
Confluence Analysis for Distributed Programs: A

Model-Theoretic Approach

William Marczak
Peter Alvaro
Neil Conway
Joseph M. Hellerstein
David Maier

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-154

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-154.html

December 18, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported by NSF grants 0917349, 0803690, 0722077,
0713661 and 0435496, Air Force Office of Scientific Research award
22178970-41070-F, the Natural Sciences and Engineering Research
Council of Canada, and gifts from Yahoo Research, Microsoft Research
and NTT Multimedia Communications Laboratories.

Confluence Analysis for Distributed Programs:
A Model-Theoretic Approach

William R. Marczak
UC Berkeley

wrm@cs.berkeley.edu

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu

Neil Conway
UC Berkeley

nrc@cs.berkeley.edu
Joseph M. Hellerstein

UC Berkeley
hellerstein@cs.berkeley.edu

David Maier
Portland State University
maier@cs.pdx.edu

ABSTRACT
Building on recent interest in distributed logic programming, we
take a model-theoretic approach to analyzing confluence of asyn-
chronous distributed programs. We begin with a model-theoretic
semantics for Dedalus and develop the concept of ultimate models
to capture the non-deterministic eventual outcomes of distributed
programs. After demonstrating the undecidability of checking con-
fluence for Dedalus programs, we look for restricted sub-languages
that guarantee confluence while providing adequate expressivity.
We observe that a simple semipositive restriction called Dedalus+

guarantees confluence while capturing PTIME, but demonstrate that
the limited use of negation in Dedalus+ makes certain simple and
practical programs very difficult to express. To remedy this, we
introduce DedalusS , a restriction of Dedalus that allows a natural
use of negation in the spirit of stratified negation, but retains the
confluence of Dedalus+ and similarly captures PTIME.

1. INTRODUCTION
In recent years there has been optimism that declarative languages

grounded in Datalog can provide a clean foundation for distributed
programming [24]. This has led to activity in language and system
design (e.g., [4, 9, 14, 32]), as well as formal models for distributed
computation using such languages (e.g., [8, 36, 37]).

The bulk of this work has presented or assumed a formal oper-
ational semantics based on transition systems and traces of input
events. A model-theoretic semantics for these languages has been
notably absent. In a related paper [3], we have developed a model-
theoretic semantics for Dedalus, a distributed logic language based
on Datalog, in which the “meaning” of a program is precisely the
set of stable models [38] that can arise via all possible temporal
permutations of messages. In the same paper, we demonstrate an
equivalence of these models with all possible executions in a opera-
tional semantics akin to those in the prior literature.

In this paper we take advantage of the availability of declara-
tive semantics to explore the correctness of distributed programs.
Specifically, we address the desire to ensure deterministic program

outcomes—confluence—in the face of inherently non-deterministic
timings of computation and messaging. This is a matter of widespread
practical concern in distributed systems, often cast in terms of “even-
tual consistency” [40, 39], and grounded in foundational issues of
time and clocks in the theory of distributed computing [27].

Using our model-theoretic semantics for Dedalus, we can rea-
son about the set of possible outcomes of a distributed program,
based on what we define as their ultimate models. This formal
framework enables us to declaratively describe the potential for
non-deterministic outcomes in Dedalus programs. It also allows
us to identify restricted sub-languages of Dedalus that ensure a
model-theoretic notion of confluence: the existence of a unique
ultimate model for any program expressible in that sub-language.
The next question then is to identify a sub-language that ensures
confluence without unduly constraining expressivity—both in terms
of both computational power, and the ability to employ familiar
programming constructs.

One natural step in this direction is to drop back from the ex-
pressive power of Dedalus to a monotonic subset: a language we
call Dedalus+ that disallows negation of IDB predicates. This is
inspired in part by the CALM theorem [5, 24], which established
a connection between confluence and monotonicity; subsequent
formalizations proved that monotonic distributed programs are in-
deed guaranteed to be confluent [1, 8]. In terms of expressivity,
Immerman’s celebrated result regarding the collapse of the fix-
point hierarchy established that PTIME is captured by a similar
monotonic language: semipositive Datalog (Datalog¬ where nega-
tion is restricted to EDB relations) augmented with an ordering
over the universe [25]. Put together, these results lead to a rather
startling conclusion: Dedalus+ shows that it is possible to express
any polynomial-time distributed algorithm (surely the vast majority
of useful distributed code!) in an eventually consistent manner.

This result is intriguing but not necessarily useful. In particular,
it does not guarantee that Dedalus+ or similar monotonic languages
can be used to express natural declarations of programs. Perhaps
this is why, despite Immerman’s complexity results over 25 years
ago, there has been ongoing interest in the topic of negation in logic
programs. More specifically, we have found that Dedalus+ is quite
unnatural to use in many cases that interest us—we demonstrate
this below via a practical system component (distributed garbage
collection) that is easily written in Dedalus, but would be quite
convoluted in Dedalus+.

