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Abstract

Learning-based model predictive control (LBMPC) is a technique that provides de-
terministic guarantees on robustness, while statistical identification tools are used to
identify richer models of the system in order to improve performance. This techni-
cal note provides a result that elucidates the reasons for the choice of measurement
model used with LBMPC, and it gives proofs concerning the stochastic convergence
of LBMPC. The first part of this note discusses simultaneous state estimation and
statistical identification (or learning) of unmodeled dynamics, for dynamical systems
that can be described by ordinary differential equations (ODE’s). The second part
provides proofs concerning the epi-convergence of different statistical estimators that
can be used with the LBMPC technique. In particular, we prove results on the statisti-
cal properties of a nonparametric estimator that we have designed to have the correct
deterministic and stochastic properties for numerical implementation when used in
conjunction with LBMPC.

1 Introduction

This technical note is meant to be understood in the context of [3], and it consists of two
distinct parts. Sections 2 and 3 concern simultaneous state estimation and statistical identi-
fication (or learning) of unmodeled dynamics, for dynamical systems that can be described
by ordinary differential equations (ODE’s). The second part is found in Section 4 and pro-
vides proofs concerning the epi-convergence of different statistical estimators that can be
used with the learning-based model predictive control (LBMPC) technique.

For the results on estimation and learning, we assume that for state vector x ∈ Rp,
control input u ∈ Rm, and output y ∈ Rq, the system dynamics are given by the following
ODE:

ẋ = Acx+Bcu+ gc(x, u)

y = Cx,
(1)

where Ac, Bc, C are matrices of appropriate size and gc(x, u) describes the unmodeled (pos-
sibly nonlinear) dynamics. We will assume that the control inputs generated by the model
predictive control (MPC) schemes are piecewise constant

u(t) = un, ∀t ∈
[
nTu, (n+ 1)Tu

)
, (2)
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where Tu is the sampling period of the input. Note that appropriately designed MPC can
generate other control schemes, such as piecewise linear inputs.

2 Limitations on Filtering and Learning

We begin with a negative result about the inability of filters to estimate both the state and
unmodeled dynamics, for a general system in which all states are not measured. (This result
does not apply to systems with special structure, such as in [2].) This limitation applies to
situations in which unmodeled dynamics are described by a series expansion with constant
terms, and so it is relevant to a wide class of systems and filtering approaches.

Suppose the unmodeled dynamics are parameterized as gc(x, u) = γ(x, u; θ)+K, where K
is a constant, non-zero vector and γ(x, u; θ) is a parametrized function such that γ(x, u; θ0) ≡
0 for some parameter value θ0. We again note that this includes the situation in which gc is
given by a series expansion (e.g., Taylor polynomial, Fourier series, etc.).

The intuition is that statistical identification (or learning) of the parameters θ,K and
estimation of the state x can be cast into the framework of observability of an augmented
dynamical system. The augmented system has y = Cx and dynamics ẋK̇

θ̇

 =

Acx+Bcu+ γ(x, u; θ) +K
0
0

 . (3)

When all states are not measured and there is no special structure on K, then this augmented
system is not observable. This means that (x,K, λ) cannot be simultaneously estimated using
measurements of the system output y. This is formalized by the following theorem.

Theorem 1. A necessary condition for the observability (and detectability) of the system
given in (3) with y = Cx is that rank(C) = p.

Proof. Suppose θ = θ0, which makes γ(x, u; θ) ≡ 0. Then the system is linear and time-
invariant (LTI). Using the Popov-Belevitch-Hautus (PBH) test, the system is observable if
and only if rank(φ) = p+ p = 2p, for all s ∈ C : Re(s) ≥ 0, where

φ =

sI− Ac −I0 sI
C 0

 . (4)

If s = 0, then the matrices φ and sI are both singular, and the block structure of φ implies
that rank(φ) = p + rank(C). The system is not observable (and not detectable) when
rank(C) < p, establishing necessity.

Remark. This result also applies to discrete time systems, and the proof is nearly identical.

In light of this negative result concerning filters, we require that C be full rank. Without
loss of generality, we assume that the full state x is measured.

