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Abstract

Recent advances in sequencing technologies have made available an ever-increasing

amount of ancient genomic data. In particular, it is now possible to target specific single

nucleotide polymorphisms in several samples at different time points. Such time series

data is also available in the context of experimental or viral evolution. Time-series data

should allow for a more precise inference of population genetic parameters, and to test

hypotheses about the recent action of natural selection. In this manuscript, we develop

a likelihood method to jointly estimate the selection coefficient and the age of an allele

from time serial data. Our method can be used for allele frequencies sampled from a

single diallelic locus. The transition probabilities are calculated by approximating the

standard diffusion equation of the Wright-Fisher model with a one step process. We

show that our method produces unbiased estimates. The power of the method is tested

via simulations. Finally, the utility of the method is illustrated with an application

to several loci encoding coat color in horses, a pattern that has previously been linked

with domestication. Importantly, given our ability to estimate the age of the allele, it

is possible to gain traction on the important problem of distinguishing selection on new

mutations from selection on standing variation. In this coat color example for instance,

we estimate the age of this allele, which is found to predate domestication.
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1 Introduction

Time series analysis is widespread in several fields, such as meteorology and economics

(e.g. Hamilton (1994)). The related statistical models deal with a time ordered sequence of

observations. Such observations are prevalent in several areas of biology as well. But until

recently, time series molecular data was only available for time spanning a few generations

in higher organisms. Therefore, in the context of population genetics, time serial data was

mostly limited to viral evolution or experimental evolution for samples taken at time intervals

of several coalescent units (e.g. Wichman et al. (2005); Bollback and Huelsenbeck (2007);

Nelson and Holmes (2007); Gresham et al. (2008)).

With recent advances in DNA sequencing and DNA preparation techniques, the study of

extinct and long dead organisms is now entering a new era. Previously limited to short seg-

ments of mitochondrial DNA, whole nuclear genomes are now available from several extinct

species, thus providing new insights into deep evolutionary history (e.g. Rasmussen et al.

(2010); Reich et al. (2010)). Moreover, it is now possible to target specific DNA regions

in ancient organisms (e.g. Lalueza-Fox et al. (2007); Ludwig et al. (2009); Rusk (2009)).

Therefore, time serial data will become increasingly available for a whole range of organisms

allowing one to test evolutionary questions using not only present day samples, but also

samples from extinct populations.

Theory to describe the temporal change in allele frequency has existed since the advent of

population genetics (e.g. Fisher (1922); Wright (1931)). Although not very common, several

statistical methods and estimators to deal with time serial data have been developed and

applied to estimate the change in population size have been published (e.g. Waples (1989);

Williamson and Slatkin (1999); Anderson et al. (2000); Drummond and Rambaut (2007)).

More recently, in 2008, Bollback et al. developed a method to co-estimate the effective

population size, Ne, and the selection coefficient, s, from temporal allele frequency data.

They model the evolution of the allele frequency of a di-allelic locus with a diffusion process

that approximates a Wright-Fisher population genetic model (WF), and they assume that
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the locus is under constant natural selection acting on diploid individuals.

Our work is a natural extension to Bollback et al.’s method to allow for the estimation

of the allele age, t0, as well. The age of an allele is the time since the mutation event.

Allele age is an omnipresent parameter in population genetics and it is closely linked to the

selection coefficient (see Slatkin and Rannala (2000) for a review). Additionally, given the

recent focus and importance in distinguishing between models of selection on new versus

standing mutations - a concept which speaks to the fundamental mode and tempo of the

process of adaptation - the ability to estimate the time of a mutational event is of paramount

importance (see review of Barrett and Schluter (2008)). In contrast, Bollback et al. assume

that at the first time of sampling the population allele frequency is uniformly distributed. It

follows from this assumption that even if the allele was not sampled at the oldest sampling

time, it had to be present in the population. In this work, we would like to co-estimate s,

Ne and t0 by computing the likelihood of the data given the parameters.

In section 2.1 we explain how we approximate the WF model with a one step process.

We then discuss the numerical details of the implementation in sections 2.2 and 3.1.We show

how our method performs based on simulations in sections 2.3 and 3.2. To conclude, we

analyze a dataset of horses for the ASIP locus for samples dating from the Pleistocene up

to the present in sections 2.4 and 3.3. The work is concluded and perspectives are given in

section 4.

2 Materials and Methods

2.1 Theory

We assume that there is a single, panmictic population evolving according to a WF pop-

ulation genetic model. Under this model, the frequency of an allele A is a homogeneous

discrete-time Markov Chain. We denote the Markov Chain describing the frequency of the

allele A through time by Xt. We assume that selection is constant from the time the allele
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Figure 1: Notation used throughout the text. The chromosomes M = (n1, n2, . . . , nm) are
sampled at times T = (t1, t2, . . . , tm) and there are I = (i1, i2, . . . , im) A alleles at each
sampling time.

arose up to present. The allele under selection arises only once and there is no recurrent

mutation. In other words, the only evolutionary forces acting on that allele are genetic drift

and selection.

Selection is modeled as acting on diploid individuals. If we denote the two alleles by A

and a, we can choose the genotypic fitness to be wAA = 1 + s, wAa = 1 + sh and waa = 1

where s is the selection coefficient and h is the dominance coefficient (s > −1 and h ∈ [0, 1],

see e.g. Ewens (2004)). If Ne is the effective population size, the states of Xt are the

allelic frequencies that we can also write with respect to the population size xj = j
2Ne

for

0 ≤ j ≤ 2Ne. Therefore the state space is {0, 1
2Ne

, ..., 2Ne−1
2Ne

, 1}. We define the rescaled

selection coefficient γ = 2Nes.

