
The Case for User-Level Preemptive Scheduling to

Support Multi-Rate Audio Applications for Multi-Core

Processors

Rimas Avizienis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-158

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-158.html

December 18, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Case for User-Level Preemptive Scheduling to Support
Multi-Rate Audio Applications for Multi-Core Processors

by Rimas Avizienis

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Krste Asanovic
Research Advisor

(Date)

* * * * * * *

Professor David Wessel
Second Reader

(Date)

1

Chapter 1

Introduction

As general-purpose computers have become ever more powerful, their use by musicians, multime-

dia artists and sound engineers to synthesize and process audio in real time has steadily increased.

The computational capabilities of modern microprocessors are such that audio signal processing

tasks that used to require a rack full of dedicated DSP based audio gear can now be performed by

software running on commodity PCs. However, operating system support for audio applications

with soft real-time constraints has not kept pace with the widespread adoption of multi-core pro-

cessors. To compound the problem, audio processing functionality is often packaged into reusable

software modules (called ”plugins”) that can be instantiated within audio “host applications” to

extend their functionality. Since current audio plugin APIs lack any explicit support for paral-

lelism, the only way plugins can perform their processing tasks in parallel on multiple cores is

by spawning additional OS threads. However, a host application has no way of knowing about

or managing the scheduling of additional threads that plugins may have been spawned, and the

OS lacks sufficient information to intelligently schedule these threads. A similar problem is faced

by all developers of parallel programs composed of multiple parallel libraries: because individual

libraries are unaware of each other’s existence, they may collectively spawn more threads than

there are physical cores in a system (a condition known as “oversubscription”) which can lead

to sub-optimal and unpredictable performance. The real-time constraints of audio applications

make solving the composability problem even more challenging. These factors combined make it

very difficult for developers to write audio applications and plugins that can efficiently exploit the

CHAPTER 1. INTRODUCTION 2

compute resources available in modern CPUs.

To complicate matters further, some audio processing algorithms work by performing computa-

tion on an incoming audio stream at multiple rates concurrently. Such algorithms can often be most

easily implemented by creating multiple threads that preempt each other as necessary. However,

current audio plugin APIs dictate that plugins should perform their time sensitive computations

within the context of a single thread. A host application calls a plugin’s “execute” function when a

new frame of data is ready for processing, and this function is expected to complete in a constant

amount of time every time it is invoked. To implement a multi-rate algorithm in a way that is com-

patible with this execution model, a programmer must partition processing tasks operating at lower

frame rates into multiple subtasks that are executed at the highest frame rate. This partitioning is

difficult to perform in a load balanced manner and generally precludes the use of external libraries

to implement processing tasks. We illustrate this point through a case study of the implementation

of non-uniform partitioned convolution (a multi-rate algorithm) using both scheduling paradigms:

multi-threaded preemptive, and single-threaded cooperative. The preemptive version was easier to

code and is more flexible than the cooperative version, resulting in better performance on a wider

variety of processing tasks. However, since current audio plugin APIs don’t support preemption

(or multi-threaded signal processing routines in general), it isn’t possible for applications to host

plugins that employ preemption in a way that guarantees deterministic behavior.

We believe that the best way to address these issues is to adopt a two-level scheduling model,

where the OS scheduler gang-schedules all of an application’s threads and a user-level scheduler

(with support for preemption) makes decisions about how to map processing tasks onto those

threads. Plugin APIs must be extended so as to allow multiple user-level schedulers within an

application to be composed hierarchically, and to support preemptive programming styles. In the

following sections, we first provide background on how audio I/O devices interact with operating

systems (specifically Linux), and how operating systems interact with applications that have real-

time constraints. Next, we describe and evaluate the performance of two implementations of non-

uniform partitioned convolution that use different scheduling paradigms. Finally, we present our

conclusions and discuss related work.

CHAPTER 1. INTRODUCTION 3

1.1 Collaboration, Previous Publications, and Funding

This thesis is a result of a collaborative group project. Eric Battenberg implemented the preemptive

version, and I implemented the cooperative version of the real-time non-uniform partitioned con-

volution algorithm described and evaluated in the case study portion of this thesis. Some of the fig-

ures and content in this thesis are adapted from a previous publication: “Implementing Real-Time

Partitioned Convolution Algorithms on Conventional Operating Systems” [2] from DAFx-11.

This work was supported in part by funding from Microsoft (Award #024263) and Intel (Award

#024894, equipment donations) and by matching funding from U.C. Discovery (Award #DIG07-

10227).

4

Chapter 2

Background

In this chapter, we review some basic concepts related to digital audio and describe the interfaces

between audio hardware I/O devices, operating systems, and audio applications.

2.1 Digital Audio Basics

In the physical world, what we experience as sound corresponds to variations in air pressure,

or mechanical sound pressure “waves”. Our ears respond to such pressure waves by sending a

series of neural impulses down the auditory nerve to the brain, causing us to perceive sound.

The ear’s response to sound waves is not strictly linear - the neural impulses generated by the

inner ear actually represent a processed version of the incident sound. This means that a listener

may perceive two different sounds as equivalent. “Lossy” audio compression algorithms (such as

MP3 [17]) take advantage of this property by applying psychoacoustic models to determine which

components of an audio signal are perceptually significant and encoding them efficiently. Such

algorithms can achieve a tenfold reduction in the space required to represent an audio signal while

introducing a minimal amount of perceptible distortion.

Microphones are transducers that convert mechanical vibrations (sounds) into electrical sig-

nals. A microphone is connected to a “pre-amplifier” that outputs a voltage proportional to the

magnitude of the vibrations experienced by the microphone’s sensing element (called a capsule).

This is how audio signals are represented in the analog domain.

CHAPTER 2. BACKGROUND 5

Uncompressed digital audio signals are represented as pulse code modulation (PCM) encoded

streams. An analog audio signal’s voltage is measured (sampled) periodically to produce a stream

of digital values (samples). Each sample is a signed integer with a fixed width (called the bit-depth)

that is a quantized approximation of the magnitude of the analog signal’s voltage. The sampling

rate determines the highest frequency that a discrete time digital signal can encode. This is known

as the Nyquist frequency and is equal to half the sampling frequency. An analog signal must be

filtered to remove frequencies above this threshold before being sampled in order to avoid aliasing

in the resulting digital signal. The dynamic range of a signal encoding is defined as the ratio

between the largest and smallest magnitudes the encoding can represent. For PCM encoded audio,

the bit depth determines the dynamic range of the signal: each bit contributes 6 decibels (dB) to the

dynamic range. Commonly used sampling rates and bit depths are 44.1 kHz/16 bits (CD quality)

and 96 kHz/24 bits (DVD quality), though newer digital media formats (such as Blu-Ray) support

sampling rates of up to 192 kHz. Signal processing algorithms implemented on modern CPUs

generally employ floating point arithmetic, and audio samples are converted between integer and

floating point numbers (in the range -1.0 – 1.0) as necessary.

For efficiency reasons, general-purpose computers process digital audio in batches of samples

called frames, where a frame consists of some number (known as the I/O vector size) of samples

per audio channel. I/O latency is defined as the amount of time that elapses between the arrival of

a signal at a device’s input and the appearance of a processed version of the signal at a device’s

output. The audio I/O vector size imposes a lower bound on a system’s achievable I/O latency

equal to double the frame period, in order to allow the computer an entire frame period to process

a frame’s worth of audio.

Interactive audio applications demand minimal I/O latency. In some situations, such as live

sound reinforcement, any perceptible latency is unacceptable. In practice, latencies below 10 mil-

liseconds are generally considered acceptable when using general-purpose computers to process

audio in real-time, though standalone DSP based audio signal processors can achieve latencies on

the order of tens to hundreds of microseconds. We aim to achieve latencies on the order of 1.5

– 3 milliseconds, which necessitate using I/O vector sizes of 32 or 64 samples at 44.1 kHz. As

is often the case in digital systems, there is a tradeoff between efficiency (bandwidth) and latency

(responsiveness).

