
Party Pooper: Third-Party Libraries in Android

Gabriel Nunez

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-149

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-149.html

December 16, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was completed with help and advising from Anthony D. Joseph
(research advisor), Paul Pierce (student), and Eric Brewer (second reader).

Party Pooper: Third-Party Libraries in Android

by Gabriel C. Nunez

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Anthony D. Joseph
Research Advisor

(Date)

* * * * * * *

Professor Eric Brewer
Second Reader

(Date)

Party Pooper: Third-Party Libraries in Android

Gabriel Nunez
Computer Science Division, UC Berkeley

gnunez@cs.berkeley.edu

Abstract

Third-party libraries (3PLs), such as advertising networks, gaming networks, and analytics engines,
are an integral part of modern mobile platforms. If Android developers want to integrate functionality
provided by 3PLs, they must bundle opaque binary code into their applications. Unfortunately, devel-
opers must in essence overprivilege their Android applications by requesting dangerous permissions,
such as full Internet access, solely for the purpose of supporting 3PLs. Mixing 3PLs and dangerous per-
missions introduces vulnerabilities and risks to potential compromise of private user data, especially in
an uncurated application marketplace. This work presents AdDroid, a proof-of-concept implementation
that applies the principle of least privilege to mobile applications and advertising 3PLs by introducing
the notion of third-party privileges directly into the Android API. AdDroid minimizes the burden of
change to application developers and consumers, improves privacy, and supplies independent controls
for 3PLs. AdDroid eliminates overprivileging in 44% of advertising-supported free applications. We
also study how much advertising-supported “free” applications may cost users in terms of their limited
monthly data plans and how AdDroid addresses this concern. Finally, we present possible deployment
plans of the new system.

1 Introduction

In traditional commodity operating systems, applications run with the full authority of the users that
invoke them. Such a design means that a user invoking an application must rely on the application to not
abuse its authority and be bug-free. If an application is malicious it can take action beyond what the user
originally intended. Likewise, if an application is buggy and is exploitable in some way, it can use the full
user’s authority to perform dangerous actions.

Modern mobile operating systems such as the Android Open Source Project (i.e., AOSP, or Android)
have identified this problem and limit the actions a smartphone application can perform based on certain
permissions declared by the application developer. When a user installs an application Android presents
them with a list of requested permissions. If the user chooses to install the application, the operating system
confines the application’s behavior to those permissions.

Unfortunately, the AOSP permission system was not designed with third-party libraries (3PLs) in mind.
In the current state of the AOSP, if a developer compiles his or her application (i.e., host application) with
a 3PL, such as an advertising network’s software development kit (SDK), then the 3PL inherits the same
permissions available to the host application. Advertising on mobile platforms is an integral part of the
mobile ecosystem, enabling developers to publish free and low cost applications in exchange for advertising
revenue. Gaming networks and analytics engines similarly provide important components and features
to application developers and the end-users. Third-party library providers require application developers
wishing to integrate the enhanced features into their applications to embed proprietary SDKs (i.e., 3PLs),

1

gnunez@cs.berkeley.edu

distributed in binary-only form, directly into their applications. Buggy or malicious code puts the application
and user at risk of potential compromise. DreamDroid is a recent example of mobile malware [53].

In order for 3PLs to provide their intended functions (e.g., retrieve an advertisement) they must request
dangerous permissions, such as full Internet access, location based information, and access to phone state.
The Android documentation defines a dangerous permission as “A higher-risk permission that would give
a requesting application access to private user data or control over the device that can negatively impact
the user” [45]. Private user data, or privacy-sensitive data, describes data a user may wish not to share
with others and includes, but is not limited to: geolocation, list of contacts, age, gender, financial data,
calendar entries, browser history, email, SMS, and unique device identifies (e.g., IMEI, UUID or UDID).
Since application developers bundle these 3PLs as part of their host applications, they must now request
these dangerous permissions for their entire application. This means a simple host application that includes
desktop wallpapers, for example, that requires no network functionality must now have multiple dangerous
permissions in order to become advertising-supported. Likewise, a single player game reporting high scores
to a gaming network now requires the INTERNET permission and can send arbitrary data to remote hosts.
Additionally, privacy controls on the Android platform are less than adequate, and this inadequacy aids in
the leaking of private user data. This is a problem of both privilege separation as well as overprivileging.
Ideally, Android should treat the host application and 3PLs as separate entities with an independent set of
permissions based on their behavior.

Privacy- and security-conscious users view permissions on the Android platform more critically than
Android’s top competitor, iOS. The major contributing factor to this difference has to do with the way
Google and Apple distribute applications to their respective users. Google allows any registered application
developer to publish their applications or application updates directly to the Android Market, which are
then immediately made available to the public for download. Google treats all submitted applications as
equals, regardless if the application is functional, buggy, benign, or malicious. Only after a number of users
report or flag an application as inappropriate does Google review the application for potential threats. In
juxtaposition, Apple reviews each submitted application and update before making it available to the public.
In other words, Apple has a curated App Store, comprising applications vetted or certified as safe, while
Google’s Android Market is susceptible to abuse.

AdDroid is a proof-of-concept implementation to solve overprivileging and privilege separation for
3PLs; it is a custom branch off of the AOSP version 2.3.3 (Gingerbread) source. The AdDroid system
is a flexible application programming interface (API) built directly into the AOSP framework that provides
advertising support for multiple advertising networks. AdDroid also provides 3PL-specific permissions
since we built the API into the AOSP. Application developers can request these lesser-privileged permis-
sions, which give them access to the AdDroid API. AdDroid’s “advertising privileges” include two new
permissions: INTERNET ADS and TRANSMIT LOCATION ADS. The API is narrow, and allows for re-
questing advertisements from multiple advertising networks, while optionally specifying tracking data used
in targeted advertising. The new backing AOSP advertising service then handles all network and location
based requests, abstracting that functionality away from the application and 3PL. In return, applications
receive advertisements fetched by the backing service without needing to have generic dangerous permis-
sions. In essence, AdDroid serves as a privilege separated advertising service while denying 3PLs access to
privacy-sensitive user data.

Even though we implemented AdDroid on the Android platform, we see the concepts in this work as
a generic approach applicable to other smartphone platforms: iOS, Windows Phone 7, BlackBerry, etc.
AdDroid also targets advertising 3PLs, but we can extend it to provide functionality for other common 3PLs
(e.g., gaming networks, analytics, game engines).

2

The key goals of AdDroid include minimizing the burden to application developers and consumers,
improving privacy controls, having independent controls for 3PLs, and reinventing the permission-system
user interface (UI). As part of our work we conduct a case study of the top free applications in the Android
Market, showing that the AdDroid system could reduce overprivileging (with respect to Internet access) in
44.0% of free applications that currently use at least one advertising network. We also conduct a study to
determine the amount of data usage and cost advertisements incur on users’ data plans.

This work began as a class project with Paul Pierce, hence the pronoun inconsistency (i.e., we versus I).
I thank him here, as well in my acknowledgments section, for his input and hard work. Specifically, Paul
had major contributions in sections: 2.3, 2.5, 2.6, 5.1, and 5.2.

In § 2 we discuss background, permission deficiencies, overprivileging with 3PLs, lacking privacy con-
trols, and topics concerning application developers. Then, in § 3 we outline the related work in the space.
Next, we introduce the design and architecture of AdDroid in § 4 and follow up with our implementation
in § 5. In § 6 we offer a discussion on possible deployment options and the related challenges with each
approach. Section 7 contains some thoughts on future work, and we conclude in § 8.

2 Motivation

TaintDroid [20] and AppFence [29] have shown that advertising networks are among the worst offenders
when it come to accessing users’ privacy-sensitive data; for this reason we developed AdDroid. AdDroid is a
proof of concept implementation that addresses the lack of user control over their data and what they choose
to share with advertising networks. A user might not want to share their location with any third parties,
or perhaps they are willing to share location information with well-known third parties while denying it to
others. Conceivably a user is willing to share such information when out shopping, with the potential to
save money through targeted advertising, but is not willing otherwise. Developers should give users greater
control over their data, as this is something currently lacking in Android. AdDroid is an important first step
because advertising on mobile platforms is an integral part of the mobile ecosystem as it enables developers
to publish free and low cost user-installable applications in exchange for advertising revenue.

I begin in § 2.1 with background information on the Android permissions system and reasons why it is
deficient. Then I continue in § 2.2 with a discussion on the structure of Android and how 3PLs inheriting host
application permissions creates problems. I expand on this topic with § 2.3 and explore how the bundling
of 3PLs into host applications introduces vulnerabilities and the risk of application compromise. I cover the
conflicting interests on sharing user data between advertising networks and consumers in § 2.4. In § 2.5 I
present the need to extend the AOSP with lesser-privileged, finer-grained permissions. Section 2.6 contains
a case study that provides proof that a significant number of applications can benefit from a form of limited
Internet access. The second case study in § 2.7 explores how limited control over advertisements can cost
users money. Finally, I present several arguments in § 2.8 of how this work benefits, eases the transition for,
enhances the products of, and improves the Android ecosystem for developers and device manufacturers.

2.1 Android Application Permissions

There are two main types of permission schemes found in systems today: user permissions and applica-
tion permissions. Traditional user permissions, such as those found in Unix and Linux, enable applications
to run with the full user privileges of the user who ran the program. The running application inherits the
permissions owned by the user and runs with access to all the same resources available to that user. Security
risks and vulnerabilities become a major concern in these types of systems with the introduction of third-

3

party software. Risks introduced by any malicious code from the third-party software includes unrestricted
access to the system and all resources available to the user. Likewise, even if the third-party software is not
intentionally malicious, any of its vulnerabilities welcomes potential compromise, after which the adversary
gains the same access as the user who ran the application. In juxtaposition, application permissions enable
each application to have and run with its own customized set of permissions. The advantage in such a system
is that it is generally the case that the application only requires a subset of the overall user’s permissions.
The limited subset of permissions available to the application hampers any malicious or compromised third-
party software from nefarious activities. Android, among other systems (e.g., BlackBerry, Google Chrome),
implements application permissions for this exact reason.

The security model employed by the Android system requires applications to explicitly request per-
missions for discrete system operations in a manifest. When a user installs a new application or when the
permissions for an existing application have changed, the system prompts the user to authorize the requested
permissions as found in the manifest bundled with the application. During installation, the Android system
shows the user a list of permissions requested by the application. The user, at this time, now has the ability
to choose whether or not to install the application. Accepting the installation signifies that the user approves
the list of permissions per the application’s manifest. Once granted, the system does not prompt the user for
permission again at the time of use. The permissions of the application are a do-or-die, or an all-or-nothing,
proposition; a user cannot accept some permissions while rejecting others. Further, the different permis-
sions can be vague (e.g., READ PHONE STATE). The way Google implemented the Android permission
system may not be the best option for users. Figure 1 shows a sample of permission installation screens for
applications in the Android Market.

Felt et al. performed a related study to better understand the full ramifications of such a permission
system [24]. The authors studied a large collection of Android applications with respect to their requested
permissions. (The authors also looked at Google Chrome extension permissions, but I will not cover them
here.) Their main goal was to “. . . [A]ssess whether the potential benefits of application permissions are
being realized. . . ” and verify that they support the claim made above, that applications generally require
less than full permissions. Their study determined that on average free and paid applications request 4.71
and 5.83 total permissions, respectively. Total permissions includes both non-dangerous and dangerous
permissions. Of the available 56 dangerous permissions in Android, free and paid applications request 3.46
and 3.99 dangerous permissions on average, respectively. Additionally, even the most highly privileged
application requested less than half of the available dangerous permissions.

The authors suggest that the paid applications request slightly more dangerous permissions due to the
fact that they offer enhanced or premium functionality over free applications. They conclude that application
permissions are effective at reducing the privilege level for Android applications. Among their positive
results they discovered some problems. A significant number of applications that requested dangerous
permissions either could have provided similar functionality without some of the dangerous permission(s)
or never required some of them in the first place. Finally, they found that almost all applications request at
least one dangerous permission, 93% and 82% for free and paid applications, respectively. This is significant
because this means that practically all applications will display a security warning upon installation, quickly
desensitizing users and encouraging them to ignore the implications of the prompts.

2.2 The Current State of Android

Although the permission system as currently implemented in Android has its advantages, there are inher-
ent security- and privacy-related flaws in its design. Unfortunately, the AOSP permission system was poorly
designed with respect to 3PLs and is entirely lacking with respect to the advertising model. In the current

4

Figure 1: Sample install screens from two popular Android applications. These screenshots show the install-
time permission system, as well as how Android presents permissions to the user.

5

state of Android, 3PL developers require application developers wishing to integrate additional functional-
ity into their applications (e.g., advertisements, leaderboards, analytics) to embed proprietary binary-only
SDKs directly into their applications.

The 3PLs require communication with third-party servers in order to provide the desired enhanced func-
tionality such as retrieving advertisements, reporting scores, or reporting usage statistics for analytics. In
order to communicate with the requisite servers, these 3PLs require dangerous permissions, such as full In-
ternet access, location based information, and access to phone state and identity. Since developers integrate
these 3PLs as part of their applications, they must now request dangerous permissions for their entire appli-
cation even if the functionality their application provides does not require these permissions. For instance,
a simple single-player game that requires no network functionality to operate must now request multiple
dangerous permissions in order to become advertising-supported, participate in a gaming network, or report
usage statistics. This is a problem of both privilege separation as well as overprivileging. The Android
model does not allow application developers or users to assign one set of permissions to the host application
while assigning a different set of permissions to bundled 3PLs. Android does not even attempt to differenti-
ate between application code or code bundled from 3PLs. By design it could not even if it wanted; all code
appears the same to the Dalvik virtual machine.

Ideally, the host application and 3PL(s) should be separate entities with different permissions based
on their behavior and individual requirements. This is currently not possible with Android; the current
model is a do-or-die, an all-or-nothing proposition determined at application install time. Without enhanced
mechanisms 3PLs receive full permissions and access to sensitive data (i.e., the 3PLs receive the same
permissions as the host application). Consequently, 3PLs now have access to all the systems resources that
the host application does. By design, 3PLs inherit all dangerous permissions granted to the host application
as well as obtain the rights to application-accessible sensitive data. These permissions and data might
include the following: read or write access to contacts, record audio, take pictures, read or send SMS, make
phone calls, read phone state and identity, read and write to storage, obtain fine- or coarse-location, modify
system settings, and perhaps create network sockets to arbitrary hosts with the ability to transmit any of this
sensitive data. This work’s focus is to address the contention caused by 3PLs and overprivileging. AdDroid
solves overprivileging with respect to advertising.

