A curriculum feedback collection tool for UC-WISE
courses on the Moodle Virtual Learning Environment

Aditya Kashyap

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-148
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-148.html

December 16, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The work described in this paper was supported by the UC-WISE Project.
I'd also like to acknowledge the support of Dr. Nathaniel Titterton in helping
bring the feedback tool to live production as well as my Masters thesis
advisor, Michael Clancy

A curriculum feedback
collection tool for UC-WISE
courses on the Moodle
Virtual Learning
Environment

Aditya Kashyap, Masters Candidate in Computer
Science, Computer Science Division, EECS

Department, University of California, Berkeley,
CA 94720-1776 adityakashyap@berkeley.edu

ABSTRACT: In this paper we present a page-
integrated tool for collecting feedback for online
UC-WISE course content on the Moodle Virtual
Learning Environment. First, we discuss
previously employed methods that include a end-
of-semester in-browser survey and in-person
student surveys, each of which has significant
limitations. The feedback tool’s defining
advantage is: 1) its availability on all course
elements within an online curriculum (yielding
feedback data with greater granularity); and 2) a
deep integration with the web portal to deliver
analytical tools to instructors. Next, we present
the design goals we set for this tool and the
features that were developed to realize those
goals. Following this is an explanation of the
entire development cycle, the structure of the
code base, and subsequent improvements on
each iteration. Lastly, we map out steps for
improving the tool further.

1. Introduction

Engineering and science students do
a great deal of their learning in laboratory
settings, where they are able to experiment,
observe, and evaluate through practical
applications of the knowledge they are given.
Recent education research indicates that
students learn and absorb a great deal more
by applying knowledge in a learner-centered
environment than they do by passively
listening to an instructor lecture for several
hours a week (Collins, Brown, & Holum, 1991;
Titterton and Clancy 2007). Unfortunately,
this lecture-based format that still dominates
present-day higher education. Having said
that, there is a growing movement in tertiary
education focused on promoting the active
learning process with a focus on the student.

These student-centered teaching strategies
feature peer instruction, inquiry-based
learning, and cooperative learning (Bransford,
Brown, & Cocking, R.R, National Research
Council (U.S.); Dillenbourg, 1999). A student-
centered approach must incorporate active
content that involves the student in a variety
of educational activities carefully selected and
skillfully matched to complement one another
to enhance the student’s overall grasp of a
subject. Each of these activities has its own
particular goals such as: exploration in a
sandbox environment; answering questions
with instant scripted feedback; student self-
assessment and reflection of progress, and
guided collaboration requiring mandatory
student contribution through question gates
(Carle, Canny, & Clancy 2006).

A. The UC-WISE Project

It is in this spirit that the UC-WISE
project (University of California Web-based
Instruction for Science and Engineering) sets
out to establish a framework for a laboratory-
based medium of higher education courses
through an offering of curricula and
technology. Such courses help facilitate online
collaboration and assessment. The goal is
two-fold: discovering the most effective
applications of this technology into the
University of California’s science courses as
well as providing educators with a means to
modify and experiment with courses and
receive feedback from other course
developers (Clancy 2006).

Several UC Berkeley engineering
courses have been developed into UC-WISE
versions and many of these have been
repeatedly taught after successful revisions
on earlier iterations. Some examples include
introductory undergraduate computer science
courses CS3 and CS61B. The former ran from
Spring 2003 to Fall 2010. The latter was first
taught in Fall 2004, Fall 2005, Spring 2008,
Spring 2010, and then again in Spring 2011.
The Fall 2007 semester saw the pilot of a lab-
based CS61C.

The utilization of JHAVE, a program
visualization facility, is one example of how
UC-WISE has incorporated new technology
and resources into courses to improve the
learning experience. This program can be
used to piece together a sequence of images
that illustrate the flow of subsequent stages of

a computer program'’s execution, all while
prompting the student with engaging
questions (Clancy 2006). Another example is a
program like WebJava (or Blue] compiler’s
built-in tool) which allows instructors to
develop exercises which take in real Java code
from students and relay compile-time and
run-time output of the code back to the
instructor. The instructor may gain useful
insights as to where confusion or
misconceptions specifically lie and addresses
those areas more proactively. In the case of
Blue]J, instructors can hard-wire programs to
return specific feedback case by case for
common, anticipated student mistakes.

B. PACT and Moodle

PACT, or “Pattern-Annotated Course
Tool,” is a tool utilized by the UC-WISE
system. Initially prototyped by Andy Carle,
PACT allows for the application of pedagogical
patterns to course activities, making them
instances of these and also presenting the
usage of these patterns in a visualized form
(Carle, Canny, & Clancy 2006). Because a UC-
WISE course’s curriculum is comprised of
smaller “steps”, or learning activities, it is an
ideal candidate to be annotated by
pedagogical patterns, which provide excellent
insights into how educators may reuse
elements of a given curriculum. As existing
UC-WISE curricula are annotated, pattern
inconsistencies will come to light, highlighting
areas for potential improvement of the
curriculum.