2



3 Nonparametric Filtering for Dynamical Systems

The design of a Kalman filter for systems with unmodeled dynamics can be complex, and
so we propose a nonparametric regression approach for estimating the state. Available
approaches include local polynomial regression (LPR) or spline-smoothing; the Savitzky-
Golay filter [13] is technically a finite impulse response (FIR) filter implementation of LPR.
We design a new nonparametric filter, and one advantage is of this filter is that it is easily
computed because it is the weighted sums of measurements.

An important point to note is that the statistical guarantees provided by our filter are
not the same as for a Kalman filter. The Kalman filter is defined to be consistent if its
state estimates are unbiased and the true error covariance is smaller (covariance matrices
are positive semi-definite, and so a partial order can be defined) than the estimated error
covariance. In our method, consistency is defined with respect to the sampling period Ts of
state measurements. As Ts → 0, the estimates converge to the real values in probability.
This philosophical change is necessary in order to use nonparametric statistics, otherwise we
would be forced to use a parametric model of the unmodeled dynamics.

We begin with a lemma about the differentiability of the state trajectory x(t) when the
inputs are piecewise constant.

Lemma 1. Suppose gc(x, u) is Q−1-times differentiable. For n ∈ Z, the trajectory x(t) which
solves the ODE in (1) is once-differentiable everywhere, Q-times differentiable at t 6= nTu,
and not twice-differentiable at t = nTu.

Proof. The first time-derivative of x(t) is given by (1), by definition. Because the inputs
are piecewise constant (2), the input u(t) is not differentiable at t = nTu. Because the first
time-derivative of x(t) is a function of u(t), this means that x(t) is not twice-differentiable
at t = nTu. Recall that u(t) is constant for t 6= nTu. Thus, u(t) is smooth at t 6= nTu.
This implies that x(t) is Q-times differentiable at t 6= nTu, because gc(x, u) is Q − 1-times
differentiable.

Remark. These qualitative features mean that we cannot use LPR methods with order higher
than zero (i.e., the Nadaraya-Watson estimator) without modifying the filtering scheme. This
is an important point, because the differentiability of the trajectory x(t) makes it tempting
to use LPR. Yet, no theoretical convergence guarantees can currently be made in such a
situation, and the behavior of these filters may be unpredictable.

In light of these restrictions, we propose a modified sampling scheme. Recall that Tu is
the sampling time for control inputs, and we define Ts to be the sampling time for state
measurements. We require that kTs = Tu for some k ∈ Z+, and this scheme is illustrated in
Fig. 1 for the case of k = 4. The advantage of this sampling scheme is that the trajectory x(t)
is piecewise smooth (infinitely differentiable) in between the samples taken at nTu, because
the control input u(t) is piecewise constant. This allows us to use LPR of order higher than
zero (e.g., local linear regression), which can give significant improvements in estimation
error over zeroth order LPR.

If the trajectory of the real system is x(t), then consider a measurement model

ξi(jTs + nTu) = xi(jTs + nTu) + εi, j ∈ Z+ : jTs ∈ [0, Tu], (5)
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Tu

Ts

Figure 1: We use a sampling scheme with two sampling periods. The inputs change at
every Tu units of time, and the states are measured every Ts units of time. In this example,
kTs = Tu with k = 4.

where εi are independent and identically distributed (i.i.d.) random variables with zero
mean and bounded values lµ ≤ [εi]µ ≤ sµ. The notation [εi]µ indicates the µ-th component
of the i-th noise vector. Suppose that we have made measurements for n = 0, . . . , N . This
measurement model corresponds to the sampling scheme seen in Figure 1.

