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Abstract

Experimenters often use post-stratification to adjust estimates. Post-stratification is akin
to blocking, except that the number of treated units in each strata is a random variable be-
cause stratification occurs after treatment assignment. We analyze both post-stratification and
blocking under the Neyman model and compare the efficiency of these designs. We derive
the variances for a post-stratified estimator and a simple difference-in-means estimator under
different randomization schemes. Post-stratification is nearly as efficient as blocking: the dif-
ference in their variances is on the order of 1/n2, provided treatment proportion is not too close
to 0 or 1. Post-stratification is therefore a reasonable alternative to blocking when the latter is
not feasible. However, in finite samples, post-stratification can increase variance if the number
of strata is large and the strata are poorly chosen. To examine why the estimators’ variances
are different, we extend our results by conditioning on the observed number of treated units in
each strata. Conditioning also provides more accurate variance estimates because it takes into
account how close (or far) a realized random sample is from a comparable blocked experiment.
We then show that the practical substance of our results remain under an infinite population
sampling model. Finally, we provide an analysis of an actual experiment to illustrate our ana-
lytical results.
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1 Introduction

Arguably one of the most important tools for determining the causal effect of some action is the
randomized experiment, where a researcher randomly divides units into groups and applies different
treatments to each group. For example, for testing the efficacy of a drug, researchers would give the
drug to one random portion of a patient population and compare their outcomes to a seperate, control
population that was given a placebo or alternate, baseline drug. Randomized experiments are the
“gold standard” for causal inference because, assuming proper implementation of the experiment,
if a difference in outcomes is found the only possible explanations are a significant treatment effect
or random chance. Math gives a handle on the chance, which allows for principled inference about
the treatment effect. In the most basic analysis, a simple difference in means is used to estimate
the overall sample average treatment effect (SATE), defined as the average difference in the units’
outcomes if all were treated as compared to the average outcomes if they were not. This framework
and estimator were analyzed by Neyman in 1923 (but see the English translation, Splawa-Neyman
et al. (1990)) under what is now called the Neyman model or potential outcomes framework. Under
the Neyman model, one need make almost no assumptions not guaranteed by the randomization
itself.

For an experiment each observation usually comes at a cost, however, so it is desirable to find
more informative ways than the simple difference-in-means estimator, in terms of a smaller vari-
ance, to measure treatment effect. Blocking, which is when experimenters first stratify their units
and then randomize treatment within pre-defined blocks, can greatly reduce variance compared to
the simple difference estimator if the strata differ from each other (Imai et al., 2008). However,
because blocking must be conducted before randomization, it is often not feasible due to practi-
cal considerations or lack of foresight. Sometimes randomization may even be entirely out of the
researcher’s control, such as with so-called natural experiments. When blocking was not done, re-
searchers often adjust for covariates after randomization. For example, Pocock et al. (2002) studied
a sample of clinical trials and found that 72% of the articles used covariate adjustment. Keele et al.
(2009) analyzed the experimental results in three major political science journals and found that
74%-95% of the articles relied on adjustment. Post-stratification is one simple form of adjustment
where the researcher stratifies experimental units with a pretreatment variable after the experiment
is complete, estimates treatment effects within the strata, and then uses a weighted average of these
strata estimates for the overall average treatment effect estimate. This is the estimator we focus on.

In this paper, we use the Neyman model to compare post-stratification both to blocking and
to using no adjustment. Neyman’s framework does not require assumptions of a constant treat-
ment effect or of identically or independently distributed disturbances, assumptions typically made
when considering adjustment to experimental data without this framework (e.g., McHugh and Matts,
1983). This avenue for a robust analysis, revitalized in the 1970s (Rubin, 1974), has recently had
much appeal. See, for example, work on general experiments (Keele et al., 2009), matched pairs
(Imai, 2008), or matched pairs of clusters (Imai et al., 2009).1 Our estimator is equivalent to one
from a fully saturated OLS regression. Freedman (2008a,b) analyzes the regression adjusted estima-
tor under the Neyman model without treatment by strata interactions and finds that the asymptotic
variance might be larger than if no correction were made. Lin (2010) extends Freedman’s results
and shows that when a treatment by covariate interaction is included in the regression, adjustment
cannot increase the asymptotic variance. We analyze the exact, finite sample properties of this sat-
urated estimator. Imbens (2011) analyzes estimating the treatment effect of a larger population,
assuming the given sample being experimented on is randomly drawn from it. However, because in

1See Sekhon (2009) for a historical review of the Neyman model’s renaissance.
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most randomized trials the sample is not taken at random from the larger population of interest, we
focus on estimating the treatment effect of the sample.

We derive the variances for post-stratification and simple difference-in-means estimators un-
der many possible randomization schemes. We show that the difference between the variance of
the post-stratified estimator and that of a blocked experiment is on the order of 1/n2 with a con-
stant primarily dependent on the proportion of units treated. Post-stratification is quite compara-
ble to blocking. Like blocking, post-stratification can greatly reduce variance over using a simple
difference-in-means estimate. However, in small samples post-stratification can substantially hurt
precision, especially if the number of strata is large and the stratification variable poorly chosen.

After randomization, researchers can observe the proportion of units actually treated in each
strata. We extend our results by deriving variance formula for the post-stratified and simple differ-
ence estimators conditioned on these observed proportions. These conditional formula help explain
why the variances of the estimators can differ markedly with a prognostic covariate: the difference
comes from the potential for bias in the simple-difference estimator when there is large imbalance
(i.e., when these proportions are far from what is expected). Interestingly, if the stratification vari-
able is not predictive of outcomes the conditional MSE of the simple-difference estimator usually
remains the same or even goes down with greater imbalance, but the conditional MSE of the ad-
justed estimator increases. Adjusting for a poorly chosen covariate has real cost in finite samples.

The rest of the paper is organized as follows: In the next section, we set up the Neyman model,
describe the estimators, and then derive the estimators’ variances. We then, in in Section 3, show
that post-stratification and blocking have similar characteristics in many circumstances. In Section
4, we present our formula for the estimators’ variances conditioned on the observed number of
treated units in the strata and discuss their implications. We then align our results with those of
Imbens (2011) in Section 5 by extending our findings to the super-population model and discussing
the similarities and differences of the two viewpoints. In Section 6, we apply our method to the
real data example of a large, randomized medical trial to assess post-stratification’s efficacy in a
real-world example. We also make a hypothetical example from this data set to illustrate how an
imbalanced randomization outcome can induce bias which the post-stratified estimator can adjust
for. Section 7 concludes.

2 The Estimators and Their Variances

We consider the Neyman model with two treatments and n units. For example consider a random-
ized clinical trial with n people, half given a drug and the other half given a placebo. Let yi(1) ∈ R
be unit i’s outcome if it were treated, and yi(0) its outcome if it were not. These are the potential
outcomes of unit i. For each unit, we can only observe either yi(1) or yi(0) depending on whether
we treat it or not. We make the assumption that treatment assignment for any particular unit has no
impact on the potential outcomes of any other unit (this is typically called the stable-unit treatment
value assumption or SUTVA). In the drug example this means the decision to give the drug to one
patient would have no impact on the outcome of any other patient. The treatment effect ti for unit i
is then the difference in potential outcomes, ti ≡ yi(1)− yi(0), which is deterministic.

Although these ti are the quantities of interest, we cannot in general estimate them because we
cannot observe both potential outcomes of any unit i and because the ti generally differ by unit. The
average across a population of units, however, is estimable. Neyman (Splawa-Neyman et al., 1990)
considered the overall Sample Average Treatment Effect, or SATE:

τ ≡ 1
n

n∑
i=1

[yi(1)− yi(0)]
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To conduct an experiment, randomize units into treatment and observe outcomes. Many choices of
randomization are possible. The observed outcome is going to be one of the two potential outcomes,
and which one depends on the treatment given. Random assignment gives a treatment assignment
vector T = (T1, . . . , Tn) with Ti ∈ {0, 1} being an indicator variable of whether unit i was treated
or not. T ’s distribution depends on how the randomization was conducted. After the experiment is
complete, we obtain the observed outcomes Y , with Yi = Tiyi(1) + (1 − Ti)yi(0). The observed
outcomes are random—but only due to the randomization used. The yi(`), and ti are all fixed.
Neyman considered a balanced complete randomization:

Definition 2.1 (Complete Randomization of n Units). Given a fixed p ∈ (0, 1) such that 0 <
pn < n is an integer, a Complete Randomization is a simple random sample of pn units selected
for treatment, with the remainder left as controls. If p = 0.5 (and n is even) the randomization is
balanced in that there are the same number of treated units as control units.