CHAPTER 2. BACKGROUND 6

2.2 Gestural Interfaces

The MIDI [13] (Musical Instrument Digital Interface) protocol provides a way to connect gestural

interfaces (called “controllers” in this context) to other devices (e.g. computers, standalone syn-

thesizers). The most common type of MIDI controller is a piano-style musical keyboard. Striking

one of its keys causes it to transmit a MIDI “Note On” message identifying the key and indicating

the velocity with which it was struck. When the key is released, the controller sends a comple-

mentary “Note Off” message. A computer equipped with a MIDI interface can send and receive

MIDI messages. MIDI controllers are typically used to trigger other devices to produce sounds.

While MIDI is an antiquated protocol (the MIDI specification was first published in 1983) and

the physical transport associated with the MIDI protocol (a 31.25 kilobaud serial link) is rapidly

disappearing, the MIDI protocol is still often used as a way to encode audio-related events.

Open Sound Control [22] (OSC) is another, more recent protocol for communication between

gestural controllers, computers and other multimedia devices. OSC support has been integrated

into a wide range of hardware and software products. OSC has numerous advantages over MIDI:

it supports precise temporal semantics through the use of time tags and atomic operations, its mes-

sages are formatted in a human readable manner, and it can be used over both local and wide area

networks. Open-source implementations of the OSC protocol are available for embedded micro-

controller platforms (such as the Arduino) as well as conventional operating systems (Windows,

Linux, MacOS).

2.3 Audio Input/Output Hardware

Audio I/O interfaces provide a host computer with audio inputs and outputs which can be either

analog or digital in nature. To handle analog signals, an audio interface must include analog to

digital and digital to analog converters (ADCs and DACs). Standard protocols (such as S/PDIF,

ADAT, and MADI [19]) which operate over electrical or optical transports are used to transfer

audio data between devices in digital form. These protocols include methods for performing clock

synchronization between digital audio devices. Clock synchronization is necessary because two

devices nominally operating at the same sampling frequency are not perfectly synchronized. In-

ternally, devices employ crystal oscillators to generate the clock signals required by ADCs and

CHAPTER 2. BACKGROUND 7

DACs. Miniscule differences in the oscillation frequencies of individual crystals accumulate over

time and cause the clock signals derived from them to “drift” with respect to one another. To avoid

this problem, one audio device in a system is designated as the clock “master” and the rest as

“slaves.” Slave devices use phase locked loops (PLLs) or voltage controlled oscillators (VCOs) to

generate clock signals that are synchronized with the master clock.

Most modern laptops and motherboards include built-in analog stereo input and output devices.

Users that require more channels or better fidelity can choose from a plethora of third-party audio

interfaces. These devices connect to host machines either directly through the PCI/PCIe bus or

via USB, FireWire or Ethernet interfaces. Audio data is transferred between audio interfaces and

a host computer in frames, and audio devices usually support a range of I/O vector sizes, usually

between 32 – 4096 samples. Audio interfaces typically notify the host that a new frame of data

is ready by asserting an interrupt, though polling can be used instead for non latency sensitive

applications. Audio interrupts occur at a constant rate, with a period determined by the I/O vector

size.

2.4 Audio Hardware/Operating System Interface

The OS reacts to an audio interrupt by executing an interrupt service routine (ISR) in the audio

device driver. The ISR is responsible for copying data between the device and buffers in the device

driver, and notifying the OS to mark threads blocked on audio I/O as runnable. The OS scheduler

then decides when and for how long these threads get to execute. Interrupt latency is defined as the

delay between the assertion of an interrupt and the execution of the ISR, and scheduling latency is

defined as the delay between the execution of the ISR and the resumption of a blocked audio I/O

thread. These latencies reduce the time available for an application to compute a frame of output

data without missing deadlines and causing dropouts in the output audio signal.

2.5 Operating System/Application Interface

Applications typically register a callback function with the OS to receive notifications about the

arrival of audio data. The details of how this is done vary between OSs, however the result is

the same: the callback function is invoked whenever a new frame of audio data is ready. The

CHAPTER 2. BACKGROUND 8

callback function executes in the context of a dedicated high priority thread (the audio I/O thread)

so as to minimize its scheduling latency. The most efficient way to move audio data between the

OS kernel and a user-space application is to map the OS audio I/O buffers into a region of the

application’s address space. An application can then copy audio data between OS and application

buffers without making any system calls, which would require additional kernel crossings and

would further reduce the time available for useful computation.

2.6 Audio Plugins

Audio processing functionality is commonly packaged into reusable software modules known as

“plugins,” implemented as dynamic libraries. By adopting a standard API, authors of audio plu-

gins enable their plugins to be used within multiple ”host” applications. Examples of popular

audio plugin APIs are LADSPA (Linux Audio Developer’s Simple Plugin API), Steinberg’s VST

(Virtual Studio Technology) and Apple’s Audio Units. Plugins can be broadly classified into two

categories: those which only produce output (commonly referred to as “virtual instruments”) and

those which process inputs to produce outputs (commonly called “effects processors”). There are

many types of virtual instruments, examples include emulations of analog synthesizers, physical

models of acoustic instruments, and samplers. Examples of effects processors include filters, re-

verberators, compressors, noise-gates and harmonizers.

Plugin APIs provide mechanisms for host applications to instantiate plugins, adjust their pa-

rameters, manipulate their input and output buffers, and trigger their internal signal processing

routines. A major shortcoming of current plugin APIs is the absence of any explicit support for

parallelism. Current plugin APIs define an “execute” function which a host application invokes,

causing the plugin to generate a frame of output. This function is required to execute in a constant

length of time each time it is invoked, and is forbidden from making system calls or otherwise

engaging in behavior that would lead to non-deterministic execution times. This execution model

makes it all but impossible for plugin authors to write plugins that can use multiple cores to perform

their signal processing computations in parallel.

CHAPTER 2. BACKGROUND 9

2.7 Audio Applications

There exist many types of audio applications - three major categories are digital audio workstations

(DAWs), sequencers, and visual patching languages. DAW software is used to record, manipulate,

and play back digital audio streams (also called tracks). Examples of DAW applications include

Digidesign’s ProTools and Apple’s Logic. DAWs emulate the behaviour of analog recording stu-

dios, which usually include a multi-track recorder, a mixing console and a rack of signal process-

ing gear. DAWs allow users to simultaneously record and/or play back multiple audio tracks while

processing them by applying effects, and to “mix” multi-channel recordings down to a stereo or

surround (i.e. 5.1, 7.1) formats suitable for playback on consumer audio equipment.

Sequencers are another related category of audio applications. Instead of manipulating pre-

recorded audio tracks, sequencers operate on audio represented as sequences of events. These

events are most commonly encoded as MIDI commands and can be used to trigger the generation

of sounds by virtual instruments and to adjust the parameters of virtual instruments and effects pro-

cessors. Sequences can be represented visually as scores or “piano rolls,” and sequencers enable

musicians to compose and arrange songs by manipulating “loops” of audio by cutting and past-

ing, modifying tempo and pitch, cross-fading, and so on. Examples of popular sequencers include

Ableton Live and Apple’s Garage Band. The distinction between DAWs and sequencers is becom-

ing increasingly blurred, as most modern DAWs provide some degree of sequencer functionality

and most sequencers include mechanisms to playback and record digital audio tracks.

Another category of audio applications are visual patching languages, the most prominent ex-

amples of which are the open-source package PureData (PD) and Cycling 74’s Max/MSP. These

are more accurately described as programming languages as opposed to applications with well de-

fined functionality. They provide a programming environment in which visual representations of

signal processing objects are connected by virtual wires to construct “patches.” The term patch is

a relic from the early days of electronic music, when patch cables were used to connect oscillators

and filters to construct synthesizers. Patches can be packaged into modules (called “sub-patches”)

which can then be instantiated within other patches in the same way as other objects. These en-

vironments are very versatile, as users can also write their own objects (called “externals” in this

context) in C/C++ to extend the functionality of the system.