3.1 Filter Design

Suppose κ(ν) is a kernel function, which is a bounded even function with finite support. We
will use λ, ρ to denote left and right differentiability, and r is the polynomial order of the
filter. Let hλ;n,i, hρ;n,i ∈ R be bandwidth parameters. Next we define a diagonal matrix Rn,i

that is used to filter to the right side of the i-th entry of the measurement at t = nTu; its
entries are given by

Rn,i = diag
{
κ(0), κ(Ts/hλ;n,i), . . . , κ(kTs/hλ;n,i)

}
. (6)

Similarly, we define a diagonal matrix Ln,i that is used to filter to the left side of the i-th
entry of the measurement at t = nTu:

Ln,i = diag
{
κ(kTs/hρ;n,i), . . . , κ(Ts/hρ;n,i), κ(0)

}
. (7)

Note that the Rn,i matrix uses the bandwidth hλ;n,i, and Ln,i uses bandwidth hρ;n,i. The
reason is that filtering to the right of a measurement requires left differentiability, while
filtering to the left of a measurement requires right differentiability. Lastly, we define the
Vandermonde matrix

Γ =


1 0 . . . 0
1 Ts . . . T rs
...

...
...

...
1 kTs . . . krT rs

 . (8)

We are now ready to design the filter. The filter coefficients are given by

wn,i = e′1(Γ
′Ln,iΓ)−1Γ′Ln,i

vn,i = e′1(Γ
′Rn,iΓ)−1Γ′Rn,i,

(9)

and e1 is the unit-vector with a 1 in the first position and zeros everywhere else. The idea
is that wn,i filters on the left side of t = nTu and vn,i filters on the right side of t = nTu.
As time advances to t = NTu, we first filter on the left side of ξ(NTu) (because there is
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no right side). At the next point in time t = (N + 1)Tu we filter on both sides of ξ(NTu).
Consequently, the filter is time-varying.

Let the number within the angled brackets 〈·〉 denote the (discrete) time at which the
filter is computed. The raw state estimates (for times t = nTu, for n = 0, . . . , N) computed
at time t = NTu are given by

[xN ]i〈N〉 =
∑k

j=0[wN−1,i]jξi(jTs + (N − 1)Tu)

[xN−1]i〈N〉 = 1/2 · [xN−1]i〈N − 1〉+ 1/2 ·
∑k

j=0[vN−1,i]jξi(jTs + nTu)

[xn]i〈N〉 = [xn]i〈N − 1〉, ∀n < N − 1.

(10)

The state estimates are given by

[x̂n]i〈N〉 = min
{
ξi(nTu)− li,max

{
ξi(nTu)− si, [xn]i〈N〉

}}
, ∀n. (11)

The operation in (11) maintains the bounds on the noise, and it makes sure that the filter
saturates if it tries to exceed the bounds of the noise. This filtering is well-defined because
of the piecewise continuity of the control input u(t), and it is consistent in a pointwise sense,
as the following theorem shows.

Theorem 2 (Ruppert and Wand, 1994). If Tu is fixed, r is the polynomial order of the filter,
and k → ∞ : kTs = Tu; then, the filter defined in (10)-(11) is consistent: ‖xn − x̂n〈N〉‖ =
Op(k

−(r+1)/(2r+3)).

Proof. Strictly speaking, the result in [12] applies to the filter defined in (9)-(10). Consistency
with respect to (11) is established by noting that the bounds on the noise imply that ‖xn −
x̂n〈N〉‖ ≤ ‖xn − xn〈N〉‖.

Remark. Because k = Tu/Ts, this theorem intuitively says that the filter performs well as
long as Ts is much smaller than Tu.

We also have the following lemma which discusses the finite-sample properties of (11).
The intuition is that if the measurement noise is bounded and all states are measured,
then the filter preserves the property that the state estimates remain within a bounded
distance of the true states. Note that the Minkowski sum [14] of two sets U ,V is defined as
U ⊕ V = {u+ v : u ∈ U ; v ∈ V}.

Lemma 2. Under the assumptions delineated above, we have that x̂[n] ∈ x[n] ⊕ E, where
E = {ε : lj ≤ [ε]j ≤ sj} ⊕ (−{ε : lj ≤ [ε]j ≤ sj}).

Proof. Note that (11) enforces that ξj − sj ≤ x̂j ≤ ξj − lj, which can be rewritten as
x̂ ∈ ξ ⊕ (−{ε : lj ≤ [ε]j ≤ sj}). The bounds on the noise xi + li ≤ ξi ≤ xi + si are equivalent
to having ξ ∈ x⊕ {ε : lj ≤ [ε]j ≤ sj}. The result follows from properties of ⊕,	 [14].