Current UC-WISE courses employ the
Moodle platform (moodle.org), an Open
Source Course Management System (CMS) or
Virtual Learning Environment (VLE). Moodle
must be installed on a web server, and in the
case of the UC-WISE project, it is hosted at
sage.cs.berkeley.edu. One of the key strengths
of Moodle is its flexibility to scale to an
instantiation supporting hundreds of
thousands of students while still being nimble
enough to be used for a few dozen students in
only one class.

While some institutions prefer to use
Moodle simply as a means to deliver course
curriculum to students, many (including UC-
WISE) seek to take full advantage of its
activities modules (e.g. databases, wikis, and
forums) to build highly collaborative learning
communities centered around a specific

discipline or topic. The platform also features
valuable tools such as assignments and
quizzes, which instructors can use to assess
the efficacy of the learning that is taking place
in their online course. Moodle’s greatest asset,
however, is its active open-source
development community, which is constantly
contributing new modules and tools for
educators to deploy (stock or customized) in
their course builds.

C. Challenges of Feedback Analysis

The theoretical efficacy of UC-WISE’s
approach to education can be argued
endlessly with convincing citations from
education and psychology papers, but in the
end the only way to truly assess and improve
the educational benefits of lab-based
instruction is to conduct an in-depth study
that compares traditional lecture courses to
their UC-WISE versions.

Formulating the approach for a
rigorous data-driven evaluation of UC-WISE is
only one challenge the UC-WISE team faces.
What information should be collected? And
how should it be collected? These same
questions are also relevant to another
challenge: how to constantly improve upon
each course’s curriculum with every semester
that the course is taught. Until the
development of the tool described in this
paper, there were only two real means of
gathering student feedback: 1) an end-of-
semester survey that would then be analyzed
for further areas of investigation and 2)
manually surveying UC-WISE students each
semester to get feedback on the usefulness of
different tools and activities in facilitating
their learning.

Each of the aforementioned
approaches to collecting feedback had (and
still has) significant limitations. The end-of-
semester survey attempts to capture an entire
course worth'’s of feedback in the last week of
instructions. It was discovered that many
students do not take the survey seriously as
they are anxious to be done with the
semester, and thus fill in facetious input and
random ratings in various fields (Clancy
2011). Of those students that sincerely
attempt to complete the survey in good faith,
many have trouble remembering their specific
frustrations or confusion with materials /
exercises presented in the earlier parts of the

course (Manaris 2002). Furthermore,
students have a tendency to downplay or even
forget initial frustrations or confusions with a
specific exercise or subject matter if they
grasp the concept later on in the course
(Trochim 2002). While this may be fine on an
individual level, it hurts the quality of analysis
and subsequent course improvement that can
be done. This is because some course content
may be poorly explained, but it may still
escape reevaluation if a good portion of
students later grasped the related topic
through other material or on their own. The
survey results may indicate that only a
minority of students had trouble with a
specific topic, indicating a false positive that
the problem for those students must be
somewhere other than in the wording or
explanation in an activity. Often only when a
good-sized portion of students continue to
struggle with a concept until end of term do
instructors investigate curriculum wording.
Also, an end-of-term survey cannot give a
temporal sense of the progression of a student
through the weeks of the course, other than
whatever self-opinion the student may give in
the survey (which can hardly be considered
objective). Instructors will be hard pressed to
understand when exactly a student became
confused or when he or she began to finally
gain grasp of a given concept. Lastly, an end-
of-semester survey lends itself to higher,
broad level questions about the course and
overall self-evaluation of performance rather
than requests for feedback on specific
activities or exercises.

To address this last limitation of a
lack of granularity in the end-of-term survey,
graduate student instructors (GSIs) survey
students during the semester to get a sense of
overall feedback on different tools or
activities. The main issue here is that the
results are from a highly scattered sample and
are far from thorough; only some students are
surveyed and only on certain days about
certain activities pertaining to that day. Some
students who have valuable input may never
get asked at all. Other students are shy, or feel
conscious about giving course criticism to the
instructor (in private or otherwise). Also, such
surveying consumes valuable GSI time that
could be spent helping students or the class as
a whole. Lastly, even though some specific
feedback is collected, there is no easy way to
organize it or quantitatively analyze and

compare specific activities. The approach for
analysis here is a manual one -instructors
must go through the surveys and essentially
“get a feel” for which activities work and
which do not. There is no efficient way of
tabulating or quantifying results.

In this paper we present a Moodle
feedback collection tool designed to address
the shortcomings of the two aforementioned
feedback surveys as well as fill in any
functional gaps. The feedback collection tool’s
key value contribution is its focus on bringing
full feedback functionality to each “atom” of a
UC-WISE course, resulting in an
unprecedented level of granularity.This will
allow instructors to pinpoint problematic
areas (as well as recognize highly effective
and positively received portions) for any
given course, any given day, any given
activity- all down to the specific sentence if
the situation calls for it. Furthermore, the
feedback tool presents the data it collects in
an effective tabular format integrated into the
course portal so instructors can quickly and
quantitatively identify areas of the curricula
that demand attention.

11. Related Work

As one can imagine, there has been
great variation in different approaches to
analyzing the efficacy of lab-centric courses,
both in terms of differing processes as well as
a deployment of custom tools and
methodologies to execute on those proposed
analyses.