Current audio applications have limited support for parallelism at a very coarse grain. For ex-

CHAPTER 2. BACKGROUND 10

ample, in most modern DAWs a user can statically partition the execution of independent “chains”

of plugins across multiple threads. The most recent version of Max/MSP allows multiple, indepen-

dent top-level patches to execute concurrently in separate threads. However, there are currently no

well-defined mechanisms to enable a single instance of a patch or plugin to use multiple cores to

perform its internal processing tasks in parallel. The burden of partitioning processing tasks across

multiple cores thus rests with the user, resulting in underutilization of processing resources and/or

significant effort spent tuning individual patches or DAW configurations for particular platforms

and use cases.

2.8 Audio Programming under Linux

The mainline Linux kernel provides two scheduling policies to support applications with soft

real-time constraints: these are SCHED FIFO (first-in first-out) and SCHED RR (round robin).

A third scheduling policy (SCHED OTHER) is used for the rest of the threads in the system.

Every thread in the system is assigned one of these policies, as well as a static priority in the

range 0 – 99. Threads using the SCHED FIFO and SCHED RR policies are scheduled before any

SCHED OTHER threads. All SCHED FIFO threads at a given priority level are scheduled in FIFO

order and allowed to run until they block, or until another SCHED FIFO thread with a higher prior-

ity becomes runnable (in which case it will preempt a currently running thread if necessary). Lower

priority threads aren’t scheduled until all higher priority threads are blocked. SCHED RR threads

are scheduled similarly, except that threads with the same priority are scheduled round-robin using

a default scheduling quantum of 10ms. Audio applications do their time-sensitive computation

using SCHED FIFO threads. A kernel parameter sets a limit on the CPU time (expressed as a

percentage of total CPU time) allotted by the system for SCHED FIFO and SCHED RR threads

- by default it is set to 95%. This prevents misbehaving soft real-time threads from hanging the

system.

The audio framework in Linux is called ALSA: the Advanced Linux Sound Architecture. It

consists of kernel drivers for a wide variety of audio hardware devices, as well as a user-space

library and API for application developers. The ALSA API enables a variety of programming

styles, largely to support legacy code that uses the older OSS (Open Sound System) audio API.

Unfortunately, as is the case with many open-source projects, the ALSA API is poorly documented.

CHAPTER 2. BACKGROUND 11

Discovering the best way to use ALSA to implement a full-duplex, low-latency real-time signal

processing application required reading a significant amount of source code and a good bit of

experimentation. For this reason, many developers choose to use a cross-platform solution such as

the JACK [11] audio server daemon to implement communication between applications and audio

devices. JACK was designed with low-latency, real-time applications in mind and it does a good

job of supporting such applications while introducing a minimal amount of overhead. For most

developers, the slight overhead associated with using JACK outweighs the additional complexity

of interfacing with ALSA directly. We opted to use the ALSA API instead of JACK both to

improve performance, and to make it easier to understand the scheduling behavior of the system.

12

Chapter 3

Convolution Algorithms

Convolution is a mathematical operation that appears frequently in the field of digital signal pro-

cessing. It describes the behavior of finite impulse response (FIR) filters, which convolve an input

signal with an impulse response to produce a filtered output signal. In audio signal processing, FIR

filtering is often used to simulate reverberation. When sound is produced in an enclosed space, a

listener in that space hears the original sound, followed by a series of decaying echoes caused by

the sound pressure waves reflecting off of the surfaces in the room. The timing and amplitude of

these reflections is called the room response, or equivalently the impulse response of the room.

Convolving a “dry” sound source (one recorded in an anechoic environment) with a room response

results in an output signal which approximates how that sound would be perceived by a listener

in the room. The duration of the room response (how long it takes for sound to decay to an im-

perceptible level) is related to the size and shape of a room as well as the acoustic properties of

its surfaces. The room response of large spaces can last for ten or more seconds, translating to an

impulse response that is almost 500k samples long (at 44.1 kHz sampling rate). Convolving such

an impulse response with an input audio signal in real-time with low latency is a very computa-

tionally intensive task. In the following sections, we describe several methods for computing the

convolution of two signals.

CHAPTER 3. CONVOLUTION ALGORITHMS 13

3.1 Convolution in the Time Domain

Convolution is defined as

y = x ∗ h

y[n] =
N−1�

k=0

x[k]h[n− k]

where two N point sequences x (an input signal) and h (an impulse response) are convolved to

produce the 2N − 1 point output sequence y. Computing the convolution of two signals by direct

application of the above formula has no inherent latency (results can be computed on a sample

by sample basis) and has a computational cost of O(N) operations per output sample. Since its

computational cost increases linearly with the length of the impulse response, the direct method is

not a practical way to perform convolution with very long impulse responses.

3.2 Convolution in the Frequency Domain

Convolution can also be computed by multiplying the frequency domain representations of two

signals, since for discrete time sequences, cyclic convolution in the time domain is equivalent to

multiplication in the frequency domain [16]. The discrete Fourier transform (DFT) coefficients are

a frequency domain representation (spectrum) of a time domain signal. The forward DFT of a

sequence x of length N is defined as

X[k] =
N−1�

n=0

x[n]e
−j2πnk

N (3.1)

and the inverse DFT of a sequence X of length N is defined as

x[n] =
1

N

N−1�

k=0

X[k]e
j2πnk

N (3.2)

The DFT transforms one N point complex valued sequence into another. If a time domain

sequence is purely real, then its DFT coefficients are symmetric:

X[k] = X[N − k]∗ (3.3)

CHAPTER 3. CONVOLUTION ALGORITHMS 14

This property can be used to compute the DFT of a real sequence almost twice as efficiently as the

DFT of a complex sequence.

Block convolution methods such as overlap-add and overlap-save [14] operate on blocks of

samples, and use the fast Fourier transform (FFT) algorithm to efficiently transform signals be-

tween the time and frequency domains.

Let X and H be the DFT coefficients of x and h. Applying the inverse DFT to Y = X · H
produces the sequence y which is the cyclic convolution of x and h. Since the length of y is 2N−1

samples, it is necessary to use 2N point DFTs of zero-padded versions of x and h to produce y.

If the impulse response is constant, H only needs to be computed once. In this case, com-

puting a block of N output samples process requires performing one 2N point forward FFT, 2N

complex multiplications, and a 2N point inverse FFT. An N point forward or inverse FFT takes

order O(NlogN) operations, so the computational cost of computing an output sample using block

convolution is O(logN). Beyond some impulse response length (which is system and FFT imple-

mentation dependent) block convolution is more efficient than the direct method. However, block

convolution requires buffering a block of N samples before the computation can proceed, resulting

in an inherent latency of 2N samples.

Uniform Partitioned Convolution

A compromise between latency and computational cost can be achieved by partitioning the impulse

response into equally sized segments, each of which is is assigned to a separate sub-filter. The

sub-filters are implemented using block convolution, and each sub-filter receives an appropriately

delayed copy of the input signal. The outputs of the sub-filters are summed to produce a block of

output samples. This uniform partitioned convolution (UPC) method is illustrated in Figure 3.1. If

the original length-N filter is partitioned into sub-filters of size M , the computation cost per output

sample is O(NlogM) and the inherent latency is reduced from N to M samples.

This technique can be optimized by reusing the DFT coefficients computed by the first filter

stage in later stages. A second optimization (made possible by the linearity property of the DFT)

is to sum the frequency domain output spectra of the sub-filters before computing the inverse DFT.