Given this background, we seek a more comfortable balance be-
tween expressive power, ease of programming and guarantees of
confluence. We achieve this via a controlled use of negation that
draws inspiration from both stratified negation in logic, and coordi-
nation protocols from distributed computing. We present a language

called DedalusS whose semantics allow negated predicates, but sub-
ject to a closed-world assumption that these predicates are evaluated
on their “complete”, unchanging state. To make this practical in
a distributed context, we then show that an operational semantics
for DedalusS can be achieved by compiling DedalusS programs
into stylized Dedalus programs that augment the original code with
“coordination” rules to establish completion of subgoals as needed.
The operational semantics of the resulting Dedalus programs are
then given by the prior literature. The result is a sub-language that
retains many of the features we desire: PTIME expressivity, guar-
antees of confluence, and an intuitive and familiar use of negation.
We believe the result is practically useful—indeed, DedalusS corre-
sponds closely to Bloom, a practical programming we have used to
implement a broad array of distributed systems [10].

Our technical contributions in this paper include the following:
(a) the definition of ultimate models as a declarative framework for
assessing outcomes of Dedalus programs and the undecidability of
confluence for Dedalus programs (Section 3), (b) the introduction
of Dedalus+, its expressive power, and proof that it can only express
programs with unique ultimate models (Section 3.2), (c) the intro-
duction of DedalusS , examples of its use, and model-theoretic proof
of its confluence (Section 4, 4.1), and (d) an operational semantics
for DedalusS achieved via a compilation of DedalusS programs into
judiciously “coordinated” Dedalus programs (Section 4.2, 4.3).

2. Dedalus
Dedalus extends Datalog by adding spatial and temporal at-

tributes to every relation. The critical semantic issue from dis-
tributed computing that we wish to capture is non-determinism of
message timing across nodes. This non-determinism is modeled
simply by the use of a restricted version of Sacca and Zaniolo’s
choice construct [38]. We use the stable model semantics [21] to
assign meanings to the behaviors of Dedalus programs over time.
In a companion paper [3], we prove these stable models are equiv-
alent to traces in a variation of the network transducer model—an
operational formalism for distributed systems—and thus argue that
Dedalus is a reasonable model for distributed systems.

We believe that the stable model semantics are inappropriate
to represent the output of a distributed system, as they contain a
potentially infinite number of distinctions that are not meaningful
in an “eventual” sense. Thus, we introduce the ultimate model
semantics as a representation of program output. As one might
imagine, even in the ultimate model semantics, some programs
may have multiple ultimate models that correspond to meaningful
distinctions between stable models.

We begin this section by reviewing the syntax of Dedalus first
presented in Alvaro et al. [6]. We then review the model-theoretic
semantics for Dedalus [3], using a similar exposition for simplicity.

2.1 Syntax

2.1.1 Preliminary Definitions
We assume an infinite universeU of values. We assume N ⊂ U.1

A relation schema is a pair (R, k) where R is a relation name and
k its arity. We also write (R, k) as R(k). A database schema S is a
set of relation schemas. Any relation name occurs at most once in a
database schema.

As in Immerman [25], we assume the existence of an order: every
database schema contains the relation schema <(2).2 Later, we will
explain how < is populated.

1N = {0, 1, 2, . . .}
2We will often write < in infix notation.

A fact over a relation schema R(n) is a pair consisting of the
relation name R and an n-tuple (c1, . . . , cn), where each ci ∈ U. We
denote a fact over R(n) by R(c1, ..., cn).

A relation instance for relation schema R(n) is a set of facts whose
relation is R. A database instance maps each relation schema R(n)

to a corresponding relation instance for R(n).
A rule ϕ consists of several distinct components: a head atom

head(ϕ), a set pos(ϕ) of atoms, a set neg(ϕ) of atoms, a set of
inequalities ineq(ϕ) of the form x < y, and a set of choice operators
cho(ϕ) applied to the variables. Intuitively, we use choice operators
to model real-world non-determinism due to network asynchrony.
The elements of pos(ϕ) are called positive body atoms, and the
elements neg(ϕ) are called negative body atoms.

The conventional syntax for a rule is:

head(ϕ)← f1, . . . , fn,¬g1, . . . ,¬gm, ineq(ϕ), cho(ϕ).

where fi ∈ pos(ϕ) for i = 1, . . . , n and gi ∈ neg(ϕ) for i =

1, . . . ,m. The following is an example of a rule over schema S with
ineq(ϕ) = ∅ and cho(ϕ) = ∅.

p(W)← b1(X1), ..., bl(Xl), ¬c1(Y1), ...,
¬cm(Ym).

where p, b1, . . . , bl, c1, . . . , cm are relations in S, and W, Xi and Y j

denote a tuple (of the appropriate arity) consisting of constants from
U or variable symbols.

The relation name < may only appear in ineq; in particular, < may
not appear in any atom in head, pos, or neg.

2.1.2 Safety
Dedalus maintains the usual Datalog safety restrictions: every

variable symbol V in a rule must appear in some atom in pos.
For a variable symbol V that appears exactly once in exactly one

neg atom, and does not appear elsewhere in the rule, there is a
straightforward rewrite defined in Ullman [41] that brings the rule
into compliance with the safety restriction. An example of the
rewrite appears below.