Moodle 2.1 features a rudimentary,
native Feedback module that allows for the
creation of custom surveys, unlike the Survey
tool (“Feedback Module” 2011). The
Feedback module supports the template tool,
allowing users to create and re-use sets of
Feedback questions. The template tool is a bit
cumbersome because a new Feedback activity
must be created for every element of the
course that requires specific feedback.
Furthermore, the template tool does not
directly link or associate a course element
with its appropriate Feedback activity.
Because of the bare-bones nature of this
module, many educational institutions have
built upon this with their own custom
solutions to meet their specific needs, but

there have not been any contributions to
Moodle’s open-source communities for public
distribution yet (Clancy 2011).

Researchers at the IRTC
(Instructional Technology Resource Center) at
Idaho State University have developed their
own custom Feedback tool (IRTC, et al 2010)
However, unlike the tool in this paper, it is
implemented as an activity that instructors
can use to create a custom survey for their
students. It features a timing option which
allows the instructor to limit the accessibility
of the activity to a given time period. The tool
has the option to record user names, share
survey results with students, send e-mail
notification, allow for resubmits to specific
answers, as well as a “group mode”, which
supports feedback for group activity. “For
example, if the Feedback tool is used to gather
opinions from a small group activity, using
those same groups will allow you to
relate responses to the particular group
dynamics. For a whole-class or individual
activity, such as thoughts about a guest
speaker, “no groups” should be selected”
(IRTC 2010). The tool also features different
question types, instantiated as Moodle blocks,
templates for different types of questions that
need to be posed (included Captcha, Label,
Long Text Answer, Multiple Choice, Numeric
Answer, and Short Text Answer). The tool
simply dumps all results into a raw text file,
however, and does not support any
visualization or tables to sort through or
easily access the data. There is also no option
to link a question to a specific activity within
the course; each activity will need its own
feedback tool activity to appear directly after
any content that instructors desire feedback
on.

III. Design Goals and Features

The UC-WISE2 feedback tool was designed first
and foremost to yield better curriculum revisions
through better analysis. Better analysis comes
from improving data and feedback collection,
and that was the primary goal sought with the
development of this tool. The design goals
revolved around addressing the shortcomings of
the original two methods of feedback collection:
end-of-semester online surveys and GSI-student
interviews. We will now discuss these design
goals and their corresponding features:

¢ Capture highly specific curriculum
feedback, as granular as possible on any
and all course elements, however atomic

A. Universal Interface

The Feedback Tool allows students to submit
feedback on any course element. As long as
the student is on a course-related page, the
“Leave Feedback” link at the top-right of the
screen in the header never disappears.
Because of the integration of the feedback tool
into the header, the student is assured he or
she will be able to leave feedback for whatever
course element is desired. The tool is
programmed with logic to automatically
associate any feedback submitted from a
given page with the course element that is
present on that page. Not only does this allow
for a clean, automated way to manage
feedback data in curriculum-relevant fashion,
but it also adds a deeper layer of specificity to
the feedback submitted (as compared to the
end-of-semester / GSI surveys) as a student
can single out a specific activity or even a
sentence on a specific page that is particularly
confusing. In the prior survey methods
feedback on specific elements was rare
because students would not remember the
particular element / problem with the
element while giving their survey answers.
With the feedback tool, the student can
submit feedback on an element instantly and
element-specific feedback will finally be
collected regularly.

€« > C [@ sage.cs.berkeley.edu/mod/resource /view.php?i 929

F/ 103383034 NRIKay [V Gmail 771 Development:Develc [11] Profile Stats | Linkec ¥, Google Maps YouTube \W Wikipedia () ICT for Social Enterp @ Amazon

Leave Feedback x

Provide feedback for this page. Your feedback will
be anonymous.

This page is a little confusion, specifically why
does the operating system need a main method?
That sentence doesn't make sense.

ﬁ Other Bookmarks

IEOR140
I What
you will
do
today

In today's lab, you will :

1. Learn how to compile and run programs for the NXT.
2. Perform experiments to understand how motors work.
3. Build your robot.
4. Start on your first prioject, which has three milestones:
1. Your robot traces out a square. Demonstrate this milestone today or Tuesday.
2. Use the DifferentialPilot class to program your robot to trace a square
3. Program your robot to trace geometric figures: circles and regular polygons. Demonstrate this on Thursday and tumn in your project report.

More details later.

Last modified: Monday, 18 July 2011, 02:29 PM

You are logged in as Aditya Kashyap (Logout)

IEOR140 |

Validate HTML ~ Section 508 Check ~ WCAG 1 (2,3) Check

Figure 2. Student View: Feedback Submission Confirmation

ucwise2 CS10_Fa11 All Feedback

People - Topic outline Latest News -

4 Participants Add a new topic...
(No news has been posted

Activities - CS10: The Beauty and Joy yey

& Assignments Of CO m putl n g Upcoming Events —
Forums :
[Quizzes There are no upcoming
Hi! I'm Scratch events
Resources ! .
Go to calendar...
New Event...
Search Forums = ‘
—_— I'm BYOB. Nice to .@
S meet you. < Recent Activity -

Advanced search (3)

November 2011, 10:15 PM
Full report of recent activity...

