec encryption module
will consume more CPU time than a packet that does not.

To circumvent these challenges, we introduce the concept of packet processing
time. Denote the k:th packet of flow i as p¥. The processing time of the packet p¥
at resource j, denoted sf ;» 1s the time consumed by resource j to process packet Pk,
normalized to the resource’s processing capacity. Note that processing time is not
always equal to packet service time.* Consider a CPU with four cores, and assume it
takes a single core 10 us to process a packet. Since the CPU can process four such

4Packet service time is the interval between (1) the time the packet starts being processed and (2) the time
at which its processing ends.

11



packets in parallel, the normalized time consumed by the CPU to process the packet
(i.e., the processing time) is 2.5 us. However, the packet’s service time is 10 us. In
general, the processing time is the inverse of the throughput. In the above example, the
CPU throughput is 400, 000 packets/sec.

We define a unit of virtual time as one usec of processing time for the packet of
a flow with weight one. Thus, by definition, the processing time, and by extension,
the virtual time, do not depend on the resource type. Also, similarly to FQ, the unit of
virtual time does not depend on number of flows backlogged. Here, we assume that the
time consumed by a resource to process a packet does not depend on how many other
packets, if any, it processes in parallel.

We return to processing time estimation in §5.7 and §7.1.

5.2 Dove-Tailing vs. Memoryless Scheduling

The multi-resource scenario introduces another challenge. Specifically, there is a trade-
off between dove-tailing and memoryless scheduling, which we explain next.

Different packets from the same flow may have different processing time require-
ments, e.g., a TCP SYN packet usually requires more processing time than later pack-
ets. Consider a flow that sends a total of 10 packets, alternating in processing time
requirements (2, 1) and (1, 2), respectively. It is desirable that the system treats this
flow the same as a flow that sends 5 packets, all with processing time (3, 3). We refer
to this as the dove-tailing requirement.’

Our dove-tailing requirement is a natural extension of fair queuing for one resource.
Indeed, past research in network fair queuing attempted to normalize the processing
time of packets of different length. For example, a flow with 5 packets of length 1 KB
should be treated the same as a flow with 10 packets of length 0.5 KB.

At the same time, it is desirable for a queuing discipline to be memoryless; that is, a
flow’s current share of resources should not depend on its past share. Limiting memory
is important to prevent starving flows when new flows enter the system, as discussed in
Section 3.3.

Unfortunately, the memoryless and dove-tailing properties cannot both be fully
achieved at the same time. Dove-tailing requires that a flow’s relative overconsumption
of a resource be compensated by its past relative underconsumption of a resource, e.g.,
packets with profile (1,2) and (2, 1). Thus, it requires the scheduler to have memory
of past processing time given to a flow.

Memoryless and dove-tailing are at the extreme ends of a spectrum. We gradually
develop DRFQ, starting with a simple algorithm that is fully memoryless, but does
not provide dove-tailing. We thereafter extend that algorithm to provide full dove-
tailing but without being memoryless. Finally, we show a final extension in which the
amount of dove-tailing and memory is configurable. The latter algorithm is referred to

SDove-tailing can occur in practice in two ways. First, if there is a buffer between two resources (e.g., the
CPU and a link), this will allow packets with complementary resource demands to overlap in time. Second,
if two resources need to be consumed in parallel (e.g., CPU cycles and memory bandwidth), there can still
be dove-tailing from processing multiple packets in parallel (e.g., multiple cores can be working on packets
with complementary needs).
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as DRFQ, as the former two are special cases. Before explaining the algorithms, we
briefly review Start-time Fair Queuing (SFQ) [18], which our work builds on.

5.3 Review: Start-time Fair Queuing (SFQ)

SFQ builds on the notion of virtual time. Recall from Section 3.3 that a virtual time
unit is the time it takes to send one bit of a unit-weight flow in the fluid-flow system
that fair queuing approximates. Thus, it takes [ virtual time units to send a packet of
length [ with weight 1, or, in general, [/w units to send a packet with weight w. Note
that the virtual time to send a packet is always the same regardless of the number of
flows; thus, virtual time progresses slower in real-time when more flows are active.

Let p¥ be the k-th packet of flow i. Upon p¥’s arrival, all virtual time based sched-
ulers assign it a start and a finish time S(p¥) and F(p¥), respectively, such that

L(p?

F(pk) = sh) + T2, m
where L(p¥) is the length of packet p¥ in bits, and w; is the weight of flow i. Intuitively,
functions S and F' approximate the virtual times when the packet would have been
transmitted in the fluid flow system.

In turn, the virtual start time of the packet is:

S(pF) = max (A(pf), F(pi™")) . )

where A(pF) is the virtual arrival time of p¥. In particular, let a¥ be the (real) arrival
time of packet p¥. Then, the A(pF) is simply the virtual time at real time a¥, i.e.,
V(ak).

Fair queueing algorithms usually differ in (1) how V' (¢) (virtual time) is computed
and (2) which packet gets scheduled next.