This optimization was first described by Kulp [10], and was termed a frequency-domain delay

line (FDL) by Garcia [5]. After applying these optimizations, computing each block of output

CHAPTER 3. CONVOLUTION ALGORITHMS 15

Figure 3.1: Top – Partitioning of an impulse response into 3 parts. Bottom – Steps involved in
computing the above 3-part uniform partitioning.

samples requires only a single forward and inverse FFT, as shown in Figure 3.2. Even with these

optimizations, the computational cost of UPC (which is dominated by the cost of the complex

arithmetic performed in the frequency domain as N/M becomes large) increases linearly with the

impulse response length, albeit with a smaller constant factor than the direct method.

Figure 3.2: Frequency-domain Delay Line (FDL)

CHAPTER 3. CONVOLUTION ALGORITHMS 16

Non-Uniform Partitioned Convolution

Non-uniform partitioned convolution (NUPC) is a technique that improves upon the computational

efficiency of the UPC method by dividing the impulse response into variable length partitions.

Smaller partitions are used for the early parts of the impulse response to satisfy latency require-

ments, and progressively larger partitions are used for later portions of the impulse response to

improve efficiency. A non-uniform partitioning can be viewed as a parallel composition of FDLs

with different block sizes.

NUPC (as applied to processing audio signals in real-time) was first described by Gardner [6].

He proposes a “minimum-cost” partitioning scheme that increases the partition size as quickly as

possible while maintaining a balanced processing load. This is accomplished by allowing each

block convolution the same amount of time to compute a frame’s worth of output as it takes to

buffer a frame’s worth of input. As a result, a partition of size M cannot start until at least 2M

samples into the impulse response. For an impulse response of length 16N , applying this scheme

produces the partitioning N, N, 2N, 4N, 4N, 4N. An example of Gardner’s partitioning method

applied to a longer impulse response is shown at the top of Figure 3.3. Gardner’s scheme tries to

maximize efficiency by transitioning to larger partition sizes as quickly as possible. However his

method doesn’t account for the computational savings made possible by using the FDL optimiza-

tion described above.

Figure 3.3: Two non-uniform partitionings of an impulse response of length 16128 with N = 128.
Top – Gardner partitioning with 6 FDLs. Bottom – Optimal Garcia partitioning with 2 FDLs.

Another partitioning scheme was proposed by Garcia [5]. He describes a dynamic program-

ming style algorithm that finds an optimal impulse response partitioning for a specified target

CHAPTER 3. CONVOLUTION ALGORITHMS 17

latency. His algorithm does take into account the FDL optimization, and evaluates potential par-

titionings using a cost function based on the number of floating point additions and multiplica-

tions required to compute an output sample. For a given impulse response length and target la-

tency, the partitioning suggested by Garcia’s algorithm is always more efficient than Gardner’s

“minimum-cost” partitioning. The partitioning produced by Garcia’s algorithm for an example

impulse response is shown at the bottom of Figure 3.3. However, since his algorithm doesn’t take

into account memory access latencies, the partitioning it produces may not be optimal in terms of

execution time on a real machine.

We took an empirical approach to finding an optimal partitioning. Instead of picking a par-

titioning that is optimal with respect to some idealized cost function, we implemented an “auto-

tuning” algorithm that measures execution times of candidate partitionings on the target machine.

Since the number of possible partitionings for long impulse responses is vast, we use a dynamic

programming approach to prune the search space. This enables us to find an optimal partitioning

in a reasonable length of time (a few seconds). The optimal partitioning for a particular impulse

response varies from machine to machine as a result of differing cache sizes and organizations, as

well as other architectural variations.

18

Chapter 4

Implementation

We implemented the NUPC algorithm using two different scheduling paradigms: multi-threaded

preemptive and single-threaded cooperative. A non-uniform partitioning is defined by the number

of FDLs and the number of partitions per FDL. Each FDL is conceptually a separate task with a

deadline equal to its period. The period of the primary FDL is equal to the audio I/O frame period,

and the periods of larger FDLs are power of two multiples of the primary FDL period. During

each audio callback period, the output of the primary FDL must be computed and summed with

the outputs from the other FDLs. An FDL that is M times the size of the primary FDL must

produce a block of results every M callback cycles. Figure 4.1 illustrates processing boundaries in

time (arrivals and deadlines) for a partitioning with 3 FDLs.

4.1 Preemptive version

The preemptive implementation of NUPC creates a separate worker thread to perform the compu-

tation (FFTs and complex arithmetic) associated with each FDL other than the primary FDL. Since

the primary FDL has a period equal to the audio I/O vector size, we perform its computation in the

context of the audio I/O thread to avoid unnecessary context switches. We use the POSIX threads

(pthreads) API [9] to spawn worker threads and to create condition variables (condvars) that are

used for synchronization between threads. Worker threads use the SCHED FIFO scheduling pol-

icy, with higher priorities assigned to FDLs with shorter periods.

To minimize synchronization overheads, we use system calls only when absolutely necessary.

CHAPTER 4. IMPLEMENTATION 19

Figure 4.1: Top – Example non-uniform partitioning with 3 FDLs. Bottom – Scheduling bound-
aries of FDL tasks. Arrivals/deadlines are denoted by vertical lines.

When a new block of input samples is ready, the audio I/O thread wakes up waiting worker threads

by performing a broadcast on a condition variable. This requires executing one system call. When

a worker thread finishes computing a block of output samples, it uses an atomic memory operation

(AMO) to decrement a counter and then waits on a condition variable. The last thread to finish

a group of computations with the same deadline signals another condition variable to notify the

audio callback thread that a new block of output is ready.

The bulk of the computation done by each worker thread is computing forward and inverse

FFTs and performing complex arithmetic in the frequency domain. To do the FFT calculations,

we use the FFTW[4] library. FFTW performs well on a wide range of platforms by performing

an “auto-tuning” step to determine which particular set of FFT subroutines performs best on a

particular system for a given FFT size. We use FFT routines that optimized to operate on real input

and output sequences.

For FDLs that include many partitions, the complex multiply-add (Cmadd) routine becomes

CHAPTER 4. IMPLEMENTATION 20

the computational bottleneck. We wrote an optimized Cmadd routine that uses SSE3 intrinsincs

to take advantage of SIMD hardware, carefully schedules instructions to minimize stall cycles,

and employs aggressive loop unrolling. Our optimized Cmadd routine was roughly 8x faster than

a naive version coded in C without SSE intrinsics and compiled using GCC 4.4 with aggressive

optimization settings enabled.

4.2 Time-distributed version

The time-distributed implementation of NUPC performs all of its computation in the context of a

single thread. During each invocation of the audio callback function, we compute the output of the

primary FDL and also perform a fraction of the computation associated with all other FDLs. Since

the callback function is expected to execute in a constant amount of time each time it is invoked,

the distribution of work across multiple frames must be as even as possible. Implementing NUPC

using this approach required significantly more programmer effort and a deeper understanding of

the underlying mathematics than the previously described preemptive approach, since we weren’t

able to leverage external libraries (e.g. FFTW) to perform all of the computational “heavy lifting.”

We did, however, use FFTW to perform the “leaf-level” FFT computations. Although our time-

distributed implementation isn’t as flexible as the preemptive version (it only supports four FDL

sizes), it conforms to the existing execution model for plugins running within host applications.

Our time-distributed implementation utilizes a technique described by Hurchalla in [7] (he calls

it a “time-distributed FFT”) to perform the computations required by an FDL that is 4, 8, 16 or

32× the size of the primary FDL within the context of a single thread in a load balanced manner.

This method takes advantage of the mathematical properties of the decimation in frequency (DIF)

decomposition of a sequence.