The classic unadjusted estimator τ̂sd is the observed simple difference in the means of the treat-
ment and control groups:

τ̂sd =
1

W (1)

n∑
i=1

TiYi −
1

W (0)

∑
i

(1− Ti)Yi

=
n∑

i=1

Ti

W (1)
yi(1)−

n∑
i=1

(1− Ti)
W (0)

yi(0),

where W (1) =
∑

i Ti is the total number of treated units, W (0) is total control, and W (1) +
W (0) = n. For Neyman’s balanced complete randomization, W (1) = W (0) = n/2. For other
randomizations schemes the W (`) are potentially random.

Neyman showed that the variance of τ̂sd is (given the potential outcomes y)

Var[τ̂sd] =
2
n

E
[
s21 + s20

]
− 1
n
S2 (1)

where s2` are the sample variances of the observed outcomes for each group, S2 is the variance
of the n treatment effects ti, and the expectation is over all possible assignments under balanced
complete randomization. We extend this work by considering an estimator that (ideally) exploits
some pretreatment covariate b using post-stratification in order to reduce variance.

2.1 Stratification and the Post-Stratified Adjusted Estimator of SATE

Stratification is when an experimenter divides the experimental units into K strata according to
some categorical covariate b with bi ∈ B ≡ {1, . . . ,K}, i = 1, . . . , n. Each stratum k contains
nk = #{j : bi = k} units. For example, in a cancer drug trial we might have the strata being
different stages of cancer. If the strata are associated with outcome, an experimenter can adjust
a treatment effect estimate to remove the impact of random variability in the proportion of units
treated. This is the idea behind post-stratification. The bi are observed for all units and are not
affected by treatment. The strata defined by the levels of b have stratum-specific SATEk:

τk ≡
1
nk

∑
i:bi=k

[yi(1)− yi(0)] k = 1, . . . ,K.

The overall SATE can then be expressed as a weighted average of these SATEks:

τ =
∑
k∈B

nk

n
τk. (2)
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We can view the strata as K mini-experiments. Let Wk(1) =
∑

i:bi=k Ti be the number of
treated units in stratum k, and Wk(0) be the number of control units. We can use the simple
difference-in-mean estimators for each stratum to estimate the SATEks:

τ̂k =
∑

j:bi=k

Ti

Wk(1)
yi(1)−

∑
j:bi=k

(1− Ti)
Wk(0)

yi(0), (3)

A Post-Stratification Adjusted estimate is an appropriately weighted estimate of these strata-level
estimates:

τ̂ps ≡
∑
k∈B

nk

n
τ̂k. (4)

These weights echo the weighted sum of SATEks in Equation 2. Because b and n are known and
fixed, the weights are also known and fixed. We derive the variance of τ̂ps in this paper.

Technically, this estimator is undefined if Wk(1) = 0 or Wk(0) = 0 for any k ∈ 1, . . . ,K.
Similarly, τsd is undefined if W (1) = 0 or W (0) = 0. We therefore calculate all means and
variances conditioned on D, the event that τ̂ps is defined, i.e., that each stratum has at least one
unit assigned to treatment and one to control. This is fairly natural: if the number of units in each
stratum is not too small the probability of D is close to 1 and the conditioned estimator is similar to
an appropriately defined unconditioned estimator. See Section 2.2.

Different experimental designs and randomizations give different distributions on the treatment
assignment vector T and all resulting estimators. Some distributions on T would cause bias. We
disallow those. Define the Treatment Assignment Pattern for stratum k as the ordered vector (Ti :
i ∈ {1, . . . , n : bi = k}). We assume that the randomization used has Assignment Symmetry:

Definition 2.2 (Assignment Symmetry). A randomization is Assignment Symmetric if the following
two properties hold:

1. Equiprobable Treatment Assignment Patterns
All
( nk
Wk(1)

)
ways to treat Wk(1) units in stratum k are equiprobable, given Wk(1).

2. Independent Treatment Assignment Patterns
For all strata j, k, with j 6= k, the treatment assignment pattern in stratum j is independent of
the treatment assignment pattern in stratum k, given Wj(1) and Wk(1).

Complete randomization and Bernoulli assignment (where independent p-coin flips determine
treatment for each unit) satisfy assignment symmetry. So does blocking, where strata are random-
ized independently. Furthermore, given a distribution on T that satisfies Assignment Symmetry
(Definition 2.2), conditioning on D also maintains Assignment Symmetry (as do many other rea-
sonable conditionings, such as having at least x units in both treatment and control, and so on). See
the supplementary material for a more formal argument. In our technical results, we assume that (1)
the randomization is Assignment Symmetric and (2) we are conditioning on D, the set of possible
assignments where τ̂ps is defined.

The post-stratification adjusted estimator and the simple-difference estimator are used when
the initial random assignment ignores the stratification variable b. In a blocked experiment, the
estimator used is τ̂ps, but the randomization is done within the strata defined by b. All three of
these options are unbiased. We are interested in their relative variances. We express the variances
of these estimators with respect to the population’s (unknown) means, variances and covariances of
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potential outcomes divided into between-strata variation and within-stratum variation. The within-
stratum variances and covariances are:

σ2
k(`) =

1
nk − 1

∑
i:bi=k

[yi(`)− ȳk(`)]2 ` = 0, 1

and
γk(1, 0) =

1
nk − 1

∑
i:bi=k

[yi(1)− ȳk(1)] [yi(0)− ȳk(0)] ,

where ȳk(`) denotes the mean of yi(`) for all units in stratum k. Like many authors, we use nk −
1 rather than nk for convenience and cleaner formula. The (1, 0) in γk(1, 0) indicates that this
framework could be extended to multiple treatments. The population-wide σ2(`) and γ(1, 0) are
analogously defined. The population-wide σ2(`) and γ(1, 0) are weighted sums of the component
pieces. The between-stratum variance and covariance are weighted variances and covariances of the
strata means:

σ̄2(`) =
1

n− 1

K∑
k=1

nk [ȳk(`)− ȳ(`)]2 ` = 0, 1

and

γ̄(1, 0) =
1

n− 1

K∑
k=1

nk [ȳk(1)− ȳ(1)] [ȳk(0)− ȳ(0)] .

We also refer to the correlation of potential outcomes r, where r ≡ γ(1, 0)/σ(0)σ(1) and the
strata-level correlations, rk ≡ γk(1, 0)/σk(0)σk(1). An overall constant treatment effect gives
r = 1, σ(0) = σ(1), rk = 1 for all k and σk(0) = σk(1) for all k.

We are ready to state our main results:

Theorem 2.1. The strata-level estimators τ̂k are unbiased, i.e.

E[τ̂k] = τk k = 1, . . . ,K

and their variances are

Var[τ̂k] =
1
nk

[
β1kσ

2
k(1) + β0kσ

2
k(0) + 2γk(1, 0)

]
(5)

with β1k = E[Wk(0)/Wk(1)|D], the expected ratio of units in control to units treated in stratum k,
and β0k = E[Wk(1)/Wk(0)|D], the reverse.

See Appendix A for a proof. The τ̂ks are independent due to Assignment Symmetry, so the
mean and variance of τ̂ps are weighted sums of the strata means and variances. Thus we have

Theorem 2.2. The post-stratification adjusted τ̂ps is unbiased:

E[τ̂ps|D] = E

[∑
k

nk

n
τ̂k

]
=
∑

k

nk

n
E[τ̂k] =

∑
k

nk

n
τk = τ.