Example 1. The unsafe rule: p(X)← q(X), ¬r(X,Y).
is rewritten into the following two rules that obey the safety

constraint:
p(X)← q(X), ¬r′(X).
r′(X)← r(X,Y).

where r′(1) is a relation schema that does not otherwise appear in
the program.

For readability, we will use the underscore symbol (_) to represent
a variable that appears only once in a rule.

2.1.3 Spatial and Temporal Extensions
Given a database schema S, we use S+ to denote the schema

obtained as follows. For each relation schema r(n) ∈ (S \ {<}),
we include a relation schema rn+1 in S+. The additional column
added to each relation schema is called the location specifier. By
convention, the location specifier is the first column of the relation.
S+ also includes <(2), and a relation schema node(1): the finite set
of node identifiers that represents all of the nodes in the distributed
system. We call S+ a spatial schema.3

A spatial fact over a relation schema R(n) is a pair consisting of
the relation name R and an (n + 1)-tuple (d, c1, . . . , cn) where each
ci ∈ U, d ∈ U, and node(d). We denote a spatial fact over R(n)

by R(d, c1, ..., cn). A spatial relation instance for a relation
3The terms spatial and spatio-temporal are borrowed from
Ameloot [7].

schema r(n) is a set of spatial facts for r(n+1). A spatial database
instance is defined similarly to a database instance.

Given a database schema S, we use S∗ to denote the schema
obtained as follows. For each relation schema r(n) ∈ (S \ {<}) we
include a relation schema r(n+2) in S∗. The first additional column
added is the location specifier, and the second is the timestamp. By
convention, the location specifier is the first column of every relation
in S∗, and the timestamp is the second. S∗ also includes <(2) (finite),
node(1) (finite), time(1) (infinite) and timeSucc(2) (infinite), We
call S∗ a spatio-temporal schema.

A spatio-temporal fact over a relation schema R(n) is a pair con-
sisting of the relation name R and an (n + 2)-tuple (d, t, c1, . . . , cn)
where each ci ∈ U, d ∈ U, t ∈ U, node(d), and time(t). We
denote a spatial fact over R(n) by R(d, t, c1, ..., cn).

A spatio-temporal relation instance for relation schema r(n) is a
set of spatio-temporal facts for r(n+2). A spatio-temporal database
instance is defined similarly to a database instance; in any spatio-
temporal database instance, time(1) is mapped to the set containing
a time(t) fact for all t ∈ N, and timeSucc(2) to the set containing
a timeSucc(x,y) fact for all y = x + 1, (x, y ∈ N).

We will use the notation f@t to mean the spatio-temporal fact
obtained from the spatial fact f by adding a timestamp column with
the constant t.

A spatio-temporal rule over a spatio-temporal schema S∗ is a rule
of one of the following three forms:

1. A deductive rule ϕ:

p(L,T,W)← b1(L,T,X1), ..., bl(L,T,Xl),
¬c1(L,T,Y1), ..., ¬cm(L,T,Ym), node(L),
time(T), ineq(ϕ).

2. An inductive rule ϕ:

p(L,S,W)← b1(L,T,X1), ..., bl(L,T,Xl),
¬c1(L,T,Y1), ..., ¬cm(L,T,Ym), node(L),
time(T), timeSucc(T,S), ineq(ϕ).

3. An asynchronous rule ϕ:

p(D,S,W)← b1(L,T,X1), ..., bl(L,T,Xl),
¬c1(L,T,Y1), ..., ¬cm(L,T,Ym), node(L),
time(T), time(S), choice((L, T, B),(S)),
node(D), ineq(ϕ).

The last two kinds of rules are collectively called temporal rules.
In the rules above, B is a tuple that contains all of the distinct

variable symbols in X1, . . . , Xl, Y1, . . . , Ym. The variable symbols
D and L may appear in any of W, X1, ..., Xl, Y1, ..., Ym,
whereas T and S may not. Head relation name p may not be time,
timeSucc, or node. Relations b1, ..., bl, c1, ..., cm may
not be timeSucc, time, or <.

The use of a single location specifier and timestamp in rule bod-
ies intuitively corresponds to considering deductions that can be
evaluated at a single node at a single point in time. Inductive rules
use the timeSucc relation to carry the results of deductions into the
next visible timestep.

Note that asynchronous rules are the only kinds of rules with
cho , ∅. The choice construct is from Saccà and Zaniolo [38].
The choice((X), (Y)) construct represents the constraint that
the variables in Y be functionally dependent on the variables in X.
Due to variable binding restrictions, only asynchronous rules may
have a different value for the head location specifier than the body
location specifier. Intuitively, different values for the head and body

location specifiers represents cross-node communication; a binding
of L, T, and B represents a message being sent from location L to
location D. To model the fact that the network may arbitrarily delay,
re-order, and batch messages, any single value of head timestamp S
is permissible.

We use the causality rewrite of Alvaro et al. [3], which introduces
the following causality constraint: a message sent by a node x at
local timestamp s cannot cause another message to arrive in the past
of node x (i.e., at a time before local timestamp s).4 Intuitively, the
causality constraint rules out models corresponding to impossible
executions, in which effects are perceived before their causes. Full
details are available in a companion paper [3].