While there are many possibilities for both choices, SFQ proceeds by (1) assigning
each packet a virtual time equal to the start time of the packet currently in service
(that is, V/(t) is the start time of the packet in service at real time ¢) and (2) always
scheduling the packet with the lowest virtual start time. We discuss why these choices
are attractive in middleboxes in Section 5.7.

5.4 Memoryless DRFQ

In many workloads, packets within the same flow have similar resource requirements.
For such workloads, a memoryless DRFQ scheduler closely approximates DRF allo-
cations.

Assume a set of n. flows that share a set of m resources j, (1 < j < m), and assume
flow i is given weight w;, (1 <1 < n).

Throughout, we will use the notation introduced in Table 1.

Achieving a DRF allocation requires that two backlogged flows receive the same
processing time on their respective dominant resources, i.e., on the resources they re-
spectively require the most processing time on. Given our unified model of processing
time, we can achieve this by using the maximum processing time of each packet when

13



Notation | Explanation

pr k-th packet of flow i

a¥ arrival time of packet p¥

sf j processing time of pf at resource j

S(p) virtual start time of packet p in system
F(p) virtual finish time of packet p in system
V(t) system virtual time at time ¢

V(t,j) system virtual time at time ¢ at resource j
S(p,J) virtual start time of packet p at resource j
F(p,j) virtual finish time of packet p at resource j

Table 1: Main notation used in the DRFQ algorithm.

computing the packet’s virtual finish time, i.e., using max;{s};} x - for the k"™
packet of flow ¢ with weight w;.
For each packet we record its virtual start time and virtual finish time as follows:

Swi) = max(V(a)), (), 3)
Lok
P = S+ ) @

Thus, the finish time is equal to the virtual start time plus the processing time on
the dominant resource. For a non-backlogged flow, the start time is the virtual time at
the packet’s arrival. For a backlogged flow, the max operator in the equation ensures
that a packet’s virtual start time will be the virtual finish time of the previous packet in
the flow.

Finally, we have to define the virtual time function, V. Computing the virtual time
function exactly is generally expensive [29] and even more so for DRF allocations. We
therefore compute it as follows:

where P(t) are the packets currently in service at time ¢. Hence, virtual time is the
maximum start time of any packet p that is currently being serviced.

Note that in the case of a single link where there is at most one packet in service at a
time, this reduces to setting the virtual time at time ¢ to the start time of the packet being
serviced at t. This is exactly the way virtual start time is computed in SFQ. While there
are many other possible computations of the virtual time, such as the average between
the start and the finish times of the packets in service, in this paper we only consider
an SFQ-like computation. In Section 5.7 we discuss why an SFQ-like algorithm is
particularly attractive for middleboxes.

Table 2 shows two flows with process times (4, 1) and (1, 3), respectively, on all
their packets. The first flow is backlogged throughout the example, with packets ar-
riving much faster than they can be processed. The second flow is backlogged in two
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Flow 1 with processing times (4, 1)

Packet P e [ of [ o8 T ot [ [ P8 [ ol
Real arrival time | 0 1 2 3 4 5 6 7
Virt. start/finish | 0/4 | 4/8 | 8/12 | 12/16 | 16/20 | 20/24 | 24/28 | 28/32
Flow 2 with processing times (1, 3)

Packet py |y | p3 | 5 [ ps | P35 [ p§S [ b3
Real arrival time | 0 1 2 3 10 11 12 13
Virt. start/finish | 0/3 | 3/6 | 6/9 9/12 | 20/23 | 23/26 | 26/29 | 29/32

| Scheduling Order ‘

Order 1 2 3 4 5 6 7 8
Packet Py ey [l s [t [ P P
Order 9 10 11 12 13 14 15 16
Packet pi [ o8 [ oy | 05 1 o8 1 08 [ o7 [ 3

Table 2: Basic example of how memoryless DRFQ works with two flows. The first
flow is continuously backlogged. The second flow is backlogged in two bursts.

bursts (packets p3 to p3 and p3 to pl). In the time interval 0 to 3, both flows are
backlogged, so virtual start times are simply equal to the previous packet’s virtual fin-
ish time. At time 10, the second flow’s second burst starts with p%. Assume that the
middlebox is then processing p3, which has virtual start time 20. Thus, V (a3) = 20,
making the virtual start time 20, instead of the previous packet’s virtual finish time 12.
Thereafter, the inflow of packets from the two flows is again faster than the service
time, leading to start times equal to the finish time of the previous packet.

Table 3 shows why dove-tailing fails with this memoryless DRFQ algorithm. One
flow’s packets have alternating process times (1, 2) and (2, 1), while the second flow’s
packets have process times (3, 3). Both flows are continuously backlogged with higher
inrate than service rate. With perfect dove-tailing, the virtual finish time of p3 should
be the same as that of pi. Instead, flow 1’s virtual times progress faster, making it
receive poorer service.

5.5 Dove-tailing DRFQ

To provide dove-tailing, we modify the memoryless DRFQ mechanism to keep track of
the start and finish times of packets on a per-resource basis. The memoryless algorithm
scheduled the packet with the smallest start time. Since a packet will now have multiple
start times (one per resource), we need to decide which of them to use when making
scheduling decisions. Given that we want to schedule based on dominant resources,
we will schedule the packet whose maximum per-resource start time is smallest across
all flows. This is because the packet’s maximum start time is its start time on its flow’s
dominant resource. If two packet’s have the same start time, we lexicographically
compare their next largest start times.