CHAPTER 4. IMPLEMENTATION 21

The standard radix 2 DIF forward FFT decomposition for a DFT of size N is

a[n] = x[n] + x[n+N/2]

b[n] = x[n]− x[n+N/2]

X[2k] =
N/2−1�

n=0

a[n]e
−j2πnk

N/2

X[2k + 1] =
N/2−1�

n=0

b[n]e
−j2πn

N e
−j2πnk

N/2

and the corresponding inverse decomposition is

a[n] =
N/2−1�

k=0

X[2k]e
j2πnk
N/2

b[n] = e
j2πn
N

N/2−1�

k=0

X[2k + 1]e
j2πnk
N/2

x[n] = a[n] + b[n]

x[n+N/2] = a[n]− b[n]

A slightly modified version of the standard radix 4 DIF forward FFT decomposition for a DFT

of size N is

a[n] = (x[n] + x[n+N/2]) + (x[n+N/4] + x[n+ 3N/4])

b[n] = (x[n]− x[n+N/2])− j(x[n+N/4]− x[n+ 3N/4])

c[n] = (x[n] + x[n+N/2])− (x[n+N/4] + x[n+ 3N/4])

d[n] = (x[n]− x[n+N/2]) + j(x[n+N/4]− x[n+ 3N/4])

X[4k] =
N/4−1�

n=0

a[n]e
−j2πnk

N/4

X[4k + 1] =
N/4−1�

n=0

b[n]e
−j2πn

N e
−j2πnk

N/4

X[4k + 2] =
N/4−1�

n=0

c[n]e
−j4πn

N e
−j2πnk

N/4

X[4k − 1] =
N/4−1�

n=0

d[n]e
j2πn
N e

−j2πnk
N/4

CHAPTER 4. IMPLEMENTATION 22

and the corresponding inverse decomposition is

a[n] =
N/4−1�

k=0

X[4k]e
j2πnk
N/4

b[n] = e
j2πn
N

N/4−1�

k=0

X[4k + 1]e
j2πnk
N/4

c[n] = e
j4πn
N

N/4−1�

k=0

X[4k + 2]e
j2πnk
N/4

d[n] = e
j2πn
N

N/4−1�

k=0

X[4k − 1]e
j2πnk
N/4

x[n] = (a[n] + c[n]) + (b[n] + d[n])

x[n+N/4] = (a[n]− c[n]) + j(b[n]− d[n])

x[n+N/2] = (a[n] + c[n])− (b[n] + d[n])

x[n+ 3N/4] = (a[n]− c[n])− j(b[n]− d[n])

These decompositions have the nice property that the sub-FFTs can be computed independently

of each other. Using these decompositions, we can compute an N point FFT by performing two

N/2 point FFTs or four N/4 point FFTs, as well as some additions and multiplications by com-

plex twiddle factors. Performing each sub-FFT produces a subset of the DFT coefficients of the

original input sequence x. This leads to a method for partitioning the computation (FFT, complex

arithmetic, IFFT) required for block convolution across multiple time periods.

By applying a stage of radix-2 DIF decomposition to a block of input samples, the work of

performing block convolution can be distributed across four frames as shown in Figure 4.2(a). In

this example, the work associated with a secondary FDL that is 4× the size of the primary FDL is

distributed across four processing periods.

During frames 1–4, incoming samples are buffered, and during frames 3 and 4 a radix-2 DIF

decomposition is applied to the input sequence Ain to produce the two subsequences A1 and A2.

The DIF decomposition can’t start any earlier, since it requires the second half of the input se-

quence before it can produce any output. During frame 5, an FFT is performed on the subsequence

A1 and half of the resulting DFT coefficients are multiplied with those of a precomputed impulse

response. The second half of the complex multiplications are performed during frame 6, after

CHAPTER 4. IMPLEMENTATION 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ain
A1 A2

D
IF

D
IF

D
IF

D
IF

D
IF+FFT

IFFT+ID
IF

D
IF+FFT

IFFT+ID
IF

D
IF+FFT

IFFT+ID
IF

D
IF+FFT

IFFT+ID
IF

AoutID
IF

ID
IF

ID
IF

ID
IF

Bin
B1 B2

Cin

Ain
A1 A2

Aout

Bin
B1 B2

Bout

Cin
C1 C2FFT

IFFT
FFT
IFFT

D
IF

D
IF

ID
IF

ID
IF

Din

17 18 19 20 21 22 23 24

Cout

D2
Dout

Ein
E1 E2

Fin
D1

Frame Number

Input Stage

Intermediate Stage

Output Stage

Frame Number

Input Stage

Intermediate Stage

Output Stage

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 4.2: Time-distributed processing walkthrough. (a) Secondary partition 4x primary partition
(b) 8x primary partition

which an IFFT is performed on the result. The same operations are performed on the subsequence

A2 during frames 7 and 8. Finally, an inverse DIF is applied to the two subsequences computed

during frames 9–12 and the resulting real sequence is the output sequence Aout. In this example,

the workload is perfectly balanced across frames since each of the 3 tasks (DIF, FFT, complex

arithmetic) that are performed during each frame require the same amount of computation.

Figure 4.2(b) illustrates one way to distribute the work for a secondary FDL that is 8× the size

of the primary FDL by using two nested stages of radix-2 DIF. During frames 1–8, input samples

are buffered and DIF is applied as in the previous example, but the work is spread out over twice

as many frames (5–8). During frame 9, the first part of a radix-2 DIF is applied to subsequence

A1 to generate a new subsequence A11. The FFT of this sequence is computed, and half of the

complex multiplications of the resulting DFT coefficients with precomputed impulse response DFT

coefficients are performed. The second part of the radix-2 DIF is computed during frame 10 to

CHAPTER 4. IMPLEMENTATION 24

produce the subsequence A12. The FFT and half of the complex multiplications are performed, as

for subsequence A11 during the previous frame. During frame 11, the second half of the complex

multiplications started in frame 9 are completed, the IFFT of the result is computed and half of the

inverse DIF is performed. Finally during frame 12 the complex multiplications started in frame

10 are finished and the second portion of the inverse DIF calculation is concluded, resulting in

a complete output sequence corresponding to the input sequence A1. The same computations are

performed on the sequence A2 during frames 13–16, and the resulting output sequence is combined

with the one from frames 9–12 (using inverse DIF) to produce the output sequence Aout during

frames 17–20. Unlike the previous example, in this case the workload isn’t perfectly balanced

because the work associated with the nested forward and inverse DIF steps varies somewhat across

frames.

To partition the work for an FDL that is 16× the size of the primary FDL across 16 frames,

we can use a radix-4 DIF in place of the radix-2 DIF used during the nested decomposition step

(periods 9–16 in the last example). A radix-4 DIF decomposition produces four subsequences

instead of two, enabling us to distribute the work over twice as many processing periods. If we use

two nested stages of radix-4 DIF decomposition, we can partition the work of an FDL that is 32×
the size of the primary FDL across 32 frames. However, using higher radix decompositions results

in greater variation of the processing load across frames.

We use a technique described by Vernet [21] for efficiently performing block convolution on

two real sequences using half length complex FFTs. Two N point real sequences x and h are

packed into the real and imaginary parts of two N/2 point complex sequences and then multiplied

by a set of complex twiddle factors to produce a and b:

a[n] = (x[n] + jx[n+N/2]) · e
−j2πn
2N

b[n] = (h[n] + jh[n+N/2]) · e
−j2πn
2N

N/2 point complex FFTs are performed on a and b to generate A and B, which are multiplied to

produce C. Performing an inverse FFT on C gives us c, which is multiplied by twiddle factors to

CHAPTER 4. IMPLEMENTATION 25

produce d, from which the desired real output sequence y can be recovered as follows:

d[n] = c[n] · e
j2πn
2N

y[n] = Re{d[n]}

y[n+N/2] = −Im{d[n]}

Applying this technique to the algorithms described above allows us to use complex FFT routines

exclusively without sacrificing efficiency. Otherwise, we would need to use of a mix of FFT

routines optimized for real and complex sequences. Using the same FFT routines throughout the

algorithm results in greater symmetry and better load balancing.