We would like to compute the likelihood of the allele age t0, the rescaled selection co-

efficient γ and the effective population size Ne. To simplify the notation, let us define

θ ≡ (γ, Ne, t0) the parameters of interest. Assume that we have samples from m dis-

tinct sampling time points. We suppose that M = (n1, n2, . . . , nm) chromosomes were col-

lected, among which I = (i1, i2, . . . , im) are of the A type and that the chromosomes where

drawn at times T = (t1, t2, . . . , tm), where time is measured in generations with tk−1 < tk

(see Figure 1). Then the likelihood function of the parameters, for a given M and h, is

`(θ) = p(i1, . . . , im|θ, T ).

To compute the likelihood, we can condition and sum over all the population allelic

frequencies, xj1 , . . . , xjm , at each sampling time t1, t2, . . . , tm. We can then rewrite the
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likelihood:

`(θ) =
∑
j1

. . .
∑
jm

p(i1, . . . , im|θ, T, xj1 , xj2 , . . . , xjm)p(xj1 , xj2 . . . , xjm|θ, T ). (1)

Conditional on the population allelic frequencies, the number of A alleles ij at each sampling

time are independent of one other. The first term of the summation of equation 1 becomes

p(i1, . . . , im|θ, T, xj1 , xj2 , . . . , xjm) = p(i1|xj1) . . . p(im|xjm). (2)

In the WF model the population is large and panmictic, therefore we can assume that we

sample the chromosomes with replacement, for k ∈ {0, ..,m} and write:

p(ik|xjk) =

 nk

ik

xikjk(1− xjk)nk−ik . (3)

Since Xt is a Markov Chain, the left side of equation 1 is given by:

p(xj1 , xj2 , . . . , xjm|θ, T ) = p(xjm|xjm−1 , θ, T )p(xjm−1|xjm−2 , θ, T ) . . . p(xj1 |xj0 , θ, T ),(4)

where xj0 is the frequency of the allele when it first arose in the population, i.e. xj0 = 1
2Ne

.

We can rewrite the transition probabilities of Xt p(xjk |xjk−1
, θ, T ) = ptk−tk−1

(xjk−1
, xjk), for

a given θ and T . By substituting equation 2 and 4 into 1 we get:
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`(θ) = p(i1, . . . , im|θ, T ) =
2Ne∑
jm=0

p(im|
jm

2Ne

)
2Ne∑

jm−1=0

ptm−tm−1(
jm−1

2Ne

,
jm

2Ne

) ·

2Ne∑
jm−1=0

p(im−1|
jm−1

2Ne

)
2Ne∑

jm−2=0

ptm−1−tm−2(
jm−2

2Ne

,
jm−1

2Ne

) · · ·

p(i2|
j2

2Ne

)
2Ne∑
j1=0

pt2−t1(
j1

2Ne

,
j2

2Ne

) ·

p(i1|
j1

2Ne

)pt1−t0(
1

2Ne

,
j1

2Ne

). (5)

The solution for the transition probabilities for the non-neutral case of the WF model

is elaborate (Ewens (2004) and citations therein). But if we rescale the time by 2Ne, the

Markov Chain, Xt, can be approximated by a diffusion process (“WF diffusion process”), Yτ

(see e.g. Durrett (2008)). Time is now in units of 2Ne generations and is continuous and we

replace T by T = (τ1, . . . , τm) where τi = ti
2Ne

. The state space is also continuous with states

denoted by y ∈ [0, 1]. This holds in the limit of large Ne, where X[τ2Ne] ' Yτ . The transition

probabilities of the diffusion process are denoted p(yk|yk−1, θ, T ) = pτk−τk−1
(yk−1, yk). In this

paper we approximate the diffusion process itself by a one step process that we denote by Zτ

(see e.g. Van Kampen (1992)). A one step process is a continuous-time Markov Chain (i.e.

discrete in space and continuous in time) where jumps are only allowed between two states

that are adjacent to each other. As before, the states of the process Zτ are the population

allelic frequencies that we denote by {z0, z1, . . . , zH−1}, where H is an integer. The states

are chosen such that z0 and zH−1 are respectively the 0 and 1 allelic frequencies, and they

are absorbing states since there is no recurrent mutation. The other states are chosen such

that 0 < zk < 1 and zk−1 < zk for 0 < k < H − 1. The infinitesimal generator Q of such a

process is a tridiagonal H ×H matrix. By denoting βi (respectively δi) the rate of jumping

to the right (respectively the left) of state i, we have that:
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Q =



0 . . . 0

δ1 η1 β1 0

0
. . . . . . . . . 0

...
...

0 δk ηk βk 0

... 0
. . . . . . . . . 0

0 δH−2 ηH−2 βH−2

0 . . . 0 0



(6)

where ηk = −(βk + δk). The transition probability between two states zjk−1
and zjk of the

process is pτk−τk−1
(zjk−1

, zjk) = (exp(Q(τk+1 − τk)))jk−1,jk
. With the appropriate choice of βi

and δi (see Appendix A), one can show that for large H, Zτ ' Yτ . In particular, βi and δi

will be functions of zj, zj−1, zj+1, γ and h. Note that Yτ is a continuous variable whereas Zτ

is discrete. Therefore, choosing yk−1 = zjk−1
and yk = zjk /∈ {0, 1} we have that:

pτk−τk−1
(yk−1, yk) w

pτk−τk−1
(zjk−1

, zjk)(
zjk+1−zjk−1

2

) =
(exp(Q(τk − τk−1)))jk−1,jk(

zjk+1−zjk−1

2

) , (7)

where the denominator is necessary since Yτ has a continuous state space and Zτ has a

discrete state space. We can rewrite the likelihood described in equation 5 by replacing the

original process Xt by the one step process Zτ . We then have:
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`(θ) = p(i1, . . . , im|θ, T ) =
H−1∑
jm=0

p(im|zjm)
H−1∑

jm−1=0

pτm−τm−1(zjm−1 , zjm) ·

H−1∑
jm−1=0

p(im−1|zjm−1)
H−1∑

jm−2=0

pτm−1−τm−2(zjm−2 , zjm−1) · · ·

p(i2|zj2)
H−1∑
j1=0

pτ2−τ1(zj1 , zj2) ·

p(i1|zj1)pτ1−τ0(
1

2Ne

, zj1). (8)

where p(ik|zjk) =

 nk

ik

 zikjk(1− zjk)nk−ik from equation 3.