Users may be unaware of subtleties that exist in the current state of Android with respect to 3PLs.
First, 3PLs install and run without user consent. Few developers openly publish what, if any, 3PLs they
bundle with their applications. The best example I can think of where publication of 3PLs does occur are
games which boast of the inclusion of a gaming network or engine. Users welcome this inclusion because
it increases the competitiveness due to leaderboards and achievements, most of which users can publish to
their favorite social network.

Second, I have yet to see a developer who publishes, such as in the description found in the Market or
third-party application store, the advertising network or analytics engine they bundle with their applications.
Some applications present users with a terms of service (ToS) (or similar) that they must read and accept
prior to use. One of the purposes of the ToS is for application developers to outline the usage rights granted
to the user and, if applicable, what user data the application accesses, how it uses it, how it stores it, and
for how long it kept the data. Unlike the host applications, 3PLs do not present users with their own ToS,
which may radically differ from the host application’s ToS. The end result is that users are not informed
about what data 3PLs share with third parties, neither how they use it nor the retention period. Specifically,
the developers of the bundled 3PLs either never or only after application installation and execution provide
identifying information, as in the case of an advertising network overlaying advertisement images with the
text “Ads by foo.” There are 3PLs that exist that never provide any means of identification to the consumer.

6

Figure 2: A Matrix live wallpaper requesting the SYSTEM ALERT WINDOW and the INTERNET permis-
sions at install time. Another example of the do-or-die, all-or-nothing proposition.

Third, it is often difficult for users to determine the origin of functionality. Put differently, it is difficult
to determine if the application developer or the 3PLs provide functionality x.

Lastly, Android’s permissions documentation is incomplete and hard to navigate. Through personal ex-
perience, talking with anyone familiar with Android development has lead to at least one or more comments
regarding the difficulty of navigating the AOSP documentation and its incompleteness; it has been slowly
improving over time. It is difficult for developers to determine the minimal set of permissions their appli-
cation requires. Application developers will then request permissions because they might use them rather
than that they will use them. Conversely, consumers often question the validity of an application’s list of
permissions. They wonder why a live wallpaper, for example, needs fine-grained access to their location
along with full Internet access. Figure 2 contains a similar example. According to the Android online docu-
mentation [38], very few applications should use the SYSTEM ALERT WINDOW permission. Here, the live
wallpaper is requesting access to display alerts and to access the Internet. To combat user confusion, it is
becoming common to find developer-provided lists of why their application requires the requested permis-
sions, as seen in Figure 3.

2.3 Malicious Advertising Networks

In the existing Android model, it is requisite that application developers wishing to integrate additional
functionality into their applications embed proprietary binary-only 3PLs directly into their applications.
Figure 4 shows the current layout of the AOSP system, how applications integrate 3PLs, or advertising

7

Figure 3: Speedx 3D is a popular application in the Android Market. In the application’s description the
developer provides brief details on why the application requires certain permissions and for what the ap-
plication uses them. There is no proof that someone has proven the validity of these statements. Note the
disclaimer “you’ve been warned,” followed by a smiley face.

SDKs in this example, and how they interact. This integration requires an application developer to trust 3PLs
with the integrity of the application itself. This introduces the risks associated with potentially vulnerable
or malicious third-party software entering the application. An unscrupulous 3PL developer could inject
unexpected code into its host application without the application developer’s knowledge. Popular advertising
networks have previously served malicious advertisements [42, 46]. There is no reason to think an attacker
could not attempt a similar attack directed towards the Android platform. Should such an attack be possible,
it would serve to strengthen our motivation for an integrated advertising framework. Furthermore, the 3PL
(i.e., SDK) source code is not made publicly available for review to protect proprietary and intellectual
property. If an application is later deemed malicious or in violation of users’ privacy, it becomes difficult to
determine who is to blame. It could equally likely be the application developer or any of the included 3PLs,
making it difficult for users to know whom to trust and whom to avoid. The decoupling of host application
and 3PL permissions along with the integration of a 3PL API into the AOSP removes this need for blind
trust of a third party.

2.4 Additional Concerns

Generally speaking,1 advertising networks primarily make a profit through two interactions with con-
sumers: advertisement impressions and advertisement clicks. An impression is simply when a web site or,
in this case, a smartphone application loads an advertisement and displays it to the user (i.e., the application
impressed the advertisement upon the user). Advertisement clicks occurs when a user clicks on one of the

1First and foremost a disclaimer: I do not make claims to having any insider knowledge about how advertising networks function
nor do I understand the decisions behind the development process of the SDKs that they make available to application developers.

8

Figure 4: Diagram showing how applications currently work in AOSP. Developers integrate SDKs directly
into their application, and that combined codebase acts as a single program, invoking the Android framework
library. The application then invokes the Android framework with the permissions of the user, which then
communicates with the privileged Android system services via inter-process communication (IPC). The
Android system service performs the permission checks.

9

displayed advertisements which generally forwards the user to a webpage with content related to the ad-
vertisement that he or she clicked. For each advertisement impression or per larger quantity of impressions
(e.g., per thousand) the advertising network awards the requestor of the advertisement (e.g., website owner,
application developer) a sum of money. Advertising networks pay larger sums of money to the requestor for
advertisement clicks than for impressions because they have a higher chance of generating revenue for the
advertising company. An example of this is if a user clicks an advertisement promising ten percent off any
same day purchase from their favorite e-tailer, they are more likely to make a purchase than those users who
did not click the advertisement.

Advertising networks make it possible to display “targeted” advertisements to users, rather than generic
advertisements which may not match the consumers’ interests. Advertisers pay more money for targeted
advertisements because the probability of matching a user’s interest is higher; this in turn increases the
probability of an advertisement click, and therefore a potential new or return customer. On the surface this
sounds like a great way to potentially save everyone money, but there exists what I refer to as a “phenomena
of contention,” or a tug-of-war, between advertising networks and consumers. Advertising networks desire
as much information as possible about each consumer to whom they serve advertisements in order to select
the most appropriately targeted advertisement. Having a user’s age, gender, income, interests, current loca-
tion, and list of contacts, for example, would allow the advertising network to select the best coupon from
the long list of restaurants of which they are actively advertising. The more information they gather, perhaps
illegally or unethically, the higher their revenue. The extra information will greatly benefit the advertising
network financially because it can display advertisements, which are meaningful to the user, and meaningful
advertisements earns them more money. Details about the user enable better targeted advertisement impres-
sions, which in turn improves advertisement clicks (i.e., increases clickthrough rate, or CTR), which then
implies they can charge more per impression. Thereupon they can pay application developers more and
increase their chance of drawing in more application developers and entities electing them to advertise on
their behalf; essentially advertising networks are competing for application developers. Bluntly speaking,
advertising networks have monetary motivation to obtain as much detail about a user as possible.

On the other end of the rope are the consumers. I am certain that few people have any reservations about
freely saving money, but in the depicted scenario there is a hidden cost. Users must be willing to share their
privacy-sensitive information with unknown third-parties (e.g., advertising networks) in order to receive
the most appropriate advertisements. The conflict arises in that on one hand there are users who trust the
developer of their favorite application (e.g., ‘Aggravated Fowls’) with their privacy-sensitive information,
while on the other hand there are users who are wary about sharing it with others. So advertising networks
are pulling in one direction to get as much user information as possible while we have users pulling in
the other direction to keep their personal information private. It is unclear at what costs to an individual’s
privacy he or she willing to view relevant advertisements and potentially save money; we do not understand
all motivating factors behind the decisions to allow advertising networks to have and use one’s personal
information. These remain open problems. However, we do know that companies like Groupon or retailer
loyalty cards have been successful [14].

Even if we perfectly understood the problem, preferences and willingness of what to share and with
whom to share will vary from person to person. Therefore, the principle goal of this work is not to provide a
means of blocking all third parities from ever receiving useful user information, but to give users control over
their own privacy-sensitive information. Not everyone will need or want to use the mechanisms provided to
keep their personal information private. On the contrary, some consumers will want to allow transmission
of personal information to advertising networks because they view privacy differently or because the payoff
is great enough to allow it to happen. Still, others might never be willing to allow such activity. This work is

10

more of an education to users and bestows upon them power over their own information in regards to what
and with whom they will share their data. Though this work is incomplete when compared to its overall
goals, I envision this work coupled with existing work to offer a complete, usable system: AdDroid-like
mechanisms will provide the control and fundamental changes to the Android operating system while a
TaintDroid- or AppFence-like system can provide the necessary enforcement mechanisms (see § 5.3 for
further details).

2.5 Applying the Principle of Least Privilege to AOSP

The principle of least privilege is just as pertinent to 3PLs in host applications as it is to applications
running on Android. Noted earlier, Felt et al. found that Android applications do benefit from application
permissions and that the permission system does help to apply this principle [24]. Unlike any other work
to my knowledge, this work extends the principle of least privilege one layer further down than currently
available in the AOSP. Like Android applications that require less than full privileges (i.e., a subset of the
56 dangerous permissions), 3PLs should follow the same principle. I argue that 3PLs generally require less
permissions than the host application itself.

For situations where similar, yet limited functionality is still required, Google should extend the Android
permissions system to support these needs. In AdDroid, for instance, we created two new, lesser-privileged
permissions to support advertising networks. Advertising 3PLs comprise a substantial portion of all 3PLs. In
the worst case scenario, the bundled 3PLs require more permissions than the host application. This is not any
worse than the current state of Android because the required permissions will be at worst equivalent. I say
equivalent because we can substitute some permissions for new, lesser-privileged permissions. In the average
case scenario we can eliminate the majority of dangerous permissions by separating the host application
and 3PLs and only requesting the privileges independently required for each to function (details found in
§ 2.6). Another possible fine-grained permission would be Internet access but limited to a predetermined
list of hosts with which the host application and 3PL can communicate. This would follow the example of
unsigned Java applets, which may only communicate with the origin server [57], and would provide similar
functionality to whitelisting hosts for Google Chrome extensions [27].

Apple demonstrates improved user control over advertising networks in their iAd mobile advertising
network. First, Apple allows users to dynamically grant or deny geolocation to Apple by enabling users to
turn on or off location services for iAds. An important feature is that users control this option independent of
any application’s permissions. Second, Apple grants users control over whether the users received targeted,
or interest-based advertisements versus generic advertisements. Apple KB HT4228 [30] states that users can
opt-out of targeted advertisements by simply following a link which will set the appropriate cookie. Since
as early as April 2011 [31, 52], Google started an initiative to allow users to opt-out of interested-based
advertising for the desktop browse, the Android Market, and the Google search application on iOS. Google
and Apple implement a limited approach, however, because these options apply only to AdMob and iAd
advertisements and no other third parties. Google still lacks control over location-specific advertisements.
The goal with AdDroid is to overcome these limitations, not for only Google’s own advertisements but for
all advertising networks.

2.6 Over-Privileging in Advertising 3PLs

In order to determine if the AdDroid system would actually benefit real applications, Pearce and I per-
formed an analysis on a group of applications collected from the Android Market. Our application set is the
same set used by Porter Felt et al. in their work on the effectiveness of application permissions [24]. They

11

Mill. Total Apps Total
Category AdMob AdSense Media Mob Clix Medialet ZestAdz w/ Ads Apps
Top Free 231 158 32 34 6 4 352 762
Top Paid 4 6 0 2 0 0 9 100

Free Recent 63 10 1 0 0 0 71 100
Subtotal 298 174 33 36 6 4 432 962

Table 1: Breakdown of the number of applications in each category using a given advertising network. Note:
Some applications include multiple advertising networks, and we count them in multiple columns.

collected the application set in late 2010, which consists of 962 applications. The collection included the
762 top free applications, 100 top paid applications, as well as the 100 most recently added free applications.

Initially, we identified six advertising networks used throughout the application collection. These ad-
vertising networks were AdMob, AdSense, Medialet, Millennial Media, Mob Clix, and ZestAdz. From this
application set we disassembled each application and then examined the included namespaces to determine
if the application developer had included any advertising network SDKs in the application bundle. Table 1
shows a breakdown of how many applications used each advertising network in each category. 352 of the
762 top free applications (46.2%), 71 of the 100 recent free applications (71.0%), and 9 of the top 100 paid
applications (9.0%) used at least one advertising network. Some applications included multiple advertising
network SDKs, which is why the individual columns from Table 1 do not add up to the totals. For example,
93 of the 762 top free applications included 2 or more advertising network SDKs. From this data it is clear
that advertising networks are prevalent in Android applications, and their usage appears to be increasing.

Once we identified the prevalence of advertising networks, we needed to identify if overprivileging ex-
ists. To answer this question we focused on the Internet permission. From the pool of top free applications
we knew included at least one advertising network, we selected 25 applications at random for an in-depth
case study. Table 2 contains the list of the selected applications. For each application selected, we loaded
the application into the Android emulator inside a virtual machine, and then exercised the applications man-
ually. We continued manually exercising until we felt we understood the functionality of the applications,
and explored all possible apparent user interface (UI) events. While performing the exploration of the ap-
plications, we recorded all network communication with Wireshark and then analyzed the results. From
our Wireshark traces we identified the applications that performed network communication to only known
advertising networks. From this analysis we discovered that 11 of the 25 applications (44.0%) used the
Internet solely for the purpose of fetching advertisements.

This result shows that 44.0% of these applications would benefit from the AdDroid system, as these
applications should request the INTERNET ADS permission rather than permission for full Internet access.
The permission system would then limit applications with the INTERNET ADS permission to fetching ad-
vertisements only, rather than performing arbitrary Internet communication. A good example of this is in
Figure 5.