More formally, we will compute the start and finish times of a packet at each re-
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Flow 1 alternating (1,2) and (2, 1)

Packet Py [ pi [ pi [ pf [l [P}
Real start time 0 1 2 3 4 5
Virtual start time 0 2 4 6 8 | 10
Virtual finish time | 2 4 6 8 10 | 12
| Flow 2 with processing times (3, 3) \

Packet Py [ ps | p3 [ P3| ps | P
Real start time 0 1 2 3 4 5
Virtual start time 0 3 6 9 | 12| 15
Virtual finish time | 3 6 9 |12 | 15| 18
Scheduling Order

Order 1 2 3 4 5 6
Packet Py [ 09 | ol [P | Pt | p3
Order 7 8 9 (10| 11 | 12
Packet pi [t | p3 [P0 [ P3| pB

Table 3: Why dove-tailing fails with memoryless DRFQ.

source j as:
S(pi,j) = max (V(af, i), F(pi~", 7)), (6)
k
Si s
P ) = SWii)+ 2 ™

As mentioned above, the scheduling decisions should be made based on the max-
imum start or finish times of the packets across all resources, i.e., S(p¥) and F(p¥)
where

S(pk) max{S (F. )}, (8)

F(pf) = m;xx{F(pf,j>}- )

In the rest of this section, we refer to S(p¥) and F(p¥) as simply the start and finish
times of packet p¥.

Finally, we now track virtual time per resource, i.e., V (¢, j) at time ¢ for resource
7. We compute this virtual time independently at each resource:

Table 4 shows how dove-tailing DRFQ schedules the same set of incoming packets
as the example given in Table 3. Now virtual start and finish times are provided for
both resources, Ry and Ro. When comparing the two scheduling orders it is evident
that dove-tailing DRFQ improves the service given to the first flow. For example, p3
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Flow 1 alternating (1, 2) and (2, 1)

Packet Py [ ol [ pi [Pl [Pl [P
Real start time 0 1 2 3 4 5
Virtual start time R; 0 1 3 4 6 7
Virtual finish time Ry | 1 3 4 6 7 9
Virtual start time Ry 0 2 3 5 6 8
Virtual finish time Ry | 2 3 5 6 8 9

] Flow 2 with processing times (3, 3) \

Packet Py [ py [ 3| ps | ps | p3
Real start time 0 1 2 3 4 5
Virtual start time R4 0 3 6 9 | 12 | 15
Virtual finish time R, | 3 6 9 |12 | 15| 18
Virtual start time Ry 0 3 6 9 | 12 | 15
Virtual finish time Ry | 3 6 9 [ 12 | 15| 18
Scheduling Order

Order 1 2 (31415 6
Packet Py [ 0% et [ v [ P ] Pl
Order 7 8 9 [ 10 | 11 | 12
Packet AN A AR

Table 4: How dove-tailing DRFQ satisfies dove-tailing.

is now scheduled before p3, rather than after as with memory-less DRFQ. Though real
processing time and virtual start times are different, the virtual finish times clearly show
that two packets of flow 1 “virtually” finish for every packet of flow 2. As start times
are based on finish times of the previous packet, the schedule will reflect this ordering.

Table 5 shows how dove-tailing DRFQ is not memoryless. Flow 1 initially has
processing time (2, 1) for packets p{ through p?. But packets p$ through p? instead
have processing time (0.2,1). Flow 2’s packets all have processing time (2,1). As
can be seen, once flow 1’s processing time switches, it gets scheduled twice in a row
(p} and p?). This example can in be extended to have an arbitrary number of flow 1’s
packets scheduled consecutively, increasing flow 2’s delay arbitrarily.

5.6 A-Bounded DRFQ

We have explored two algorithms that trade off sharply between memoryless schedul-
ing and dove-tailing. We now provide an algorithm whose degree of memory and
dove-tailing can be controlled through a parameter A.

Such customization is important because in practice it is not desirable to provide
unlimited dove-tailing. If a flow alternates sending packets with processing times (1, 2)
and (2, 1), then the system can buffer packets and multiplex resources so that in real
time, a pair of such packets take time equivalent to a (3, 3) packet. Contrast this with
the flow first sending a long burst of 1000 packets with processing time (1,2) and
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Flow 1 p{—p? require (2, 1), and p—p? require (0.2, 1) |

Packet P [l [ [Pl [ ol [ P
Real start time 0 1 2 3 4 5
Virtual start time 124 0 2 4 6 62 | 64
Virtual finishtime R, | 2 | 4 | 6 | 62 | 6.4 | 6.6
Virtual start time Ro 0 1 2 3 4 5
Virtual finish time Ry | 1 2 3 4 5 6
| Flow 2 with processing times (2, 1) \