In the case of experimental evolution this unconditional process should be realistic since

in principle one might want to estimate the selection coefficient for any locus. We will now

consider one special case of what is presented above, motivated by ancient DNA data. We

will assume that the allele is segregating at the last sampling time (i.e., the process has not

reached states 0 or 1). This case corresponds to what we think is a realistic scenario for how

ancient DNA data would be collected, where presumably the locus of interest is polymorphic

at present. Indeed, only such loci would be selected for inference.

We can rewrite the likelihood as follows:

`C(θ) = p(i1, . . . , im|θ, T , zjm /∈ {0, 1}) =
p(i1, . . . , im, zjm /∈ {0, 1}|θ, T )∑H−2

jm=1 pτm−τ0(
1

2Ne
, zjm)

(9)

where
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p(i1, . . . , im, zjm /∈ {0, 1}|θ, T ) =
H−2∑
jm=1

p(im|zjm)
H−2∑

jm−1=1

pτm−τm−1(zjm−1 , zjm) · · ·

p(i2|zj2)
H−2∑
j1=0

pτ2−τ1(zj1 , zj2) ·

p(i1|zj1)pτ1−τ0(
1

2Ne

, zj1). (10)

We can consider the subprocess ZC
τ defined on the reduced state space {z1, . . . , zH−2} ⊂

{z0, z1 . . . zH−2, zH−1}. The infinitesimal generator qC of such a process is the matrix Q

without the first and last rows and columns, i.e.:

qC =



η1 β1 0 . . . 0

δ2 η2 β2 0

0
. . . . . . . . . 0

...

0 δk ηk βk 0

... . . . . . . . . . . . . 0

0 δH−3 ηH−3 βH−3

0 . . . 0 δH−2 ηH−2



. (11)

Denoting pCτk−τk−1
(zjk−1

, zjk) the transition probabilities of this subprocess we have that

pτk−τk−1
(zjk−1

, zjk) = pCτk−τk−1
(zjk−1

, zjk) for ∀ jk−1, jk /∈ {0, H − 1} (see appendix B for more

details).

Finally, in order to compute the likelihood of equations 8 and 9, all that remains is to

compute the matrix exponentiation eQτ and eqCτ , respectively.

11



2.2 Numerics

We evaluate numerically the matrix exponentiation. The advantage of the current approach

compared to Bollback et al.’s is that we do not need to do a numerical integration step since

the state space is already finite. The description of the matrix exponentiation is given in

appendix B.

Although asymptotically the one step process is equivalent to the WF model, since the

state space of Zτ has a finite number of states, the accuracy of the approximation will depend

on the choice of the states, or what we call from now on “the grid”. We investigate three

grids strongly inspired by Gutenkunst et al. (2009). The first one is a uniform grid with a

point added at 1
2Ne

. The second and third grid are a “quadratic grid” and an “exponential

grid”. The last two grids were chosen to be refined around the boundaries in such a way that

the distance between adjacent points changes smoothly. The details for the grids are given

in Supplementary Material B. All three grids have a point at 1
2Ne

.

Since the likelihood function is complex, we were not able to compute the maximum of

the function analytically. Therefore, in order to find the maximum, we first computed the

likelihood over a large range of parameters. We verified that there is a single maximum for

each time interval defined by adjacent sampling times, i.e., if t0 < t1, the time intervals are

(−∞, t0), (t1, t2),...,(tm−1, tm), and that the likelihood surface is smooth. We used the SciPy

(Jones et al., 2001) implementation of the Nelder-Mead simplex algorithm (Nelder and Mead

1965) to find the maximum for each time interval.

Our implementation is written in Python and C++ making use of the Numpy (Oliphant,

2006), SciPy and mpack (Nakata, 2010) libraries for computations and of the Matplotlib

library (Hunter, 2007) for plotting.

2.3 Simulations

In order to test our model, we simulate several datasets with the WF model forward in time.

Simulating with the WF model can be time consuming if the population size is large, so
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we picked a small population size (Ne = 500). But in principle the conclusions hold for

higher population size. We then infer the Maximum Likelihood Estimates (MLEs) using

our one step method. We use two different sampling schemes. The first one is similar to

the real dataset we analyze below, i.e., 6 sampling times each with 50 chromosomes. And

a second one corresponding to having twice as many sampling times with half the number

of chromosomes, i.e., 12 sampling times and 25 chromosomes. We searched for the MLEs

across a finite domain, i.e., Ne ∈ [100, 1000], t0 ∈ [−3000, 0], and γ ∈ [−200, 200]. We can

finally assess the accuracy of our estimator and compare the sampling schemes by looking

at the bias of the estimates and the root mean square error (RMSE).

2.4 Real data

In 2009, Ludwig et al. sequenced several loci encoding coat color in horses. Each locus has

been shown to be linked with a color phenotype in present day horses. In other words, the

phenotype associated with each locus is segregating in present populations. We re-analyze

in this paper one of the loci encoding for the agouti-signaling-protein (ASIP), that controls

the distribution of the black pigment (Rieder et al. (2001)). The hypothesis is that at the

beginning of domestication, some coat colors in horse were positively selected for.

The samples sequenced were obtained from Siberia, Middle and Eastern Europe, China

and the Iberian Peninsula. As in Ludwig et al. (2009) we grouped the samples into six

sampling times, t1 ' −20000, t2 ' −13100, t3 ' −3700, t4 ' −2800, t5 ' −1100 and

t6 ' −500 where the unit is years BC. We assumed that the generation time of horses is 5

years, following Ludwig et al. (2009). The wild type horses are presumed to have been of

bay color. The mutation of interest is recessive, since only horses homozygous for the ASIP

locus will be black. So, in this case h = 0.

To compute a possible range for the population sizes we use data from Cieslak et al.