In [8], Hurchalla describes a method for applying nested short-length acyclic convolution al-

gorithms to improve the computational efficiency of the complex arithmetic performed in the fre-

quency domain. The basic idea is to treat each frequency bin in each partition of the impulse

response as a sequence, and to perform a running convolution between this sequence and the cor-

responding frequency bin of the FFT of the input signal. We implemented a basic version of

Hurchalla’s scheme, using a single stage of 3-partition acyclic convolution. These convolution

routines, as well as the routines used to perform the forward and inverse radix-2 and radix-4 de-

composition steps, were hand optimized in assembly using the SSE3 extensions to the x86 ISA.

While this scheme did reduce the overall amount of work done (in terms of the total number of

floating point operations executed), we found that the variation in execution time from frame to

frame was greater than when using a naive implementation of convolution. This resulted in a

longer worse case execution time, which meant that the version of the code that used the optimized

convolution routines was never able to concurrently process as many independent channels of con-

volution as the version using the naive convolution routines. For this reason, we do not include an

evaluation of the code using this optimization in the evaluation section. Hurchalla also discusses

various techniques to time distribute work across multiple frames when working with multiple

channels. We did not implement any of these techniques – when operating with multiple channels,

our implementation processes each channel independently.

26

Chapter 5

Evaluation

In this section we present and analyze performance measurements of our preemptive and time-

distributed implementations of non-uniform partitioned convolution. The machine used in these

experiments was a Mac Pro with dual 2.66 GHz 6-core Intel Xeon “Westmere” processors and

12GB of memory, running Linux kernel version 3.1.0-rc4 with the CONFIG PREEMPT kernel

configuration option enabled. This option reduces interrupt and scheduling latencies by making

all kernel code that is not executing in a critical section preemptible. We only enabled one of the

two sockets in the system and disabled Hyperthreading during all of the experiments. The built-in

audio device was used for I/O, set to a sample rate of 44.1 kHz and an I/O vector length of 32

or 64 samples. Both versions interface with the audio subsystem using the ALSA API directly –

as opposed to using a cross-platform library (such as PortAudio) or daemon (such as JACK) – to

minimize latency and overhead. We ran each experiment using impulse responses that ranged in

length between 16,384–524,288 samples (0.4–11.9 seconds).

Both versions were implemented as standalone applications that take arguments which specify

how many channels (instances) of convolution to perform and the impulse responses and partition-

ings to use. The time-distributed implementation used the same partitioning for all the experiments:

two FDLs, with the secondary FDL 32× as large as the primary FDL. We chose to use this parti-

tioning in our evaluation because it most clearly demonstrates the consequences of the uneven load

balancing across frames in the time-distributed implementation. The preemptive implementation

uses different partitionings for different experiments, and spawns a single thread per FDL that it

uses to process all channels (instead of spawning a separate thread per channel per FDL) to avoid

CHAPTER 5. EVALUATION 27

unnecessary context switches.

To make our results as deterministic as possible, we disabled all frequency scaling mechanisms

present in the operating system, as well as Turbo Boost (hardware based opportunistic frequency

scaling) in the CPU. We killed all non-essential processes (including X11) and used SSH to log in

to the machine through an ethernet port to start the experiments.

One of the main reasons we chose Linux as our evaluation platform was our inability to get

acceptably deterministic results when performing experiments under MacOS. MacOS provides no

way to disable frequency scaling or Turbo Boost, nor does it provide mechanisms to pin threads

to cores. Another factor that contributed to our decision was the complex and relatively opaque

nature of the MacOS audio framework (CoreAudio) and the OS in general. While ALSA and the

Linux kernel are not terribly well documented, having access to the source code makes it possible

to understand the observed behaviors of the system (given enough time and determination!).

5.1 Single-Core Performance

Our first experiment was to record the OS reported CPU utilization for three different configura-

tions running the same workload on a single core. We disabled every core in the system but one,

so all interrupt handlers and other OS tasks were running on the same core as the convolution app.

The reported number reflects the total CPU utilization for the core (not just for the app) and is

averaged over a three second interval. The workload was 16 independent channels of NUPC, and

the three configurations were: preemptive using two FDLs (PE2), preemptive using the empiri-

cally derived optimal partitioning with between 3–5 FDLs (PEO), and time-distributed (TD). The

CPU utilization values are presented in Figure 5.1, and Figure 5.2 shows the execution times of

individual threads for the PE and PEO configurations.

TD and PE2 both use the same partitioning so we would expect them to exhibit a similar

computational load, and they do. PEO uses a partitioning with three or more FDLs, so it actually

performs sigificantly less work per output sample than either PE2 or TD, and explains why it

outperforms PE2 and PEO by a wide margin. The reported CPU utilization for TD and PE2 are

within a few percent, with PE2 having a slight advantage despite the overhead associated with

preemption.

CHAPTER 5. EVALUATION 28

!"#!$
!%#&$

''#&$

(!#)$

&*#"$

!!#%$!'#($!"#&$!&$!+#"$!)#+$!"#"$
!&#,$

'!#,$
(*#%$

"+#'$

,'#"$

*$

!*$

'*$

(*$

"*$

&*$

%*$

+*$

,*$

)*$

!%(,"$ ('+%,$ %&&(%$!(!*+'$ '%'!""$ &'"',,$

!"
#
$%
$

&'()*$+,-*$.$/0$

!!#"$
!'#+$

!&#%$
'*$

(*#'$

",#"$

,#"$)#,$!!#'$!'#%$!"#($
!%#"$!!#%$!'#+$

!&#"$ '*#&$

')#'$

",#($

*$

!*$

'*$

(*$

"*$

&*$

%*$

!%(,"$ ('+%,$ %&&(%$!(!*+'$ '%'!""$ &'"',,$

!"
#
$%
$

1)234+*$5*+267+*$8*79:;$<=$>()24*+?$

&'()*$+,-*$.$@A$

-./012.345.67408$

9500/:;<0$=:;/>?$

9500/:;<0$'1@0<0?$

Figure 5.1: CPU utilization of a single core while performing 16 channels of convolution.

CHAPTER 5. EVALUATION 29

!"
#
$%
&"
'(
)"*

+(
$,

%

-)
$$
#
./

0$
%1
23
$0
$4
%

-)
$$
#
./

0$
%5
./

#
64
%

7%

87%

17%

97%

:7%

;7%

<7%

=7%

>7%

?7%

8<9>:% 91=<>% <;;9<% 8987=1% 1<18::% ;1:1>>%

!"
#
$%
$

&'()*$+,-*$.$/0$

!"
#
$%
&"
'(
)"*

+(
$,

%

-)
$$
#
./

0$
%1
23
$0
$4
%

-)
$$
#
./

0$
%5
./

#
64
%

7%

87%

17%

97%

:7%

;7%

<7%

8<9>:% 91=<>% <;;9<% 8987=1% 1<18::% ;1:1>>%

!"
#
$%
$

1)234+*$5*+267+*$8*79:;$<=$>()24*+?$

&'()*$+,-*$.$@A$

Figure 5.2: Breakdown of CPU utilization per thread

CHAPTER 5. EVALUATION 30

PE2 has memory access patterns with better spatial and temporal locality and predictability

than TD, and we believe these are responsible for giving it a slight edge in performance relative

to TD. During each invocation of the audio callback function, TD performs 1/32nd of the total

work of computing one channel’s secondary FDL, then does the same for the next channel, and so

on. In contrast, the worker thread in PE2 computes the output of each channel’s secondary FDL

to completion before moving on to the next channel (though it may be preempted). This means

that PE2 generates long streams of unit stride memory accesses while executing the Cmuladd

loop, which enable it to benefit from the hardware prefetch engines in the memory hierarchy.

This results in fewer stall cycles waiting for cache misses to resolve which improves performance.

Additionally, TD performs two (one per FDL) 2N (where N is the audio I/O vector length) point

forward and inverse FFTs for each channel during each audio callback, whereas PE2 performs

one 2N forward and inverse FFT per channel during each audio callback, and one 64N point

forward and inverse FFT per channel in the worker thread over the course of 32 callback periods.