)J Activity since Saturday, 26
U

Administration =
B Grades

|~/ Reports

d Unenrol me from
CS10_Fa11

.:f Profile

Nothing new since your last
login

& News forum

My courses = elcome!
Welcome to the UC-WISE module for CS10. This is where we

#% The Beauty and Joy of . > " X
A will be hosting all of our lab guides and materials. Feel free to

Computing look around and play with the lab materials! The main website
NS e (http://inst.eecs.berkeley.edu/~cs10) will host the

readings and the semester schedule, while the bSpace site

(http://bspace.berkeley.edu) will be used for

announcements and forums.

Figure 3. Teacher View: Course Homepage (View All Feedback)

ucwise2 CS10_Fa11 All Feedback
People = Latest News -

Feedback Statistics Add a new topic...

(No news has been

Show entries Search: posted yet)

4 Participants

Activities

@ . Page Title Page URL Frequency
B ?Ss'gnme”ts CS10_Fali: Upcoming -
Il How to load http://sage.cs.berkeley.edu/mod/resource/view.php? 1 Events
Quizzes the Tools id=8639 i
[l Resources Sprite upcoming events
CS10_Fa11: .
L . ”
Search Forums 3| Welcome fo ir:jtt:%/ége(z)ge.cs.berkeley4edu/mod/resourcelwewphp. 2 '(\3‘0 méme?darm
—_— Scratch ewtvent..
Go - : ttp://sage.cs.berkeley.edu/mod/resource/view.php? ivity -
\%?]:,Owga” http:/ berkeley.edu/mod} / hp? 1 Recent Activity
Advanced search (3) simulate id=8614 Activity since
. . < > Saturday, 26
Administration Showing 1 to 3 of 3 entries November 2011,
10:15 PM
B Crades Full report of recent
| Reports activity...
4 Unenrol me from
CS10_Fa11 Topic outline Nothing new since
B profile P your last login

My courses = CS10: The Beauty and Joy of

‘gc The Beauty and Joy -
of Computing Com putl ng

All courses ...

Hi! I'm Scratch.

Figure 4. Teacher View: Feedback Statistics Tool

Feedback Statistics

Show entries Search: nate

Page Title - Page URL Frequency
No matching records found

Showing 0 to 0 of 0 entries (filtered from 3 _—
total entries)

Teacher View: Feedback Statistics Tool - Search Functionality
ucwise2 CS10_Fa11 Welcome to Scratch View Feedback

Welcome to Scratch

Let's open up Scratch! You will see a screen like the one shown below. Explore the aspects of the user interface highlighted in red.
Play around for a while and see if you can figure out the major components of the interface. In the next step, you will make your first
project and explore further.

@ Scratch 14 of 30-Jun-09

& B D File Edit Share Help

Conteat Sprite1

Sensing
Operators

Variables

View Feedback

e

point towa

LRI o) 11/01/2011

go to

b Hi Aditya. This is nate...

11/01/2011

Another bit of feedback from nate

if on edge,

x position
y position
[direction

Figure 5. Teacher View: View Page Feedback

B. Automatic Tagging of Feedback to Course
Elements in Associate Table

Even if a student did go back several weeks in
the curriculum just to dig up the problematic
course element, the end-of-semester survey
has no way of automatically associating that
piece of feedback with the problematic course
element. The instructor could either “eyeball”
the data to get a feel for problematic areas of
the curriculum (which is not very precise or
rigorous), or would have to manually tag each
feedback note with the associated course
element. The Feedback Tool eliminates these
concerns by automatically storing every piece
of student feedback with its associated course
element in the database, with no input effort
on part of the user.

* Identify the exact time and source of
student confusion

C. Timestamp and Source Page Data
Collection

As discussed in-depth earlier, one of the major
deficiencies of a survey approach is that
students often forget / are not motivated to
give feedback on course elements that gave
them problems in earlier portions of the
course. In addition, students have a tendency
to downplay or overlook challenges they may
have initially faced with a piece of the
curriculum if they have since overcome the
confusion and gained a command of the
concept. This can lead to an underreporting of
problematic course material, but fortunately
the Feedback Tool addresses both of these
problems; all user feedback is logged for time
and page source of origin. This information is
invaluable as instructors can analyze the data
to observe trends and spikes of confusion in
as the course timeline as well as observe if
and when a student or group of students
overcomes an initial confusion (and possibly
discern the source of the confusion reversal).
This is also logged in a SQL table.

* Improve veracity of feedback
D. Voluntary Feedback

The end-of-semester survey which is given
has been given as a mandatory daily activity/
assignment for many UC-WISE courses in the
past lends itself to disingenuous feedback;
many students are annoyed by being required
to fill out such surveys and subsequently fill in
bogus and inaccurate feedback to quickly be
done with the task. Submitting feedback with
the Feedback Tool is a voluntary option, thus
instructors are much more likely to get
genuine feedback from students that truly
care.