(2010). They sequenced part of the control region of the mtDNA for 78 samples that are

part of Ludwig et al. (2009)’s dataset. The control region of the mtDNA is a non coding
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region. One way to compute the population size Ne is to compute the diversity π of the

samples. Then, assuming the region is neutral and ignoring hitchhiking effects due to nearby

selected sites, we use the relationship that relates the diversity of a sample to the population

size, π = 2Neµ⇒ Ne = π
2µ
, where µ is the mutation rate per base pair per generation. To get

an estimate of the mean and standard error of π of the mtDNA sample, we use the maximum

likelihood method implemented in MEGA (Tamura K et al., 2011) with default parameters.

The standard error for the diversity was computed performing 1000 bootstraps. We use

Jazin et al. (1998)’s estimate for the mutation rate (i.e., µ ∈ (3.0 · 10−6, 4.4 · 10−5)). Those

authors used human families to get direct estimates of the mutation rate for mtDNA control

region for a single generation. Although the mutation rate is an important parameter, we

do not have direct estimate in horses and we have to rely on results for other species . To

get conservative upper lower bounds for Ne we use the 95% confidence interval (CI) bounds

of the mutation rate and the diversity. If the CIs for µ and π are denoted (µlow, µup) and

(πlow, πup) respectively, we defined Nelow = πlow
2µup

and Neup = πup
2µlow

.

In order to find the MLEs we use a domain defined by Ne ∈ [200, 5000], t0 ∈ [−10000, 0],

and γ ∈ [−200, 200] for the parameters. We fix H = 400 for this computation.

For the CIs, there exist several asymptotic results that apply for maximum likelihood,

especially for a time serial Markov Chain. But here, the sample sizes are generally small,

therefore we chose to compute the CIs with a parametric bootstrap approach.

Note that several assumptions of our model are violated with this dataset, such as con-

stant population size, potentially random mating (since the samples are taken from all around

the world), but also, the MC1R locus, encoding a melanocortin receptor and related to the

black pigment production, is known to have an epistatic interaction with ASIP (Rieder et al.,

2001). Nevertheless we decided to analyze these data to be able to compare those with the

results obtained with Bollback et al.’s method on the same dataset.
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Figure 2: Likelihood for the neutral case for several values of Ne and t0. The likelihood is for
two samples taken at times −200 and 0 generations of size M = (4, 4) and with I = (1, 3)
derived alleles. On the left (right), we fix Ne (respectively t0) to several values and plot the
likelihood versus t0 (respectively Ne).

3 Results and Discussion

3.1 Numerics

In order to validate the method we compared several known analytical results for the WF

model with the one step process. For the neutral case, it is possible to compute the likelihood

since the transition probabilities are known for the diffusion process (see e.g. Ewens (2004)).

We plot the results in Figure 2 for a quadratic grid of size 100 for two samples of size

M = (4, 4) and number of A alleles I = (1, 3), sampled at times T = (−200, 0) for several

values of Ne and t0. The plots suggest that even for a grid of size 100 the one step process

is a very good approximation of the diffusion process.

We then compare the relative error between the diffusion and the one step process and

demonstrate that, when we increase the grid size the one step process converges towards

the diffusion process. The results for a particular choice of parameters is shown in Figure 3

for the three grids discussed in 3.1. First we note that the one step process does converge

as expected with increasing grid size. In this example, the convergence is faster for the
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Figure 3: Relative error (RE) for the three grids discussed in 3.1 for the likelihood of 2
samples taken at times -3000 and 0, with M = (4, 4). The parameter H describes the size of
the grid. The y-axis is in logarithmic scale. In this example, the one step process converges
towards the diffusion process faster when using the quadratic grid rather than the other two
grids.

quadratic grid. We looked at several combinations of parameters, and we observe that the

quadratic grid and the exponential grid perform better than the uniform grid in general but

that the ordering between the other two grids depends on the parameters. Indeed, if the

allele age is close to the first sampling time a grid more refined around the frequency 1
2Ne

performs better. In the applications below we will use a quadratic grid of size between 100

and 400.

3.2 Simulations

We picked a population size of Ne = 500 and set the allele age to t0 = −1400. We fix the

selection coefficient to seven potential values: γ ∈ {−10,−5, 0, 5, 10, 15, 20}.

First, we fix the sampling times to T = (−1000,−800,−600,−400,−200, 0) generations

and sample 50 chromosomes at each time point. Then we look at a scheme where the samples

are taken every 100 generations from -1100 up to 0 (i.e. 12 samples). At each sampling time
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we sample 25 chromosomes. The intent is to quantify whether it is better to sample more

chromosomes at fewer time points, or the opposite.

The boxplot results for the MLEs for these simulations are shown on Figure 4. They

are standard boxplots showing the five point summary (the minimum, the first quartile, the

median, the third quartile, and the maximum). Then we plot the bias and the RMSE on

Figure 5 for both schemes.

For the population size, the MLEs span all the potential range of Ne values, but the

bulk of the results exclude very low population sizes. This suggests nevertheless that it is

hard to estimate Ne with our method, at least with a precision higher than one order of

magnitude. Our estimator is biased upwards for both schemes but this might be explained

by the presence of outliers since the median is largely accurate. Moreover, the second scheme,

with less chromosomes and more sampling, leads to a smaller bias and a smaller RMSE for

most cases.

In contrast, the results for the selection coefficient are essentially unbiased, with a sym-

metric distribution, and the median matching the mean of the distribution. The variance

remains large and only when γ is quite high can one reject neutrality. In particular, the

higher the selection coefficient, the higher the variance. The RMSE this time is worse for

the second sampling scheme.

The results for the allele age also exhibit a large variance. The tail of the distribution is

large. This can be explained by the use of the conditional process. Indeed for weak selection,

if the number of derived alleles is high at the first sampling time the likelihood becomes

uninformative for the allele age (i.e., the likelihood is flat for older allele ages; Figure 2).

This leads to difficulties for the optimization algorithm to converge to the global maximum.