A Dedalus program is a finite set of causally rewritten spatio-
temporal rules over some spatio-temporal schema S∗.

2.1.4 Syntactic Sugar
The restrictions on timestamps and location specifiers suggest a

natural syntactic sugar to improve readability. We annotate inductive
head relations with @next and asynchronous head relations with
@async; deductive rules have no head annotation. These annotations
allow us to omit the boilerplate usage of node, time, timeSucc
and choice in rule bodies, as well as the timestamp attributes from
rule heads and bodies. We also omit location specifiers by default,
but refer to them if necessary, as described later. Using this syntactic
sugar, below are examples of the three kinds of rules listed above.

Example 2. Example deductive, inductive, and asynchronous
rules.

1. Deductive:

p(W)← b1(X1), ..., bl(Xl), ¬c1(Y1), ...,
¬cm(Ym).

2. Inductive:

p(W)@next← b1(X1), ..., bl(Xl), ¬c1(Y1), ...,
¬cm(Ym).

3. Asynchronous:

p(W)@async← b1(X1), ..., bl(Xl), ¬c1(Y1), ...,
¬cm(Ym).

In any kind of rule, the body location specifier can be accessed by
including a variable symbol or constant prefixed with # as any body
atom’s first argument. In asynchronous rules only, the head location
specifier can be accessed by including a variable symbol or constant
prefixed with a # as the head atom’s first argument. The example
below shows an example of # in an asynchronous rule.

Example 3. The head and body location specifiers are bound to
D and L respectively. Note how D may appear in the body, L may
appear in the head, and L may appear duplicated in the body.

p(#D,L,W)@async← b(#L,D,W), ¬c(#L,L).

2.2 Semantics
We restrict our attention to Dedalus programs whose deductive

rules are syntactically stratified.
4Note that in other presentations of Dedalus (e.g., [6]), message
timestamps are chosen from N ∪ >, where > represents a special
value indicating that the message was dropped by the network. In
this paper, we assume reliable delivery of messages.

An input schemaSI for a Dedalus program P with spatio-temporal
schema S∗ is a subset of P’s spatial schema S+. Every input schema
contains the node relation; we will not explicitly mention the pres-
ence of node when detailing an input schema. A relation in SI is
called an EDB relation. All other relations are called IDB.

An EDB instance E is a spatial database instance that maps each
EDB relation r to a finite spatial relation instance for r. The active
domain of an EDB instance E for a program P is the set of constants
appearing in E and P. Every EDB instance maps the < relation to a
total order over its active domain.

We can view an EDB instance as a spatio-temporal database in-
stance K . For every r(d,c1,...,cn) ∈ E, the fact
r(d,t,c1,...,cn) ∈ K for all t ∈ N. Intuitively, EDB facts
“exist at all timesteps.”

We refer to a Dedalus program together with an EDB instance
as a Dedalus instance. The semantics of a Dedalus program can
be viewed as a mapping from EDB instances to spatio-temporal
database instances.

Recall that choice is only used in asynchronous rules, to model
the fact that the network may arbitrarily delay, re-order, and batch
messages. Saccà and Zaniolo [38] propose the stable model se-
mantics as a natural interpretation of choice, and we provide the
model-theoretic details elsewhere [3]. Intuitively, each stable model
is a spatio-temporal database instance that defines a possible func-
tion for choice that obeys the causality rewrite; every possible
function that obeys the causality rewrite defines a stable model. In
other words, each different causal choice of timesteps for a Dedalus
instance corresponds to a different stable model of that instance.

Example 4. Take the following Dedalus program with input
schema {q}. Assume the EDB instance is {node(n1), q(n1)}.

p(#L)@async← q(#L).

Let the power set of X be denoted P(X). For each S ∈ P(N \ {0}),
where |S | = |N|, the following is a stable model:

{node(n1)} ∪ {p(n1,i) | i ∈ S } ∪ {q(n1,i) | i ∈ N}

These are the only stable models of the instance. Since q is part
of the input schema, it is true at every time. Every time involves
a separate choice of time for p, which must be later than time 0.
Elements S of the power set with finite cardinality are ruled out, due
to the causality constraint [3].

2.2.1 Ultimate Models
The stable model semantics is a suitable model-theoretic charac-

terization of the behavior of a program in that there is a correspon-
dence between stable models and traces in an operational formalism
based on network transducers [3]. However, stable models high-
light uninteresting temporal differences that may not be “eventually”
significant, such as in the following example:

Example 5. Take the following Dedalus program with input
schema {q}. The program determines whether two values, c1
and c2 “arrive” at the same time. Assume the EDB instance is
{node(n1), q(n1,c1),
q(n1,c2)}.
p(#L,X)@async← q(#L,X), ¬r(#L,X).
r(X)@next← q(X).
r(X)@next← r(X).
concurrent()← p(n1,c1), p(n1,c2).
concurrent()@next← concurrent().