2.7 The Hidden Costs of Advertisements

The advertising networks we investigated give application developers the option to choose the style of
advertisement they wish the end-user to see; the most common type implemented today is banner advertise-
ments found at the top or bottom of the screen. In-application banner advertisements are commonly located
at the top or bottom of the screen. Regardless of how small the advertisements appear to be, users incur

12

Android Market Name Namespace of App
Halloween Sound Board PowellDev.HalloweenSoundBoard
Folder Organizer com.abcOrganizer.lite
Antivirus com.antivirus
Love Poems com.appspot.swisscodemonkeys.love
Music Downloader Lite com.athene.android.amd
Music Downloader Pro com.athene.android.amdp
Mortgage Calculator com.calculator.mortgage
Audiobooks com.crossforward.audiobooks
APNdroid com.google.code.apndroid
Jay-Z Ringtones com.jayz.ringtone
Soccer Scores - FotMob com.mobilefootie.wc2010
Bars & Clubs com.mqdp.barsclubs
Ron Burgundy com.neatofun.anchorman
Ricky Bobby com.neatofun.rickybobby
The Best Life Quotes com.socialping.lifequotes
Bruce (Tobi) Soundboard com.soundroid2012.bruce
Halloween Sounds com.soundroid2012.halloween
Peter Griffin Soundboard com.soundroid2012.petergriffin
Transformers Sounds com.soundroid2012.transformers
Halloween Wallpapers com.swn.netgallery.halloween1
Mike Epps v6 SoundBoard com.swn.soundboard.mike epps sounds
TuneWiki - Lyrics with Music com.tunewiki.lyricplayer.android
Caddyshack Soundboard com.zero1dev.soundboard.caddyshack
Watchdog Lite com.zomut.watchdoglite
TiKL - Touch to Talk (Beta) mobi.androidcloud.app.ptt.client

Table 2: The 25 applications utilized in our overprivileging in-depth case study, alphabetically sorted by
their namespace.

Figure 5: A free application from the Android Market that uses the INTERNET permission only for adver-
tisements.

13

what they believe to be nominal data usages while running advertising-supported applications. Meanwhile,
motivated U.S. cellular carriers are pushing their subscribers from unlimited data plans to ones with monthly
data usage limits to ease the ever growing saturation of mobile networks. We see a similar data-cap push by
“hard-wired” Internet service providers (ISPs) through imposing data caps on subscribers. Consequently, an
increasing population of smartphone users find themselves on monthly data plans with as little as 200MB.
Given these limitations, users ration their use of data-hungry applications while mobile or postpone their
task until a local Wi-Fi connection is available because data overages are expensive. One item of study is
to determine whether the hidden costs of advertisements are enough to alter user behavior by when or how
they use advertising-supported applications or whether there will be sufficient evidence to convince users to
remove advertisements by purchasing applications, which otherwise would have remained “free”.

One possible outcome of implementing AdDroid into the AOSP is the ability to segregate the data usage
charges between user-generated and advertising-generated network traffic. We can offer an application,
like the battery usage application, that shows how much data each application has sent and received over
the cellular network: two entries for both application- and advertising-generated traffic. Users who travel
internationally or often roam will find these features particularly worthwhile because international rates
are costly and substantial traffic while roaming gives the carrier grounds [5] to terminate the user’s data
services. Subsequent to our work on AdDroid, Google added a similar feature with the recent release of
Android 4.0 (Ice Cream Sandwich). Figure 6 previews the user controls available to users. The Data Usage
application displays data usage for the device over a billing cycle and allows users to specify warnings and
limits. The application also breaks down the data used per application and differentiates between data when
the application is actively used or in the background. We could extend the Data Usage application to track
advertising-generated traffic as well.

We first needed a better understanding of how much in-application advertisements from advertising
networks are costing users in terms of their monthly data plan. For this purpose, we assume that most
smartphone users are on a limited data plan such as Verizon’s 2GB or AT&T’s 200MB and 2GB offerings.
From that we calculate the price per byte assuming the user consumes less than 100% of the allotment with
no overages, which, if they occur, increase the cost to the user significantly. Few carriers (e.g., Sprint)
continue to offer unlimited plans, and T-Mobile is unique in that it offers a 2GB plan but throttles network
bandwidth after a user exceeds the limit, instead of charging the customer data overage fees.2

We decided that the two most relevant statistics in advertising-generated network traffic are the size (i.e.,
bytes) of advertisements and the potential network traffic generated as the consequence of a voluntary or
accidental click on an advertisement. In our testing we only considered banner advertisements since they
comprise the overwhelming majority of advertisements found in applications today. We used the same test-
ing environment outlined in § 2.6 for running our subset of advertising-supported applications. To calculate
the “size” of an advertisement we used Wireshark to measure the total the number of bytes transferred for
establishing the TCP session, sending the advertisement request, receiving the advertisement, and the TCP
session tear-down; we then calculated their costs based off of their size and associated data plans.

We chose to base costs on AT&T’s domestic DataPlus, DataPro, and International Pay-Per-Use (PPU)
data rates as of April 2011: DataPlus (plan) @$15/200MB, DataPro (plan) @$25/2GB, International PPU
(no plan) @$0.0195/KB; all prices are in USD. For reference, Verizon’s 2GB plan is 20% more expensive
than AT&T’s domestic DataPro plans. With regards to calculating the amount of traffic generated by an
advertisement click, we used the same technique for calculating the advertisement size but started the capture
immediately prior to clicking the advertisement and stopped as soon as the web page finished loading. We
then calculated the associated costs based on the total bytes transferred. The sample set consisted of 16

2A brief reminder: these caps apply only to data usage while utilizing the cellular 3G or 4G network, not Wi-Fi.

14

Figure 6: The Data Usage application added to Android 4.0 (Ice Cream Sandwich).

15

Mean Cost
Variable Min Median Mean Max DataPlus DataPro International PPU
Ad Size 4,406 6,890 9,028 22,095 $0.0006 $0.0001 $0.172

Ad Click Size 66,605 559,276 922,265 5,886,432 $0.0660 $0.0107 $17.563

Table 3: Breakdown of the size and cost per advertisement or advertisement click. Sizes are in bytes and we
calculated the associated cost for each data plan from the mean of our sample set.

App Cost/min
Monthly Usage Cost

10m/day 1h/day 4h/day
#1 $0.00026 $0.077 $0.460 $1.840
#2 $0.00023 $0.069 $0.416 $1.664
#3 $0.00081 $0.244 $1.467 $5.866
#4 $0.00005 $0.015 $0.092 $0.367
#5 $0.00061 $0.182 $1.090 $4.361

Table 4: DataPlus plan users’ cost breakdown for advertising traffic while running our subset of 5 randomly
selected applications.

unique advertisements from multiple advertising networks and 16 unique webpages that loaded as a result
of clicking on the associated advertisement. Table 3 shows our results.

In-application banner advertisements range from around 4KB to about 22KB, costing the user from one
hundredth of a cent to a little more than 17 cents on average for domestic and international rates, respectively.
Remember, these are the costs incurred per advertisement and only consider traffic between the mobile
device and the advertising network (i.e., we ignored other possible legitimate application-generated network
traffic). Applications which generate Internet traffic outside of advertising purposes can potentially cost the
user much more and is not considered in our study. Advertisement clicks tell a similar story but at orders
of magnitude larger in terms of data usages and associated costs. A typical loaded webpage had several
images, most of which were static images, while the maximum data item (at close to 6MB) was the result of
loading a three and a half minute music video advertisement. An average advertisement click costs the user
from one cent to over seventeen dollars if located domestically or internationally, respectively.

The last part of this case study was to determine data usage statistics for applications run over a length of
time. These numbers are meaningful because an application developer has the ability to select the advertising
network, the types of advertisements shown to the user, and how often advertisements refresh (within a
predefined range). Likewise, AdDroid could throttle or limit the behavior of advertising networks based
on predefined reasonable transfer limits. The most aggressive advertising networks allow developers to
request a new advertisement every 15 seconds, although the advertising networks do not always return a
new advertisement which saves on some network traffic. We randomly selected five applications, from our
subset of 25 applications, that used the Internet only for advertisements and exercised them in our testing
environment. We manually exercised each application for a minimum of 10 minutes and averaged the
cumulative data traffic over the runtime to get a bytes per minute rate. Noted below are the cost results for
the DataPlus, DataPro, and International PPU data rates in Tables 4, 5, and 6, respectively.

Depending on the application and selected data plan, users may find the numbers motivating enough to
ration their data usage or purchase the non-advertising-supported version of an application. Purchasing ap-
plications to remove advertisements, if not to save on advertising-generated traffic per se, will eliminate the

16

App Cost/min
Monthly Usage Cost

10m/day 1h/day 4h/day
#1 $0.00004 $0.012 $0.075 $0.299
#2 $0.00004 $0.011 $0.068 $0.271
#3 $0.00013 $0.040 $0.239 $0.955
#4 $0.00001 $0.002 $0.015 $0.060
#5 $0.00010 $0.030 $0.177 $0.710

Table 5: DataPro plan users’ cost breakdown for advertising traffic while running our subset of 5 randomly
selected applications.

App Cost/min
Monthly Usage Cost

10m/day 1h/day 4h/day
#1 $0.06804 $20.412 $122.471 $489.884
#2 $0.06152 $18.456 $110.734 $442.935
#3 $0.21693 $65.078 $390.470 $1561.879
#4 $0.01358 $4.074 $24.441 $97.764
#5 $0.16125 $48.376 $290.254 $1161.015

Table 6: International Pay-Per-Use (PPU) non-plan users’ cost breakdown for advertising traffic while run-
ning our subset of 5 randomly selected applications.

possibility of intentional or accidental advertisement clicks that can incur unsuspecting, significant finan-
cial consequences. If traveling internationally, it is strongly recommended that users make the application
purchase unless they can guarantee that the application will only run over local Wi-Fi networks.

2.8 Concerning Developers & Manufacturers

So far the majority of the presented discussion has been from the perspective of the consumer. Although
the consumer has the power to control a portion of what Google and smartphone manufactures offer to
customers, one must convince them that the desired changes will benefit the majority of the population. Let
us briefly look at why application developers, advertising networks, Google, and smartphone manufacturers
would welcome the proposed changes in this master’s.

2.8.1 Enhanced Permissions & User Control

Upon implementing the necessary changes into the AOSP, 3PLs would neither have implicit access
to privacy-sensitive user data nor inherit all the dangerous privileges granted to the host application. Of
course it may be necessary for a 3PL to require an unusually long list of dangerous permissions, and in
these cases the application developer can explicitly request them as needed. However, the majority of 3PLs
will generally only require a minimal set of permissions, some of which developers can substitute for the
new, lesser-privileged permissions. These mechanisms will eliminate, or mitigate, application developer
and users’ blind trust of 3PLs. It is still the case that 3PLs might run arbitrary code, but the lower-level
implementation of the principle of least privilege minimizes the risks. Nonetheless, with full integration
of the 3PL API into Android, application developers should generally not need to bundle 3PLs with the
application to begin with. The enhanced permissions will help protect application developers and consumers

17

from the activities hidden in opaque, binary-only distributable 3PLs. Consumers will be able to clearly
identify the bundled 3PLs and have the controls at their disposition to mange what data they choose to share
and with whom. Additionally, the required changes utilize the built-in enforcement mechanisms already
found in the AOSP.

2.8.2 Ease of Transition

The majority of the burden for implementing a new system falls on Google; this is our intention. APIs for
gaming networks and analytics engines can be similarly implemented. We purposefully make the changes
in a way that it minimizes the burden to application developers, smartphone manufactures, and consumers.
The advertising API as found in AdDroid was purposefully written to mimic the most popular advertising
networks’ SDKs as application developers are already familiar with integrating said 3PLs. We hope to
keep the changes developers must make to their application of the order of a few tens of lines of code.
Some of the required changes include the following: removing the previously-imported advertising SDK,
importing the new library, specifying the desired advertising network from which to fetch advertisements
(e.g., AdMob, Millennial Media), and updating the method call to request the advertisement. Essentially,
developers will make the changes necessary to call the 3PL-enabled Android API rather than calling an
advertising network’s SDK.

2.8.3 Public Image

In this section I am referring to the public perception of one’s brand and products and the need to protect
that image. Negative press generated by the media due to security or privacy incidents can taint a brand’s
image and cause a loss of customer trust.

Last year Google made headlines for applications stealing financial data and accessing unnecessary
data [9, 12]. Google was also in the news this year for a significant number of applications with malware
found in the Android Market [12, 53]. In 2010 Pandora was in the news for leaking privacy-sensitive user
data to third parties [55]. Earlier this year the government subpoenaed Pandora in an investigation of their
Android and iPhone applications [18]. An independent investigation confirms the concern [49].

Google and third party application developers are not the only ones with brands and images to protect.
It is common practice for phone manufactures to customize the Android build they ship with their devices.
They generally add device-specific enhancements and bundle a customize UI to help differentiate their
product offering from the competition. Users have had mixed feelings about the customized UIs. There is at
least one instance where a phone manufacturer’s customizations introduced new vulnerabilities that are not
present in the stock AOSP build [47]. HTC included a suite of logging tools with their phones that collected
massive amounts of private user and device data; one of these applications is HtcLoggers. This in and of
itself does not present a privacy concern, however, the HtcLoggers application responded to all requests for
information instead of HTC-only applications. The INTERNET permission is the only requirement to gain
access to the logging application and all its data. Refer to Table 7 for a subset of data HtcLoggers collects
and makes available to third-party applications.

I argue that if Google makes the changes proposed in this master’s that they will minimize these types
of occurrences, which in turn strengthens the Android platform. It is standard practice for phone manufac-
tures, such as HTC, to provide customized versions of Android that ship with their phones. They will be
able to fully take advantage of the improved system. Application developers will be able to better protect
themselves and their applications from malicious or vulnerable 3PLs, or even be able to wholly eliminate

18

Data made available by the HtcLoggers application:

• the list of user accounts, including e-mail addresses and sync status for each

• last known network and GPS locations and a limited previous history of locations

• phone numbers from the phone log

• SMS data, including phone numbers and encoded text

• system logs (both kernel/dmesg and app/logcat)

Table 7: A sample list of data the HTC-provided application, HtcLoggers, collects and makes available to
any application with the INTERNET permission. The author [47] notes that he is not yet sure if one can
decode the SMS text, but it is very likely. He also notes that the system logs include everything that running
applications do and is likely to include e-mail addresses, phone numbers, and other private information.

them. Consumers will enjoy the extra control of their sensitive data to protect it from unauthorized third
parties.