The results seem to be systematically biased upwards, although the median is accurate. For

strong selection the likelihood is more informative and the estimator is unbiased. Also, for

strong selection the scheme with more samples through time performs considerably better.

In conclusion, especially for strong selection, sampling fewer chromosomes over more
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sampling times will lead to better results.

3.3 Real data

The change in allelic frequency of this locus is shown in Figure 6. Although the frequency is

increasing in around 3,000 generations from 0 to∼0.8 between the first and the third sampling

time, suggesting positive selection, it then drops down to 0.4 in around 500 generations. It

is interesting to note that the archaeological evidence for domestication suggests a date of

3500 years BC (Outram et al., 2009), which would correspond to the third sampling time

(i.e. when the sample frequencies start decreasing).

The first step is to choose a potential range for the population size. We found π = 0.024

with a 95% CI of (0.018, 0.030). Together with the 95% CI of the mutation rate, this leads

to a range for Ne of (200, 5000). This is a small population size. It might be explained by

the fact that the horses are a domesticated species and most samples are taken after the

beginning of domestication, resulting in a small Ne. On the other hand it might be that the

mutation rate calculated for the human population for the control region is not appropriate

for horses.

We first plot the likelihood surface for 4 values of Ne on Figure 7. This will help us

confirm that we have found a global maximum. We note that the higher the population size

the higher the γ and the older the allele age that maximizes the likelihood. For example if

the population is fixed at Ne = 200 then γmax = −1.5 and tmax0 = −2567. In contrast, if we

fix Ne = 5000, then γmax = 9.1 and tmax0 = −3550. In other words, if the mutation rate is

overestimated by say an order of magnitude, our potential range for the population size will

also be much higher.

Since there is no mutant allele at the first time of sampling, the allele might have arisen

after the first sampling time. We denote “dom1” the range between (−∞,−3893] genera-

tions, and “dom2” the range (−3893,−2516]. As discussed before, the likelihood is therefore

discontinuous as a function of the allele age with discontinuities at the sampling times. It
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Figure 4: Boxplots for the MLEs of each simulation replicate, for γ ∈ {−10,−5, ..., 20}, Ne = 400
and t0 = −1400. At the top is the scheme with 6 sampling times and 50 chromosomes sampled.
At the bottom, the scheme with 12 sampling times and 25 chromosomes sampled. On each plot,
the estimates for the population size, Ne (left), the rescaled selection coefficient, γ (middle), and
the allele age, t0 (right). For all subplots the triangle represents the mean of the estimates, and
the circle the true value. The rectangles of the boxplots are for the first and third quartile and the
black line represents the median. The outliers are also indicated by crosses.
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sets of simulations also presented in Figure 4.
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M = (10, 22, 20, 20, 36, 38) and the number of derived alleles I = (0, 1, 15, 12, 15, 18). The
times have been offset so that the last sampling time is 0. Domestication is thought to have
happened around -3500 years BC which would correspond to around -600 generations on
this plot, i.e., the 3rd sampling time.

is important to look for the global maximum in dom1 and dom2 separately. Moreover, we

compute the 95% CI in dom1 and in dom2 separately. We build the confidence interval as

a union of (potentially) disconnected domains.

The values for the MLEs and 95% CI are shown in Table 1 and Table 2. The first thing

to note is that they are compatible with the results of Figure 7. The MLEs were found in

dom2 : tmle0
∼= −2577, γmle ∼= −1.3, and Nmle

e = 652.

In Figure 8 we plot the distribution for the bootstrap replicates for each parameter and

for the maximum likelihood values. The confidence interval was constructed as the 2.5th

and 97.5th percentile. We ran a total of 1400 replicates. For about 30 of those simulations,

the optimizer did not converge. Among successful runs, ∼500 did not have an MLE in dom1

or dom2 and were discarded. From the remaining, about 823 were found in dom2 and 34 in

dom1.

The MLEs and the bootstrap results have several implications. First, we do not find

evidence for positive selection as could be anticipated by the archaeological evidence for

domestication. The discrepancy between this study and Ludwig et al. (2009) is first the

method used and second the parameter range assumed. Indeed, the results in Ludwig et al.
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(2009) were obtained using Bollback et al. (2008)’s method. Since our tmle0 is in dom2, and

Bollback et al. 2008 assume that the allele was already present in the first time of sampling,

it is to be expected that our results will be very different. Moreover, the potential range for

the population size in Ludwig et al. 2009 is from 10,000 to 100,000, i.e., it does not overlap

with the range for Ne that we assume here. As noted above, if we had assumed a larger

population size, the γmle would be larger.

The distribution of each parameter from the bootstrap replicates are almost unbiased

relative to the true value (as could be expected from the results in the simulation section).

The distribution for γ is close to a normal distribution while the distribution for Ne and

t0 are not as simple. For Ne, the distribution is bimodal with a second mode at the upper

bound. This mode is a reflection of the finite domain we impose on the search for the MLE

rather than an actual mode. Similarly, for t0 there is a mode at the lower bound for dom2,

an artifact of the bounds from the sampling times.

As could be expected from the simulations above, the 95% CI for Ne suggests that with

these data we have no power to estimate Ne. Similarly, we have no power to distinguish

between negative and positive selection as γ’s CI is between −27.7 and 60.7. On the other

hand, the bootstrap replicates suggest that the allele arose in dom2. We can indeed test the

hypothesis that the allele age is not in dom2, H0 : t0 /∈ dom2 versus the hypothesis that

the allele age is in dom2, H1 : t0 ∈ dom2 . We can reject the nul hypothesis H0 with pvalue

1− 823
823+34

= 0.04.

The domain dom2 corresponds to -20,000 to -13,100 years BC. In other words, from the

data, one could have already deduced that the allele had to be present before -13,100 years

(i.e., before the presumed start of domestication). Indeed, domestication in horses is thought

to have started about 3,500 years BC (Outram et al., 2009). Our analysis shows that it is

likely to have arisen within the last 20,000 years, thus clearly indicating that it was present

as a standing variant at the time of domestication.
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dom1 dom2
local optimum local optimum

` 14.9 13.1
t0 -3893 -2577
γ -0.61 -1.3
Ne 1617 652

Table 1: Maxima for the ASIP locus sequenced in (Ludwig et al., 2009). The MLEs are on
the right most column.