* Encourage greater rates of voluntary
feedback submission from students

E. Anonymize Feedback Option

Voluntary feedback rates increase when students
have the option of anonymizing their
submissions (O'Malley 2000). There will always
be some students who are too shy to directly give
feedback to their GSIs or course instructors for
one reason or another, and the Feedback Tool
presents an outlet for this group in a level of
anonymity that was not previous available. GSI
interviews with students are face-to-face, and
thus effectively cannot be anonymized, aside
from sending anonymous emails or leaving
anonymous notes. The end-of-the-semester
survey is only pseudo-anonymous, and a
student’s identity can effectively be traced back
through the server backend. The code for the
Feedback Tool, on the other hand, manually
wipes all user-identifying data from its database
table immediately upon feedback submission,
including “student id”, “login”, and “IP” fields,
replacing it with a string of 0 bits. Feedback is
currently anonymous by default, but it can easily
be changed by deleting one line of code that
specifies the 0-bit overwrite. Currently, a user
cannot turn the anonymize option on or off; it
must be applied course-wide on the server. The
student is explicitly notified that all feedback
will be anonymous when they Feedback popup
appears upon clicking “Leave Feedback.”

F. Feedback Submission Confirmation

The issue with submitted anonymous physical
or electronic mail to GSIs is that often the
student receives no confirmation that his or
her feedback was received. After a student
clicks ‘Submit’ in the Feedback Tool popup
and the JSON handler successfully posts a
feedback form to the server, a JQuery
animation drops down from the top of the
page view with a message reading “Thank
you, your response was recorded.”

G. Web 2.0 UL: Move-able, Resize-able
Lightbox Popup

A basic principle in consumer web is
that if one wants to encourage a specific
customer action on the website, the experience of
completing that action must be made as
frictionless, intuitive, and enjoyable as possible.
The Feedback Tool makes feedback submission
fast, easy, and fun. Clicking ‘Leave Feedback’ in
the page navigation header brings up a Feedback
Input popup. The pop-up is a lightbox, a custom
jQuery object that grays out the rest of the screen
upon appearing. This grabs the attention of the
student and ensures there is no confusion on
whether the Feedback Tool has been selected.
All other web page elements become inactive
until the student clicks ‘Cancel’ or ‘Submit’,
eliminating any chances for distraction or
confusion.

The Feedback popup itself can be
positioned anywhere within the browser window,
which is often critical if a student needs to refer
to specific material on the course page while
giving feedback. All too often, websites make
the mistake of not making their popups
adjustable, which creates unnecessary user pain
if the popup appears on top of feedback-related
page content. For the same reason, the Feedback
popup is also resizable; users can make it as
large or small as they wish depending on the
length of their text input.

* Provide instructors with a useful
framework to view collected feedback and
tools to easily identify course areas that
demand attention

The Feedback Tool has logic to determine
whether the current user that is logged in is an
instructor or a student. If a student is logged in,
he or she will only see a ‘Leave Feedback’
option on course activity pages and that will be
the only functionality provided. If an instructor is
logged into the course portal, the Feedback Tool

detects this and a ‘“View Feedback’ option
appears instead on all course pages.

H. ‘All Feedback’ View and Feedback
Statistics Tool

Instructors need an easy way to view all
feedback for a given course and sift through the
data in a meaningful way. The Feedback tool
provides this functionality through the course
homepage. When a instructor visits the
homepage, instead of the usual ‘View Feedback’
option in the header, an ‘All Feedback’ link will
appear. Clicking this brings up the Feedback
Statistics tool, a sortable table that displays all
feedback for the course, organized by source
element. The tool shows Page Title, Page URL,
and Frequency (total number) of feedback entries
for each respective element. Clicking on the
Page Title or Page URL immediately takes the
user to the respective page in the course. All of
these columns are sortable, which is especially
useful for the Frequency column —allowing an
instructor to quickly discern which course
activities / pages are receiving the most feedback
and quickly address those first. There is
functionality for additional columns to be added
later.

Instructors may also search and filter
through all feedback entries using the integrated
search bar functionality, which employs AJAX
so that all search / filter results can be displayed
without refreshing the page. Lastly, instructors
can set the number of entries to be displayed in
the table according to their liking.

I. Page-Specific Feedback View

The page-specific feedback view is
similar to the student view on any course
feedback page, except that the ‘Leave Feedback’
link the header is now replaced with the “View
Feedback’ link. This provides for a fast and
intuitive way for instructors to quickly see the
feedback for a course element as they are
perusing through a course day’s activities. The
Feedback tool directly associates all feedback
with its subject page automatically. With the
student survey approaches of the past, instructors
could never be sure which specific course
element a student was referring to unless the
student posted a link or word-for-word title to
the activity in the feedback that was submitted.
Even if the name was specified, the instructor
would have to go back through the course’s table
of contents and find the course page. With the

Feedback tool, automatic feedback and page
linking makes feedback analysis painless.

1V. Developing the Feedback Tool

A. Overview

In a vanilla module, it is similar to a
system like Ruby on Rails, where migrations
are possible. One can setup a module through
a standardized procedure and then upgrade it
incrementally. This is done though PHP files,
where the developer specifies version
number, what the update obsoletes, etc. For
the purposes of my feedback tool, I was
interested in setting up a database where the
feedback that is collected may be recorded. To
implement this tool as a module, first I needed
to specify setup information, such as version
numbers, what it provides, and also the
database schema, which is in Excel format.