2.8.4 Improving the Android Ecosystem

An integrated 3PL API also has the potential of strengthening the Android Market ecosystem. Installing
a notion of 3PLs into the core Android Market would enable users to more easily identify 3PL-supported
applications. For advertising, it would be possible to tie together advertising-supported and paid versions
of an application at the Market level, allowing users to more easily make an informed decision. Google has
an incentive to support such a system since it enables them to track advertisement impressions and clicks,
and charge a nominal fee to advertisers; this is of course optional and only if Google decides to support this
business model. Advertisers have an incentive to support such a system since it could presumably make
integrating advertisements into applications easier, increasing their business.

These ecosystem advantages are in addition to the reduction of overprivilege, as described in § 2.6.
Advertising networks and application developers would maintain or increase their ability to monetize appli-
cations. The number of installations of an AdDroid-enabled application would increase because security-
and privacy-conscious users would be more likely to install them due to fewer or less-dangerous permis-
sions. Additional users would therefore increase the advertising-revenue for the advertising networks and
application developers. With Android in control of advertising, it is possible for the system itself to delegate
control over whether or not an advertisement renders. It would be possible to create an infrastructure by
which a user downloads a single version of an application, which is both the paid and free version. The
free version of the application is advertising-supported. If the user wishes to get rid of advertisements they
can perform an in-application purchase, which would in turn tell the operating system to stop requesting the
advertisements.

Additionally, as discussed in § 2.7, advertisements cost users money (in terms of limited data plan usage).
With the Data Usage application (or similar) and AdDroid cooperating, the system could track advertising-
generated data usage. The application could then make this information readily available for users to help
them avoid expensive data overage and roaming charges. With this information, users would be able to
make educated decision about which applications to purchase to avoid advertising “costs.” Also, we could

19

modify AdDroid to detect when when a device is roaming internationally, for example, and not request
advertisements until the device is no longer deemed on international travel or until the device establishes a
Wi-Fi connection.

3 Related Work

The structure of the related work is as follows. First, I discuss the popularity of smartphones and the
increasing concern of privacy-sensitive data disclosure. Disclosure can occur through malicious behaviors or
by unintentional disclosure (i.e., user confusion or developer-provided defaults). Next, I introduce the topic
of software bugs and vulnerabilities. I then present relevant research on methods to detect and prevent bugs
and the unauthorized disclosure of sensitive data. Then I present studies that have shown that smartphones
suffer from similar problems and recent studies on addressing these issues. Lastly, I explain how AdDroid
differs from existing work in the same field of mobile research.

The increasing popularity and use of smartphones for personal, financial, social, information storage,
and management have triggered concerns over the proper privileging of user-installable applications and the
leaking of personal information. Installed applications can leak private information through these applica-
tions to the developers and arbitrary third parties without user consent. Part of the blame lies within the
existing UIs that developers provide to the users of their systems. The UI plays a large role in the amount
of control a user has over the system or application. Additionally, the UI design determines a large part
of the users’ understanding of the system and their ability to make informed decisions regarding the pri-
vacy of their personal information. Complicated UIs will overwhelm and confuse users to the point that
they either do not know how to perform the action(s) necessary to enforce their intentions or they believe
they are taking the correct action(s) but in reality their decision contradicts their intended purpose. Another
contributing factor to the unintentional disclosure of personal information lies with the influence of default
options or selections the developers provide to their users. Users are more likely to accept the defaults the
developers provide than to change the selection to their intended action, especially in times of confusion or
uncertainty. On this note, Facebook has been in the news [41] for providing overly relaxed defaults with
respect to users’ private information. On at least one occasion [33, 43] Facebook reset all users’ privacy
settings to the least restrictive option, effectively making all personal information globally visible. Sharma’s
master’s project [48] looked at Facebook and the implications of developer-provided defaults with respect
to personal information and social networks.

Software bugs and vulnerabilities originate in the operating system itself or from the running applications
as a result of varying types of human error in: programming languages, protocol or application design,
logic flows, or typos. Scientists have developed numerous techniques to aid in detecting and preventing
vulnerabilities, privacy leaks, and unauthorized disclosure.

Prevention techniques help find bugs prior to compromise or disclosure and function in a variety of
ways. Privilege separation is a technique in which developers divide programs into smaller parts that they
then grant only the privilege(s) necessary to perform their specific function(s), effectively limiting vulnerable
applications to a subset of permissions. One development, Privtrans [7], aids application developers in an
automated fashion to achieve proper privilege separation and avoid overprivileging if given programmer
annotations in the source code. Privtrans relies on standard *nix process isolation to enforce separation.
Information flow techniques, discussed [15] as early as the 70’s, rely on policies which define how data
flows within the application and how certain types of data can leave the application. Flume [34] is a system
that enforces policies at the granularity of processes and standard OS abstractions (e.g., sockets, pipes,
and file descriptors) and uses the Linux security module framework. Rather than relying on existing OS

20

primitives, Resin [59] defines three new concepts to write and enforce policies: filter objects define the data
flow boundaries, policy objects define the sensitive data, and Resin performs data tracking as the sensitive
data moves within the system. The security-by-contract (SxC) concept provides similar functionality on the
.NET platform [16].

Dynamic taint analysis is a method used to track the flow of information (i.e., tainted data) within a
system and determine which parts of the system the data of interest has influenced (i.e., tainted). Taint-
Trace [8] interacts with applications’ binary instructions, hence it works on any application regardless of
its originating programming language. Users supply a configuration file at runtime, the program monitor
propagates the taint as the program runs, and then enforces the policy by rewriting an application’s binary
instructions. Dytan [10] offers a generic framework with enhanced flexibility and customizability with the
ability to perform control-flow based tainting. Like TaintTrace, Dytan also works on x86 executable binaries
and does so without specialized support from the runtime system. These papers have proven the usefulness
of dynamic taint analysis in finding and preventing application vulnerabilities. Conversely, others [50] show
that the most commonly cited use case of dynamic taint analysis, detecting privacy-breaching malware such
as keyloggers, has significant limitations.

Mobile platforms, including the AOSP, are not without problems. A recent study [24] on Android appli-
cation permissions shows that although the Android permission system is helpful at reducing the privilege
level of Android applications, a significant number of applications are requesting unneeded permissions and
that almost all applications request at least one dangerous permission. It is worth noting the authors’ ar-
gument that a less severe warning for limited access to the Internet (e.g., communication only with known
advertising domains) would be beneficial and that free applications regularly request the INTERNET per-
mission for retrieving and displaying advertisements. Additionally, the authors claim that the INTERNET
permission alone cannot leak personal information; the application must also receive a second dangerous
permission such as READ CONTACTS. AdDroid, presented later in this master’s, addresses these issues di-
rectly; with AdDroid, these overprivileging occurrences will be meaningfully reduced by eliminating the
advertising-only need for fully privileged Internet and location information. The authors’ work is primarily
an exploration of the problem space, and unlike here, they do not directly attempt to solve any of the prob-
lems they discovered. On the other hand, the Kirin security service for Android [21] aims to avoid these
potentially dangerous permission combinations by analyzing the application permissions at install time and
enforcing user-definable security rules.

AdJail [37] is a mechanism to protect desktop browsers from malicious advertisements. AdJail uses
policies and sandboxing mechanisms to isolate users from advertisements and prevent the disclosure of
sensitive user data. The authors intend AdJail for web site publishers who want to protect their visitors,
much like we direct AdDroid’s functionality to application developers to protect their customers.

Quire [17] is a proposed solution to the problem of provenance on Android. Currently in Android,
the identity of the original caller can quickly become obfuscated. Quire approaches this problem with call
chains and message signing. The authors proposed that they can use Quire to help build a new advertising
ecosystem with separate user-level advertising applications. Quire’s objective, with respect to advertising, is
to prevent advertising fraud by certifying that applications properly display and users click advertisements.
Our objective with AdDroid is to enhance privacy by preventing advertising libraries from disclosing private
user data.

Previous work on Android overprivilege has not considered the impact of advertising. A recent study
developed Stowaway [23], a tool used to explore whether Android applications request more permissions
than they require to function. One major difference between our study and Stowaway is that in their study
the authors considered advertising libraries to be a legitimate use of permissions, whereas we do not. Our

21

measurement study focuses specifically on overprivilege that stems from only advertising.
Privacy on mobile platforms is a growing public and legal concern. Previous studies have suggested that

a majority of users are uncomfortable sharing personal information such as location and browsing history
with advertising networks [32,40,56], while others have shown that this occurs without user knowledge [39].
MobiAd [28] is a proposed solution to allow for targeted advertising without while maintaining user privacy
and anonymity. The authors also note concerns over the trade-off users make for these interest- and location-
based advertisements. They conclude by stating that there is insufficient data to know when and where users
are willing to accept advertisements. Cleff [11] argues that legislation is slow and well behind technological
advancements and the legal problems this raises in regards to protecting users’ privacy. Cleff asserts that
users need control over their private data and the types of advertising they receive.

Application developers and users developed their own mechanisms to overcome the lack of user control
and fear of permission abuse. The first, LBE Privacy Guard [35, 36], is a user-installable application for
unmodified, yet rooted manufacturer-supplied Android builds. Rooting an Android device is analogous to
jailbreaking an iOS device; each process provides control over the system which is otherwise blocked. The
second implementation, CyanogenMod [13] is a custom, pre-rooted firmware with permission revocation
built in.

TaintDroid [20] and PiOS [19] are interesting studies on the two most prevalent smartphone platforms,
Google’s Android and Apple’s iOS, respectively. These two studies utilize information flow and dynamic
taint analysis techniques to show that malicious applications and advertising networks (i.e., 3PLs) are often
exfiltrating sensitive personal information to application developers and other third parties. They also dis-
covered that the applications and 3PLs are divulging unique device identifiers. Known advertising networks
are among the top of the list of offending third parties. Journalists [55] conducted their own study of An-
droid and iPhone applications with similar results. Perhaps partially in response to the work of PiOS, Apple
strongly discourages developers from obtaining unique identifiers and has deprecated the applicable meth-
ods in the recent release of iOS 5. On the Android front, TaintDroid and the preceding work by the same
authors are likely to be the most well-known privacy-related smartphone publications for drawing attention
to this research space. AppFence [29] expands upon TaintDroid by tracking more types of user data along
with providing a mechanism to detect the application-level impact of blocking the exfiltration of sensitive
data by either dropping tainted data packets or by offering shadow (i.e., false) data in place of sensitive data
to the application.

This work differs from TaintDroid and AppFence in several key aspects. First, AdDroid is purposefully
designed to only work with applications modified to take advantage of new services and permissions (rea-
soning provided in § 4.3 and § 6.1.1); AdDroid required a trivial amount of rewriting for the application
developer in order for their applications to run on AdDroid. Second, AdDroid’s use is not intended to track,
modify, substitute, or block user data from leaving the device. We designed AdDroid to allow the applica-
tion, say from a trusted developer, to function normally with unfettered access provided by the user-approved
permissions upon application installation. AdDroid does, however, attempt to prevent unauthorized data ex-
filtration via alternative mechanisms. Third, AdDroid does not work with existing Android permissions, but
requires a modified AOSP build with additional, limited permissions designed for 3PLs. Finally, in regards
to items two and three, AdDroid’s goal is to prevent data exfiltration by decoupling third-party permissions
from the host application. Additionally, AdDroid introduces new, limited permissions for use by 3PLs and
by denying 3PLs direct access to sensitive, private data. More specifically, AdDroid is a proof-of-concept
implementation that targets the 3PLs provided by advertising networks. This approach is perhaps sufficient
for now, but it is only part of what should be the final solution. TaintDroid and AppFence’s purpose is, by
design, to prevent the exfiltration of sensitive data, yet they fall short in that they offer no enhancements to

22

application developers who wish to protect their customers from untrusted 3PLs. This work addresses the
latter problem.

Generally speaking, TaintDroid and AppFence attack the problem through problematic analysis to detect
security issues and privacy-violating leakage of users’ data. This type of approach is both expensive, error-
prone, and user unfriendly. Though the authors state that the overhead their systems impose is acceptable,
today’s smartphones are rapidly becoming more and more power hungry where dual- and soon-to-be quad-
core processor devices dominate the performance segment. The problem arises with the fact that battery
technology lags far behind the increase in demand for power. Any extra demand on an already limited
source of power will be further limiting. Modern taint tracking techniques are not perfect and the system
will mark an unknown number of data packets as tainted when in fact they contain no privacy-violating data,
and vice versa. In turn, “killed” data packets will negatively impact application functionality as developers
will likely not have such systems in mind when coding their applications. Additionally, TaintDroid and
AppFense do not propagate taint via logic flows. The general consumer user base of smartphones will find
these systems difficult to use. One cannot assume that the average user, upon receiving a privacy-violating
notification, will be able to determine what exact component of their system is trying to leak information.
The system leaves it up to the user to resolve which application or 3PL attempted to leak information,
what information it leaked, and to whom it intended the information. Conversely, Apple’s iAd provides a
more balanced approach of usability and user control. AdDroid is a new, programatic approach to the same
problem that cleanly separates the host application permissions from 3PLs.

4 Design & Architecture

Currently, a developer wishing to integrate 3PLs into their Android mobile application must include
opaque proprietary binary code into their codebase. Worse yet, due to the design of the Android permission
system, developers must in essence overprivilege their applications by requesting dangerous permissions,
such as full network access, solely for the functionality of the bundled 3PLs. The AOSP requires significant
functional changes and minor code changes in order to overcome the deficiencies in the current system. This
section covers the proposed design changes.

4.1 Concepts

The AOSP employs the principle of least privilege to mobile applications at the application-level. This
is beneficial in that individual applications are only granted the permissions necessary for them to run; the
permissions granted to one application have no effect over any of the other applications. Privilege separa-
tion at the application level for smartphone applications has proven helpful and in a number of instances,
sufficient. Refer to the motivation behind this work in § 2 for reasons why Android’s current permission
system is inadequate.

One of the principle ideas behind this work is to apply the principle of least privilege one layer deeper
than presently implemented. Ideally, we would like the ability to assign a minimal set of permissions to
a host application while granting an independent set of minimal permissions to each of any bundled 3PLs.
Effectively we want to treat the host application and each of any 3PLs as separate entities. Android presently
lacks the capability to separate the privileges granted to a host application from those assumed by 3PLs.
Thus, if an advertising-supported host application requires read access to a user’s contacts list, Android
should not automatically grant the 3PL the same access to the user’s privacy-sensitive data. If Android
treated 3PLs and host applications as separate entities we would be able to pull out the functionality that

23

3PLs provide and incorporate them into the AOSP.
Given this restriction, one must place the 3PL components in a service separate from the application.