95% CI
t0 (−4759,−3893]

⋃
(−3892,−2516]

γ (-27.7,60.7)
Ne (200,5000)

Table 2: CIs for the ASIP locus sequenced in (Ludwig et al., 2009). They were obtained
through parametric bootstrap, see Figure 8.
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4 Conclusion

The allele age, the strength of selection and the population size are all crucial parameters

in population genetics. Although the volume of molecular data is growing exponentially in

recent years, it often remains a challenge to estimate those key parameters.

We develop a maximum likelihood approach to estimate these parameters that deals

with a particular type of data - temporal data. Our method is based on an approximation

to the WF diffusion process, and has the advantage of being quite flexible and appropriate

for hypothesis testing. Moreover, it is fast for small γ, as one evaluation of the likelihood

function takes ∼0.1 seconds for γ . 40 on a laptop with a i5 2.53 GHz CPU, for a dataset

like the one we analyze here.

We show through simulations that for a realistic sample of realistic size, although the

variance of our estimator is quite large, our MLE is unbiased for estimating selection and is

nearly unbiased for the age of the allele and the effective population size. On the other hand,

our method is not appropriate for estimating the population size, even for simulations where

the model used to simulate the data match the method used to infer the parameters. Indeed,

for a realistic sampling scenario, the MLEs for Ne, although unbiased, can span several orders

of magnitude. This is not surprising. The effective population size is a parameter notoriously

difficult to estimate, and our method considers only a single locus.

The sampling scheme has of course an impact on the accuracy of the estimator. We

investigated two different sampling strategies and concluded that, in the cases considered, it

is better to increase the number of sampling times rather than the number of samples per

time point. It is indeed intuitive that in order to be able to estimate the allele age, for the

conditional process, it is necessary to have a sample close to the allele age. Indeed, in the

conditional process, an allele will never get fixed or lost. Thus, after several coalescent units,

the likelihood is flat.

We re-analyze a locus that was previously found to be under positive selection, ASIP,

by evaluating samples ranging from the Pleistocene to the present. In this study, we do not
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have enough power to distinguish positive from negative selection for this locus. This could

also be due to an underestimate of the effective population size, or a violation of one or more

assumptions of our null model, as discussed earlier. Although we are not able to estimate

the selection coefficient precisely, we find the age of the ASIP mutation to range between

-20000 to -13100 with an MLE at -13400 years BC, which well predates domestication.

Even though we analyze a mammalian dataset, our method can in principle be applied

to datasets obtained in experimental evolution or viral data. But, it is important to note

that our approximation to the WF model will only be valid provided that s ∼ O
(

1
Ne

)
as

for the WF diffusion process itself.

Importantly, this framework readily lends itself to being extended to multiple loci, the

topic of future investigation. This extension is anticipated to provide for greatly improved

estimation of Ne and for the inference of fluctuations in historical population size - both

issues of outstanding importance in gaining refined estimates of selection coefficients and

allele age.
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Supplementary information

A One step process, Q matrix

We denote by L the generator of the diffusion process Yτ . We have that

L =
1

2
a(y)

d2

dy2
+ b(y)

d

dy
(12)

where a(y) and b(y) are the infinitesimal variance and mean of our diffusion process. For

the WF model with additive selection (see main text) those functions are:

a(y) = y(1− y) (13)

b(y) = γy(1− y)(y + h(1− 2y)). (14)

By definition the generator can also be written as

lim
τ↓0

Ey[f(Yτ )]− f(y)

τ
= Lf(y). (15)

Ignoring the ∆τ 2 terms, we have for the infinitesimal mean:

Ey[Ys+∆τ − Ys | Ys] ∼= γYs(1− Ys)(Ys + h · (1− 2Ys))∆τ = b(Ys) ·∆τ. (16)

Similarly the infinitesimal variance is:

Ey
[
{Ys+∆t − Ys − γYs(1− Ys)(Ys + h · (1− 2Ys))}2 | Ys

] ∼= Ys(1− Ys)∆τ = a(Ys) ·∆τ. (17)

We want to choose the Markov Chain Z such that Z ' Y , in the sense that the probability

distribution governing the samples of Z is close to the probability distribution governing the
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samples of Y . To achieve that, we can match the infinitesimal mean and variance of Z and

Y (see Durrett (2008)). By definition of the generator of Zτ (see equation 6), we know the

probabilities of transition in time ∆τ . Assuming the process starts at Zs = zi:

Zs+∆τ =


zi with probability 1− (βi + δi)∆τ +O(∆τ 2)

zi+1 with probability βi∆τ +O(∆τ 2)

zi−1 with probability δi∆τ +O(∆τ 2)

(18)

We can rewrite equations 16 and 17 replacing Yτ by Zτ . We have for the infinitesimal

mean

Ezi [{Zs+∆t − zi}] ∼= zi · (1− (βi + δi)) + zi+1(βi∆τ) + zi−1(δi∆τ)− zi

= (βi(zi+1 − zi) + δi(zi − zi−1))∆τ

= b(zi) ·∆τ. (19)

And for the infinitesimal variance:

Var(Zs+∆t − zi) = Ezi
[
{Z∆t − zi}2]− Ezi [{Z∆t − zi}]2

∼= (zi+1 − zi)2 · βi∆τ + (zi−1 − zi)2 · (δ∆τ − (zi − zi)2(1− βi − δi)∆τ

= (βi(zi+1 − zi)2) + (δi(zi − zi−1)2)∆τ

= a(zi) ·∆τ. (20)

We have therefore two equations 19 and 20 with two unknowns δi and βi. Solving the

system we have:

βi =
(−1 + zi) · zi · (−1− z2

i · γ + h · (−1 + 2 · zi) · (zi − zi−1) · γ + zi · zi−1 · γ)