Its variance is

Var[τ̂ps|D] =
1
n

∑
k

nk

n

[
β1kσ

2
k(1) + β0kσ

2
k(0) + 2γk(1, 0)

]
. (6)
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Corollary 2.3. The unadjusted simple-difference estimator τ̂sd is unbiased, i.e. E[τ̂sd] = τ . Its
variance is

Var[τ̂sd|D] =
1
n

[
β1σ

2(1) + β0σ
2(0) + 2γ(1, 0)

]
, (7)

where β1 ≡ E[W (0)/W (1)|D] and β0 ≡ E[W (1)/W (0)|D]. In terms of strata-level variances, its
variance is

Var[τ̂sd|D] =
1
n

[
β1σ̄

2(1) + β0σ̄
2(0) + 2γ̄(1, 0)

]
+

1
n

∑
k

nk − 1
n− 1

[
β1σ

2
k(1) + β0σ

2
k(0) + 2γk(1, 0)

]
. (8)

For completely randomized experiments with np units treated, β1 = (1 − p)/p and β0 =
p/(1− p). For a balanced completely randomized experiment, Equation 7 is the result presented in
Splawa-Neyman et al. (1990)—see Equation 1; the expectation of the sample variance is the overall
variance. Then β` = 1 and

Var[τ̂sd] =
2
n

(
σ2(1) + σ2(0)

)
− 1
n

Var[yi(1)− yi(0)]

=
2
n

(
σ2(1) + σ2(0)

)
− 1
n

(
σ2(1) + σ2(0)− 2γ(1, 0)

)
=

1
n

(
σ2(1) + σ2(0) + 2γ(1, 0)

)
.

Remarks. β1k is the expectation of Wk(0)/Wk(1), the ratio of control units to treated units in
stratum k. For large n, this ratio is close to the ratio E[Wk(0)] / E[Wk(1)] since the Wk(`) do not
vary much relative to their size. For small n, however, they do vary more, which tends to result
in the β1k being noticeably larger than E[Wk(0)] / E [Wk(1)]. This is at root of how the overall
variance of post-stratification differs from blocking. This is discussed more formally later on, and
in Appendix B.

For ` = 0, 1 the β`k’s are usually larger than β`, being expectations of different variables with
different distributions. For example in a balanced completely randomized experiment β1 = 1 but
β1k > 1 for k = 1, . . . ,K since Wk(1) is random.

All the β’s depend on both the randomization and the conditioning on D, and thus the variances
from both Equation 8 and Equation 6 can change (markedly) under different randomization scenar-
ios. As a simple illustration, consider a complete randomization of a 40 unit sample with a constant
treatment effect and four strata of equal size. Let all the σk(`) = 1 and all rk = 1. If p = 0.5, then
β1 = β0 = 1 and the variance is about 0.15. If p = 2/3 then β1 = 1/2 and β0 = 2. Equation 8
holds in both cases, but the variance in the second case will be about 10% larger due to the larger β0.
There are fewer control units, so the estimate of the control outcome is more uncertain. The gain
in certainty for the treatment units does not compensate enough. For p = 0.5, β1k = β0k ≈ 1.21.
The post-stratified variance is about 0.11. For p = 2/3, β1k ≈ 2.44 and β0k ≈ 0.61. The average is
about 1.52. The variance is about 14% larger than the p = 0.5 case. Generally speaking, the relative
variances of different experimental setups are represented in the β’s.
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Comparing the Estimators. Both τ̂ps and τ̂sd are unbiased, so their MSEs are the same as their
variances. To compare τ̂ps and τ̂sd take the difference of their variances:

Var[τ̂sd]− Var[τ̂ps] =
{

1
n

(
β1σ̄

2(1) + β0σ̄
2(0) + 2γ̄(1, 0)

)}
−{

1
n

K∑
k=1

[(
nk

n
β1k −

nk − 1
n− 1

β1

)
σ2

k(1) +
(
nk

n
β0k −

nk − 1
n− 1

β0

)
σ2

k(0)
]

+

2
n2

K∑
k=1

n− nk

n− 1
γk(1, 0)

}
. (9)

Equation 9 breaks down into two parts as indicated by the curly brackets. The first part,
β1σ̄

2(1) + β0σ̄
2(0) + 2γ̄(1, 0), is the between-strata variation. It measures how much the mean

potential outcomes vary across strata and captures how well the stratification variable separates out
different units, on average. The larger the separation, the more to gain by post-stratification. The
second part, consisting of the bottom two lines of Equation 9, represents the cost paid by post-
stratification due to, primarily, the chance of random imbalance in treatment. This second part is
non-positive and is a penalty except in some cases where the proportion of units treated is extremely
close to 0 or 1 or is radically different across strata.

If the between-strata variation is larger than the cost paid then Equation 9 is positive and it is
good to post-stratify. If Equation 9 is negative then it is bad to post-stratify. It can be positive or
negative depending on the parameters of the population. In particular, if there is no between-strata
difference in the mean potential outcomes, then the terms on the first line of Equation 9 are 0, and
post-stratification hurts. Post-stratification is not necessarily a good idea when compared to doing
no adjustment at all.

To assess the magnitude of the penalty paid compared to the gain, multiply Equation 9 by n. The
first term, representing the between-strata variation, is now a constant, and the scaled gain converges
to it as n grows:

Theorem 2.4. Take an experiment with n units randomized under either complete randomization or
Bernoulli assignment. Let p be the expected proportion of units treated. Without loss of generality,
assume p ≥ 0.5. Let f be the ratio of the smallest stratum to n. Let σ2

max = maxk,` σ
2
k(`) be the

largest variance of all the strata. Then∣∣∣n (Var[τ̂sd]−Var[τ̂ps])−β1σ̄
2(1)−β0σ̄

2(0)−2γ̄(1, 0)
∣∣∣ ≤ ( 8

f(1− p)2
+

2p
1− p

)
σ2

max

1
n

+O(
1
n2

).

See Appendix B for the derivation. Theorem 2.4 shows us that the second part of Equation 9,
the harm, diminishes quickly.

If the number of strata K grows with n, the story can change. The second and third lines of
Equation 9 are sums over K elements. The larger the number of strata K, the more terms in the
sums and the greater the potential penalty for stratification, unless the σ2

k(`)’s shrink in proportion as
K grows. For an unrelated covariate, they will not tend to do so. To illustrate, we made a sequence
of experiments increasing in size with a continuous covariate z unrelated to outcome. For each
experiment with n units, we made b by cutting up our continuous z into K = n/10 chunks. Post-
stratification was about 15% worse, in this case, than the simple-difference estimator regardless of
n.

Overall, post-stratifying on variables not heavily related to outcome is unlikely to be worthwhile
and can be harmful. Post-stratifying on variables that do relate to outcome will likely result in large

7



between-strata variation and thus a large reduction in variance as compared to a simple-difference
estimator. More strata is not necessarily better, however. Simulations suggest that there is often a
law of diminishing returns. For example, we made a simulated experiment with n = 200 units with
a continuous covariate z related to outcome. We then made b by cutting z up into K chunks for
K = 1, . . . , 20. As K increased from 1 there was a sharp drop in variance and then, as the cost
due to post-stratification increased, the variance leveled off and then climbed. In this case, K = 5
was ideal. We did a similar simulation for a covariate z unrelated to outcome. Now, regardless of
K, the σ2

k(`) were all about the same and the between-strata variation was fairly low. As K grew,
the overall variance climbed. In many cases a few moderate-sized strata give a dramatic reduction
in variance, but having more strata beyond that has little impact, and can even lead to an increase in
τ̂ps’s variance.