One possible design involves running 3PL services as a separate user application, something 3PL develop-
ers themselves possibly supply. Existing permissions would then control access to the functionality these
service-oriented applications provide. However, this design is deficient because it cannot guarantee how
the services behave with user data. To ensure proper use of user data in Android, we need to integrate the
services directly into the AOSP.

First, Google could incorporate a generic analytics engine into the AOSP and make it available to appli-
cation developers. The developer could select the preferred third party to receive the statistics data relayed
by the system. Second, following in Apple’s footsteps with the release of iOS 4.1 and the introduction of
Game Center [3], Google should take the initiative and build in their own social gaming network API. Third,
Google should integrate an advertising API into the AOSP so that application developers can monetize their
applications without the need to blindly-trust advertising-network-provided 3PLs. Apple’s iAd [4] provides
similar functionality for the iOS platform. Figure 7 shows a high level view of the AdDroid design.

Figure 7: The new AOSP design showing the integration of AdDroid at the Framework and Service levels.

Each of these services need not only support Google-branded products, but they will also have built-
in support for numerous other third parties. An application’s request for an advertisement would specify
to which third-party advertising network AdDroid should relay the request. Advertising networks could
submit minimalist applications to the Market which contain configuration data for their particular servers.
When a user launches an advertising-supported application for the first time, Android could detect if the
named advertising network’s configuration files are present and if not search for the appropriate application
(by namespace) in the Market. Android already provides a similar functionality. For example, when a user
first enables the text-to-speech functionality on a device the system automatically redirects the user to the
SpeechSynthesis Data Installer (i.e., Pico TTS) application in the Market that enables said functionality [51].

24

Finally, the integration of 3PL APIs directly into the framework enables Google to introduce new per-
missions designed specifically for 3PLs. Applications should request the new 3PL permissions rather than
the dangerous traditional permissions; Android would then act as an intermediary upon serving the applica-
tion’s requests. A prime example of this would be to have a lesser-privileged form of Internet access. Again
looking at advertising networks as our example of 3PLs, when a user grants the new Internet permission to
the 3PL, Android would step in and constrain it to only communications required to fulfill its role. In Ad-
Droid, we achieved this property by having Android fulfilling the role of the advertising SDK by receiving
the advertisement request from the application and returning only the advertisement image retrieved from
the specified, pre-approved third-party advertising network. Another useful permission would be the ability
to allow Android to relay to an approved advertising network the device’s geolocation for appropriate tar-
geted advertisements. The purpose of such permissions is, for instance, to allow for targeted or non-targeted
advertisements in applications while isolating the application from privacy-sensitive user data.

4.2 Goals

The enhancements proposed in the previous section comprise only a subset of the necessary changes
needed to realize the full potential of an ideal solution. This work is a large step in the right direction. The
guiding principles of this work have helped to define this work and determine where we focused our work.
Several of the key principles, or goals, include minimizing the burden to application developers and con-
sumers, improving privacy controls, having independent controls for 3PLs, and reinventing the permission-
system UI.

The decision to place the majority of the burden of change upon Google is important because this means
that we can minimize the change for consumers and application developers. A smartphone platform without
the support of application developers and acceptance of consumers has little purpose in the competitive
smartphone business. The AOSP, even though it is open source, is virtually a Google-only platform they
offer for use. Given this, along with the fact that they are the owner and primary contributor to the project,
Google should find the incentive great enough to better their product and increase it is competitiveness in
the smartphone space. With a minimal number of changes apparent to application developers, they should
be able to make their application compatible with the system on the order of minutes; perhaps applications
more tightly integrated with 3PLs will require on the order of hours. We converted a simple advertising-
enabled demonstration application that we wrote from the current system (with bundled advertising SDK)
to the new AdDroid system with less than ten lines of code (LoC). Similarly, most of the changes should
remain transparent to the end-user and the learning curve of the new system should require a similarly short
time adjustment period.

The primary goal on the user side is to improve controls over information sharing and privacy. Privacy
controls in the AOSP are minimal and the level of control they impart to the user is likewise minimal. The
archetype of user control would allow users to select, at a sufficiently fine-grained level, which parts of their
data they will share with whom. As in one study [11], the author proposes that users should be able to control
what data they share with others along with how often and the types of advertisements that they see. This
comes at a cost to the user due to the added complexity. AdDroid is a step in the right direction, but more
work is still required to realize this goal. The mechanisms should also improve the overall security of the
platform by eliminating the need to bundle opaque, binary-only SDKs. Lastly, the revised system furnishes
new less-dangerous permissions for any third-party functionality while brokering requests to prevent access
to privacy-sensitive user data. AdDroid is able to broker requests from third parties because the 3PLs will
not have direct access to user data, they must request it from the AdDroid service.

The primary architectural change is that 3PLs have user settable controls and permissions. Users would

25

then be able to adjust settings to control which 3PLs have access to which resources. The new system should
not limit these settings to a single global setting but should allow for autonomous settings, one per third party
or group thereof. One possible scenario is a user wishing to share his or her geolocation with the Millennial
Media advertising network while denying it to all others. The user would be able to grant geolocation access
to Millennial Media and deny access to a single group comprised of all remaining advertising networks.
Similarly, others may share their contacts list with the OpenFeint [44] mobile social gaming network to
invite friends but share it with no one else. The improved controls would also allow users to create more
advanced rules such as sharing fine location with one group of entities, no location information with another
group, and coarse location with the remaining. Settings need not be permanent; users should be able to
modify them as needed. AdDroid does not currently support this level of control as it still lacks a complete
set of new permissions and 3PL APIs. We also have yet to implement the ability to modify permissions
post-installation. There are, however, two implemented examples that we can model this feature after: LBE
Privacy Guard and CyanogenMod 7. We hope to address temporary and post-installation permissions after
we implement the foundational measures in AdDroid.

Adding to and extending the number of controls available comes at a burdensome cost to users. Users
will end up lost if required to navigate in and out of extensive, multi-layered menus. Furthermore, copious
lists, checkboxes, and a plethora of piñatas options can easily overwhelm and confuse users, causing more
harm than good. Facebook has suffered from these UI problems with their privacy and sharing settings [48].
To support this work’s goals, Google must reinvent the permission system UI. Android must present a clean,
simple mechanism that the general user population can easily understand. Moreover, the new UI needs to
allow users to see the growing number of options in a clean, compact space.

4.3 Non-Goal (!Goal)

In addition to the goals previously discussed in § 4.2 there is an auxiliary goal of something I purpose-
fully do not attempt to accomplish in the final solution. Many previous and related studies have attempted
to preserve backwards compatibility or designed to preserve the ability to run unmodified applications, but
this is not a goal I share with others—hence !goal. Due to the importance of this matter I feel that it deserves
its own section for special attention.

By not maintaining backwards compatibility (i.e., the ability to run unmodified applications) the end
result is superior to those that do. Part of the reasoning behind this decision lies in the fact that the pro-
posed changes to the AOSP require a major modification to the system, and this change must be visible
to application developers. If it is visible and requires changes on their part, they must first understand the
new system before modifying their applications. By requiring application developers’ understanding before
implementing any changes will increase the effectiveness of the new mechanisms. Additionally, if Google
markets the new version of the AOSP as a more secure platform, as they should, users will assimilate this
expectation. By allowing unmodified applications to run, users will believe they are operating in a more
secure environment when they are not.

This introduces the challenge of verifying whether applications contain 3PLs or are utilizing the built-in
API. One easy first step would be to check the namespaces of the code bundled with the application and
verify that the application includes only the author’s namespace. A system like Stowaway [23] would be
useful after the necessary modifications. Another option would be to implement code analysis techniques
and determine whether the system detects known third-party code in the application.

It is true that there will be an unknown number of developers who will not find incentive enough to make
the necessary changes and some (legacy) applications may never make it to the new system. Nevertheless,
many developers have the resources available to rewrite popular applications and make them available on the

26

enhance platform. To their advantage, our first goal is to minimize the burden on developers and the amount
of time required to port applications to the new platform. The increasing activation rate of Android-based
devices should be large enough to incentivize the majority of application developers.

5 Implementation

Implementing the complete set of proposed changes that this master’s covers would take considerably
more time than available. For this purpose we determined what would be the most important first steps
and decided to implement those in a proof of concept. We decided that it was best to first address the
overprivileging associated with advertising network 3PLs we discovered in § 2.6. We present AdDroid, our
proof-of-concept implementation. The AdDroid userspace library required 560 new source lines of code
(SLOC), and the new system service required 255 SLOC.3 Additionally, we modified or added 66 SLOC to
the existing system to add support for the framework, system service, and new permissions.

5.1 Fixing Advertising-Network 3PLs with AdDroid

The primary purpose of AdDroid is to eliminate the need to overprivilege advertising-supported An-
droid applications with three superfluous dangerous permissions: ACCESS COARSE LOCATION, AC-
CESS FINE LOCATION, and READ PHONE STATE. To accomplish this feat we added three new major
components to the AOSP: (1) a service, (2) an API to utilize this service, and (3) new permissions to control
access to the new API.

5.1.1 The New AdDroid Service

Any complete solution to the problem will involve isolating advertising components from the main
application. The new component would then impose permission checks on access to the advertising service.
To enforce the separation requirements, we needed to place the advertising component in a service separate
from the application. We considered several possible designs, two of which are worth noting.

The first design involves implementing the advertising service as an independent user application with
two possible sources: a generic application provided by Google that supports multiple third-party advertising
networks, or applications provided by the advertising networks themselves. We believe this design to be
sub-optimal since it does not enforce guarantees on the use of data by the application level component. The
only way to ensure proper use of user data and enforce proper permission checks is to integrate the system
component performing network connectivity and providing user components directly into the AOSP. The
second design does exactly this: it implements the same functionality as the first but places the service in
the AOSP, rather than an application.

Our decision was heavily influenced by the current AOSP design. Android developers implemented
several important features of Android (e.g., the keyboard) in the AOSP as system services. For this reason,
and for wanting to keep true to the AOSP design and architecture, we elected to built a new service directly
into the AOSP. This enables Android to have better control over the components as it is running as a system
service rather than a user-level application. It also provides us with greater functionality as we are not
limited by user-level access controls and the virtual machine.

The new AdDroid service is responsible for relaying advertisement requests, and the related informa-
tion, to the appropriate third-party advertising network. This service ensures that the application has the

3These totals include blank lines and comments.

27

correct advertising permissions and will perform all necessary network and location based operations. Ad-
Droid will also forward location information with the advertisement request if the user grants the appropriate
permission. In response, the advertising network supplies the AdDroid service with the requested advertise-
ment content (e.g., advertisement image), which it then transfers to the application that originally issued the
advertisement request. So applications can only request advertisements, targeted or generic, and give user
attribute information while the advertising service can only give back bitmap images from predetermined
advertising network services. We built AdDroid with support for multiple advertising networks instead of
Google-only advertising services, as this would otherwise cause possible legal trouble for Google by having
an unfair monopoly of advertising revenue on the Android platform.

5.1.2 The New AdDroid API

Applications access the advertising functionality provided by the new service through the AdDroid API.
Applications interface with the AdDroid API which we integrated directly into the core Android framework.
The API then communicates a request for advertisements to the new advertising service running as part of
the core Android privileged services.

In order to build the AdDroid API we began with the most popular advertising network API, AdMob,
per § 2.6. After implementing support for AdMob we looked at the remaining advertising networks and
generalized our implementation to support the others. Specifically, we expanded our API to also support
the Millennial Media advertising network, and are in progress of implementing support for InMobi. We
purposefully skipped the second most popular advertising API, AdSense, since Google has deprecated the
service and encourages their customers (i.e., application developers) to migrate to the newer AdMob service.
The generalization step was straightforward and rather simple as independent advertising networks appear
to function quite similarly or they happen to already model their API after Google’s. Including applica-
tions currently using AdSense, as their developers should be moving to AdMob in the near future, our API
supports 95.7% of the advertising networks used in the top free applications per our case study.

Our AdDroid API currently supports the core functionality of these APIs: supporting advertisements,
listeners, layout behaviors, and statistical tracking data. AdDroid, however, does not currently support
interstitial or video advertisements. Nevertheless, we do not believe there to be any technical limitations in
supporting these advertisement types. As do all the studied advertising networks, the AdDroid API can send
user attributes along with an advertisement request. The host application or 3PL supplies the user attributes
through data they have access to or through manual user entry—in an exercise application a user might enter
his or her age, gender, and weight to calculate burned calories, so the application can now use these attributes
when requesting advertisements. Table 8 shows the user attributes AdDroid currently supports; we derived
these from common attributes among the studied third-party advertising networks. For compatibility and to
offer similar functionality, AdDroid provides built-in support for these attributes.

One major difference between the AdDroid API and existing advertising network’s APIs is that when
requesting an advertisement, application developers need to specify which advertising network they wish to
use along with their unique ID for that particular advertising network. Advertising networks use unique IDs
to determine which application developer is responsible for the advertisement impression or advertisement
click and to pay them accordingly. One added benefit to implementing AdDroid as a generic advertising
service is that developers can change their desired advertising network with modification to only one line
of code. They can easily make the change without the need to learn a new API, bundle a new binary-only
SDK, and modify multiple lines of advertising-network-specific API calls. Additionally, they can make the
necessary changes with minimal debugging. Another benefit is, if application developers so desire, they
may now use multiple advertising networks simultaneously.

28

• birthday

• ethnicity

• gender

• has children

• income level

• level of education

• location

• martial status

• sexual orientation

• political orientation

• zip code

• arbitrary attributes

Table 8: Common user attributes tracked by advertising networks that AdDroid supports. Note: Each
advertising network we looked at had support for passing arbitrary data attributes and keywords, in addition
to these built-in attributes.