3.2 Filter Implementation

Because the filter is simply a weighted sum of measurements (10), the largest difficulty with
implementation is in computing the filter coefficients (9). The first step in doing this is to
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choose the order of the filter. Empirical results show that linear (r = 1) or quadratic (r = 2)
LPR typically gives good results. For clarity of presentation, we focus here on the case of
r = 1.

Having chosen the order of the filter, the next step is to compute the bandwidth parame-
ters hλ;n,i, hρ;n,i. To make the notation compact, let ? be a blank spot that is either replaced
with ? = ρ or ? = λ. Using results from [5], it can be shown that the optimal bandwidths
for r = 1 are approximately given by

h?;n,i =

(
aσ2Tu

2ẍi(nT ?
u)k

)1/5

a =

∫
R
κ2(ν) dν

/(∫
R
ν2κ(ν) dν

)2

,

(12)

and the second time-derivative ẍi(nT
?
u) is the left-sided derivative if ? = λ (or right-sided

derivative if ? = ρ). Unsimplified expressions for the cases r > 1 can be found in [5]. We
can approximate the values of these second time-derivatives by using (1). More specifi-
cally, the estimated values are given by ˆ̈xi(nT

ρ
u ) = [A2

cξ(nTu) + AcBcun]i and ˆ̈xi(nT
λ
u ) =

[A2
cξ(nTu) + AcBcun−1]i.
Because it is time consuming to compute the filter coefficients (9), we suggest an imple-

mentation in which they are precomputed. Define a set H = {h1, . . . , hmax}, and compute
the filter coefficients for each value in H. Then, when we would like to filter, we estimate
the time derivatives ˆ̈xi(nT

ρ
u ) and ˆ̈xi(nT

λ
u ), and use these to compute h?;n,i. The closest value

in H is selected, and the corresponding set of precomputed filter coefficients are used to do
the filtering as defined in (10)-(11).

4 Epi-convergence Proofs

We provide proofs of the theorems regarding convergence of the control law of LBMPC to an
MPC that knows the unmodeled dynamics, for both the case where the oracle is parametric
and the case where the oracle is the nonparametric oracle that we defined and call the
L2-regularized Nadaraya-Watson (L2NW) estimator. The key for these results is that the
system trajectory must have a property called sufficient excitation (SE), which intuitively
means that all modes of the system are perturbed so that they can be identified. The theorem
on convergence is trivial in parametric case, because it results from combining two existing
theorems that are valid under SE. The proof for the L2NW case is more involved, since it
requires showing epi-convergence of the L2NW estimator under the notion of SE.

4.1 Parametric Oracle

Proof of Theorem 4 in [3]. The proof simply requires application of existing theorems. If θ̂m
converges in probability to θ0, then the result is true by Proposition 2.1 of [17]. The required
convergence in probability occurs under SE [7, 6, 9], and so the result trivially follows.

Remark. The situation in which the states are measured with noise requires the use of the
continuous mapping theorem [15] taken in conjunction with Theorem 2. For the case where
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the parameters enter linearly, the hypothesis of the continuous mapping theorem is satisfied
because λ̂m = (X ′X)−1X ′Y is continuous with respect to X given SE [7]. For the nonlinear
case, we need to explicitly assume that λ̂m is continuous with respect to X in order to be
able to apply the continuous mapping theorem.

4.2 Nonparametric Oracle

Showing that the L2NW estimator leads to convergence of the control law of LBMPC under
an assumption of SE requires additional work. For ease of reference, we give one expression
of the L2NW estimator defined in [3]. Let Xi = [x′i u

′
i]
′, Yi = xi+1 − (Axi + Bui), and

Ξi = ‖ξ− xi‖2/h2, where Xi ∈ Rp+m and Yi ∈ Rp are data and ξ = [x′ u′]′ are free variables.
We define any function κ : R → R+ to be a kernel function if it has (a) finite support
κ(ν) = 0 for |ν| ≥ 1, (b) even symmetry κ(ν) = κ(−ν), (c) positive values κ(ν) > 0 for
|ν| < 1, (d) differentiability (i.e., the derivative dκ exists), and (e) nonincreasing values of
κ(ν) over ν ≥ 0. The L2-regularized NW (L2NW) estimator is defined as

Om(x, u;Xi, Yi) =

∑
i Yiκ(Ξi)

λ+
∑

i κ(Ξi)
, (13)

where λ ∈ R+. If λ = 0, then (13) is simply the NW estimator. The λ term acts to regularize
the problem and ensures differentiability.