The larger FFTs performed by PE2 benefit from improved spatial and temporal locality in their

memory access patterns as compared to the many smaller FFTs (spread out over time) performed

by TD.

Our second experiment was to measure how many independent channels of convolution each

configuration could sustain without missing any deadlines and causing dropouts in the output audio

stream. This experiment was also performed using a single core. We progressively increased the

channel count until we reached the highest value that ran dropout–free for 60 seconds. The results

are presented in Figure 5.3. As in the previous experiment, the improved computational efficiency

of PEO means it outperforms TD and PE2. However, PE2 is able to process significantly more

channels without dropouts than TD. This is somewhat surprising, given that TD and PE2 had

almost identical CPU utilization as measured in the previous experiment. We believe this is due

to two factors: the imperfect load balancing of TD and the reduced sensitivity to variations in the

scheduling latency of the callback thread of PE2.

The previous experiment measured reported CPU utilization averaged across thousands of

frames, but the worst-case execution time (WCET) during any individual frame determines whether

or not a deadline is met. In the TD implementation, the load balancing is not perfect and so

the WCET is higher than the average execution time. During the course of these experiments,

the largest difference we measured between the worst case and average execution time across

CHAPTER 5. EVALUATION 31

!"#
$%#

&'#

()#

*"#
)&#

)%"#

))!#

)+%#
'(#

!(#
$&#

))&#

'!#

$"#

&%#

%%#

)!#

+#

*+#

(+#

"+#

!+#

)++#

)*+#

)(+#

)"+#

)"%!(# %*$"!# "&&%"#)%)+$*# *"*)((# &*(*!!#

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

0&.#%',12%'3'45'

'"# ')#
!+#

"*#

(*#
*!#

)&+#)%(#
)*$#

))+#
'"# '*#

))"#
)+'#

')#

$)#

('#

%)#

+#

*+#

(+#

"+#

!+#

)++#

)*+#

)(+#

)"+#

)"%!(# %*$"!# "&&%"#)%)+$*# *"*)((# &*(*!!#

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

*#6"7,%'8%,6(+,%'9%+:-;'<='>.#67%,?'

0&.#%',12%'3'@A'

,-./#0-123-452/6#

73//.89:/#;89.<=#

73//.89:/#*>?/:/=#

Figure 5.3: Maximum number of independent channels of convolution possible without dropouts
for three configurations running on a single core.

CHAPTER 5. EVALUATION 32

frames for TD was approximately 15%, though it varied significantly for different impulse re-

sponse lengths and FDL sizes.

TD is more sensitive to variations in the scheduling latency of the callback thread than PE2.

If the callback function starts late, that means there is less time available for processing without

missing a deadline. TD does all of its work in the context of the audio callback thread, whereas

PE2 does part of its work in the callback thread and part of it in the worker thread. Since PE2

has to spend less time in the callback thread before a block of output is ready, it is less likely to

experience a missed deadline if a callback starts later than usual. PE2’s worker thread only needs

to produce a result every 32 frames and is relatively unaffected by variations in the scheduling

latency of the callback thread.

5.2 Multi-Core Performance

Our final experiment was to measure how many channels of convolution the preemptive implemen-

tation could sustain when running on multiple cores. Each worker thread (one per FDL) was pinned

to a separate core to minimize OS scheduler induced non-determinism, and any cores that weren’t

necessary for a given experiment were disabled. Because the number of FDLs in a partitioning

varies with the impulse response length, so do the numbers of cores used in these experiments.

We also considered an alternative scheme where channels (instead of FDLs) were partitioned

across cores. In this scheme, one thread per FDL level was pinned to each core – so for N FDLs

and M cores there would be a total of N × M threads active in the system. However, the pin-

by-FDL scheme outperformed the pin-by-channel scheme in all of our measurements, so we only

present the results from the former here.

The performance of the single and multi-core versions of PE is presented in Figure 5.4. By

using additional cores, we were able to process between 1.23 – 1.83× as many channels without

experiencing dropouts. While our work partitioning scheme is probably not optimal (since there is

significant variation in the computational load across FDLs), we believe the factor that ultimately

limits the maximum achievable number of independent instances is memory bandwidth, not com-

putational crunch. The CPU used in these experiments has 12MB of shared last level cache and

256KB of private level 2 cache per core. A 512k point impulse response represented as single pre-

cision floating point values occupies 2MB of memory. When processing many channels with long

CHAPTER 5. EVALUATION 33

!"#$
$

$%$&'()$

!#%$
$

%$&'()$

!"*$
$

+$&'()$
!*+$
$

+$&'()$
!,"$
$

+$&'()$

!%"$
$

-$&'()$!%*$
!!#$

!.%$
/+$

#+$
"-$

.$

,.$

+.$

*.$

#.$

!..$

!,.$

!+.$

!*.$

!#.$

,..$

!*%#+$ %,"*#$ *--%*$!%!.",$,*,!++$ -,+,##$

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

0&.#%',12%'3'45'

,,#$
$

%$&'()$

,!,$
$

%$&'()$
!-"$
$

%$&'()$

!"*$
$

+$&'()$

!"%$
$

+$&'()$
!,%$
$

+$&'()$
!-.$

!%+$!,"$
!!.$

/*$ /,$

.$

,-$

-.$

"-$

!..$

!,-$

!-.$

!"-$

,..$

,,-$

,-.$

!*%#+$ %,"*#$ *--%*$!%!.",$,*,!++$ -,+,##$

!
"#

$%
&'(

)'*
+,
-.
+/
%,
'

*#6"7,%'8%,6(+,%'9%+:-;'<='>.#67%,?'

0&.#%',12%'3'@A'

0123$4567$

89:;27$4567$

Figure 5.4: Maximum number of independent channels of convolution possible without dropouts
for single and multi-core cases (preemptive implementation using optimal partitioning). Points are
labeled with the number of FDLs used.

CHAPTER 5. EVALUATION 34

impulse responses, the working set doesn’t fit into the on-chip caches and the latency of DRAM

accesses impacts performance.

35

Chapter 6

Discussion

In all of the experiments we conducted, the preemptive version of NUPC (using an empirically

determined optimal partitioning) outperformed the time-distributed version by a wide margin. Our

motivation for implementing the time-distributed version was to enable us to write a plugin that

would behave deterministically when executing in the context of current audio host applications.

The preemptive version required significantly less programmer effort to implement than the

time-distributed version. While efficiently managing the scheduling and synchronization of mul-

tiple threads is not trivial, it allows us to use existing highly optimized libraries to implement

processing tasks without concerning ourselves with partitioning and load balancing. Optimizing

the time-distributed FFT to the point that its performance was competitive with FFTW’s FFT rou-

tines required hand tuning assembly code and carefully managing the layout of data structures

in memory. This was a time-consuming process and required intimate knowledge of the intri-

cacies of the CPU microarchitecture and memory hierarchy. Requiring plugin implementors to

perform these sorts of optimizations to achieve reasonable performance for multi-rate algorithms

seems like an unreasonable burden. Furthermore, the techniques used to implement the time-

distributed FFT don’t scale well to larger (greater than 32×) FDL sizes, limiting the performance

of the time-distributed NUPC implementation for very long impulse response lengths. There do

exist opportunities to further optimize the time-distributed implementation – though the obvious

improvements, such as taking advantage of the regularity across channels to more optimally dis-

tribute the computation [7] would require additional programmer effort and would only benefit

specific use cases.

CHAPTER 6. DISCUSSION 36

Partitioned convolution is just one example of a class of multi-rate audio processing and anal-

ysis tasks – others include score following, rhythm and pitch extraction, and algorithmic compo-

sition. Generally speaking, it can be quite cumbersome (if not impossible) for a programmer to

time-distribute long-running tasks evenly across multiple short time periods, particularly if they

would like to take of advantage existing external libraries. In the case of FFTs, there are clever

mathematical manipulations that enabled us to accomplish this in a limited manner but other algo-

rithms (for example, those related to machine learning) may not be as amenable to such treatment.