We imagine advertising networks can submit applications containing configuration files to communicate
with their servers to the Market. These applications would not request any permissions as they contain
only the configuration files; the host application would be the one to request the appropriate advertising
privileges. The installation process of the host application would then direct users to the appropriate package
for download. Being able to update the configuration files avoids the inflexibility of integrating such data
directly into the OS. Some might argue that the list may go out of date or that the advertising networks
might change, but we argue that if the device has Internet access to download a new or updated application
then they will have access to download the latest configuration files.

Figure 8 shows sample usage of the AdDroid API through a demo application that we wrote. This code
provides a simple example of how application developers set AdDroid properties, instantiate advertisements,
and send requests to the API. See Appendix A for a more detailed description of the AdDroid API.

5.1.3 The New Permissions

With the AdDroid service and API directly integrated into the AOSP we added two new advertising-
based permissions to the existing set of Android permissions. By doing so we can leverage the existing ca-
pabilities of the AOSP for permissions checks and enforcement. The new permissions are INTERNET ADS
and TRANSMIT LOCATION ADS, one is non-dangerous and the other dangerous, respectively. An appli-
cation wishing to integrate advertisements should request AdDroid’s INTERNET ADS or TRANSMIT LO-
CATION ADS privileges, and no longer needs to request network, location, or phone state directly. We
chose to implement the INTERNET ADS permission as non-dangerous because it is a limited form of In-
ternet access: the application cannot create network sockets with this permission alone. Conversely, we
chose to implement the TRANSMIT LOCATION ADS permission as dangerous because we feel that geolo-
cation is privacy-sensitive; the user must grant this permission to the application in order to receive targeted
advertisements, otherwise the AdDroid service will not sent the location information with advertisement
requests. In AdDroid, the Android system itself mediates all security-sensitive operations, thus isolating
the application and eliminating the overprivileging concern. Furthermore, the application can not make
arbitrary network requests, nor can it gain access to location information. If utilized properly, this system
could have the added advantage of training users that advertising-based applications do not require general
Internet network privilege, thus raising awareness to overprivileging.

29

1 p u b l i c c l a s s AdDroidDemo ex tends A c t i v i t y {
/ / C a l l e d when t h e a c t i v i t y s t a r t s or r e s t a r t s

3 @Override
p u b l i c vo id o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {

5 super . o n C r e a t e (s a v e d I n s t a n c e S t a t e) ;
s e t C o n t e n t V i e w (R . l a y o u t . main) ;

7
/ / S p e c i f y t h e add t y p e (e . g . , banner , i n t e r s t i t i a l , v i d e o)

9 A d P r o p e r t i e s p r o p s = A d P r o p e r t i e s .BANNER;

11 / / S p e c i f y t h e ad ne twork (e . g . , AdMob) and t h e a s s o c i a t e d u n iq ue ID
AdNetwork ne twork = new AdNetwork (AdNetwork . NetworkType .ADMOB, ”ADVERTISER ID”) ;

13
/ / I n s t a n t i a t e t h e v iew f o r t h e ad

15 AdView adView = new AdView (t h i s , p rops , ne twork) ;

17 / / Lookup your L i n e a r L a y o u t assuming i t s been g i v e n t h e i d ” m a i n l a y o u t ”
L i n e a r L a y o u t l a y o u t = (L i n e a r L a y o u t) f indViewById (R . i d . m a i n l a y o u t) ;

19
/ / Add t h e AdView t o t h e l a y o u t

21 l a y o u t . addView (adView) ;

23 / / I n s t a n t i a t e t h e ad r e q u e s t
AdRequest adReq = new AdRequest () ;

25
/ / R e q u e s t and load t h e ad

27 adView . loadAd (adReq) ;
}

29 }

Figure 8: A complete AdDroidDemo activity showing sample usage of the AdDroid API.

30

Figure 9: AdDroid wrapper API prototype demo fetching a demo advertisement from Millennial Media.

5.2 Two Versions

We have built two prototype implementations in order to demonstrate AdDroid. The first is a limited,
user-level implementation that shows the flexibility of the API in supporting multiple advertising networks
in an existing AOSP build. The second is a fully integrated AOSP branch showing how Google might
implement an AdDroid functionality into their Android platform.

5.2.1 AdDroid Wrapper API Prototype

In our first proof of concept we built an AdDroid wrapper to interface with existing advertising network
3PLs. Also, to show the flexibility of the AdDroid API we built a user space prototype that implements the
full AdDroid API. We took one of the popular advertising network’s SDKs and compiled it with a modified
version of an existing open source application. We modified the application to display banner advertisements
and included our wrapper; rather than directly making the API calls to the advertising SDK we called our
wrapper API which in turn made the appropriate calls.

This API demo directly incorporates the advertising network SDK and runs the AdDroid library as an
integrated user library. The demo does not enforce privilege separation and still suffers from overprivileging,
since we integrated the advertising SDKs and AdDroid library directly into the user-level application. This
behavior is necessary since in order to leverage the binary-only advertising network SDKs we had to inte-
grate the code directly into the application. The source code for our AdDroid library and demo application
consists of 450 and 64 SLOC, respectively.4

Figure 9 contains a screenshot of our demo application running, which has retrieved a demo adver-
tisement from the Millennial Media advertising network. The screenshot looks quite uneventful, but our
wrapper API generates the same output as does the standalone SDK. The AdDroid API abstracts away use
of the advertising SDKs, and the demo application interacts only with AdDroid. This demo application is
able to fetch advertisements and exercise the functionality of the AdMob and Millennial Media advertising
networks.

5.2.2 AdDroid AOSP Integration Implementation

Our core prototype implementation is the fully integrated AdDroid AOSP prototype. The full AdDroid
prototype takes the form of Figure 7. The core feature changes we implemented include the two new
permissions, the extended framework API, and a new privileged advertising service integrated as a system

4Lines exclusively consisting of comments or a single closing curly brace were not counted in this number.

31

Figure 10: Installation screens of two applications requesting the new AdDroid advertising permissions.
On the left, the green check mark signifies a dangerous permission and any non-dangerous permissions, if
at least one dangerous permission exists, reside under the Hide menu. On the right, the application only
requests non-dangerous permissions.

process. This design supports our desired full privilege separation. Additionally, it removes overprivileging
with respect to network access and location based information.

We made a custom build of the entire AOSP which we compiled and flashed onto a Nexus S devel-
opment phone. To test the functionality of our system, we wrote a simple application called “Hello, Ad
World!” and requested the new permissions. Figure 10 shows the new permissions as seen from the appli-
cations list in Android. As seen in the image on the right, if an application wants to display non-location
specific advertisements the developers must request the non-dangerous INTERNET ADS permission. If
the developer would like to display location specific advertisements they must also request the dangerous
TRANSMIT LOCATION ADS, as seen on the left.

Though AdDroid fully supports AdMob and Millennial Media, we chose to test our implementation
with our own generic advertising service running on Amazon’s EC2. We did this because we did not wish
to reverse engineer the protocol or the binary-only advertising network SDKs due to possible intellectual
property and copyright issues. Additionally, to provide proper privilege separation we would need to split
the SDK to run partially as a privileged system service and partially as a user space library. We could not
perform such a split without reverse engineering the binaries. Our generic advertising service has similar

32

behavior to AdMob and Millennial Media, operates through the AdDroid API, provides location specific
advertisements, and has similar functionality.

Permission assignment in a completed AdDroid system would appear similar to Figure 11. For example,
the host application is a multiplayer boxing game. The application developer requests the INTERNET
permission for the host application to enable simultaneous multiplayer gameplay. The application developer
would also request the appropriate third-party permissions to enable additional functionality (advertising,
a gaming network, and an analytics engine). In this example, the gaming network has access to the user’s
contacts and the ability to send SMS so the user can invite his or her friends to a match. It also has Internet
access, limited only to the gaming network’s servers, to report high scores and achievements. No other 3PL,
not even the host application, has access to the user’s contacts as AdDroid acts on behalf of the application.
Of all the interested parties, only the advertising network can determine the user’s location, for location-
specific advertisement targeting.

In a traditional Android system, the application and all 3PLs would receive all the requested permis-
sions. In turn, they all gain full access to the user’s privacy-sensitive data (contacts, location, and SMS)
with the ability to send the data to arbitrary destinations (via full Internet access). With AdDroid, the effec-
tive permissions for the application is simply the INTERNET permission. The principle of least privilege
constrains each party to the minimal set of permissions required for its functionality.

5.3 Barriers to Adoption

Given that this is a work in progress a few of the goals have yet to be realized. In its current incarnation
there are a few limitations. First is a matter of privilege separation. Our desire is to eliminate the need to
blindly bundle 3PLs by providing new third-party APIs as a substitution. For the few cases where 3PLs are
still needed, we will fully separate and treat 3PLs and host applications as separate entities with their own
independent permission sets. Currently, if an advertising-supported host application like Skype, for example,
requests the READ CONTACTS and INTERNET permissions AdDroid cannot prevent the 3PLs from reading
the contacts, creating a network socket, and then sending the data to an arbitrary host. AdDroid still requires
rewriting the existing permissions checks to verify the caller and their permissions (e.g., host application
versus 3PL). We can address this by a few simple modification options. Android can look at the calling
namespace to determine the caller. Additionally, Google can make a simple modification to the compiler
where calls to 3PLs (e.g., SDKs) receive a 3PL tag. Finally, a form of code introspection should be able to
determine the difference between the host application and the 3PL.

The second limitation is that AdDroid does not sanitize or anonymize data sent to third parties. AdDroid
is capable of doing so since the OS marshals all the data through the new AdDroid service by use of the API,
but we have yet to implement this feature. However, by coupling AdDroid with TaintDroid or AppFence
we can control the exfiltration of privacy-sensitive user data. Sanitization might be necessary because as do
many advertising-networks’ SDKs, we built in support to send arbitrary data with the advertisement request.
This feature is theoretically used for advertisement targeting by specifying user attributes not currently
supported via the API.

Third, in the new system we would like to ensure that application developers are not purposefully or
unknowingly including unnecessary 3PLs into their applications. By doing so they compromise the integrity
of the application, and possibly the system. In these situations we can rely on analysis techniques (e.g.,
Kirin [21]) or advanced runtime mechanisms (e.g., TaintDroid [20], AppFence [29]).

Fourth, our current implementation exhibits limited 3PL functionality. AdDroid currently only works
for advertising networks for which we built in support. We are limited by the fact that advertising networks
supply their SDKs in closed source, binary-only form. However, the final solution will incorporate a stan-

33

Figure 11: Diagram showing how permissions are assigned in the new system. The host application requires
no permissions, but requests the appropriate third-party permissions to support the advertisements, the gam-
ing network, and the analytics engine. The host application nor any of the libraries have direct access to
the

34

dardized API, one with which advertising networks will make their servers compatible, and with support for
the dynamic configuration file. Additionally, only newly compiled applications that utilize the new permis-
sions and API benefit from the enhanced features that our AdDroid build offers to the system. Furthermore,
AdDroid currently only supports one of the three major 3PLs we aim to target, yet we see no complications
with adding support for gaming networks and analytics engines. We accept these limitations as AdDroid is
a proof of concept.

And lastly, we hope to make the source code and further details available in the next few months.

6 Discussion & Challenges

In this section I present the two most likely deployment scenarios for the completed AdDroid system.
Also, I discuss some adoption challenges that either of the two scenarios might face.

6.1 Deployment Plan

Throughout this master’s I have assumed that Google would be the one to implement the new AdDroid
system. Nevertheless, in an alternate scenario a third party could build their own enhanced version of An-
droid since the AOSP is in fact open source.5 Thus, the two scenarios are one in which Google implements
the changes and the other where a third party takes the initiative.

6.1.1 With Google

This scenario would yield the best outcome for two primary reasons: (1) Google knows Android better
than anyone else, and (2) all Android users receive the benefits of the overhauled system. Even with Google
implementing the enhancements to the AOSP there are varying degrees of changes that Google may choose
to pursue.

The first possibility incorporates the largest number of changes and requires a major rewrite of the
AOSP and Android permission system. Due to the drastic changes and a new permission system Google
would need to deploy this as a major OS update, say Jelly Bean (as Android is currently at Ice Cream
Sandwich). In this update Google would abandon the do-or-die, all-or-nothing approach with respect to
application permissions. Since this version introduces a possibly large number of new permissions, some
for host applications and others for 3PLs, I strongly recommend a revised UI to prevent user overload and
confusion. As noted earlier, Google should drop backwards compatibility as this may create a false sense
of security by allowing unmodified applications to run without utilizing the improved privacy and security
mechanisms. Additionally, unmodified applications would not request the new, finer-grained, less dangerous
permissions and remain overprivileged. Moreover, the host application and 3PLs would not have proper
privilege separation. A major overhaul would prevent this situation from happening. Google should also
incorporate the ability for users to change permissions post-installation, if not for the host application then
at least for the 3PLs. At a minimum, users should have the ability to opt-out of interest-based and location-
specific advertisements and receive generic advertisements instead. Consumers should be in control of their
privacy and have the ability to choose between generic or targeted (i.e., location-specific or interest-based)
advertisements [11]. In the current model the application developer carries the power to make this decision,
which may conflict with the consumers’ desires.

5A few Google-branded applications, including the Market, remain closed source. Google awards these applications to OEMs
only after the OEM meets certain criteria.

35

Second, a less involved implementation might only implement new permissions for 3PLs. This scenario
would still require a large number of changes but maintains the current permission system that users are
already familiar with, but extended to 3PLs as well. The disadvantage of this approach, as opposed to the
first, is that application developers remain in control over privacy-sensitive permission choices. If utilized
properly, however, users still benefit from privilege separation. This approach would still require a new
major version release and a revised permissions UI.

The third option involves a minimal number of changes. Since Android would treat 3PLs no differently
than the host application, it is possible for Google to release this revision as a minor version update. Google
should introduce new, lesser-privileged permissions to help eliminate the abundance of overprivileged appli-
cations. A possible new permission would be a limited form of Internet access that application developers
can use to specify a list of hosts with whom their application can communicate. By electing this option
Google gives up the isolation benefits AdDroid offers to the platform.

6.1.2 Without Google

If Google does not change their Android platform, a third party could make an improved version for their
own product, or set of products. Amazon, with their recently released Android-based Kindle Fire, would
be a prime example where a third party initiative would be practical and economical. To make the effort
economically worthwhile, the developer would have to expect wide adoption and to sell a large number of
devices. Preliminary reports have surfaced that Amazon sold 250,000 Kindle Fires in the first five days of
pre-orders with 2.5 million projected sales by release day on November 15, 2011 [6]. Initial sales forecasts
also highly favor the Kindle Fire with 5 million units sold in the fourth quarter [22] and projected sales of
12 and 20 million in the years 2012 and 2013, respectively [58].