We begin by proving a uniform version of a theorem that is called either the continuous
mapping theorem [15] or Slutsky’s theorem [4], depending on the author.

Lemma 3. Given random variables Vk, V ∈ V, for all k ∈ Z+, such that ‖Vk − V ‖ =
Op(rk); if L(x, v) : X × V → R is a continuous function and X ,V are compact sets, then
supx∈X |L(x, Vk)− L(x, V )| = Op(rk).

Proof. The Heine-Cantor theorem (Theorem 4.19 in [11]) gives uniform continuity of L(x, v)
on X ×V , and this implies that for all x, ‖Vk − V ‖ > δ > 0 whenever |L(x, Vk)−L(x, V )| >
ε > 0. Proceeding analogously to [15], we have

P(sup
x
|L(x, Vk)−L(x, V )| > ε) = P(∃x : |L(x, Vk)−L(x, V )| > ε) ≤ P(‖Vk − V ‖ > δ). (14)

The result is immediate.

We can now show the first convergence result for the L2NW estimator. Let X̂i, Ŷi be
defined in the same way asXi, Yi, with the change that X̂i, Ŷi are defined using state estimates
x̂ instead of noiseless measurements of the state x. The intuition of why this result is true
is that though noise in Ŷi and X̂i is correlated, our filtering defined in Section 3 makes this
correlation asymptotically insignificant. This result can be interpreted in an instrumental
variables context [1, 8].

Corollary 1. If ‖X̂i−Xi‖ = Op(rk), then supx∈X ,u∈U ‖Om(x, u; X̂i, Ŷi)−Om(x, u;Xi, Yi)‖ =
Op(rk).
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Proof. Define a random variable Vk =
[
X̂ ′1 . . . X̂ ′N Ŷ ′1 . . . Ŷ ′N

]′
, and let V be the cor-

responding limiting vector. The definition of Yi and the corollary’s assumption imply that
‖Ŷi − Yi‖ = Op(rk), and so ‖Vk − V ‖ = Op(Nrk).

Now consider the functions η =
∑

i Ŷiκ(Ξi)/N , δ =
∑

i κ(Ξi)/N , and ρ = η/(λ/N + δ).
Applying Lemma 3 gives, supx∈X ,u∈U ‖η(ξ;Vk)−η(ξ;V )‖ = Op(rk) and supx∈X ,u∈U ‖δ(ξ;Vk)−
δ(ξ;V )‖ = Op(rk). Another application of Lemma 3 gives supx∈X ,u∈U ‖ρ(ξ;Vk)− ρ(ξ;V )‖ =

Op(rk). The result follows by noting that Om(x, u; X̂i, Ŷi) = ρ(ξ;Vk) and Om(x, u;Xi, Yi) =
ρ(ξ;V ).

Remark. The variance of the NW estimator in its typical setup is known to uniformly con-
verge at a rate no faster than n−4/(p+4) [12]. Our result gives a nonstandard rate of conver-
gence rk, because we have a time-series setup with presmoothing to account for the errors
in measurements.

Convergence of an estimator is often studied by decomposing the estimation error into
a bias and variance term. For proving convergence of our regularized NW estimator, we
have to be careful in defining the probabilistic framework before we can decompose the error
into two terms. The Xi values are not independent variables drawn from some probability
distribution. They are exactly the states of a deterministic system, as it evolves in time. In
fact, if the control inputs un are (deterministically or statistically) known for each point in
time, then Xi and Xj are dependent for all values where i ≥ j.