Originally, the tool was implemented
as a module, and the database was created as
aresult of Moodle automatically importing
the module which actually provided it. The
problem was that there were some side
effects as a result of implementing the tool as
a module. Undesired HTML and CSS artifacts
appeared on the home page of courses. A
Moodle module is not designed for the
purposes that I was trying to achieve - it’s
meant to be delivered as a useful add-on, not
as a side feature, or a more transparent
feature as I wanted. To remedy this, in the
next revision [integrated the tool’s
functionality more into the Moodle core
directly.

The desire was to have a feedback
module that appears on Moodle course pages
that display curriculum. There are two main
parts to such pages: the navigation bar with
the ‘Leave Feedback’ link in the header and
the actual course content below on which
feedback will be left. Determining what type
of pages the feedback option is available for is
determined on the server-side. When a page is
being rendered, there is some code on the
server that determines what type of page it s,
and whether or not it should render the
feedback option.

Alink is inserted into the default
header code that generates the header, and it
is placed on the site that is visible to the user.
The PHP also writew some Javascript onto the

page itself that allows for the page to submit
information back to the PHP module.
Essentially, the PHP will render the page with
the feedback link visible and also embed some
Javascript. When a user clicks on that link, the
Jquery (a Javascript library) Ul is invoked, and
the dialog (popup lightbox that grays out the
rest of the page) appears. After a user fills in
feedback and clicks ‘Submit’, a HTTP POST
request gets fired back to the server. There is
a central place where all requests are received
(ManageFeedback file). Given a received
message, this central sorter then delegates the
message using the appropriate logic. The
POST request has several fields, and one of the
fields dictates whether it is adding a message
or retrieving a message. If it is adding a
message, the central sorter sends the request
to a function which will create a new database
entry that will appropriately map the
feedback to a student ID, course content page
ID, etc. For our purposes we wanted feedback
to remain anonymous, so the student ID is
automatically written as a ‘0’. If desired in the
future, however, the database scheme does
provide StudentID as a field in the database.
Along with this, it stores the feedback
message, the page link, and other information
to put the feedback in context and make
useful information out of it.

There are three basic modes of
utilizing the feedback tool. As a student, a user
can leave feedback, and that is all he or she
can do. As a teacher, one can view all feedback
of a given page, or view aggregate statistics
for all feedback for a given course. Viewing an
individual page’s feedback works as follows: if
the user makes a request that they want to see
all feedback, the central feedback handler
(ManageFeedback) will check to see if the
user is an instructor first. Once it validates the
user is an instructor, it looks in the database
for all entries that have the same CourselD as
the course that instructor is currently viewing
and returns all that data back. All this
communication is being done in J[SON
encapsulation. Then, it will dump all the
feedback back as a JSON data structure and
then the code parses through all that and
renders it to a jQuery Ul widget, where the
instructor can see a list of feedback to all the
students.

@ GET
Browser m

@ create page

O

Header <
theme-based; we use header.html from Formal_White theme
@ header.html
import feedback / render 7

page render

render_css()
render_js() @
render_feedback_trigger()

render.php

render_css()
render_js()
if prof
if student
render_feedback_trigger()
if prof
if student

display
view page / leave feedback link
only if resource is in view mode

N
only render 'View All' link if
on course home page

if student...
browser

m 9 manage-feedback.php database

userid(0 by default),
courseid,
path (url),
message,
time created,
name (page title)

Leave
Feedback

@ javascript will
display success/
error message to 4
user Q return record status (success / fail)
on json message

json message

if instructor...
browser

URL

database

@POST

json message

view (including URL)
feedback

@ check if instructor

javascript will
draw responses

to page @ get all feedback with ‘path’ == URL

Figure 6. Feedback Tool Work Flow

The final mode of interaction involves the
table view when an instructor views all
feedback for a course. The table view is
another Javascript library. For the methods
mentioned previously, the URL is a unique
determinant of the resource that the user is
currently viewing. When viewing all feedback
for a given page, the code looks for all
feedback associated with that particular URL.
In the course level view of all feedback for a
course (the TableView), the code looks for all
database rows corresponding to the course ID
instead. All this information is also received
back in a JSON format and its aggregated
within a jQuery table library that I used.

B. Iterations

The initial implementation was a
module. On the Moodle forums, there is a
template that shows how to start off a module
(“Moodle Module Template” 2011. This was
the vanilla module that I began to modify. To
start off, I set up the module so it would create
the database when it was imported. I also set
up the central feedback point of
communication (ManageFeedback) that was
mentioned earlier.

The module implementation was
producing undesired HTML artifacts on
course pages. In order to fix this, I realized I
could no longer use a module and instead
shifted the code into the core library folder
(‘lib’). Now, the tool was not a module, and
instead it was integrated into the core Moodle
itself. The problem with this approach was
that one no longer has the convenient feature
of getting a database automatically setup
when the module is imported (since there was
no longer a module). Because of this, I had to
manually create a table in the database. I
exported the table schema from the previous
database created by the module and using
that I could recreate the table whenever I
wished. The rest of the code remained the
same in this first revision. [could still use the
older module helper functions to
communicate with the database.