(zi − zi+1) · (zi−1 − zi+1)
(21)
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δi =
−((−1 + zi) · zi · (−1− z2

i · γ + h · (−1 + 2 · zi) · (zi − zi+1) · γ + zi · zi+1 · γ))

(zi − zi−1) · (zi−1 − zi+1)
(22)

Note that since we require that δi, βi > 0 ∀i, the range of the possible parameters γ depends

on the choice of the states zi−1, zi, zi+1, or on the grid. In particular if we use a uniform grid

we get: {z0, z1, ..., zH−1} = {0, 1
H−1

, ..., H−2
H−1

, 1} and βi = (−1+H−k)k(1+H2+kγ+H(−2+hγ)−h(γ+2kγ))
2(−1+H)2

and δi = (−1+H−k)k(1+H2−kγ−H(2+hγ)+h(γ+2kγ))
2(−1+H)2

. Most likely the locus of interest is either dom-

inant, co-dominant of recessive, i.e. h ∈ {0, 1
2
, 1}. In those three cases for a uniform grid

the range of γ is easy to compute. If h = 1
2
then −2(H − 1) < γ < 2(H − 1), if h = 0,

−(H − 1) < γ < (H − 1), and if h = 1, − (H−1)2

H−2
< γ < (H−1)2

H−2
. In other words, we will need

a large grid for high values of γ.

B Numerics

B.1 Matrix exponentiation

We would like to compute the matrix exponential of the matrix Q and the matrix qC for the

conditional process. We will focus on the non conditional process as the conditional process

follows easily. We use the convention of numbering the elements of a matrix starting from 0

to H − 1 for the unconditional process, and from 1 to H − 2 for the conditional process. We

seek to compute

exp(Qt),

where the H × H matrix Q is a tridiagonal matrix with all entries above and below the

diagonal strictly positive. We implement two different approaches to compute the matrix

exponentiation.

The first approach is a scaling and squaring algorithm with a Padé approximation. This

approach is described in detail in Moler and Van Loan (2003) and is implemented in SciPy.

This method works for a general matrix and takes advantage of the properties of the matrix

Q.
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The matrix Q is in general not symmetric (δi 6= βi when s 6= 0). Nevertheless all eigenvalues

are real. In particular two eigenvalues are 0 and the others are negative. Thus, when we

remove the first and last column and row, the resulting matrix is the tridiagonal matrix qC .

We can transform the matrix qC into a symmetric matrix with a similarity transformation.

More precisely, there exists a diagonal matrix

d =



d1 0 0 0

0 d2 0 0

... ... ... ...

0 0 dH−3 0

0 0 0 dH−2


(23)

such that s = d−1qCd is a symmetric matrix. The di can be defined recursively as follows

d1 = 1,d2 =
√
δ2/β1 · d1, d3 =

√
δ3/β2 · d2 , . . .. Note that the square root exists since

βi, δi > 0. The matrices qC and s have the same eigenvalues, and the eigenvalues of a

symmetric matrix are all real. In particular they are also eigenvalues of the original matrix

Q. The two remaining eigenvalues of Q are the two zero eigenvalues (this can be seen writing

the characteristic polynomials). Therefore all eigenvalues are real. We can build a matrix D

adding a first and last row and column to the matrix d:

D =



1 0 0 0 0 0

0 d1 0 0 0 0

0 0 d2 0 0 0

0 ... ... ... ... 0

0 0 0 dH−3 0 0

0 0 0 0 dH−2 0

0 0 0 0 0 1



(24)

It follows that R = D−1QD symmetries the interior part of Q (the matrix qC) and is a
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tridiagonal matrix as well. Since s = d−1qd is symmetric there exists an orthogonal matrix,

o, such that ` = oT so is diagonal. This matrix ` has the following form:

` =



λ1 0 0 0

0 λ2 0 0

... ... ... ...

0 0 λH−3 0

0 0 0 λH−2


(25)

We can construct the matrix O as the matrix D before, with o in its center and adding

first and last rows and columns with zeros everywhere but the diagonal entries (0, 0) and

(H − 1, H − 1). Then we see that T = OTRO has an inner part equal to ` the coefficients of

the first and last lines remain equal to 0, and the coefficients on the first and last columns are

non-zero. We denote T (0, j) = v0,j with j = 1, . . . , H − 2 and T (H − 1, j) = vH−1,j with j =

1, . . . , H − 2. That is

T =



0 0 0 0 0 0

v0,1 λ1 0 0 0 vH−1,1

v0,2 0 λ2 0 0 vH−1,2

v0,.. ... ... ... ... vH−1,..

v0,H−3 0 0 λH−3 0 vH−1,H−3

v0,H−2 0 0 0 λH−2 vH−1,H−2

0 0 0 0 0 0



(26)
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where the vi,j 6= 0. We can rewrite T = Λ + V where

Λ =



0 0 0 0 0 0

0 λ1 0 0 0 0

0 0 λ2 0 0 0

0 ... ... ... ... 0

0 0 0 λH−3 0 0

0 0 0 0 λH−2 0

0 0 0 0 0 0



(27)

and

V =



0 0 0 0 0 0

v0,1 0 0 0 0 vH−1,1

v0,2 0 0 0 0 vH−1,2

v0,.. ... ... ... ... vH−1,..

v0,H−3 0 0 0 0 vH−1,H−3

v0,H−2 0 0 0 0 vH−1,H−2

0 0 0 0 0 0



. (28)

We can note that V is nilpotent and that V Λ = 0. It follows that for k ≥ 1, (Λ + V )k =

Λk + Λk−1V , which we can see by induction. There is another identity that will be useful.