For a nonlinear system, SE is usually defined using ergodicity or mixing, but this is
hard to verify in general. Instead, we define SE as a finite sample cover (FSC) of X . Let
Bh(x) = {y : ‖x − y‖ ≤ h} be a ball centered at x with radius h, then a FSC of X is a set
Sh =

⋃
i Bh/2(Xi) that satisfies X ⊆ Sh. The intuition is that {Xi} sample X with average,

inter-sample distance less than h/2. Assuming SE in the form of a FSC with asymptotically
decreasing radius h, we can show that the control law of LBMPC that uses L2NW converges
to that of an MPC that knows the true dynamics.

Recall that g(x, u) is the modeling error of the approximate linear system defined in
[3]. We have the following result, which shows that the L2NW estimator with noiseless
measurements and SE can approximate the unmodeled dynamics arbitrarily well.

Lemma 4. If g(x, u) is Lipschitz with constant L and Sh is a finite sample cover of Z ⊆ X×
U , then sup(x,u)∈Z ‖g(x, u)−Om(x, u;Xi, Yi)‖ ≤ µMg + (1−µ)Lh, where µ = λ/(λ+κ(1/2))
and Mg = max ‖x‖ : x ∈ X .

Proof. Define I = {i : Ξi ≤ 1}, and note that κ(Ξj) = 0 for j /∈ I. An alternative
characteristic of the L2NW estimator is as the positively weighted average: Om(x, u;Xi, Yi) =
w0 · 0 +

∑
i∈I wi · Yi, where w0, wi > 0, wi = κ(Ξi)/(λ +

∑
j κ(Ξj)), and w0 +

∑
iwi = 1.

The finite sample cover property of Sh implies that
∑

j κ(Ξj) ≥ κ(1/2). Noting w0 <
λ/(λ+ κ(1/2)) and Yi = g(Xi), the result follows from the triangle inequality.

Remark. The result shows that the regularized NW estimator in our setup has bias O(λ+h),
where λ = O(h). This matches the bias of the NW estimator O(h) in a standard setup at
both interior and boundary points [10, 12].
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Theorem 3. Assuming Shn is a finite sample cover of Z ⊆ X × U , for some sequence
hn → 0; λ = O(hn); and k is a sequence such that Tu/k → 0 (see Theorem 2); then the
regularized NW estimator is uniformly consistent on Z and converges at rate

sup
(x,u)∈Z

‖g(x, u)−Om(x, u; X̂i, Ŷi)‖ = O(λ+ hn) +Op(k
−(r+1)/(2r+3)). (15)

Proof. Using the triangle inequality, the left-hand side of (15) is bounded by

sup
(x,u)∈Z

‖Om(x, u; X̂i, Ŷi)−Om(x, u;Xi, Yi)‖+ sup
(x,u)∈Z

‖g(x, u)−Om(x, u;Xi, Yi)‖ (16)

This first term is controlled by Corollary 1 and Theorem 2, and the second is governed by
Lemma 4.

Remark. Ideally, we would like Z = X ×U , but this does not always happen. It requires that
the trajectory of the system sufficiently explores the space in a manner formalized by the
definition of finite sample cover. A set Z which meets the assumptions of Theorem 3 always
exists, and this can be shown by construction: Given any n > 0, let Z = ∪ni=1Xi. A better
set Z is defined as the limit of a convergent subsequence of Xi, and its advantage is that
the Xi visit a neighborhood of the limit infinitely often. Such a limit is guaranteed to exist
by the Bolzano-Weierstrass theorem. These two constructions mean that there is always
some set on which the nonlinear dynamics g(x, u) can be learned, and this set corresponds
to points which the trajectory visits.

We need the following theorem in order to show epi-convergence of ψ̃m as defined in [3],
for the LBMPC problem that uses the L2NW estimator (13) as the oracle.