Estimation. Equation 6 and Equation 8 are the actual variances of the estimators. In practice, the
variance of an estimator, i.e., the standard error, would have to itself be estimated. Unfortunately,
however, it is usually not possible to consistently estimate the standard errors of difference-in-
means estimators due to so-called identifiability issues as these standard errors depend on γ(1, 0),
the typically un-estimable correlation of the potential outcomes of the units being experimented on
(see Splawa-Neyman et al. (1990)). One approach to consistently estimate these standard errors is
to impose structure to render this correlation estimable or known; Reichardt and Gollob (1999), for
example, demonstrate that quite strong assumptions have to be made to obtain an unbiased estimator
for the variance of τ̂sd. It is straightforward, however, to make a non-trivial conservative estimate of
this variance by assuming the correlation is maximal. Sometimes there can be nice tricks—see, for
example, Abadie and Imbens (2007), who estimate these parameters for matched-pairs by looking
at pairs of pairs matched on covariates—but generally bounding the standard error is the best one
can do.

This paper compares the actual variances of the estimators. Estimating these variances is an
area for future work, involving these identifiability issues and degrees-of-freedom issues as well. It
is quite possible that, in small samples, the increased uncertainty in estimating the many variances
composing the standard error of the post-stratification estimator would overwhelm any potential
gains.

That being said, all terms except the γk(1, 0) in Equation 9 are estimable with standard sample
variance, covariance, and mean formula. In particular, γ̄(1, 0) is estimable. By then making the
conservative assumption that the γk(1, 0) are maximal (i.e., that rk = 1 for all k so γk(1, 0) =
σ(1)σ(0)), we can estimate a lower-bound on the gain. Furthermore, by then dividing by a similar
upper bound on the standard error of the simple-difference estimator, we can give a lower-bound on
the percentage reduction in variance due to post-stratification. We illustrate this when we analyze
an experiment in Section 6.

2.2 Not Conditioning on D Changes Little

Our results are conditioned on D, the set of assignments such that Wk(`) 6= 0 for all k = 1, . . .K
and ` = 0, 1. This, it turns out, results in variances only slightly different from not conditioning on
D.

Define the estimator τ̂ps so that τ̂ps = 0 if ¬D occurs, i.e. Wk(`) = 0 for some k, `. Other
choices of how to define the estimator when ¬D occurs are possible, including letting τ̂ps = τ̂sd—
the point is that this choice does not much matter. In this case E[τ̂ps] = τPD. The estimate of the
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treatment is shrunk by PD towards 0. It is biased by τP¬D. The variance is

Var[τ̂ps] = Var[τ̂ps|D] PD + τ2P¬DPD

and the MSE is

MSE [τ̂ps] = E
[
(τ̂ps − τ)2

]
= Var[τ̂ps|D] PD + τ2P¬D.

Not conditioning on D introduces a bias term and some extra variance terms. All these terms are
small if PD is near 1, which it is: 1−PD isO(ne−n) (see Appendix B for proof). Not conditioning
on D, then, gives substantively the same conclusions as conditioning on D, but the formula are a bit
more unwieldy. Conditioning on the set of randomizations where τ̂ps is defined is more natural.

3 Comparing Blocking to Post-Stratification

Let the assignment split W of a random assignment be the number of treated units in the strata:

W ≡ (W1(1), . . . ,WK(1))

A randomized block trial ensures that W is constant because we randomize within strata, en-
suring a pre-specified number of units are treated in each. This randomization is Assignment Sym-
metric (Def 2.2) and, further, the probability of being defined, D, is 1. For blocking, the standard
estimate of the treatment effect has the same expression as τ̂ps, but the Wk(`)s are all fixed. If all
blocks have the same proportion treated (i.e., Wk(1)/nk = W (1)/n for all k), this coincides with
τ̂sd.

Because W is constant

β1k = E
[
Wk(0)
Wk(1)

]
=
Wk(0)
Wk(1)

=
1− pk

pk
, (10)

where pk is the proportion of units assigned to treatment in stratum k. Similarly, β0k = pk/(1−pk).
Letting the subscript “blk” denote this randomization, plug Equation 10 into Equation 6 to get the
variance of a blocked experiment:

Varblk [τ̂ps] =
1
n

∑
k

nk

n

(
1− pk

pk
σ2

k(1) +
pk

1− pk
σ2

k(0) + 2γk(1, 0)
)
. (11)

Post-stratification is similar to blocking, and the post-stratified estimator’s variance tends to be
close to that of a blocked experiment. Taking the difference between Equation 6 and Equation 11
gives

Var[τ̂ps|D]−Varblk [τ̂ps] =
1
n

∑
k

nk

n

[(
β1k −

1− pk

pk

)
σ2

k(1) +
(
β0k −

pk

1− pk

)
σ2

k(0)
]
. (12)

The γk(1, 0) cancelled; Equation 12 is identifiable and therefore estimable.
Randomization without regard to b can have block imbalance due to ill luck: W is random. The

resulting cost in variance of post-stratification over blocking is represented by the β1k−(1−pk)/pk

terms in Equation 12. This cost is small, as shown by Theorem 3.1:
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Theorem 3.1. Take a post-stratified estimator for a completely randomized or Bernoulli assigned
experiment. Use the assumptions and definitions of Theorem 2.4. Assume the common case for
blocking of pk = p for k = 1, . . . ,K. Then

n
(

Var[τ̂ps|D]− Varblk [τ̂ps]
)
≤ 8

(1− p)2
1
f
σ2

max

1
n

+O(e−fn).

See Appendix B for the derivation.
Theorem 3.1 bounds how much worse post-stratification can be to blocking. The scaled dif-

ference is on the order of 1/n. The differences in variance are order 1/n2. Generally speaking,
post-stratification is similar to blocking in terms of efficiency. The more strata, however, the worse
this comparison becomes due to the increased chance of severe imbalance with consequential in-
creased uncertainty in the stratum-level estimates. Many strata are generally not helpful and can be
harmful if b is not prognostic.

A note on blocking. Plug Equation 10 into the gain equation (Equation 9) to immediately see
under what circumstances blocking has a larger variance than the simple difference estimator for a
completely randomized experiment:

Var[τ̂sd]− Varblk [τ̂ps] =
1
n

(
1− p
p

σ̄2(1) +
p

1− p
σ̄2(0) + 2γ̄(1, 0)

)
−

1
n2

∑
k

n− nk

n− 1

(
1− p
p

σ2
k(1) +

p

1− p
σ2

k(0) + 2γk(1, 0)
)
. (13)

If p = 0.5, this is identical to the results in the appendix of Imai et al. (2008). In the worst case where
there is no between-strata variation, the first term of Equation 13 is 0 and so the overall difference
is O(K/n2). The penalty for blocking is small, even for moderate-sized experiments, assuming
the number of strata does not grow with n. If the first term is not zero, then it will dominate for
large enough n; i.e. blocking will give a more precise estimate. For more general randomizations,
Equation 9 still holds but the β’s differ. The difference in variances is still O(1/n2).

4 Conditioning on the Assignment Split W

By conditioning on the assignment splitW we can break down the expressions for variance to better
understand when τ̂ps outperforms τ̂sd. For τ̂∗∗ with ∗∗ = ps or sd we have

Var[τ̂∗∗] = MSE[τ̂∗∗] = EW [MSE[τ̂∗∗|W ]] =
∑
w∈W

MSE[τ̂∗∗|W = w] P{W = w}

with W being the set of all allowed splits where τ̂ps is defined. The overall MSE is a weighted
average of the conditional MSE, with the weights being the probability of the given possible splits
W . This will give us insight into when Var[τ̂sd] is large.