Packet PY [ p | pa | P3| P | P
Real start time 0 1 2 3 4 5
Virtual start time Ry 0 2 4 6 8 10
Virtual finishtime R,y | 2 | 4 | 6 8 10 | 12
Virtual start time Ry 0 1 2 3 4 5
Virtual finish time Ry | 1 2 3 4 5 6
Scheduling Order

Order 1 2 3 4 5 6
Packet P03 ol [ P2 [ p7 | P
Order 718|910 11 | 12
Packet pi [ o3 ol [P0 [ P3| $B

Table 5: Example of dove-tailing DRF not being memoryless. As of packet p3, flow
1’s processing time switches from (2, 1) to (0.1, 1).

thereafter a long burst of 1000 packets with processing time (2, 1). After the first burst,
the system is completely done processing most of those packets, and the fact that the
processing times of the two bursts dove-tail does not yield any time savings. Hence,
it is desirable to bound the dove-tailing to match the length of buffers and have the
system be memoryless beyond that limit.

A-Bounded DRFQ is similar to dove-tailing DRFQ (§5.5), except that the virtual
start and finish are computed differently. We replace the virtual start time, Eq. (6),
with:

Sf,j) = max(V(af,j),Bi(p}™",))) (11)

Bulpd) = max (Fp.d)max{Fp.5)) - A 1)
Thus, the start time of a packet on each resource can never differ by more than
A from the maximum finish time of its flow’s previous packet on any resource. This

allows each flow to “save” up to A processing time for dove-tailing.
We similarly update the virtual time function (Eq. 10) to achieve the same bounding
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effect:

Balpd) = max (S(0.9) max(S(.5)) - A) (14)
J'#J

Dove-tailing DRFQ (§5.5) and memoryless DRFQ (§5.4) are thus special cases of
A-bounded DRFQ. In particular, when A = oo, the functions By and Bs reduce to
functions F' and S as in the previous section, and A-bounded DRFQ becomes equiva-
lent to dove-tailing DRFQ. Similarly, if A = 0, then B; and Bs reduce to the maximum
per-resource start and finish time of the flow’s previous packet, respectively. Thus, A—
bounded DRFQ becomes memoryless DRFQ. For these reasons, we simply refer to
A-bounded DRFQ as DRFQ in the rest of the paper.

5.7 Discussion

The main reason we chose an SFQ-like algorithm to approximate DRFQ is that SFQ
does not need to know the processing times of the packets before scheduling them.
This is desirable in middleboxes because the CPU and memory bandwidth costs of
processing a packet may not be known until after it has passed through the system. For
example, different packets may pass through different processing modules (e.g., HTTP
caching) based on their contents.

Like SFQ, DRFQ schedules packets based on their virtual start times. As shown
in Eq. (13), the virtual start time of packet p* depends only on the start times of the
packets in service and on the finish time of the previous packet, F’ (pffl). This allows
us to delay computing S(p¥) until just after pffl has finished, at which point we can
use the measured values of packet pf‘l ’s processing times, sf’;l, to compute its virtual
finish time.

Although the use of a SFQ-like algorithm allows us to defer computing the process-
ing time of each packet until after it has been processed (e.g., after we have seen which
middlebox modules it went through), there is still a question of how to measure the con-
sumption. Unfortunately, measuring the exact CPU and memory consumption of each
packet (e.g., using CPU counters [3]) is expensive. However, in our implementation,
we found that we could estimate consumption quite accurately based on the packet size
and the set of modules it flowed through. Indeed, linear models fit the resource con-
sumption with R? > 0.97 for many processing functions. In addition, DRFQ is robust
to misestimation—that is, flows’ shares might differ from the true DRF allocation, but
each flow will still get a reasonable share as long as the estimates are not far off. We
discuss these issues further in Section 7.1.

6 DRFQ Properties

In this section, we discuss two key properties of A-bounded DRFQ. Lemma 6.1 bounds
the unfairness between two backlogged flows over a given time interval. This bound is
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independent of the length of the interval. Lemma 6.2 bounds the delay of a packet that
arrives when the flow is idle. These properties parallel the corresponding properties in
SFQ [18].

A flow is called dominant-resource monotonic if, during any of its backlogged
periods, its dominant resource does not change. A flow in which all packets have
the same dominant resource is trivially a dominant-resource monotonic flow. In this
section, s, denotes max Sy

Consider a dominant-resource monotonic flow 7, and let » be the dominant share of
i. Then the virtual start times of i’s packets at resource r do not depend on A. This
follows trivially from Eq. (11), as B1(p;,r) is equal to F'(p;, j) for any packet p; of i.
For this reason, the bound in the next lemma does not depend on A.

Theorem 6.1 Consider two dominant-resource monotonic flows i and j, both back-
logged during the interval [t1,t2). Let Wi(t1,t2) and W;(t1,t2) be the total process-
ing times consumed by flows i and j, respectively, on their dominant resource during
interval [t1,ts). Then, we have

i) 0
Wi(t1,t Wity t St Sid.
( 1 2) . g( 1 2) < ,di + ],d,7 (15)
Ww; w; w; w;

where sg 4. Tepresents the maximum processing time of a packet of flow q on its domi-
sQq
nant resource dg.