For each s, t ∈ N, the following is a stable model:

{q(n1,i,c1), q(n1,i,c2) | i ∈ N} ∪

{node(n1), p(n1,s,c1), p(n1,t,c2)} ∪

{r(n1,i,c1), r(n1,i,c2) | i ∈ N \ {0}}
{concurrent(n1,i) | i ∈ N ∧ s ≤ i} if s = t∪

These are the only stable models of the instance. Since q is part of
the input schema, q facts are true at every time. By the rules, r facts
are true at every time except time 0. Thus, there is only one choice
of head timestamp for p for each value of q’s second argument—this
choice corresponds with a body timestamp of 0. If these choices are
the same, then concurrent() is true at all timestamps afterwards.

However, note that while the specific values of s and t are unim-
portant in terms of the eventual contents of the concurrent relation,
there are different stable models for each of these choices. Intuitively,
we do not want these “intermediate” temporal behaviors that are not
eventually significant, to differentiate program outputs.

In order to rule out such behaviors from the output, we will define
the concept of an ultimate model to represent a program’s “output.”

An output schema for a Dedalus program P with spatio-temporal
schema S∗ is a subset of P’s spatial schema S+. We denote the
output schema as SO.

Recall that a stable model defines a spatio-temporal database
instance, which is a mapping from every relation r in S∗ to a spatio-
temporal relation instance for r, which itself is a set of spatio-
temporal facts for r. We define the eventually always true func-
tion ^�, which maps a spatio-temporal database instance T to
a spatial database instance ^�T . For every spatio-temporal fact
r(p,t,c1,...,cn) ∈ T , the spatial fact r(p,c1,...,cn) ∈ ^�T
if relation r is in SO and ∀s . (s ∈ N ∧ t < s) ⇒

(r(p,s,c1,...,cn) ∈ T).
The set of ultimate models of a Dedalus instance I is {^�(T) | T

is a stable model of I}. Intuitively, an ultimate model contains ex-
actly the facts in relations in the output schema that are eventually
always true in a stable model.

Note that an ultimate model is always finite because of the finite-
ness of the EDB, the safety conditions on rules, the restrictions
on the use of timeSucc and time, and the prohibition on binding
timestamps to non-timestamp attributes. A Dedalus program only
has a finite number of ultimate models for the same reason.

Example 6. For Example 4 with SO = {p}, there are two ultimate
models: {} and {p(n1)}. The latter corresponds to an element of
the power set S such that ∃x .∀y . (y > x) ⇒ (y ∈ S). The former
corresponds to an element S that does not have this property.

For Example 5 with SO = {concurrent()}, there are two ulti-
mate models: {} and {concurrent()}. The former corresponds to
choices of timestamp for c1 and c2 that are not equal, whereas the
latter corresponds to equal choices of timestamp.

3. REFINING Dedalus
Dedalus can express a broad class of distributed systems but this

flexibility comes at a cost. As we have shown, a Dedalus program
may have multiple ultimate models. However, it is often desirable to
ensure that a program has a single, deterministic output, regardless
of non-determinism in its behavior.

Having defined the Dedalus language, we will refer to two run-
ning examples for the remainder of the paper.

Example 7. A simple asynchronous marriage ceremony:

groom_i_do()@async← groom_i_do_edb().
bride_i_do()@async← bride_i_do_edb().
runaway()← ¬bride_i_do(), groom_i_do().
runaway()← ¬groom_i_do(), bride_i_do().
runaway()@next← runaway().
groom_i_do()@next← groom_i_do().
bride_i_do()@next← bride_i_do().

In a classic paper, Gray notes the similarity between distributed
commit protocols and marriage ceremonies [22]. For simplicity
(and felicity), Example 7 presents a simple asynchronous voting
program with a fixed set of members: a bride and a groom. The
marriage is off (runaway() is true) if one party says “I do” and the
other does not.

However, the Dedalus program as given does not correctly im-
plement such a vote. Any stable model where groom_i_do() and
bride_i_do() disagree in their first chosen timestamps yields an
ultimate model containing runaway(). By contrast, if the votes are
assigned the same timestamp, the ultimate model does not contain
runaway(). In operational terms, this program exhibits a race con-
dition: when the EDB contains “I do” votes from both parties, the
truth value of runaway() depends on the (non-deterministic) times
at which their messages are delivered.

Example 8. Distributed garbage collection:
addr(Addr)@async← addr_edb(Addr).
refers_to(#M, Src, Dst)@async←

local_ptr_edb(#N, Src, Dst), master(#M).
refers_to(Src, Dst)@next← refers_to(Src, Dst).
reach(Src, Dst)← refers_to(Src, Dst).
reach(Src, Next)← reach(Src, Dst),

refers_to(Dst, Next).
garbage(Addr)← addr(Addr), root_edb(Root),

¬reach(Root, Addr).
garbage(Addr)@next← garbage(Addr).

Example 8 presents a simple garbage collection program for a dis-
tributed memory system. Each node manages a set of pointers and
forwards this information to a central master node. The master
computes the set of transitively reachable addresses; if an address is
not reachable from the root address, it can be garbage collected. For
simplicity, we assume that each node owns a fixed set of pointers,
stored in the EDB relation local_ptr_edb.