Conditioning on the splitW maintains Assignment Symmetry and sets β`k = Wk(1− `)/Wk(`)
for k ∈ 1, . . . ,K and β` = W (1− `)/W (`). For τ̂ps we immediately obtain

Var[τps|W ] =
1
n

∑
k

nk

n

(
Wk(0)
Wk(1)

σ2
k(1) +

Wk(1)
Wk(0)

σ2
k(0) + 2γk(1, 0)

)
. (14)

Under conditioning τ̂ps is still unbiased and so the conditional MSE is the conditional variance. τ̂sd,
however, can now be biased with a conditional MSE larger than the conditional variance if the extra
bias term is nonzero. Theorem 4.1 show the bias and conditional variance of τ̂sd:
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Theorem 4.1. The bias of τ̂sd conditioned on W is

E[τ̂sd|W ]− τ =
∑
k∈B

[(
Wk(1)
W (1)

− nk

n

)
ȳk(1)−

(
Wk(0)
W (0)

− nk

n

)
ȳk(0)

]
,

which is not 0 in general, even with a constant treatment effect. τ̂sd’s variance conditioned on W is

Var[τ̂sd|W ] =
∑
k∈B

W1kW0k

nk

(
1
W 2

1

σ2
k(1) +

1
W 2

0

σ2
k(0)− 2

W1W0
γk(1, 0)

)
.

See Appendix A for a sketch of these two derivations. They come from an argument similar to
the proof for the variance of τ̂ps, but with additional weighting terms.

The conditional MSE of τ̂sd has no nice formula that we are aware, and is simply the sum of the
variance and the squared bias:

MSE[τ̂sd|W ] = Var[τ̂sd|W ] + (E[τ̂sd|W ]− τ)2 (15)

In a typical blocked experiment, W would be fixed at W blk where W blk
k = nkp for k =

1, . . . ,K. For complete randomization, E[W ] = W blk. We can now gain insight into the dif-
ference between the simple-difference and post-stratified estimators. If W equals W blk, then the
conditional variance formula for both estimators reduce to that of blocking, i.e., Equation 14 and
Equation 15 reduce to Equation 11. But the moreW deviates fromW blk—i.e., the more imbalanced
the assignment is—the larger the post-stratified variance formula will tend to be. To see this note
how for each strata the overall variance is a weighted sum of Wk(0)/Wk(1) and Wk(1)/Wk(0).
The more unbalanced these terms, the larger the sum. The simple-difference estimator, on the other
hand, tends to have smaller variance as W deviates further from W blk due to the greater restrictions
on the potential random assignments.

However, if b is prognostic then, generally, the bias of the simple-difference estimator increases
with greater imbalance. This bias can radically inflate the MSE. But if b is not prognostic then there
is little or no bias. Overall, then, as imbalance increases, the variance (and MSE) of τ̂ps, on the other
hand, moderately increases. The variance of τ̂sd moderately decreases but the bias increases, giving
a MSE that can grow quite large.

Because the overall MSE of these estimators is a weighted average of the conditional MSEs,
and because under perfect balance the conditional MSEs are the same, we know that the variance of
τ̂sd being larger than τ̂ps comes from the impact of potentially having bad imbalance with resulting
large bias.

The split W is directly observable and gives hints to the experimenter as to the success, or
failure, of the randomization. Unbalanced splits tell us we have less certainty while balanced splits
are comforting. For example, take a hypothetical balanced completely randomized experiment with
n = 32 subjects, half men and half women. Consider the case where only one man ends up in
treatment as compared to 8 men. In the former case, a single man gives the entire estimate for
average treatment outcome for men and a single woman gives the entire estimate for average control
outcome for women. This seems very unreliable. In the latter case, each of the four mean outcomes
are estimated with 8 subjects, which seems more reliable. Our estimates of uncertainty should take
this observed split into account. We take the observed W into account by using the conditional
MSE rather than overall MSE when estimating uncertainty. The conditional MSE estimates how
close ones actual experimental estimate is likely to be from the SATE. The overall MSE estimates
how close such estimates will generally be to the SATE. The idea of using all observed information
is not new. When sampling to find the mean of a population, Holt and Smith (1979) argue that,
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for estimators adjusted using post-stratification, variance estimates should be conditioned on the
distribution of units in the strata as this gives a more relevant estimate of uncertainty. Pocock et al.
(2002) extends Senn (1989) and examines conditioning on the imbalance of a continuous covariate
in ANCOVA. They show that not correcting for imbalance (as measured as a standardized difference
in means) gives one inconsistent control on the error rate when testing for an overall treatment effect.

5 Extension to an Infinite-Population Model

The presented results apply to estimating the treatment effect for a specific sample of units, but there
is often a larger population of interest. One approach is to consider the sample to be a random draw
from this larger population, which introduces an additional component of randomness capturing
how the SATE varies about the Population Average Treatment Effect, or PATE. For example, see
Imbens (2011). But if the sample has not been so drawn, using this PATE model might not be
appropriate. The SATE perspective should instead be used, with additional work to then generalize
the results. See Hartman et al. (2011); Imai et al. (2008). Regardless, under the PATE approach, the
variances of all the estimators increase, but the substance of this paper’s findings remain.

Let fk, k = 1, . . . ,K, be the proportion of the population in stratum k. The PATE can then be
broken down by strata:

τ∗ =
K∑

k=1

fkτ
∗
k

with τ∗k being the population average treatment effect in stratum k. Let the sample S be a stratified
draw from this population holding the proportion of units in the sample to fk (i.e. nk/n = fk

for k = 1, . . . ,K). (See below for different types of draws from the population.) τ , the SATE,
is random, depending on S. Due to the size of the population, the sampling is close to being with
replacement. Alternatively, the sample could be generated by independent draws from a collection
ofK distributions, one for each stratum. Let σ2

k(`)∗, γ2
k(1, 0)∗, etc., be population parameters. Then

the PATE-level MSE of τ̂ps is

Var[τ̂ps] =
1
n

∑
k

fk

[
(β1k + 1)σ2

k(1)∗ + (β0k + 1)σ2
k(0)∗

]
. (16)

See Appendix A for the derivation. Imbens (2011) has a similar formula for the two-strata case.
Compare to Equation 6: All the correlation of potential outcomes terms γk(1, 0) vanish when mov-
ing to PATE. This is due to a perfect trade-off: the more they are correlated, the harder to estimate
the SATE τ for the sample, but the easier it is to draw a sample with a SATE τ close to the overall
PATE τ∗.

The simple-difference estimator. For the simple-difference estimator, use Equation 16 withK =
1 to get

Var[τ̂sd] =
1
n

[
(β1 + 1)σ2(1)∗ + (β0 + 1)σ2(0)∗

]
. (17)

Now let σ̄2(`)∗ be a weighted sum of the squared differences of the strata means to the overall mean:

σ̄2(`)∗ =
K∑

k=1

fk (ȳ∗k(`)− ȳ∗(`))2 .
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The population variances then decompose into σ̄2(`)∗ and strata-level terms:

σ2(`)∗ = σ̄2(`)∗ +
K∑

k=1

fkσ
2
k(`)∗.

Plug this decomposition into Equation 17 to get

Var[τ̂sd] =
1
n

[
(β1 + 1)

(
σ̄2(1)∗ +

K∑
k=1

fkσ
2
k(1)∗

)
+ (β0 + 1)

(
σ̄2(0)∗ +

K∑
k=1

fkσ
2
k(0)∗

)]

Variance gain from post-stratification. For comparing the simple-difference to the post-stratified
estimator at the PATE level, take the difference of Equation 17 and Equation 16 to get

Var[τ̂sd]− Var[τ̂ps] =
1
n

(β1 + 1)σ̄2(1)∗ +
1
n

(β0 + 1)σ̄2(0)∗

− 1
n

K∑
k=1

fk

[
(β1k − β1)σ2

k(1)∗ + (β0k − β0)σ2
k(0)∗

]
.

Similar to the SATE view, we again have a gain component (the first line) and a cost (the second
line). For Binomial assignment and complete randomization, β` ≤ β`k for all k, making the cost
nonnegative. There are no longer terms for the correlation of potential outcomes, and therefore this
gain formula is directly estimable. The cost is generally smaller than for the SATE model due to the
missing γk(1, 0) terms.