If we define:

Λ′ =



0 0 0 0 0

0 1/λ1 0 0 0

0 0 ... 0 0

0 0 0 1/λH−2 0

0 0 0 0 0


(29)
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where λ1, λ2... are the diagonal entries of l. We see that for k ≥ 2, Λk−1 = ΛkΛ′. Since

T = (DO)−1Q(DO)

Q = (DO)T (DO)−1

Qt = (DO)Tt(DO)−1, (30)

we have:

exp(Qt) =
∞∑
k=0

1

k!
(Qt)k =

∞∑
k=0

1

k!
((DO)Tt(DO)−1)k = DO

(
∞∑
k=0

1

k!
(Tt)k

)
(DO)−1 (31)

And then we have that

∞∑
k=0

1

k!
(Tt)k = I +

∞∑
k=1

1

k!
((Λ + V )t)k =

= I +
∞∑
k=1

1

k!
(Λt)k +

∞∑
k=1

tk

k!
(Λk−1V ) =

= exp(Λt) + tV +

(
∞∑
k=2

tk

k!
Λk−1

)
V =

= exp(Λt) + tV +

(
∞∑
k=0

tk

k!
Λk − I− Λt

)
Λ′V =

= exp(Λt) + tV + (exp(Λt)− I− Λt) Λ′V. (32)

And finally:

exp(Qt) = DO (exp(Λt) + tV + (exp(Λt)− I− Λt) Λ′V ) (DO)−1 (33)

So that, in terms of computing time, this requires us to compute o using an algorithm for

hermitian matrices, then to compute d by recursion and the rest should follow from matrix

33



multiplications. The advantage compared to the Padé approach described above is that most

of the work is done once D and O are computed (only once) and reused for all time intervals.

In practice, the condition number of the matrix o can be very high leading to instabilities

in the matrix exponentiation. Indeed the higher the condition number, the more sensitive

the matrix will be to numerical operation. The condition number of our matrix can be of

the order of 106 for large γ and is therefore ill-conditioned. Note that for the approximation

of the diffusion process to the WF model, γ has to be on the order of 1. Thus, the matrix

exponentiation becomes harder when the conditions for approximating the WF model with

the diffusion are not necessarily met.

In order to overcome this problem we implemented the matrix exponentiation in C++

using a library, mpack (Nakata, 2010), for multiple precision arithmetic. The library mpack

is a multiple precision arithmetic version of LAPACK and BLAS. Although this allows us to

exponentiate the matrix for any γ in principle, it makes the matrix exponentiation step much

slower. We therefore empirically test for which parameter range we require more precision

than the double precision of numpy or SciPy that rely on LAPACK.

To do so, for a particular matrix Q = Q(H, h, γ) we compute

test(Q) = norm
(
(D ·O) · (OTD−1)

)
− trace

(
(D ·O) · (OTD−1)

)
(34)

where norm (A) = norm ((aij)) =
∑

i,j |aij|. The value of test(Q) should be equal to 0.

We choose a threshold value ε such that if test(Q) > ε, we do not trust the default SciPy

implementation and we invoke the higher precision computation. For this paper we used

ε = 10−5.

We plot on Figure 9 the Boolean test(Q) > ε for different values of Ne and γ for h = 0.

We can see on those plots that the matrix instability does depend on γ but not on the

population size. For all the population sizes, the default implementation becomes unstable

for γ & 40.
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Figure 9: One example cartography of the parameter combination that require higher pre-
cision for ε = 10−5. We plot the result of the Boolean operation test(Q(H, h, γ,Ne) ≤ ε The
legend is True for gray and white for False. We fix H = 400 and we plot Ne versus γ.

To conclude, we use one existing method to exponentiate the matrix (Padé) and imple-

mented one more method, with the possibility of increasing the double precision. Which

method to use depends on the type of dataset and the parameter range one needs to ex-

plore. For high values of γ, if there are many time intervals, a method based on the spectral

decomposition would be faster, otherwise the Padé approximation works well.

C Choice of grids

As said in the main text, we investigated several grids inspired by Gutenkunst et al. (2009).

No matter the parameters, to compute the likelihood we need to approximate the transition

probabilities between the original frequency of the A allele, 1
2Ne

, and another frequency

between 0 and 1. Although we could extrapolate, we decided to use grids that all include

the point 1
2Ne

.

The first is a uniform grid with a point added at 1
2Ne

. We call this grid the “uniform

grid”. Then we investigate a quadratic grid and an exponential grid. The last two grids

were chosen so that, as opposed to the uniform grid, the distance between adjacent points

changes smoothly.

As before, let’s denote {z0, z1, ..., zH−1} the state space of the one step process or the grid.
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The quadratic grid is described by a cubic equation, i.e., the difference between adjacent

points is quadratic. We will assume for simplicity of notation that H is a multiple of 20 (it

is straightforward to generalize), and that G = H
10
. We set the first G + 1 points to form

a uniform grid between 0 and 2
2Ne

, so that the median of this grid is 1
2Ne

. In other words,

zj = j
NeG

for 0 ≤ j ≤ G. Now we assume first that {q0, . . . , qH−G−1} is a uniform grid

between 0 and 1. In other words, q0 = 0, qH−G−1 = 1 and qj = j
H−G−1

. The remaining

points are described by

zG+j = aq3
j + bq2

j + cqj + d (35)

where d = 2
2Ne

, c = 1
2NeG

, b = −3( 1
H−G−1

+ c+ d
H−G−1

) 1
H−G−1

, a = −2
3
b.

The exponential grid will be defined as follows. If {u0, ..., uH−1} is a uniform grid between

−1 and 1 (i.e., u0 = −1, uH−1 = 1 and uj = −1 + j 2
H−1

), then the grid is

zj =

1
1+exp(−βuj)

− 1
1+exp(β)

1
1+exp(−β)

− 1
1+exp(β)

, (36)

where β is a parameter that defines the density of the grid around the boundaries. We pick

β such as z[ H
10 ] = 1

2Ne
, with [] denoting the integer part. To do so, we solve numerically the

equation 36 for j =
[
H
10

]
.

We plot the grids of interest versus uniform grids and the spacing between each point in

Figure 10.
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grids are plotted against a uniform grid of points between 0 and 1. Right: the spacing of
adjacent points.
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