Besides sales numbers, another major advantage Amazon has over other companies is that they have
exclusive control over the hardware and the Kindle platform, much like Apple does with its products. Ad-
ditionally, both companies’ products target their own closed ecosystem of content and applications. This
enables Amazon to create their own customized kernel and branch of the AOSP, complete with 3PL priv-
ilege separation and new permissions, without creating a division among the rest of the Android platform.
On the contrary, they can enhance the Android ecosystem for generic Android devices as well as their
Android-based Kindle Fire.

One way Amazon is already doing this, again with the Kindle Fire, is through the Amazon Appstore
for Android [1]. The Amazon Appstore is an optional third-party store for applications available to all
Android devices that competes directly with Google’s Android Market [2]. On the Kindle Fire, Amazon
ships the device only with their Appstore, which is the only approved method to obtain applications. The
Amazon Appstore differs from the Android Market is two key aspects: (1) it offers applications designed
exclusively for the Kindle Fire, and (2) Amazon vets applications and application updates before they make
them available for download [54]. To vet an application means to certify that the application behaves as
intended and does not introduce security and privacy risks to the user. This shows that developers are already
willing to port existing applications over to the Kindle Fire. The second feature improves the security of the
entire platform. Amazon and Apple provide this feature, however, Google does not.

Amazon’s advertising model would work well with the enhancements AdDroid provides to the Android
platform—in particular, following their model of Kindles available with “Special Offers.” First, Amazon
is already in the business of selling and approving advertisement content for the Kindle platform. Second,
AdDroid’s ability to update which advertising networks it approves allows Amazon to remain in control of
advertising on their Kindle platform.

Google only makes some of its Google-branded applications, such as the Android Market, available to

36

third-parties if they follow certain guidelines. It is possible that Google would not allow Amazon to run the
Android Market on their Kindle Fire for competition reasons. The Kindle Fire’s success, however, is not
dependent on the inclusion of the Android Market on their Android-based devices, as the Amazon Appstore
is growing in popularity and has attracted enough attention to incentivize application developers to release
their application(s) exclusively on the Appstore. The Appstore might end up with a subset of applications
available in the Android Market, but the more popular applications have been and will continue to appear
in the Appstore as adoption continues to grow. Amazon would likely not worry about offering a smaller
collection of applications because their primary focus is on available content (e.g., books, movies, music)
rather than applications.

The biggest disadvantage to Amazon would be the cost of incorporating AOSP updates into their cus-
tomized build. Users might not carry the same expectations with the Kindle platform, in terms of updates,
as they do with Android-based smartphones and tablets. To their advantage, Amazon is not targeting the
Kindle Fire as a general-purpose device. The device is specifically targeted for content consumption and
shopping, something that does not change much from one release to another. Perhaps Amazon will utilize
the latest build available at the time of release for each new device.

6.2 Challenges

Throughout this master’s I have presented several challenges one would face in implementing and intro-
ducing an enhanced version of Android in the market. In this section I re-emphasize key challenges as well
as introduce some previously unmentioned ones.

6.2.1 Application Developers

Without the support of application developers, modern smartphone platforms would be boring and
largely dissatisfying. The success of any modern platform depends on the easy of development and the
popularity amongst application developers. AdDroid allows application developers to easily switch be-
tween or simultaneously support multiple advertising networks. A primary goal of AdDroid is to minimize
the required changes and learning curve for application developers. We introduce no new expectations as
developers are already proficient working with third-party SDKs and APIs. Additionally, we modeled the
API after popular 3PLs with which application developers are already familiar. Furthermore, the majority
of applications would require modification to only a few lines of code, specifically where the application
makes the API calls. Finally, the strong sales numbers and forecasts for a device, such as Amazon’s Kindle
Fire, provides incentive enough for developers to learn the new, yet similar platform.

6.2.2 OS Updates

In order for a device to benefit from an improved version of Android it must be running the latest
version of the software. However, the current state of OS updates on the Android platform is quite limited.
Manufacturers recently introduced some devices into the market with Android 2.2 (Froyo), despite the fact
that Google released version 2.3 (Gingerbread) available to the public on December 6, 2010. Google has
since moved through version 3.x (Honeycomb) and is currently on version 4.x (Ice Cream Sandwich). The
problem is that manufacturers and carriers are slow to update devices, if at all. This means that a significant
majority of devices would never receive the enhanced version of Android if Google were to release it. In
other words, all current and previous-generation devices remain vulnerable and obsolete. This problem
is complex since the rate of Android adoption is growing and most devices have a two year lifetime (i.e.,

37

smartphones are tied to two year carrier contracts). It could take years before such benefits reach the majority
of Android users.

6.2.3 Inherent Limitations

Regardless of the direction Android moves, there are inherent limitations in the platform that enable
certain problems to perpetuate. First, malicious applications might try to obfuscate information and code
making detection of said applications difficult. Second, it is only a matter of time after the release of a new
system that adversaries find ways to run malicious code or bypass security features. AdDroid addresses
these concerns by improving the privilege separation mechanisms and introducing less-privileged permis-
sions. Finally, despite how easy a developer makes a platform to use, there will always be a group of users
overwhelmed or confused by the settings at their disposal. Confused or overwhelmed users can easily nullify
any privacy features built into the platform.

6.2.4 A New User Interface

An enhanced platform will only benefit users if they can utilize the augmented controls properly. If
users already find the current system, with limited controls, difficult to understand then it will only become
worse by adding more controls without improving the UI. Additionally, asking the general user to jump in
and out of multi-level menus or read long lists of options is an unreasonable expectation. However, the ideal
solution is to have that level of control for advanced and willing users while keeping it simplified for those
who so desire. Android needs a new permissions UI so that its users can see a large amount of information,
easily understand it, and readily determine how permissions interact one with another.

Then comes the question of defaults. It is impossible to satisfy the entire user base with any predefined
set of defaults, but again it is unreasonable to expect users to make decisions on every possible level regard-
less of their expertise. Where developers provide defaults, it may be difficult to determine which features
should be opt-out versus opt-in. For example, does a phone manufacturer enable targeted advertisements by
default for an enhanced user experience or do they err on the side of caution for possible user-privacy vio-
lations and disable the feature. Some users will never bother changing defaults, so the phone manufacturer
will lock their customers into a decision without them knowing.

7 Future Work

There are a number of directions this work can head, but here are a few I would like to see. First, I would
like to extend AdDroid from advertising 3PLs to support the two remaining primary categories of 3PLs,
namely game networks and analytics engines. These are the three most prevalent 3PLs I have encountered
through my use of the Android platform. On the game network side, I would start with the OpenFeint
API and begin a generalization of that as it is one of the more popular gaming networks. Additionally,
OpenFeint is cross-platform, supporting both Android and iOS devices, which is helpful for extending this
work to non-Android-based devices. For analytics, I would begin with Google’s [26] or Flurry’s [25] API
and create a generalized API from that. The completed set would create a well balanced, more universal
platform making the adoption of the enhanced platform more likely. I would also like to investigate how
one could incorporate game and graphics engines into the platform as well.

An important concept that I would like to see explored further is the combination of AdDroid with
the works of TaintDroid and AppFence. These approaches share a common goal, but attempt to solve the
problem through different mechanisms. What is interesting is that the approaches are not mutually exclusive.

38

It is very reasonable to believe that one can unify these works to create a more effective approach to user
control over privacy-sensitive data. I would also like to extend this work by examining a similar approach
on other platforms. However, this could prove more difficult as Android is unique in being an open source
platform.

Another interesting concept would be to study how advertising networks can preserve user privacy while
still supporting targeted or interest-based advertisements. When an application or web page requests an
advertisement, user attributes are regularly sent along with the request so that the advertising networks can
select the most appropriate advertisement. This protocol, however, divulges user data that may violate one’s
privacy. To overcome this drawback we need a protocol that allows the advertisement selection process to
occur on the user-controlled device rather than the remote server. One possible approach would be for the
client to retrieve multiple advertisements at once and then select the most appropriate advertisement from
the available set. Tracking advertisement clicks and information sharing among third parties brings in a
whole other set of problems, some of which Mayer of Stanford wrote about in his blog [39].

Finally, one puts users at risk of confusion by including additional controls to have better user control
over their sensitive data. In order to not overwhelm users and to better the general-user understanding of
permissions I would like to develop a new revision to the permissions UI. I only briefly introduced the
problem in § 6.2.4. The idea behind a new UI is to make a large number of options readily visible to
users while making it easy to understand how the permissions interact at different levels (e.g., global versus
application-specific, or host-application versus 3PL permissions).

8 Conclusion

Developers regularly supplement their mobile applications with functionality or advertising revenue
offered by 3PLs. When developers overprivilege their applications to support 3PLs, they leave their users
vulnerable to a range of risks, including the potential unauthorized disclosure of privacy-sensitive user data.
We can apply the concepts we present here to eliminate overprivileging problems with advertising networks,
gaming networks, analytics engines, game engines, and even to other platforms. Smartphones have become
general purpose computing devices where sensitive information is readily available: contact lists, phone
numbers, geolocation, financial and social data. Android does not provide users with sufficient control
over their data and privacy. Our goal is to offer users proper control over their data while minimizing the
burden of change to application developers and consumers. This work presents AdDroid, a proof-of-concept
implementation that applies the principle of least privilege to mobile applications and advertising 3PLs.
AdDroid uses privilege separation to isolate advertising-network functionality from host applications. We
built two prototype implementations showing both the flexibility of the API as well as how Google might
integrate such a system into the AOSP. AdDroid eliminates overprivileging in 44% of advertising-supported
free applications through a new service, an API to utilize this service, and permissions to control access to
the new API. We also discussed possible deployment plans and their associated challenges.

9 Acknowledgements

I would first like to thank Paul Pierce for the initial AdDroid concept, the overprivileging case study,
and largely contributing to the implementations. I thank Anthony D. Joseph for being my research advisor
and Eric Brewer for his time as second reader. I would like to acknowledge Paul’s research advisors, Vern
Paxson and David Wagner, for their input on the initial class project. Also, I would like to thank Adrienne

39

Porter Felt for helping with general and permission-related questions about Android. Finally, I would like
to thank and acknowledge the support I receive from my wife, kids, and family.

References
[1] Amazon Appstore for Android. http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011,

2011.

[2] Android Market. https://market.android.com/, 2011.

[3] Apple - Game Center - Social gaming on iPod touch, iPhone, and iPad. http://www.apple.com/game-center/,
Nov. 2011.

[4] Apple - iAd. http://advertising.apple.com/, Nov. 2011.

[5] AT&T Wireless Customer Agreement.
http://www.wireless.att.com/learn/articles-resources/wireless-terms.jsp, 2011.

[6] BROWNLEE, J. Leaked Sales Numbers Suggest Amazon Kindle Fire On Track To Outsell iPad [Exclu-
sive]. http://cultofandroid.com/257/leaked-sales-numbers-suggest-amazon-kindle-fire-
on-track-to-outsell-ipad-exclusive/, Oct. 2011.

[7] BRUMLEY, D., AND SONG, D. Privtrans: Automatically Partitioning Programs for Privilege Separation. In USENIX Security
Symposium (SSYM) (2004).

[8] CHENG, W., ZHAO, Q., YU, B., AND HIROSHIGE, S. TaintTrace: Efficient Flow Tracing with Dynamic Binary Rewriting.
In IEEE Symposium on Computers and Communications (2006).

[9] CLABURN, T. About 1% Of Google Android Apps Bad.
http://www.informationweek.com/news/security/vulnerabilities/222300435, Jan. 2010.

[10] CLAUSE, J., LI, W., AND ORSO, A. Dytan: A Generic Dynamic Taint Analysis Framework. In International Symposium on
Software Testing and Analysis (2007).

[11] CLEFF, E. B. Privacy issues in mobile advertising. Int. Rev. Law Comput. Technol. (2007).

[12] CLULEY, G. Android malware steals info from one million phone owners. http://nakedsecurity.sophos.com/
2010/07/29/android-malware-steals-info-million-phone-owners/, July 2010.

[13] Cyanogenmod - About. http://www.cyanogenmod.com/about.

[14] DELEVETT, P., AND OWENS, J. C. Groupon’s Big IPO Could Speed More Silicon Valley Tech Firms to the Stock Market.
http://www.mercurynews.com/top-stories/ci_19263793, Nov. 2011.

[15] DENNING, D. E. A Lattice Model of Secure Information Flow. Communications of the ACM 19 (May 1976).

[16] DESMET, L., JOOSEN, W., MASSACCI, F., PHILIPPAERTS, P., PIESSENS, F., SIAHAAN, I., AND VANOVERBERGHE, D.
Security-by-contract on the .NET platform. Information Security Technical Report 13 (2008).

[17] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WALLACH, D. S. Quire: Lightweight provenance for smart phone
operating systems. In USENIX Security Symposium (SSYM) (2011).

[18] EFRATI, A., THURM, S., AND SEARCEY, D. Mobile-App Makers Face U.S. Privacy Investigation.
http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html, Apr.
2011.

[19] EGELE, M., KRUEGEL, C., KIRDA, E., AND VIGNA, G. PiOS: Detecting Privacy Leaks in iOS Applications. In Network
and Distributed System Security Symposium (2011).

[20] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In USENIX Symposium on Operating
Systems Design and Implementation (2010).

[21] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On Lightweight Mobile Phone Application Certification. In ACM Confer-
ence on Computer and Communications Security (2009).

[22] EPSTEIN, Z. Amazon may move 12 million Kindle Fire tablets in 2012. http://www.bgr.com/2011/11/23/
amazon-may-move-12-million-kindle-fire-tablets-in-2012/, Nov. 2011.