A proof similar to the one provided by SFQ [18] works. Here, we provide a shorter
and more intuitive proof sketch.

Proof Sketch Assume parallel consumption of resources. Let vy = V(¢1,d;) and
vy = V(t2,d;) and consider a flow 4, with dominant resource d;, that is backlogged
in that entire interval of time. We initially assume that vy — v; > slT_ d; /w;, such that
i can at least have one packet with start time inside the interval. We establish a lower
bound and thereafter an upper bound on the amount of processing time ¢ receives in
the interval. The maximum discrepancy between these two is then used to establish the
theorem.

Consider the following lower bound on the amount of processing time flow ¢ re-
ceives in the interval [t1,t2] on its dominant resource d;. The key insight is that the
amount of processing time that flow 7 receives on its dominant resource is at least
vy — S(pk, d;), where packet p? is i’s first packet served in the interval [ty ¢5]. This is
because, by definition of V, virtual time can only progress to a greater value v, when
all packets with maximum starting time less than v, have been served. Since ¢ is back-
logged, the start times of each of ¢’s packets, after the k:th, is equal to the finish time of
the previous packet. Thus, it receives processing time on its dominant resource equal
to E;”: % 51.4,» Where p" is the last packet in the window, i.e., S(p}", d;) € [v1,v2] and
F(p,d;) > vy. Thus, S(pF,d;) determines the total processing time received on d;
in the interval. Flow ¢’s previous packet pffl must have a start time less than v;. As ¢

T

+
Si,d;

w;

is backlogged, S(p¥,d;) < vy + “Ldi Thus, i will at least receive (vg —v1) —

w;

processing time on d; in the interval Itl, ta).
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Consider an upper bound on the amount of processing i receives on d; in [tq, t2].
The processing time is maximized when the first packet k starts at S(p¥,d;) = v; and
the last packet p!™ starts at the end of the interval, i.e., S(pl*,d;) = va. Since, pI™’s

processing time on d; is at most sj 4,» it can receive processing time in the virtual time
T
; S(p*,di) Si,d;
interval [v, vp + =55] o
on dz‘ m [tl, tg].
The maximum discrepancy of processing times received by two backlogged flows ¢
wparrow
. . . . . . . Sid;
and j on their respective dominant resource in the interval [¢1, to] is therefore %Jr
T

S i . .
% which proves the theorem for the special case.
J

. Thus, i receives at most (vy — v1) + processing time

w
Consider the case when vy —v; < s;dq Jwy, for any flow g € {7, j}. Then ¢ might
not get any service in [t1, t2]. The upper bound is that ¢ has one packet that happens
st
to have start time in the interval. Thus, the maximum discrepancy is n}{ax} {qu },
St
which proves the theorem for this case as well.

The next result does not assume that flows are dominant-resource monotonic but
assumes that each packet has a non-zero demand for every resource.

Theorem 6.2 Assume packet pf of flow © arrives at time t, and assume flow 1 is idle
at time t. Assume all packets have non-zero demand on every resource. Let n be the
total number of flows in the system. Then the maximum delay to start serving packet
p¥, D(pF), is bounded above by

n

k
D(pf) <max | Y s, |, (16)
J=1.#i
where ! represents the maximum processing time of a packet of flow j on its domi-

J,d;
nant resource d;.

Proof Sketch If no packet is being processed at time ¢, p¥ will immediately be pro-
cessed and the theorem trivially holds. Thus, assume a packet is currently being pro-
cessed with maximum start time v; = max, v(¢,r). Since i is assumed to not be
backlogged, we have S(p¥) = v;. Since processing happens with increasing start tags,
all backlogged packets p must have max, S(p,r) > v;. Since each flow has strictly
non-zero processing time on each resource, at most one packet from each flow can have
starting time v;. Thus, at most n — 1 packets can have a starting time equal to that of
p¥. Assuming parallel computation, each such packet of flow j requires s;,. processing
time on resource r. Consequently, total delay is no greater the resource that finishes
last when processing all those n — 1 packets. U

7 Implementation

We prototyped DRFQ in the Click modular router [22]. Our implementation adds a new
DRFQ-Queue module to Click, consisting of roughly 600 lines of code. This module
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Module R? for CPU | R? for Memory
Basic Forwarding 0.921 0.994
Redundancy Elim. 0.997 0.978
IPSec Encryption 0.996 0.985
Stat. Monitoring 0.843 0.992

Table 6: R? values for fitting a linear model to estimate the CPU and memory band-
width use of various modules.

takes as input a class specification file identifying the types of traffic that the middle-
box processes (based on port numbers and IP prefixes) and a model for estimating the
packet processing times for each middlebox function. We use a model to estimate the
packets’ processing times because measuring the exact CPU and memory usage of a
single packet is expensive.

The main difference from a traditional Queue is that DRFQ-Queue maintains a
per-flow buffer with a fixed capacity Cap per-flow and also tracks the last virtual com-
pletion time for each flow. As each packet arrives, it is assigned a virtual start time and
is added to the buffer corresponding to its flow. If the specific buffer is full, the packet
is dropped, but the virtual completion time for the flow is not incremented. On every
call to dequeue a packet, DRFQ-Queue looks at the head of each per-flow queue and
returns the packet with the lowest virtual start time.