The variance of blocking under PATE. For equal-proportion blocking, Wk(1) = pnk and
Wk(0) = (1 − p)nk. Using this and β`k + 1 = E[nk/Wk(`)], the PATE-level MSE for a blocked
experiment is then

Var[τ̂ps] =
1
n

∑
k

nk

n

[
1
p
σ2

k(1)∗ +
1

1− p
σ2

k(0)∗
]

For comparing complete randomization (with pn units assigned to treatment) to blocked exper-
iments, plug in the β’s. The β` − β`k terms all cancel, leaving

Var[τ̂sd]− Var[τ̂ps] =
1
n

1
p
σ̄2(1)∗ +

1
n

1
1− p

σ̄2(0)∗ ≥ 0

Unlike from the SATE perspective, blocking can never hurt from the PATE perspective.

Not conditioning on the nk. Allowing the nk to vary introduces some complexity, but the gain
formula remain unchanged. If the population proportions are known, but the sample is a completely
random draw from the population, the natural post-stratified estimate of the PATE would use the
population weights fk. These weights can be carried through and no problems result. Another
approach is to estimate the fk with nk/n in the sample. In this latter case, we first condition on the
seen vector N ≡ n1, . . . nk and define a τN based on N . Conditioned on N , both τ̂ps and τ̂sd are
unbiased for estimating τN , and we can use the above formula with nk/n instead of fk. Now use
the tower-property of expectations and variances. This results in an extra variance of a multinomial
to capture how τN varies about τ as N varies. The variances of both the estimators will each be
inflated by this extra term, which therefore cancels when looking at the difference.
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6 PAC Data Illustration

We apply our methods to evaluating Pulmonary Artery Catheterization (PAC), an invasive and con-
troversial cardiac monitoring device, that was, until recently, widely used in the management of
critically ill patients (Dalen, 2001; Finfer and Delaney, 2006). Controversy arose regarding the
use of PAC when a non-random study using propensity score matching found that PAC insertion
for critically ill patients was associated with increased costs and mortality (Connors et al., 1996).
Other observational studies came to similar conclusions leading to reduced PAC use (Chittock et al.,
2004). However, an RCT (PAC-Man) found no difference in mortality between PAC and no-PAC
groups (Harvey et al., 2005), which substantiated the concern that the observational results were
subject to selection bias (Sakr et al., 2005).

PAC-Man has 1013 subjects, half treated. The outcome variable investigated here is “qualys” or
quality-adjusted life years. Higher values indicate, generally, longer life and higher quality of life.
Death at time of PAC insertion or shortly after receives a value of 0. Living two years in full health
would be a 2. There is a lot of fluctuation in these data. There is a large point mass at 0 and a long
tail up to 20 years.

Unfortunately, the RCT itself had observed covariate imbalance in predicted probability of
death, a powerful predictor of the outcome, which calls into question the reliability of the simple-
difference estimate of the treatment effect. More low-risk patients were assigned to receive treat-
ment, which could induce a perceived treatment effect even if none were present. Post-stratification
could help with this potential bias and decrease the variance of the estimate of treatment effect. To
estimate the treatment effect using post-stratification we first divide the continuous probability of
death covariate into K K-tiles. We then estimate the treatment effect within the resulting strata and
average appropriately.

This analysis is simplified for the purposes of illustration. We are only looking at one of the
outcomes and have dropped several potentially important covariates for the sake of clarity. Statistics
on the strata for K = 4 are listed on Table 1. A higher proportion of subjects in the first two groups
were treated than one would expect given the randomization. Imbalance in the first group, with its
high average outcome, could heavily influence the overall treatment effect estimate of τ̂sd.

Strata # Tx # Co SDk(1) SDk(0) ŷk(1) ŷk(0) τ̂k
Low Risk 136 118 5.80 5.68 5.57 5.41 0.15
Moderate Risk 142 111 3.42 4.17 1.69 2.70 -1.01
High Risk 106 147 3.60 3.75 1.97 2.36 -0.39
Extreme Risk 122 131 3.41 3.10 1.37 1.19 0.18
Overall 506 507 4.56 4.48 2.72 2.84 -0.13

Table 1: Strata-Level Statistics for the PAC Illustration

We estimate the minimum gain in precision due to post-stratification by calculating point es-
timates of all the within-strata and between-strata variances and plugging these values into Equa-
tion 9. We are not taking the variability of these estimates into account. By assuming the strata rk
are maximal, i.e., rk = 1 for all k, we estimate a lower bound on the reduction in variance due to
post-stratification. We show this for several different stratifications. For K = 4, we estimate the
reduction of variance to be no less than 12%. More strata appear somewhat superior, but gains level
off rather quickly. See Table 2.

The estimate of treatment effect changes markedly under post-stratification. The estimates τ̂ps

hover around −0.28 for K = 4 and higher, as compared to the −0.13 from the simple-difference
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estimator. The post-stratified estimator appears to be correcting for a significant bias from random
imbalance in treatment assignment. For K = 2, τ̂ps = −0.34. Here we may be over-correcting for
the imbalance in assignment.

If we assume the actual treatment effect is τ̂ps, then we can estimate the MSE for both the
simple-difference and post-stratified estimator conditioned on the imbalance by plugging point esti-
mates into Equation 15 and Equation 14. These results are the last columns of Table 2; the percent-
age gain in this case is higher primarily due to the correction of the bias term from the imbalance.
When conditioning on the imbalance W , the estimated variance of the post-stratified estimator is
slightly higher than that of the simple-difference estimator, but the overall MSE is estimated to be
significantly lower. This is due to the bias correction. Because the true variances and the rk for
strata are unknown, these gains are estimates only. They do, however, illustrate the potential value
of post-stratification. Measuring the uncertainty of these estimates is an area of future work.

Uncond. Variance MSE Conditioned on W
K τ̂ps τ̂sd τ̂ps τ̂sd % MSEτ̂ps varτ̂sd biasτ̂sd MSEτ̂sd %
2 -0.34 -0.13 0.077 0.081 5% 0.077 0.076 0.118 0.207 63%
4 -0.27 -0.13 0.071 0.081 12% 0.072 0.070 0.089 0.137 48%

10 -0.25 -0.13 0.070 0.081 13% 0.071 0.069 0.083 0.119 41%
15 -0.24 -0.13 0.070 0.081 14% 0.070 0.067 0.081 0.115 39%
30 -0.28 -0.13 0.069 0.081 15% 0.068 0.064 0.086 0.148 54%

Table 2: Estimated Standard Errors for PAC. Table shows both conditioned and unconditioned
estimates for different numbers of strata.

Matched Pairs Estimation. We can also estimate the gains by building a fake set of potential
outcomes by matching treated units to control units on observed covariates. We match as described
in Sekhon and Grieve (2011). We then consider each matched pair a single unit with two potential
outcomes. We use this synthetic set to calculate the variances of the estimators using the formula
from Section 2 and Section 4.

Matching treatment to controls and controls to treatment gives a synthetic dataset with 1013
observations with all potential outcomes “known.” The correlation of potential outcomes is 0.21
across all strata. The unconditional variance for the simple-difference and post-stratified estimators
are 0.048 and 0.038, respectively. The percent reduction in variance due to post-stratification is
24.4%.

We can use this data set to further explore the impact of conditioning. Assume the treatment
probability is p = 0.5 and repeatedly randomly assign a treatment vector and compute the resulting
conditional variance. Also compute the “imbalance score” for the treatment vector with a chi-
squared statistic:

Imbalance ≡
∑

k

(Wk(1)− pnk)2

pnk

This procedure produces Figure 1. As imbalance increases, the MSE (variance) of τ̂ps steadily, but
slowly, increases as well. The MSE of τ̂ps is fairly resistant to large imbalance. This is not the
case for τ̂sd, however. Generally, high imbalance means high conditional MSE. This is due to the
bias term which can get exceedingly large if there is imbalance between different heterogeneous
strata. Also, for a given imbalance, the simple-difference estimator can vary widely depending on
whether strata-level bias terms are canceling out or not. This variability is not apparent for the post-
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Figure 1: PAC MSE Conditioned on Imbalance. Uses constructed matched PAC dataset. Points
indicate the conditional MSE of τ̂ps and τ̂sd given various specific splits of W . x-axis is the imbal-
ance score for the split. Curved dashed lines interpolate point clouds. Horizontal dashed lines mark
unconditional variances for the two estimators. The curve at bottom is the density of the imbalance
statistic.

stratified estimator, where only the number of units treated drives the variance; the post-stratified
points cluster closely to their trend line.