The second revision consisted of
feature additions, styling, and some code re-
factoring. In the first revision, there were
some core Moodle files I was modifying to
provide support for the tool. The UC-WISE
team suggested that it was not ideal to modify
core Moodle files as it made installing the tool

into new courses cumbersome (with several
core files needing modification with manual
code inserts in specific locations). This
approach also reduced the tool’s portability
for future release to the Moodle community.
The goal was to make this tool a plug-and-play
solution. In an effort to make the tool as
decoupled as possible, I factored out all of the
changes in the core files and incorporated
them into separate files. | managed to splice
all together by modifying the styling Theme
files we were using so that they would call out
to these additions that I made. Now, all the
user has to do to install this tool is: 1) add the
tool’s new stand-alone functionality files,
which does not overwrite any existing files
and 2) update a Theme file (use a custom
theme that which was not responsible for
incorporating all the elements). In the
previous version, the tool’s code was more
centralized and was unnecessarily being
loaded whether it was needed or not. For
example, the Javascript was incorporated as a
part of javascript.php’, which was the core
Javascript file for all of Moodle’s operations.
In the newly revised way, Javascript is
inserted only-as needed on the client-side
rather than being loaded regardless of need
on every single page.

V. Future Work

The eventual goal is to release the
Feedback Tool to the Moodle community so
others can use it, but first, this will require
rewriting the tool as a block. Currently, the
Feedback Tool is implemented as a Moodle
module as opposed to a block. As a module, the
Feedback Tool is a customized solution for the
UC-WISE project and works adequately, but it
requires manual modification of several files,
including header.html and navigation theme
files. Because every course, even within UC-
WISE, has its own theme, code must be
manually added to each course’s specific theme
file to include the Feedback Tool. This is not
scalable for open-source release.

A block is unlike a module in that it
appears on the left or side vertical navigation bar.
The advantage of a block is that it does not
require any custom modification of files because
then the Feedback Tool would not sit in the page
navigation header. Moodle community members
would simply have to add one line of code that

adds the ‘Feedback Tool’ block into their build.
The current issue blocking this rewrite is that for
now, the UC-WISE courses are hosted on the
Sage server, which uses Moodle 1.9. In Moodle
1.9, blocks only appear on course homepages but
not on specific course activity pages. Thus, it
would not be possible to display the Feedback
Tool on specific course activity pages —only on
the course home page, which would be useless.
Sage needs to be upgraded to Moodle 2.0, which
allows for blocks to be displayed on course
resources.

Also, there is always room for added
functionality. Some of the features desired for
future versions include a visualization tool for
feedback statistics (similar to the graphical style
of PACT), and additional cohorts for the
Feedback Statistics table such as “date and time
of last feedback” and “average collective grade
of all feedback submitters for a specific course
element”.

It would also be useful to add tagging
functionality to the tool so that course pages
could be identified by key concepts or common
keywords frequently mentioned in student
feedback. A ‘hottest keywords’ trend box could
visually display the most common feedback
topics. The lowest-hanging fruit is adding the
ability for students to view all the feedback they
have submitted for a course as well as for a
specific page. It may also be interesting to
explore if the UC-WISE team would want to
make all course feedback available not only to
instructors but to students as well. Lastly,
integration of the tool with PACT could prove to
be a powerful resource, if implemented correctly.

The Feedback Tool went live in late
October of 2011 to two UC-WISE courses: CS
10 and IEOR 140. Because the tool was
launched so late in the semester, very few
students are aware of it and there has been a
relatively low volume of feedback. Emails were
sent out to the GSIs of the two courses, urging
them to highlight the new tool in their next class
session, but the effects were hardly felt. In the
future, it will be critical to reach out to
professors and GSIs prior to the beginning of the
term and ensure that they are both educated in
and willing to discuss the tool during the first
week of laboratory instruction.

V1. Evaluation Plan

Had we been able to release the tool
according to the original schedule, [would
have evaluated it through several methods.

First, would have compared the
percentage of unique students in a course
who contributed feedback at least once by
using the feedback tool with the percentage of
genuine survey responses that we would
traditional end-of-the-semester course
survey. Perhaps the tool motivated a student
to submit genuine feedback who otherwise
who would have not. Comparing these rates
will help shed light on the matter.

Second, I would specifically focus on
analyzing the feedback tool’s ability to help
flag problematic course content on a broader,
class level. Going back to previous semesters
of a course, [would identify topics or concepts
that students had the greatest issues with on
the exams as a whole. If current students were
now using the feedback tool to raise attention
to course content related to those topics, then
I would know there is some value in the tool.
Then, if instructors took action on those
course items and rephrases / redesigned
them and the students performed better on
exam problems related to those topics (again,
as an aggregate), then I would know that they
clearly had an advantage over previous years’
students: the ability to call the instructor’s
attention to course elements that need to be
better explained.

Third, it may be valuable to explore if
there is any correlation between the amounts
of feedback students submit in a class to their
performance in the class. One hypothesis is
that the feedback tool increases student
engagement in the curriculum as they feel it is
easier to voice their frustration / confusion,
and thus they are more likely to revisit old
course material that they expect or hope to be
updated due to their feedback.