To decide when to dequeue packets to downstream modules, we use a separate to-
ken bucket for each resource; this ensures that we do not oversaturate any particular
resource. On each dequeue, we pull out a number of tokens from each resource cor-
responding to the packet’s estimated processing time on that resource. In addition, we
periodically check the true utilization rate of each resource, and we scale down the rate
at which we dequeue packets if we find that we have been estimating processing times
incorrectly. This ensures that we do not overload the hardware.

7.1 Estimating Packets’ Resource Usage

To implement any multi-resource scheduler, one needs to know the consumption of
each packet for each resource. This was simple when the only resource scheduled
was link bandwidth, because the size of each packet is known. Consumption of other
resources, such as CPU and memory bandwidth, is harder to capture at a fine gran-
ularity. Although CPU counters [3] can provide this data, querying the counters for
each packet adds overhead. Fortunately, it is possible to estimate the consumption ac-
curately. We used a two-step approach similar to the one taken in [15]: (i) Determine
which modules each packet passed through. Fortunately, with DRFQ it is necessary to
know this only after the packet has been processed (c.f., §5.7), (ii) Use a model of each
module’s resource consumption as a function of packet size to estimate the packet’s
consumption.

For the second step, we show that modules’ resource consumption can be estimated
accurately using a simple linear model based on packet size. Specifically, for a given
module m and resource r, we find parameters o, , and 3, , such that the resource
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Figure 7: Per-packet CPU and memory b/w consumption of the redundancy elimina-
tion. Results are averaged over five runs that measure the consumption of processing
10,000 packets each. Error bars show max and min values. As seen, for both memory
and CPU, linear models fit well with R? > 0.97.

consumption of a packet of size x is oy, & + Bm,». We have fit such linear models
to four Click modules and show that they predict consumption well, fitting with R? >
0.97 in most cases. For example, Figure 7 shows the CPU and memory bandwidth
consumption of a redundancy elimination module. We list the R? values for other
modules in Table 6. The only cases where R? is lower than 0.97 are for the CPU
consumptions of basic forwarding and statistical monitoring, which are nearly constant
but have jumps at certain packet sizes, as shown in Figure 8. We believe this to be due
to CPU caching effects.

Further refinements can be made based on the function of the module. For example,
if a module takes more time to process the first few packets of a flow (for some one-time
work), one can use a separate linear model for them.
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Figure 8: CPU usage vs. packet size for basic forwarding and statistical monitoring.
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Finally, if the estimation is wrong, DRFQ will still run, but flows’ shares may be off
by the ratio to which processing times have been misestimated. One can also imagine
dynamically recomputing each flow’s usage, but we chose not to explore estimation
further in this paper as it is orthogonal to our main focus of defining a suitable allocation
policy.

8 Evaluation

We evaluated DRFQ using both our Click implementation and packet-level simula-
tions. We use Click to show the basic functioning of the algorithm and simulations to
compare it in more detail against other schedulers. Our workload is mostly dominant-
resource monotonic, so we used the A = 0 configuration by default, unless otherwise
stated.

8.1 Implementation Results

We ran a Click-based multi-function middlebox in usermode on an Intel(R) Xeon(R)
CPU 2.8GHz X5560 machine with a 1Gbps Ethernet link. We connected this machine
to a traffic generator that uses Click to send packets from multiple flows. We configured
the middlebox to apply three different processing functions to these flows based on their
port number: basic forwarding, per-flow statistical monitoring, and IPSec encryption.
Because our machine only had one 1 Gbps link, we throttled its outgoing bandwidth to
200 Mbps to emulate a congested link, and throttled the fraction of CPU time that the
DRFQ module is allowed to use for processing to 20% so that the CPU can also be a
bottleneck at this rate.

8.1.1 Dynamic Allocation

We begin by generating three flows that each send 25,000 1300-byte UDP packets per
second to exceed the total outgoing bandwidth capacity. We configured the flows such
that: (i) Flow 1 only undergoes basic forwarding, which is link bandwidth bound, (ii)
Flow 2 undergoes IPSec, which is CPU-bound, (iii) Flow 3 requires statistical moni-
toring, which is bandwidth-bound but uses slightly more CPU than basic forwarding.

Figure 9 shows the resource shares of the flows over time (measured using timing
instrumentation we added in Click), as we start and end them at different points. We see
that Flow 1 initially has a complete share of the network, but only 20% of the CPU since
it only requires lightweight processing. When Flow 2 arrives, Flow 1’s CPU and net-
work share expectedly decreases. Note, however that Flow 1’s network share is more
than 2 x higher that Flow 2 because Flow 2 has a different dominant resource, namely
CPU. Also, the two flows’ resource demands dovetail, and their dominant shares are
equalized. Finally when Flow 3 arrives, we observe that the network shares of Flow
1 and Flow 3 are equalized (as the dominant resource is link bandwidth for both), and
Flow 2’s share decreases further to equalize the dominant shares.