The curve at the bottom shows the density of the realized imbalance score: there is a good
chance of a fairly even split with low imbalance. In these cases, the variance of τ̂sd is smaller
than the unconditional formula would suggest. If the randomization turns out to be “typical” the
unconditional variance formula would be conservative. If the imbalance is large, however, the
unconditional variance may be overly optimistic. This chance of large imbalance with large bias is
why the unconditioned MSE of τ̂sd is larger than that of τ̂ps.

The observed imbalance for the actual assignment was about 2.37. The conditional MSE is
0.083 for τ̂sd and 0.039 for τ̂ps. The conditional MSE for the simple-difference estimator is 73%
larger than the unconditional MSE due to the bias induced by the imbalance. We would be overly
optimistic if we were to use Var[τ̂sd] as a measure of certainty, given the observed, quite imbalanced,
split W . For the post-stratified estimator the conditional variance is only about 1% higher than the
unconditional; the degree of imbalance is not meaningfully impacting the precision. Generally, with
post-stratification, the choice of using an unconditional or conditional formula is less of a concern.
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Discussion. The PAC RCT has a strong predictor of outcome. Using it to post-stratify substan-
tially increases the precision of the treatment effect estimate. Furthermore, post-stratification miti-
gates the bias induced by an unlucky randomization. Especially when concerned about imbalance,
it is important to calculate conditional standard errors—not doing so could give overly optimistic
estimates of treatment effect. This is especially true when using the simple-difference estimator.

7 Conclusions

Post-stratification is a viable approach to experimental design in circumstances where blocking is
not feasible. If the stratification variable is determined beforehand, post-stratification is nearly as
efficient as a randomized block trial would have been: the difference in variances between post-
stratification and blocking is a small O(1/n2). However, the more strata, the larger the potential
penalty for post-stratification. There is no guarantee of gains.

Conditioning on the observed distribution of treatment across strata allows for a more appropri-
ate assessment of precision. Most often the observed balance will be good, even in moderate-sized
experiments, and the conditional variance of both the post-stratified and simple-difference estima-
tor will be smaller than estimated by the unconditional formula. However, as balance degrades
having selected a truly prognostic covariate increases in importance: for a covariate unrelated to
outcome, it is better in these cases to use a simple-difference estimator than a post-stratified one.
For a prognostic covariate, the reverse is true.

When viewing a post-stratified or a blocked estimate as an estimate of the PATE, under the
assumption that the sample is a random, independent, draw from a larger population, the potential
for decreased precision is reduced. However, in most cases the sample in a randomized trial is not
such a random draw. We therefore advocate for viewing the estimators as estimating the SATE, not
the PATE.

Problems arise when stratification is determined after treatment assignment. The results of this
paper assume that the stratification is based on a fixed and defined covariate b. However, in practice
covariate selection is often done after-the-fact in part because, as is pointed out by Pocock et al.
(2002), it is often quite difficult to know which of a set of covariates are significantly prognostic
a priori. But variable selection invites fishing expeditions, which undermine the credibility of any
findings. Doing variable selection in a principled manner is still notoriously difficult, and is often
poorly implemented; Pocock et al. (2002), for example, found that many clinical trial analyses select
variables inappropriately. Tsiatis et al. (2007) summarize the controversy in the literature and, in
an attempt to move away from strong modeling, and to allow for the implicit multiple-testing in
selecting an optimal subset of variables from all possible, propose a semiparametic approach as a
solution.

Beach and Meier (1989) suggests that, at minimum, all potential covariates for an experiment
be listed in the original protocol. Call these z. In our framework, variable-selection is then to build
a stratification b from z and T after having randomized units into treatment and control. b (now B)
is random as it depends on T . Questions immediately arise: how does one define the variance of
the estimator? Can substantial bias be introduced by the strata-building process? The key to these
questions likely depends on appropriately conditioning on the final, observed, strata and the process
of constructing B. This is an important area of future work.
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8 Appendix A

Theorem 2.1. The proof of Theorem 2.1 is based on iterated expectations and a lot of unpleasant
algebra. The following shows the hilights. See the supplementary material for a version with more
detail. We first set up a few simple expectations. Under Assignment Symmetry,

E
[

Ti

Wk(1)

]
= E E

[
Ti

Wk(1)
|Wk(1)

]
= E

[
1
nk

]
=

1
nk
.

Rearrange β1k ≡ E[Wk(0)/Wk(1)] = nk E[1/Wk(1)]− 1 to get E[1/Wk(1)] = (β1k + 1)/nk and

E
[

T 2
i

W 2
k (1)

]
= E E

[
Ti

W 2
k (1)
|Wk(1)

]
=

1
nk

E
[

1
Wk(1)

]
=
β1k + 1
n2

k

. (18)

These derivations are easier if we use α1k ≡ E[1/Wk(1)], but the β’s are more interpretable and
lead to nicer final formula. There are analogous formula for the control unit terms and cross terms.
We use these relationships to compute means and variances for the strata-level estimators.

Unbiasedness. The strata-level estimators are unbiased:

E [τ̂k] = E

 ∑
i:bi=k

Ti

Wk(1)
yi(1)−

∑
i:bi=k

1− Ti

Wk(0)
yi(0)


=

∑
i:bi=k

E
[

Ti

Wk(1)

]
yi(1)−

∑
i:bi=k

E
[

1− Ti

Wk(0)

]
yi(0)

=
∑

i:bi=k

1
nk
yi(1)−

∑
i:bi=k

1
nk
yi(0) = τk.

Variance. Var[τ̂k] = E
[
τ̂2
k

]
− τ2

k . Expand τ2
k into three parts (a)′ − (b)′ + (c)′:

τ2
k =

∑
i:bi=k

1
nk
yi(1)

2

︸ ︷︷ ︸
(a′)

− 2

∑
i:bi=k

1
nk
yi(1)

∑
i:bi=k

1
nk
yi(0)


︸ ︷︷ ︸

(b′)

+

∑
i:bi=k

1
nk
yi(0)

2

︸ ︷︷ ︸
(c′)

.

Similarly, expand the square of E
[
τ̂2
k

]
to get (a) − (b) + (c). Simplify these parts. For example,

algebra and relationships such as shown in Equation 18 give

(a) = E

 ∑
i:bi=k

Ti

Wk(1)
yi(1)

2

=
β1k + 1
n2

k

∑
i:bi=k

y2
i (1) +

−β1k + nk − 1
n2

k(nk − 1)

∑
i 6=j

yi(1)yi(1)

Part (b) and (c) are similar.
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The variance is then Var[τ̂k] = (a) − (a′) − (b) + (b′) + (c) − (c′), a sum of several ugly
differences. Algebra, and recognizing formulas for the sample variances and covariances, gives:

(a)− (a′) =
β1k

nk
σ2

k(1)

(b)− (b′) = − 2
nk
γk(1, 0)

and

(c)− (c′) =
β0k

nk
σ2

k(0)

Sum these differences to get Equation 5.

Theorem 4.1. Calculate the MSE of τ̂sd conditioned on the split W with a slight modification to
the above derivation. Define a new estimator that is a weighted difference in means:

α̂k ≡ Ak

∑
i:bi=k

Ti

Wk(1)
yi(1)−Bk

∑
i:bi=k

1− Ti

Wk(0)
yi(0)

with Ak, Bk constant. α̂k is an unbiased estimator of the difference in means weighted by Ak and
Bk:

E[α̂k] = E

Ak

∑
k:bi=b

Tk

Wk(1)
yk(1)−Bk

∑
k:bi=b

Tk

Wk(0)
yk(0)

 = Akȳk(1)−Bkȳk(0).