This more complicated example suffers from the same ambiguity
as the marriage ceremony presented previously. While the pro-
gram has an ultimate model corresponding to executions in which
garbage is not computed until the transitive closure of refers_to
has been fully determined (i.e., after all messages have been de-
livered), it also has ultimate models corresponding to executions
in which garbage is “prematurely” computed. When garbage is
computed before all the refers_to messages have been delivered,
there is a correctness violation: reachable memory addresses appear
in the garbage relation.

Note that for both examples, there is a single ultimate model
corresponding to the execution in which negation is not applied to
a set until the content of the set has been fully determined. This
“preferred” model is akin to the perfect model computed by a cen-
tralized Datalog evaluator that evaluates rules in stratum order [41],
applying the closed-world assumption to relations only when it is
certain that they will no longer change. Unfortunately, in an asyn-
chronous distributed system it is difficult to distinguish the absence
of a message (e.g., the bride_i_do or some expected refers_to
messages) from channel delay. Hence both programs above are
underspecified insofar as they conclude, as soon as they receive

any messages, that no others will arrive. In practice, a programmer
could remediate the problem by augmenting their programs with
coordination code that enforces a computation barrier. This tech-
nique generally entails a protocol (e.g., voting or consensus) that
takes place between all communicating agents to ensure that there
are no outstanding messages in flight.

In the remainder of this section, we explore the aspects of Dedalus
that allow such ambiguities and propose a restricted language Dedalus+

that rules them out (but complicates the specification of programs
like our examples above). In Section 4, we consider a different
language—DedalusS —that allows relatively intuitive program spec-
ifications like our examples, but narrows their interpretation to a
single, “preferred” model.

3.1 Problems with Dedalus
Definition 1. A Dedalus program is confluent if, for every EDB

instance, it has a single ultimate model. A program that is not
confluent is diffluent.

Confluence is a desirable, albeit conservative, correctness prop-
erty for a distributed program. A program that is confluent produces
deterministic output despite any non-deterministic behaviors that
might occur during its execution. For example, if we could show that
a data replication protocol was confluent, we could prove a version
of the commonly desired property that all replicas be “eventually
consistent” after all messages have been delivered [40, 39]. Conflu-
ence may be viewed as a specialization of the more general notion
of consistency of distributed state, which the CALM theorem [24]
argues is strongly connected with the model-theoretic property of
logical monotonicity.

Unfortunately, confluence is an undecidable property of Dedalus
programs:

Lemma 1. Confluence of Dedalus programs is undecidable.

This result is perhaps not surprising, as confluence is defined over
all EDB instances. We present a proof in the appendix.

Another symptom of Dedalus being “too big” a language is its
expressive power: it subsumes PSPACE.

Lemma 2. Dedalus subsumes PSPACE.

Proof. We show how to write the PSPACE-complete Quantified
Boolean Formula (QBF) problem [20] in Dedalus. Since Dedalus
is closed under first-order reductions and QBF is PSPACE-complete
under first-order reductions, we have that PSPACE ⊆ Dedalus.
Details are in the appendix.

3.2 Dedalus+
Distributed programs that produce non-deterministic outputs or

have runtimes exponential in their inputs are often undesirable in
practice. Since checking for confluence in Dedalus is undecidable
in general, we may instead ask whether a more constrained language
will exclude such undesirable programs. We will present a restriction
of Dedalus that allows only confluent programs and prove that it
captures exactly PTIME.

Definition 2. A Dedalus program is semipositive if the ¬ symbol
only appears on EDB relations in the program.

Definition 3. A Dedalus program P has guarded asynchrony if
for every relation p appearing in the head of an asynchronous rule,
the program P has a rule p(X)@next ← p(X).

We will refer to the language of semipositive Dedalus programs
with guarded asynchrony as Dedalus+.

3.2.1 Confluence
To show that all Dedalus+ programs are confluent, we begin by

showing that Dedalus+ programs are temporally inflationary: if
a stable model of a Dedalus+ instance contains a spatio-temporal
fact f@t, then it also contains f@t+1 (and thus the ultimate model
contains f).

Lemma 3. Dedalus+ programs are temporally inflationary.

Proof. Consider a derivation tree for f@t: a finite tree of instan-
tiated (variable-free) rules, where negation only occurs at the leaves.
Note that the instantiated head atom, as well as every instantiated
body relation, is a spatio-temporal fact. The tree’s root is some
instantiated rule with f@t in its head. A node has one child node for
each body fact: the child node contains an instantiated rule with the
fact in its head—if the body fact’s relation does not appear in the
head of any rule, then the corresponding node contains just the fact,
and is a leaf node. The leaves of the tree are instantiated EDB facts.

For the moment, we assume that every fact has a unique derivation
tree. Multiple derivation trees are easy to handle—simply repeat the
following process for each tree.

If the relation of f is EDB, or appears in the head of an asyn-
chronous rule, then the lemma holds by definition of Dedalus+.
Assume some stable model contains f@t and not f@t+1. Thus, if
the rule is inductive (resp. deductive), then for some child of f@t,
call it g@t-1 (resp. g@t), the fact g@t (resp. g@t+1) is not in the
stable model. Inductively proceed down the tree, at each step going
to a node whose relation does not appear in the head of an asyn-
chronous rule. However, the path will eventually terminate at a leaf
node providing a contradiction, because facts at leaf nodes are either
EDB or negated EDB, meaning that they exist at all timestamps,
or they are one of time, timeSucc, or <, which also exist at all
timestamps.