24



Yo 5 10 15 20 25 30

Time (s)
o T T
5 — Flow 1 -- Flow2 - Flow 3
®10
Vo.gt .
<
_-*é 0.6 R
_g 0.4f y ! |

L T TS : ;T T 1 i
E“ 0.2 ll x _______ 1
0'00 5 10 15 20 25 30

Time (s)
g T— Flow1 -- Flow2 - Flow 3]
© 1.0
<
Y_J’ 0.8} I 1
% 0.6 1 'I g
E 0.4} . ! .
o 0.2 : : » I| |
o 0.0 ! B I - ! ! '

0 5 10 15 20 25 30
Time (s)

Figure 9: Shares of three competing flows arriving at Click at different times. Flow 1,
2, and 3 respectively undergo basic forwarding, IPSec, and statistical monitoring.

8.1.2 Isolation of Small Flows

Next, we extend the above setup to analyze the impact of DRFQ on short flows. As
before, Flow 1 and Flow 2 require basic and IPSec processing respectively, and they
are set to send 40,000 packets/second each to exceed the outgoing bandwidth. We then
add two new flows, Flow 3 and Flow 4, both using only basic processing, but sending
packets at a much lower rate of 1 packet/second and 0.5 packets/second, respectively.
Ideally, we want these low-rate flows to have no backlog and not be impacted by the
larger queues from the high-rate flows. Figure 10 confirms that this happens in practice,
showing the steady-state latency of the four flows: both low-rate flows see more than
an order of magnitude lower per-packet latency than the larger ones. We also notice
that the high-rate IPSec flow has a higher latency than the high-rate basic flow because
it has a smaller bandwidth share but the same queue size.

8.1.3 Comparison with Per-Resource Fairness

We also implemented per-resource fairness [15] in Click to test whether the oscillations
that occur when two resources are in demand affect performance. For these experi-
ments, we used TCP flows, and added 20 ms of network latency to get realistic behavior
for wide-area flows. We made per-resource fairness check for a new bottleneck every
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Figure 10: Latencies of DRFQ scheduling in Click when two bottlenecked flows (send-
ing 40,000 packets/s each) and two low-rate flows (sending 0.5-1 packets/s) compete.

Scenario Flow 1 (BW-bound) | Flow 2 (CPU-bound)
Running alone 191 Mbps 33 Mbps
Per-res. fairness 75 Mbps 32 Mbps
DRFQ 160 Mbps 28 Mbps

Table 7: Throughput of bandwidth and CPU intensive flows alone and under per-
resource fairness and DRFQ.

300 ms. We ran two TCP flows for 30 seconds each: one that only undergoes basic
processing, and one that undergoes CPU-intensive redundancy elimination as well.

Table 7 shows the throughputs of both flows running separately (one at a time), to-
gether under per-resource fairness, and together under DRFQ. With per-resource fair-
ness, the oscillations in available bandwidth for flow 2 cause it to lose packets, back off,
and get less than half the share it had running alone (i.e., less than its share guarantee).
This does not happen for the second flow because its rate is smaller so its queue in the
middlebox does not overflow. In contrast, however, DRFQ provides a high through-
put for both flows, letting both use about 83% of the bandwidth it would have alone
because their demands dove-tail.

8.2 Simulation Results

We compare DRFQ with the alternative solutions using per-packet simulations. The
results are based on a discrete-event simulator that assumes resources are being used
serially. It implements different queuing principles, including DRFQ, by looking at an
input queue of packets and selecting which flow’s packet should get processed next.
It uses Poisson arrivals and normally distributed resource consumption. The packet
processing times have means according to each flow’s provided resource profile and
standard deviation set to a tenth of the mean.

26



1.0y
€ % @@ Flow1<0.1, 1>
850.5 @ Flow2 <1,1> |]
0.0!
oy 1.0
§§ 0.5
0.0}
~ o 10
g% 0.5
005 20000 40000 60000 80000 100000

Time

Figure 11: Fair queuing applied to only the first resource violates the share guarantee
for flow 2.

8.2.1 Comparison With Alternative Schedulers

Single-resource Fair Queuing: The first approach we test applies fair queuing on just
one resource (e.g., link bandwidth). This is the allocation that would result if traditional
weighted fair queuing were used, ignoring the multi-resource consumption of packets.
Figure 11 shows the simulation of a scenario in which one flow uses an equal amount
of two resources, i.e., (1, 1). Another flow, with profile (0.1, 1), starts and ends at times
15,000 and 85,000, respectively. Fair queuing is only applied to the first resource. We
see that the share guarantee is violated; the (1, 1) flow gets only 10% of each resource
when the other flow is active.

Bottleneck Fairness: To investigate how Bottleneck Fairness behaves when multiple
resources are bottlenecked, we let one flow use equal amounts of two resources, (1, 1).
Then we let two flows have resource profiles (1, 0.1) and (0.1, 1). Bottleneck queuing
was configured to dynamically switch to the current bottleneck (every 20,000 time
units). As can be seen in Figure 12, oscillations occur when the bottleneck shifts (c.f.,
§4.1). As a result, the first flow only gets 10% of either resource, far less than its ideal
share guarantee of 3.