Now follow the derivation of the variance of τ̂k propagating Ak and Bk through. These are constant
and they come out, giving

Var[α̂k] =
1
nk

[
A2

kβ1kσ
2
k(1) +B2

kβ1kσ
2
k(0)− 2AkBkγk(1, 0)

]
.

Expand τ̂sd into strata terms:

τ̂sd =
K∑

k=1

W1k

W1

∑
i:bi=k

Ti

W1k
yi(1)− W0k

W0

∑
i:bi=k

1− Ti

W0k
yi(0) =

K∑
k=1

α̂k

with Ak = W1k/W1 and Bk = W0k/W0. Conditioning on W makes the Ak and the Bk constants.
Assignment symmetry ensures the strata are independent, so the α̂k are as well, and the variances
then add:

Var[τ̂sd|W ] =
K∑

k=1

Var[α̂k] .

The bias is E[τ̂sd|W ]− τ with

E[τ̂sd|W ] =
K∑

k=1

E[α̂k|W ] =
K∑

k=1

Aȳk(1)−Bȳk(0).

Expand τ as in Equation 2 and rearrange terms.
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Extending to PATE. First, decompose the variance:

Var[τ̂ps|D] = E[Var[τ̂ps|S,D] |D] + Var[E[τ̂ps|S,D] |D]

The first term is simply the expectation of Equation 6, the SATE variance formula. Since S is
random, so are the σ2

k(`), etc. The expectation of these quantities over S gives the population
parameters as they are unbiased estimators. The β’s are all constant, and D is independent of S.
Therefore:

ES[Var[τ̂ps|S,D]] = ES

[
1
n

∑
k

nk

n

[
β1kσ

2
k(1) + β0kσ

2
k(0) + 2γk(1, 0)

]
|D

]

=
1
n

∑
k

nk

n

[
β1kσ

2
k(1)∗ + β0kσ

2
k(0)∗ + 2γk(1, 0)∗

]
. (19)

The second term is

Var[E[τ̂ps|S,D]] = Var[τ ]

= Var

[
K∑

k=1

nk

n
τk

]

=
n2

k

n2

K∑
k=1

Var[ȳk1 − ȳk0]

=
n2

k

n2

K∑
k=1

1
nk

[
σ2

k(1)∗ + σ2
k(0)∗ − 2γk(1, 0)∗

]
. (20)

Sum Equation 19 and Equation 20 to get the PATE-level MSE.

9 Appendix B

β`k can be approximated by E[Wk(1− `)] /E[Wk(`)]. For example, in the complete randomization
case β1k ≈ (1 − p)/p. Generally, the β’s are larger than their approximations. They can be less,
but only by a small amount. For complete randomization and Bernoulli assignment, the difference
between the β’s and their approximations is bounded by the following theorem:

Theorem 9.1. Take an experiment with n units randomized under either complete randomization
or Bernoulli assignment. Let p be the expected proportion of units treated. Let D be the event that
τ̂ps is defined. Without loss of generality assume 0.5 ≤ p < 1. Let nmin be the smallest strata size.
Then β1k − (1− p)/p is bounded above by:

β1k −
1− p
p
≤ 4
p2

1
nk

+ max
[(

nk

2
− 4
p2nk

)
e−

p2

2
nk , 0

]
+ nk(1− p)nk+1 + 2nkK (p)nmin

=
4
p2

1
nk

+O(e−nk).

Furthermore, it is tightly bounded blow:

β1k −
1− p
p
≥ −2

p
(1− p)nk − 2nkK(p)nmin = −O(e−nk).

Similar results apply for the β0k and β`.
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Proof. Start without conditioning on D. W1k =
∑
Ti with Ti ∈ {0, 1}. For Bernoulli assignment,

the Ti are i.i.d Bernoulli variables with probability p of being 1. For completely randomized ex-
periments, the W1k are distributed according to a hypergeometric distribution, i.e., as the number
of white balls drawn in nk draws without replacement from an urn of n balls with np white balls.
Regardless, E[W1k] = nkp.

Define Ynk
≡ (nk/W1k) × 1{W1k>0}. Due to the indicator function, Ynk

≤ nk. Given D, the
event that all strata-level estimators are well-defined, Ynk

= nk/W1k so

β1 −
1− p
p

= E
[
W0k

W1k
|D
]
− 1− p

p
= E

[
nk

W1k
|D
]
− 1
p

= E[Ynk
|D]− 1

p
.

We first show the probability of ¬D is very small, which will allow for approximating the
expectation of the conditioned Ynk

with the unconditioned. If nmin is the size of the smallest strata,
then

P¬D ≤
K∑

k=1

P{W1k = 0 or W0k = 0}

≤ 2K max
`=0,1;k=1,...,K

P{W`k = 0}

≤ 2K (p)nmin .

Expand the expected value of Y as

E[Ynk
] = E[Ynk

|D] PD + E[Ynk
|¬D] P¬D.

Use this and the bound Ynk
≤ nk to get∣∣∣E[Ynk

|D]− E[Ynk
]
∣∣∣ =

∣∣∣E[Ynk
|D]− E[Ynk

|D] PD − E[Ynk
|¬D] P¬D

∣∣∣
=

∣∣∣E[Ynk
|D] (1−PD)− E[Ynk

|¬D] P¬D
∣∣∣

=
∣∣∣E[Ynk

|D]− E[Ynk
|¬D]

∣∣∣P¬D
≤ nP¬D = 2nK (p)nmin (21)

This shows that E[Ynk
] is quite close to E[Ynk

], i.e.

E[Ynk
]− 2nK (p)nmin ≤ β1 −

1− p
p
≤ E[Ynk

] + 2nK (p)nmin .

Now we need the following lemma to get a handle on E[Ynk
]:

Lemma 9.2. Let W be a Binomial (n, p) random variable or a hypergeometric (n,w,N) random
variable, i.e., a sample of size n from coin flips with probability of heads p or an urn with N = nc
balls, c > 1, of which w = ncp are white. Then

−2(1− p)n

p
≤ E

[ n
W

1{W>0}

]
− 1
p
≤ 4
p2

1
n

+max
[(

n

2
− 4
p2n

)
exp

(
−p

2

2
n

)
, 0
]

+n(1−p)n+1.

See the supplementary material for proof. The lemma uses results from Hoeffding (1963). Use
Lemma 9.2 on E[Ynk

]. This gives our stated bounds.
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Figure 2: log-log plot comparing actual difference between β values to their approximations and the
bounds provided by Lemma 9.2. Four probabilities of assignment shown, p = 0.5, 0.75, and0.9.
Actual differences computed with monte carlo.

Remark on Lemma 9.2. Numerical calculation shows the constants of the 1/n term are overly
large, but the rate of 1/n appears to be correct. Figure 2 show a log-log plot of the actual percent
increase of the β’s over 1/p for several values of p and n along with the calculated bounds. When
the exponential term becomes negligible, the bound appears to be about 8, 15, and 42 times bigger
for p = 0.5, 0.75, and 0.9 respectively, i.e., the constants on the 1/n term are overstated by this
much. The log-log slope is −1 suggesting the 1/n relationship.

Proof of Theorem 2.4. Assume the conditions of Theorem 9.1 and consider Equation 9. First,∣∣∣∣nk

n
β1k −

nk − 1
n− 1

β1

∣∣∣∣ ≤ ∣∣∣nk

n
β1k −

nk

n
β1

∣∣∣+
∣∣∣∣nk − 1
n− 1

β1 −
nk

n
β1

∣∣∣∣
=
nk

n
|β1k − β1|+ β1

∣∣∣∣nk − 1
n− 1

− nk

n

∣∣∣∣
≤ nk

n

4
p2

1
fn

+
1− p
p

1
n

+O(
1
n2

)

Because the lower bound is so tight, we don’t need to double the bound from Theorem 9.1 for
bounding the difference |β1k − β1|. Plug these into the sums of Equation 9 and replace all variances
and covariances with the maximum variance and covariance. The bound follows.

Proof of Theorem 3.1. This is handled the same way as for Theorem 2.4, but is more direct.
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