While it is possible for plugins to spawn OS threads while running in the context of existing

audio host applications, there is no guarantee that other plugins running on the host won’t do the

same thing. This would result in pollution of the “thread ecosystem,” forcing threads with real-time

constraints to contend with each other for access to processing resources. Ultimately, when there

are more active threads than cores in a system (oversubscription), the burden of making scheduling

decisions falls onto the OS. Given that the OS has very limited knowledge about the relationships

and dependencies between threads in an application, it is unreasonable to expect it to make optimal

scheduling decisions.

In the future, we believe that operating systems and plugin APIs must be extended with mech-

anisms to enable audio host applications to schedule the execution of their processing tasks across

multiple cores while also supporting preemption. This is necessary to enable developers to effi-

ciently write audio plugins and applications that can take advantage of the compute resources in

current and future multi-core CPUs. These mechanisms should satisfy three objectives: efficient

and deterministic scheduling of tasks within an application, hierarchical composition of sched-

ulers, and support for preemption. To this end, we propose the adoption of a two-level scheduling

model. In such a model, the OS gang schedules an application’s threads and a user-level scheduler

(ULS) within the application handles the mapping of processing tasks onto processor cores. While

such two-level scheduling ecosystems are not a new concept, none of the existing proposals we are

aware of support both preemption and the hierarchical composition of user-level schedulers.

The basic idea behind user-level threads and schedulers is to time-multiplex many user-level

threads (or tasks) onto fewer kernel threads. Kernel threads used in this way are sometimes called

“virtual processors.” Context switching and synchronization between user-level threads is efficient

since it can be done without any OS involvement. Cappriccio [3] is an example of a user-level

thread package that implements thread management and synchronization. Cappriccio assumes a

CHAPTER 6. DISCUSSION 37

purely cooperative scheduling paradigm and requires threads to perform I/O using non-blocking

system calls and event-based notifications. This illustrates a major shortcoming of implementing

user-level threading on conventional operating systems: if a user-level thread executes a blocking

system call, its associated kernel thread will block and the ULS will lose control of that thread until

the kernel thread is unblocked. Preemption can also be problematic, since if a user-level thread is

preempted while holding a lock, other threads may be prevented from making forward progress.

In both situations, there’s no way for the OS to notify a ULS that one of its threads has blocked or

been preempted.

Several OS mechanisms have been proposed to address this issue. Scheduler activations [1]

transfer control from the kernel to a user-level thread scheduler to notify it about kernel events such

as blocked threads, and to provide a context in which begin executing another thread. First class

user-level threads [12] use “software interrupts” to notify an application about kernel events related

to its threads. In both schemes, notifying user-space about a kernel event is a fairly expensive

operation that may involve multiple kernel crossings, making them not well suited for use in real-

time contexts. Issues related to using user-level threads in real-time contexts are discussed in

[20] and [15]. None of these proposals address the issue of hierarchically composing multiple

ULS within an application, nor have any of them been implemented on widely available operating

systems for general pupose computers.

Lithe [18] is a low-level substrate which provides mechanisms and a standard API to enable

multiple parallel libraries to be composed within an application efficiently. Lithe provides a solu-

tion to the composability problem, but currently doesn’t support preemption or deal with blocking

system calls. We believe that extending Lithe beyond to support preemption (which will likely

require implementing new OS mechanisms) and requiring that plugins use Lithe’s mechanisms to

implement tasks that would benefit from parallel processing is the best way to address the issues

we have identified. The best way to accomplish this goal is an open research problem, which we

plan to address in future work.

38

Bibliography

[1] Thomas E Anderson et al. “Scheduler activations: effective kernel support for the user-

level management of parallelism”. In: Transactions on Computer Systems (TOCS) 10.1 (Feb.

1992).

[2] Rimas Avizienis and Eric Battenberg. “Implementing Real-Time Partitioned Convolution

Algorithms on Conventional Operating Systems”. In: Proc. of the 14th Int’l Conference on

Digital Audio Effects (2011).

[3] Rob von Behren et al. “Capriccio: scalable threads for internet services”. In: ACM SIGOPS

Operating Systems Review 37.5 (2003), pp. 268–281.

[4] Matteo Frigo and Steven G. Johnson. “The Design and Implementation of FFTW3”. In:

Proceedings of the IEEE 93.2 (2005), pp. 216–231.

[5] G Garcia. “Optimal filter partition for efficient convolution with short input/output delay”.

In: Audio Engineering Society Convention 113 (2002).

[6] WG Gardner. “Efficient convolution without input-output delay”. In: Journal of the Audio

Engineering Society (1995).

[7] J Hurchalla. “A time distributed FFT for efficient low latency convolution”. In: Audio Engi-

neering Society Convention 129 (2010).

[8] J Hurchalla. “Low Latency Convolution in One Dimension Via Two Dimensional Convolu-

tions: An Intuitive Approach”. In: Audio Engineering Society Convention 125 (2008).

[9] IEEE/ISO/IEC. ISO-IEC 9948-1: IEEE Std. 1003.1-1996 Information Technology Portable

Operating System Interface (POSIX) Part 1 System Application Program Interface (API) [C

Language]. New York, NY, USA: IEEE Standards Office, 1996. ISBN: 1559375730.

BIBLIOGRAPHY 39

[10] B.D. Kulp. “Digital equalization using fourier transform techniques”. In: In Proceeding of

85th AES Convention, Los Angeles (1988).

[11] S. Letz, Y. Orlarey, and D. Fober. “Jack audio server for multi-processor machines”. In:

Proceedings of the International Computer Music Conference. 2005.

[12] Brian D. Marsh et al. “First-class user-level threads”. In: ACM SIGOPS Operating Systems

Review 25.5 (Sept. 1991), pp. 110–121.

[13] Robert A. Moog. “MIDI: Musical Instrument Digital Interface”. In: J. Audio Eng. Soc 34.5

(1986), pp. 394–404.

[14] H.J. Nussbaumer. Fast Fourier transform and convolution algorithms. Fast Fourier Trans-

form and Convolution Algorithms. Springer-Verlag, 1982. ISBN: 9780387118253.

[15] Shuichi Oikawa and Hideyuki Tokuda. “Reflection of developing user-level real-time thread

packages”. In: ACM SIGOPS Operating Systems Review 29.4 (1995), pp. 63–76.

[16] Alan V. Oppenheim and R.W. Schafer. Digital signal processing. Prentice-Hall, 1975. ISBN:

9780132146357.

[17] Davis Pan. “A Tutorial on MPEG/Audio Compression”. In: IEEE MultiMedia 2 (1995),

pp. 60–74.

[18] Heidi Pan, Benjamin Hindman, and Krste Asanović. “Composing parallel software effi-

ciently with lithe”. In: Proceedings of the 2010 ACM SIGPLAN conference on Programming

language design and implementation. PLDI ’10. New York, NY, USA: ACM, 2010.

[19] Francis Rumsey. “Digital Audio Interfacing-A Brief Overview (Digital Audio Tutorial)”.

In: Audio Engineering Society Conference: 10th International Conference: Images of Audio.

Sept. 1991.

[20] Yangmin Seo et al. “Supporting preemptive multithreading in the ARX real-time operating

system”. In: TENCON 99. Proceedings of the IEEE Region 10 Conference. 1999, pp. 443–

446.

[21] J L Vernet. “Real signals fast Fourier transform: Storage capacity and step number reduc-

tion by means of an odd discrete Fourier transform”. In: Proceedings of the IEEE 59.10 (),

pp. 1531–1532.

BIBLIOGRAPHY 40

[22] Matthew Wright, Adrian Freed, and Ali Momeni. “OpenSound Control: state of the art

2003”. In: Proceedings of the 2003 conference on New interfaces for musical expression.

NIME ’03. 2003.