A consequence of temporal inflation is that all Dedalus+ programs
are confluent.

Theorem 1. Dedalus+ programs are confluent.

Proof. Towards a proof by contradiction, consider a Dedalus+

program that induces two ultimate modelsU1,U2 for some EDB.
Without loss of generality, there must be a spatial fact f, such that
f ∈ U1 and f < U2.

Recall that if spatial fact f is in some ultimate model, then for
some t0 ∈ N, there is some stable model that contains f@t for all t
> t0.

Consider a derivation tree for f@t0 in any stable model that yields
U1. Again, for simplicity, we assume uniqueness of this derivation
tree. For some child of f@t0, call it g@s, for all stable models
that yieldU2 there is no r such that g@r is in the stable model by
Lemma 3. Continue traversing the tree, at each step picking such a
g. Eventually, the traversal terminates at an EDB node, leading to a
contradiction.

Since a Dedalus+ program has a unique ultimate model, the
specific choice of values for timestamps does not affect the ultimate
model. In particular, we can assume that the timeSucc of the body
timestamp is always chosen:

Corollary 1. Define the program transformation A(P) to be
the transformation that, converts every asynchronous rule ϕ of
Dedalus+ program P into an inductive rule by undoing the causality
and choice rewrites, dropping the choice operator, and adding
timeSucc(T,S) to pos(ϕ). Then, the ultimate model of A(P) is
the same as the ultimate model of P.

Of course, there are confluent Dedalus programs not in Dedalus+.
For example:

Example 9. A confluent Dedalus program that is not a Dedalus+

program.
b(#N, I)@async← b_edb(#L, I).
b(I)@next← b(I), ¬dequeued(I).
b_lt(I, J)← b(I), b(J), I < J.
dequeued(I)@next← b(I), ¬b_lt(_, I),

b_lt(_, _).

Any instance of this program has a single ultimate model in
which b() (at all nodes) contains the highest element in b_edb()
according to the order <. Thus it is confluent, but the program uses
IDB negation and does not have guarded asynchrony.

3.2.2 Computational Complexity
Not only are Dedalus+ programs confluent, but they also capture

exactly PTIME. We will prove this by showing an equivalence to
semipositive Datalog programs, which are known to capture exactly
PTIME over ordered structures [26].

First, we note that inductive rules in Dedalus+ can be “converted”
into deductive rules without affecting the ultimate model.

Lemma 4. Define the program transformation I(P) in the follow-
ing way: in every inductive rule of Dedalus+ program P—except
any basic persistence rule for a relation that appears in the head
of an asynchronous rule—remove the timeSucc(T,S) body atom,
and replace all instances of the variable S with the variable T. The
ultimate model of I(P) is the same as the ultimate model of P.

Proof. Note that by Lemma 3, I(P) is inflationary. The proof
proceeds similarly to the proof of Lemma 3—there is some fact in
U1 but not U2; we consider a derivation tree for this fact in any
stable model; it must be the case that some child fact of the parent
does not appear in any stable model for U2 (by Lemma 3). We
inductively repeat the procedure, and discover that in order for the
fact to be absent from U1, the EDB must be different, which is a
contradiction.

Theorem 2. Dedalus+ captures exactly PTIME.

Proof. First we apply Corollary 1 to rewrite asynchronous rules
as inductive rules. Then, we convert all inductive rules into deductive
rules using Lemma 4. Since all rules are deductive, there is a unique
stable model, which is also the same for every timestamp.

Consider removing the timestamp attributes from all relations,
and thus the time relations from the bodies of all rules. The result is
a Datalog program with EDB negation. Its minimal model is exactly
the ultimate model of the single-timestep Dedalus+ program.

In the other direction, it is clear that we can encode any Datalog
program with EDB negation in Dedalus+ using deductive rules; the
ultimate model coincides with the minimal model of the Datalog
program.

4. DedalusS
Returning to our running examples, it is easy to see that neither

program is directly expressible in Dedalus+. The marriage program
from Example 7 uses IDB negation to determine the truth value of
runaway. To avoid using IDB negation, we can rewrite the program
to “push down” negation to the EDB relations groom_i_do and
bride_i_do, and then derive the runaway IDB relation positively
as shown in Example 10. While the rewrite is straightforward, a
majority of the program’s rules need to be modified. Note that since

Example 10 is written in Dedalus+, the program must be confluent;
therefore, it is not subject to the non-deterministic output observed
for the original marriage program (Example 7).

Example 10. An asynchronous marriage ceremony without IDB
negation:
groom_i_dont()@async← ¬groom_i_do_edb().
bride_i_dont()@async← ¬bride_i_do_edb().
runaway()← groom_i_dont().
runaway()← bride_i_dont().
runaway()@next← runaway().
groom_i_dont()@next← groom_i_dont().
bride_i_dont()@next← bride_i_dont().