40

http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://market.android.com/
http://www.apple.com/game-center/
http://advertising.apple.com/
http://www.wireless.att.com/learn/articles-resources/wireless-terms.jsp
http://cultofandroid.com/257/leaked-sales-numbers-suggest-amazon-kindle-fire-on-track-to-outsell-ipad-exclusive/
http://cultofandroid.com/257/leaked-sales-numbers-suggest-amazon-kindle-fire-on-track-to-outsell-ipad-exclusive/
http://www.informationweek.com/news/security/vulnerabilities/222300435
http://nakedsecurity.sophos.com/2010/07/29/android-malware-steals-info-million-phone-owners/
http://nakedsecurity.sophos.com/2010/07/29/android-malware-steals-info-million-phone-owners/
http://www.cyanogenmod.com/about
http://www.mercurynews.com/top-stories/ci_19263793
http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html
http://www.bgr.com/2011/11/23/amazon-may-move-12-million-kindle-fire-tablets-in-2012/
http://www.bgr.com/2011/11/23/amazon-may-move-12-million-kindle-fire-tablets-in-2012/

[23] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER, D. Android permissions demystified. In ACM Conference
on Computer and Communication Security (CCS) (2011).

[24] FELT, A. P., GREENWOOD, K., AND WAGNER, D. The Effectiveness of Application Permissions. In USENIX Conference
on Web Application Development (2011).

[25] Flurry — Mobile Application Analytics — Traffic Acquisition — Monetization — iOS, Android, Blackberry, Windows
Phone, J2ME. http://www.flurry.com/, Aug. 2011.

[26] Google Analytics SDK for Android. http://code.google.com/mobile/analytics/docs/android/, Nov.
2011.

[27] Google Chrome Extensions - Optional Permissions.
http://code.google.com/chrome/extensions/permissions.html.

[28] HADDADI, H., HUI, P., HENDERSON, T., AND BROWN, I. Targeted advertising on the handset: Privacy and security
challenges. In Pervasive Advertising. 2011.

[29] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND WETHERALL, D. These Aren’t the Droids You’re Looking For:
Retrofitting Android to Protect Data from Imperious Applications. In ACM Conference on Computer and Communication
Security (CCS) (2011).

[30] How to opt out of interest-based ads from the iAd network. http://support.apple.com/kb/HT4228, Apr. 2011.

[31] Introduction to privacy and interest-based ads. http://support.google.com/adwords/bin/answer.py?hl=
en&answer=176795, 2011.

[32] KELLEY, P. G., BENISCH, M., CRANOR, L., AND SADEH, N. When are users comfortable sharing their locations with
advertisers? In Conference on Human Factors in Computing (CHI) (2011).

[33] KREBS, B. Check your Facebook ‘privacy’ settings now. http://voices.washingtonpost.com/securityfix/
2009/12/check_your_facebook_privacy_se.html, Dec. 2009.

[34] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N., KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Information Flow
Control for Standard OS Abstractions. In ACM Symposium on Operating Systems Principles (2007).

[35] LBE Privacy Guard - Android Market. https://market.android.com/details?id=com.lbe.security.
lite.

[36] LBE Privacy Guard - Homepage. http://www.lbesec.com/lite/en/.

[37] LOUW, M. T., GANESH, K. T., AND VENKATAKRISHNAN, V. AdJail: Practical Enforcement of Confidentiality and Integrity
Policies on Web Advertisements. In USENIX Security Symposium (SSYM) (2010).

[38] Manifest Permissions — Android Developers.
http://developer.android.com/reference/android/Manifest.permission.html, Sept. 2011.

[39] MAYER, J. Tracking the Trackers: Where Everybody Knows Your Username. http://cyberlaw.stanford.edu/
node/6740, Oct. 2011.

[40] MCDONALD, A. M., AND CRANOR, L. F. Americans’ attitudes about internet behavioral advertising practices. In Workshop
on Privacy in the Electronic Society (WPES) (2010).

[41] MCKEON, M. The Evolution of Privacy on Facebook. http://mattmckeon.com/facebook-privacy/, May 2010.

[42] MILLER, B., PEARCE, P., GRIER, C., KREIBICH, C., AND PAXSON, V. What’s clicking what? techniques and innovations
of today’s clickbots. In Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) (2011).

[43] NEEDLEMAN, R. How to fix Facebook’s new privacy settings.
http://news.cnet.com/8301-19882_3-10413317-250.html, Dec. 2009.

[44] OpenFeint - Mobile Social Gaming Network for iPhone, iPad, Android, iOS, iPod Touch.
http://www.openfeint.com/, Nov. 2011.

[45] Permission — Android Developers.
http://developer.android.com/guide/topics/manifest/permission-element.html, Nov. 2011.

[46] PRINCE, B. Users Hit by Malicious Ad.
http://securitywatch.eweek.com/malware/nytimescom_users_hit_by_malicious_ad.html,
Sept. 2009.

41

http://www.flurry.com/
http://code.google.com/mobile/analytics/docs/android/
http://code.google.com/chrome/extensions/permissions.html
http://support.apple.com/kb/HT4228
http://support.google.com/adwords/bin/answer.py?hl=en&answer=176795
http://support.google.com/adwords/bin/answer.py?hl=en&answer=176795
http://voices.washingtonpost.com/securityfix/2009/12/check_your_facebook_privacy_se.html
http://voices.washingtonpost.com/securityfix/2009/12/check_your_facebook_privacy_se.html
https://market.android.com/details?id=com.lbe.security.lite
https://market.android.com/details?id=com.lbe.security.lite
http://www.lbesec.com/lite/en/
http://developer.android.com/reference/android/Manifest.permission.html
http://cyberlaw.stanford.edu/node/6740
http://cyberlaw.stanford.edu/node/6740
http://mattmckeon.com/facebook-privacy/
http://news.cnet.com/8301-19882_3-10413317-250.html
http://www.openfeint.com/
http://developer.android.com/guide/topics/manifest/permission-element.html
http://securitywatch.eweek.com/malware/nytimescom_users_hit_by_malicious_ad.html

[47] RUSSAKOVSKII, A. Massive Security Vulnerability In HTC Android Devices (EVO 3D, 4G, Thunderbolt, Others)
Exposes Phone Numbers, GPS, SMS, Emails Addresses, Much More. http://www.androidpolice.com/2011/
10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-
others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/, Oct. 2011.

[48] SHARMA, H. Facebook privacy. Master’s thesis, UC Berkeley, 2010.

[49] SHIELDS, T. Mobile Apps Invading Your Privacy.
http://www.veracode.com/blog/2011/04/mobile-apps-invading-your-privacy/, Apr. 2011.

[50] SLOWINSKA, A., AND BOS, H. Pointless Tainting? Evaluating the Practicality of Pointer Tainting. In ACM European
conference on Computer systems (2009).

[51] SpeechSynthesis Data Installer.
https://market.android.com/details?id=com.svox.langpack.installer.

[52] STERLING, G. Google Intros New Privacy Controls For Mobile Consumers.
http://searchengineland.com/google-intros-new-privacy-controls-for-mobile-
consumers-73156, Apr. 2011.

[53] STRAZZERE, T. Update - Android Malware DroidDream - How it Works.
http://blog.mylookout.com/2011/03/android-malware-droiddream-how-it-works/, Mar. 2011.

[54] STROHMEYER, R. Why I Get Apps From Amazon, Not Google. https://www.pcworld.com/businesscenter/
article/239270/why_i_get_apps_from_amazon_not_google.html, Aug. 2011.

[55] THURM, S., AND KANE, Y. I. Your Apps Are Watching You.
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html, Dec.
2010.

[56] TRUSTE. 2009 Study: Consumer Attitudes About Behavioral Targeting. http://www.truste.com/pdf/TRUSTe_
TNS_2009_BT_Study_Summary.pdf, 2009.

[57] What Applets Can and Cannot Do.
http://docs.oracle.com/javase/tutorial/deployment/applet/security.html.

[58] YAROW, J. Amazon Will Sell 12 Million Kindle Fires Next Year – Citi.
http://www.businessinsider.com/amazon-will-sell-12-million-kindle-fires-in-2012-
taking-15-of-the-tablet-market-says-citi-2011-11, Nov. 2011.

[59] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F. Improving Application Security with Data Flow Assertions.
In ACM Symposium on Operating Systems Principles (2009).

Appendices

A The AdDroid API

Listing 1 shows our AdDroid API as found in package com.ads.addroid, abbreviated for space.

1 I n t e r f a c e A d L i s t e n e r
void onCacheRece ive (Ad ad)

3 void o n D i s m i s s S c r e e n (Ad ad)
void onFa i l edToRec ieveAd (Ad ad , AdRequest . Er ro rCode e r r o r)

5 void o n F o r c e d P r e s e n t S c r e e n (Ad ad)
void o n L e a v e A p p l i c a t i o n (Ad ad)

7 void o n P r e s e n t S c r e e n (Ad ad)
void onReceiveAd (Ad ad)

9
C l a s s AdNetwork

11 p u b l i c AdNetwork (AdNetwork . NetworkType network , j a v a . l a n g . S t r i n g a p p l i c a t i o n I d)
p u b l i c j a v a . l a n g . S t r i n g g e t I d ()

13 p u b l i c AdNetwork . NetworkType ge tNetwork ()

42

http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-addresses-much-more/
http://www.veracode.com/blog/2011/04/mobile-apps-invading-your-privacy/
https://market.android.com/details?id=com.svox.langpack.installer
http://searchengineland.com/google-intros-new-privacy-controls-for-mobile-consumers-73156
http://searchengineland.com/google-intros-new-privacy-controls-for-mobile-consumers-73156
http://blog.mylookout.com/2011/03/android-malware-droiddream-how-it-works/
https://www.pcworld.com/businesscenter/article/239270/why_i_get_apps_from_amazon_not_google.html
https://www.pcworld.com/businesscenter/article/239270/why_i_get_apps_from_amazon_not_google.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://www.truste.com/pdf/TRUSTe_TNS_2009_BT_Study_Summary.pdf
http://www.truste.com/pdf/TRUSTe_TNS_2009_BT_Study_Summary.pdf
http://docs.oracle.com/javase/tutorial/deployment/applet/security.html
http://www.businessinsider.com/amazon-will-sell-12-million-kindle-fires-in-2012-taking-15-of-the-tablet-market-says-citi-2011-11
http://www.businessinsider.com/amazon-will-sell-12-million-kindle-fires-in-2012-taking-15-of-the-tablet-market-says-citi-2011-11

15 s t a t i c enum AdNetwork . NetworkType
ADMOB MILLMEDIA MOBCLIX

17
C l a s s A d P r o p e r t i e s

19 p u b l i c A d P r o p e r t i e s (i n t width , i n t h e i g h t , A d P r o p e r t i e s . A l ign a l i g n m e n t , i n t r e f r e s h)
p u b l i c A d P r o p e r t i e s . A l ign g e t A l i g n m e n t ()

21 p u b l i c j a v a . l a n g . S t r i n g t o S t r i n g ()
p u b l i c s t a t i c A d P r o p e r t i e s BANNER

23 p u b l i c s t a t i c A d P r o p e r t i e s BANNER BOTTOM
p u b l i c s t a t i c A d P r o p e r t i e s BANNER TOP

25 p u b l i c s t a t i c A d P r o p e r t i e s IAB BANNER
p u b l i c s t a t i c A d P r o p e r t i e s IAB LEADERBOARD

27 p u b l i c s t a t i c A d P r o p e r t i e s IAB MRECT
p u b l i c s t a t i c i n t NO REFRESH

29
s t a t i c enum A d P r o p e r t i e s . A l ign

31 BOTTOM TOP UNSET

33 C l a s s AdRequest
p u b l i c AdRequest ()

35 p u b l i c vo id a d d E x t r a (j a v a . l a n g . S t r i n g key , j a v a . l a n g . O b j e c t v a l u e)
p u b l i c vo id addKeyword (j a v a . l a n g . S t r i n g keyword)

37 p u b l i c j a v a . u t i l . Map<j a v a . l a n g . S t r i n g , j a v a . l a n g . Objec t> getReques tMap ()
p u b l i c vo id s e t B i r t h d a y (j a v a . l a n g . S t r i n g b i r t h d a y)

39 p u b l i c vo id s e t E x t r a s (j a v a . u t i l . Map<j a v a . l a n g . S t r i n g , j a v a . l a n g . Objec t> e x t r a s)
p u b l i c vo id s e t G e n d e r (AdRequest . Gender g en d e r)

41 p u b l i c vo id se tKeywords (j a v a . u t i l . Set<j a v a . l a n g . S t r i n g> keywords)
p u b l i c vo id s e t L o c a t i o n (boolean l o c a t i o n)

43 p u b l i c vo id s e t T e s t i n g (boolean t e s t i n g)

45 s t a t i c enum AdRequest . Er ro rCode
INTERNAL ERROR INVALID REQUEST NETWORK ERROR NO FILL UNKNOWN

47
C l a s s AdView ex tends R e l a t i v e L a y o u t implements Ad

49 p u b l i c AdView (A c t i v i t y a c t i v i t y , A d P r o p e r t i e s props , AdNetwork ne twork)
p u b l i c boolean i sReady ()

51 p u b l i c boolean i s R e f r e s h i n g ()
p u b l i c vo id loadAd (AdRequest r e q u e s t)

53 p u b l i c vo id s e t A d L i s t e n e r (A d L i s t e n e r l i s t e n e r)
p u b l i c boolean s t o p L o a d i n g ()

Listing 1: The abbreviated AdDroid API available in package com.ads.addroid.

43

	Introduction
	Motivation
	Android Application Permissions
	The Current State of Android
	Malicious Advertising Networks
	Additional Concerns
	Applying the Principle of Least Privilege to AOSP
	Over-Privileging in Advertising 3PLs
	The Hidden Costs of Advertisements
	Concerning Developers & Manufacturers
	Enhanced Permissions & User Control
	Ease of Transition
	Public Image
	Improving the Android Ecosystem

	Related Work
	Design & Architecture
	Concepts
	Goals
	Non-Goal (!Goal)

	Implementation
	Fixing Advertising-Network 3PLs with AdDroid
	The New AdDroid Service
	The New AdDroid API
	The New Permissions

	Two Versions
	AdDroid Wrapper API Prototype
	AdDroid AOSP Integration Implementation

	Barriers to Adoption

	Discussion & Challenges
	Deployment Plan
	With Google
	Without Google

	Challenges
	Application Developers
	OS Updates
	Inherent Limitations
	A New User Interface

	Future Work
	Conclusion
	Acknowledgements
	The AdDroid API