Per-Resource Fairness: Figure 13 investigates how a flow can manipulate per-resource
fair queuing by changing its demands (e.g., by changing packet sizes) to receive bet-
ter service. It simulates a scenario with ten flows. The first flow has resource profile
(20, 1), whereas the last nine have (10,11). At time 25,000 the first flow artificially
changes its demand to roughly (20, 11), leading it to double its share under per-resource
fair queuing. Meanwhile, the same change under DRFQ has no effect on the shares.

8.2.2 Isolation Under DRFQ

Next, we investigate packet delays under DRFQ. Figure 14 shows two different flows.
The first is constantly backlogged to the level that it overflows all buffers and suffers
from packet drops. The second flow periodically sends single packets, spread far apart
in time. For both flows we measure the queuing delay for every packet and plot the
mean and standard deviation. The x-axis shows the same simulation for various buffer
sizes. As the buffer size is increased, the delay on the backlogged flow increases, as
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Figure 12: Bottleneck Queuing [15] leading to heavy oscillations, which in turn almost
starve a third flow.
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Figure 13: A flow manipulating PF to double its share.

the incoming rate of packets is much higher than what the system can handle. The
periodic flow, however, is unaffected by the backlogged flow and receives constant
delay, irrespective of the buffer length.

8.3 Overhead

To evaluate the overhead of our Click implementation of DRFQ, we used the aforemen-
tioned trace generator to create a synthetic 350 MB workload from actual traces [4]. We
ran the workload through two applications: flow monitor and intrusion detection sys-
tem (IDS). For each application, we measured the overhead with and without DRFQ.
For flow monitor the overhead was 4%, whereas for IDS it was 2%. While this is
already low, we believe the overhead can be further reduced. First, DRFQ requires per-
flow queues that are currently implemented in software. Many software routers and
middleboxes already have support for in-hardware queues. Second, the overhead can
be reduced using fair queueing per-class or per-aggregate basis, rather than per-flow
basis.
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Figure 14: Per-packet delay of a backlogged flow compared to a periodic single-packet
flow under DRFQ.

9 Related Work

Our work builds on WFQ [11, 24] as it, in similarity with many GPS approxima-
tions [18, 9, 17], uses the notion of virtual time. In particular, we approximate vir-
tual time using start times as in SFQ [18], as it helps us avoid knowing in advance
what middlebox modules a packet will traverse. As our evaluation shows, naively per-
forming fair queuing on a single resource provides poor isolation for flows, violating
the share-guarantee. Our attempt to extend WFQ by doing per-resource fair queuing
(§4.2) turned out to violate strategy-proofness. Thus, DRFQ generalizes WFQ to mul-
tiple resources while providing isolation and strategy-proofness.

In the context of middleboxes, Egi et al. [15] proposed bottleneck fairness for soft-
ware routers. We share their motivation for multi-resource fairness. However, we
showed (§4.1) that their mechanism can not only provide poor isolation, but it can lead
to heavy oscillations that severely degrade system performance. Dreger et al. [13] sug-
gest measuring resource consumption of modules in NIDS and shutting off modules
that overconsume resources. This approach is infeasible as some modules must run
at all times, e.g., a VPN module. Moreover, shutting down modules does not provide
isolation between flows. With our approach, the flows that overconsume resources will
fill buffers, eventually leading to modules not processing them, but each flow is sure to
at least get its share guarantee of service.

In the context of active networks, Alexander et al. [7] propose a scheduling archi-
tecture called RCANE. This approach is akin to Per-Resource Fairness and therefore
violates strategy-proofness.

Multi-resource fairness has been investigated in the context of micro-economic the-
ory. Ghodsi et al. [16] provide an overview and compare with the method preferred by
economists, Competitive Equilibrium from Equal Incomes (CEEI). They show that
CEEI is not strategy-proof and has several other undesirable properties. Dolev et
al. [12] proposed an alternative to DRE. It too fails to be strategy-proof, and is also
computationally expensive to compute.

Our focus in this paper has been on achieving DRF allocations in the time domain.
Others have analyzed how DRF allocations can be computed [19] and extended [21,
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25].

10 Conclusion

Middleboxes apply complex processing functions to an increasing volume of traffic.
Their performance characteristics are different from traditional routers; different pro-
cessing functions have different demands across multiple resources, including CPU,
memory bandwidth, and link bandwidth. Traditional single resource fair queuing
schedulers therefore provide poor isolation guarantees between flows. Worse, in sys-
tems with multiple resources, flows can shift their demand to manipulate schedulers to
get better service, thereby wasting resources. We have analyzed two schemes that are
natural in the middlebox setting—bottleneck fairness and per-resource fairness—and
shown that they have undesirable properties. In light of this, we have designed a new
algorithm, DRFQ, for multi-resource fair queueing. We show through a Click imple-
mentation and extensive simulations that, unlike other approaches, our solution does
not suffer from oscillations, provides flow isolation, and is strategy-proof. For future
research directions, we believe DRFQ is applicable in many other multi-resource fair
queueing contexts, such as VM scheduling in hypervisors.
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