Theorem 4. Let Xv,Xw,R ⊂ Rn be closed and compact sets, and assume that we have a
sequence of functions Vk(x) : Xv → Xw and Wk(x) : Xw → R which converge in probability to
V (x),W (x) as supx∈Xv

‖Vk(x)− V (x)‖ = Op(rk) and supx∈Xw
‖Wk(x)−W (x)‖ = Op(sk). If

W is Lipschitz continuous with constant Lw, then supx∈Xv
‖Wk(Vk(x))−W (V (x))‖ = Op(ck),

where ck = max{rk, sk}.
Proof. Applying the triangle inequality gives

P
(

supx∈Xv
|Wk(Vk(x))−W (V (x))|/ck ≥ ε

)
≤ P

(
supx∈Xv

|Wk(Vk(x))−W (Vk(x))|/ck ≥ ε
)

+

P
(

supx∈Xv
|W (Vk(x))−W (V (x))|/ck ≥ ε

)
. (17)

The first term on the right in (17) can be bounded as

P
(

supx∈Xv
|Wk(Vk(x))−W (Vk(x))|/ck ≥ ε

)
≤ P

(
supx∈Xw

|Wk(x)−W (x)|/ck ≥ ε
)
, (18)

and so the limit of (18) by assumption is limP(supx∈Xv
|Wk(Vk(x))−W (Vk(x))|/ck ≥ ε) = 0.

The second term on the right in (17) is bounded using the Lipschitz constant as

P
(

supx∈Xv
|W (Vk(x))−W (V (x))|/ck ≥ ε

)
≤ P

(
supx∈Xv

Lw|Vk(x)− V (x)|/ck ≥ ε
)
, (19)

and taking its limit gives by assumption that limP(supx∈Xv
|W (Vk(x))−W (V (x))|/ck ≥ ε) =

0. The result follows by taking the limit of (17) and observing that the limit is equal to
zero.
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Remark. The theorem shows that convergence in probability is preserved under composition,
but the one subtlety in the result and subsequent proof is the issue of domains of convergence.
We are composing two functions Wk(Vk(x)), and convergence occurs as long as the range of
the function on the inside Vk(·) lies within the domain of convergence of the function on the
outside Wk(·). By Theorem 5 of [3], the L2NW estimator has the required range.

With the previous theorem, we can now show that ψ̃m epi-converges. Consequently, the
control law of LBMPC with L2NW as oracle converges to that of MPC that knows the
unmodeled dynamics, when there is SE as defined by the appropriate FSC.

Proof of Theorem 6 in [3]. Note that equality constraint in LBMPC

x̃n+1 = Ax̃n +Bǔn +Om(x̃n, ǔn) (20)

recursively defines x̃m+i, for i = {0, . . . , N}, as functions of only x̃m and c. For example, the
equation for x̃m+1 is given by

x̃m+2(x̃m, c;Om) = A2x̃m + AB(Kx̃m + cm) + AOm(x̃m, Kx̃m + cm)

+B(K(Ax̃m +B(Kx̃m + cm) +Om(x̃m, Kx̃m + cm)) + cm+1)

+Om(Ax̃m +B(Kx̃m + cm) +Om(x̃m, Kx̃m + cm), K(Ax̃m

+B(Kx̃m + cm) +Om(x̃m, Kx̃m + cm)) + cm+1). (21)

By Theorem 4 we have that supxm:φ(xm)6=0 ‖x̃m+i(xm,Om) − x̃m+i(xm, g)‖ = Op(rm), where
rm is the convergence rate from Theorem 3. Since ψ is continuous, we can compose it with
x̃[m+ i] using Theorem 4. This gives that supxm:φ(xm)6=0 ‖ψ̃m − ψ̃0‖ = Op(rm).

The last step requires showing that this condition is equivalent to lower semicontinuity
in probability. Because ψ̃0 is continuous, given ε > 0 and a point x0, c, there exists a
neighborhood U{x0, c} such that

|ψ̃0(ζ)− ψ̃0(x0, c)| < ε/2, (22)

for all ζ ∈ U{x0, c}. Now consider the expression

α = P
(

infζ∈U{x0,c} ψ̃m < ψ̃0(x0, c)− ε
)
≤ P

(
supζ∈U{x0,c} |ψ̃m − ψ̃0(x0, c)| > ε

)
. (23)

Using (22), we can further bound the expression above by

α ≤ P
(

supζ∈U{x0,c[·]} |ψ̃m − ψ̃0| > ε/2
)
. (24)

Taking the limit, we have that limα = 0, and so the result follows by applying Proposition
5.1 of [16].
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