Lastly, with the permission of
students who choose to submit feedback non-
anonymously, I could track the feedback they
left on specific course elements on a timeline.
On the same timeline | would note any
instructor or GSI action taken to address
those issues, either directly through
interaction with the student or indirectly by
fixing or rewriting confusing course content.
This data could indicate how effective the tool

is in addressing specific needs of students by
looking at response rates from instructors.
Furthermore, the instructors could look at the
students’ tests and discern whether or not
problematic areas raised in the feedback for
properly addressed depending on their
performance on certain test problems.

VII. Conclusions

Although end-of-semester and GSI
surveys serve as good starting points for
feedback collection, in order to perform a
robust analysis that informs instructors on
curriculum improvement, the feedback data
collected must be more granular, trustworthy,
and abundant than what these processes
yield. Furthermore, analysis of this data is
limited due to lack of specificity, concerns of
anonymity, and the manual sifting required to
organize and present the data in meaningful
ways. In response to these shortcomings, we
created the Feedback Tool, a Moodle module
which automates and truly anonymizes the
feedback submission processes, all with an
unprecedented level of granularity so that
both students and instructors can pinpoint
and address very specific problematic areas
within the course curriculum. We presented
the reasoning behind the design decision for
the tools, the product features that we
employed to bring those design goals to
fruition, and the underlying technology and
implementation effort in building the tool. In
our opinion the Feedback Tool shows great
promise in yielding rich data from which
curriculum best practices may be discerned to
improve course curriculum not only more
rapidly, but more effectively as well.

Acknowledgements

The work described in this paper was
supported by the UC-WISE Project. I'd also
like to acknowledge the support of Dr.
Nathaniel Titterton in helping bring the
feedback tool to live production as well as my
Masters thesis advisor, Michael Clancy.

References

Bransford, J., Brown, A. L., & Cocking, R.R,
National Research Council (U.S.).
Committee on Developments in the Science
of Learning

Carle, A., Canny,], & Clancy, M., (2006). PACT:
A pattern-annotated course tool. World
Conference on Educational Multimedia,
Hypermedia and Telecommunications, 2006
(1),2054-2060

Clancy, Michael. "The UC-WISE
Project." Computer Science Division | EECS
at UC Berkeley. Department of Computer
Science, UC Berkeley, 30 Aug. 2006. Web.
14 Nov. 2011.
<http://www.cs.berkeley.edu/~clancy/we
b/ucwise.html>.

Clancy, M., Titterton, N., Ryan, C,, Slotta, ., &
Linn, M. (2003). New roles for students,
instructors, and computers in a lab-based
introductory programming course. SIGCSE
'03: Proceedings of the 34th SIGCSE
technical symposium on Computer science
education, Reno, Navada, USA, 132-136.

Collins, A., Brown,]. S., & Holum, A. (1991).
Cognitive apprenticeship: Making thinking
visible. American Educator, 15, 6-46.

Dillenbourg, P. (1999). Collaborative Learning:
Cognitive and Computational Approaches
Oxford, UK: Elsevier Science Ltd.

"Feedback Module." Moodle Docs. Moodle
Community, 30 Sept. 2011. Web. Autumn
2011.<http://docs.moodle.org/21/en/Fee
dback_module>.

IRTC Guide: Using the Feedback Tool in Moodle.
Issue brief. IRTC, Idaho State University, 22
Mar. 2010. Web. 10 Nov.
2011.<http://www.isu.edu/itrc/resources
/feedbacktool.pdf>

Manaris, Bill and McCauley, Renée.(2002)
"Computer Science Education at the Start
of
the 21st Century - A Survey of Accredited
Programs," in The Proceedings of the 32th
ASEE/IEEE Frontiers in Education
Conference (FIE'2002), Boston, November
2002, F2G10 - F2G15

McCauley, R., Pharr, W., W,, Pothering, G., &
Starr, C. (2004). “A Proposal to Evaluate
the Effectiveness of Closed Laboratories in
the Computer Science Curriculum,” Journal

of Computer Science in Colleges, 19 (3),
191-198.

"Moodle Module Template." Moodle Forums.
Moodle Community, 26 Nov. 2011. Web.
Autumn 2011.
<http://download.moodle.org/download.p
hp/plugins/mod/NEWMODULE.zip>.

0'Malley, Patrick M., Lloyd D. Johnston, Jerald
G. Bachman, and John Schulenberg. "A
Comparison of Confidential versus
Anonymous Survey Procedures: Effects on
Reporting of Drug Use and Related
Attitudes and Beliefs in a National Study of
Students." Journal of Drug Issues 30.1
(2000): 35-54. Print.

Titterton, N. and M.]. Clancy. “Adding some lab
time is good, adding more must be better:
The benefits and barriers to labcentric
courses.” International Conference on
Frontiers in Education: Computer Science &
Computer Engineering (FECS 2007). 2007.
Athens, GA: CSREA Press. p. 363-367.

Trochim, William M. The Research Methods
Knowledge Base, 2nd Edition. Internet.
2002.
<http://trochim.human.cornell.edu/kb/in
dex.htm>