The garbage collection program from Example 8 is likewise out-
side Dedalus+ due to IDB negation but it presents a rather more
difficult problem, as negation must be pushed down through recur-
sion. The rules for positively computing the negation of a transitive
closure are not particularly intuitive, and expressing the negation
of an arbitrary recursive computation is even more difficult [25].
Furthermore, the best known strategies involve at least a doubling
in the arity of the relations.

In general, the restriction of negation to EDB relations presents a
significant barrier to expressing practical programs. In this section,
we introduce DedalusS , an extension of Dedalus+ that allows a
limited form of IDB negation but retains the benefits of Dedalus+:
DedalusS also captures PTIME exactly and allows only confluent
programs. We show that DedalusS and Dedalus+ are equivalently
expressive. Then we provide an operational semantics for DedalusS ,
based on the one for Dedalus [3], inspired by coordination protocols
from distributed systems.

4.1 Safe IDB Negation
The stratified semantics for logic programs with negation is both

intuitive and corresponds to common distributed systems practices:
negation is not applied until the negated relation is “done” being
computed.

First, we define a predicate dependency graph (PDG). The PDG
of a Dedalus program P with spatio-temporal schema S∗ is a di-
rected graph with one node per relation; each node i has a label
L(i). If node i represents relation p, then L(i) = p. There is an edge
from the node with label q to the node with label p if relation p
appears in the head of a rule with q in its body. If some rule with
p in the head and q in the body is asynchronous (resp. inductive),
then the edge is said to be asynchronous (resp. inductive). If some
rule with p in the head has ¬q in its body, then the edge is said
to be negated. Collectively, asynchronous and inductive edges are
referred to as temporal edges. The PDG does not contain nodes for
the node, timeSucc, or time relations, or any relation introduced
in the causality [3] or choice [38] rewrites.

DedalusS is the language of Dedalus programs with guarded
asynchrony whose PDG does not contain any cycles through nega-
tion. As is standard, a DedalusS program can be partitioned into
strata. The stratum of a relation r is the largest number of negated
edges on any path from r.

Each stratum of an n-stratum DedalusS program can be viewed
as a Dedalus+ program. Stratum i’s program, Pi, consists of all
rules whose head relation is in stratum i. The output schema of Pi

contains all relations in stratum i + 1, and Pi’s EDB contains all
relations in stratum j < i. P0’s EDB contains all EDB relations.
Pn’s output schema contains all relations in P’s output schema.

The ultimate model of a DedalusS program is the ultimate model
Pn(. . . P1(P0(E)) . . .).

Since a DedalusS program is a straightforward composition of
Dedalus+ programs, we can apply several previous results. Note
that DedalusS programs are temporally inflationary.

Corollary 2. DedalusS programs are confluent.

Note that every Dedalus+ program is a DedalusS program, and
every DedalusS program has a constant number of strata in the size
of its input. Thus we have:

Corollary 3. DedalusS programs capture exactly PTIME.

Thus, DedalusS maintains the desirable properties of Dedalus+:
it is both confluent and PTIME.

4.2 Coordination rewrite
While the model-theoretic semantics of DedalusS are clear, its

negation semantics are different than those of Dedalus. Thus, we
cannot directly apply the correspondence to a distributed operational
semantics in Alvaro et al. [3]. Fortunately, we can rewrite any
DedalusS program to a Dedalus program.

Given a DedalusS program S , the coordination rewrite P(S) of S
is the Dedalus program obtained by adding p_done() to the body
of any rule in S that contains a ¬p(...) atom and adding rules to
define p_done() as described below.

We will see that p_done() has the property that in any stable
model M if p_done(l,t) ∈ M, then p_done(l,s) ∈ M for
all timestamps s > t. Furthermore, if p_done(l,t) ∈ M, then
p(l,s,c1,...,cn) ∈ M implies that p(l,t,c1,...,cn) ∈ M
for all timestamps s > t. Intuitively, p_done() is true when the
content of p is sealed (henceforth unchanging).

We will present a specification of p_done() after introducing
some preliminary definitions.

A collapsed PDG of a Dedalus program P is the graph obtained
by replacing each strongly connected component of the PDG of P
with a single node i, such that L(i) comprises the set of all relations
from the component. If a strongly connected component has any
asynchronous edges, we call the resulting collapsed node async
recursive. Each node in the collapsed PDG whose label contains a
relation names in SO is called an output node. Note that a collapsed
PDG is acyclic.

For EDB relations p, the rule for p_done is p_done().5 For
IDB relations, defining p_done() takes some work. Intuitively,
p_done() for p ∈ L(i) directly depends on r_done() for any r in
the body of a rule with p in the head. Additionally, asynchronous
rules take some care—while deductively defined relations are done
in the same timestamp as all relations they depend on, there may be
arbitrary delay before asynchronously defined relations are done.

For ease of exposition, we will first present the computation of
p_done() for p in non-async-recursive nodes. We will then explain
how to support async recursive nodes. We assume that all inductive
rules have been rewritten to deductive rules (Lemma 4).

4.2.1 Non-Async-Recursive Nodes
For non-async-recursive nodes, we can compute a done fact for

each rule, then collate these into done facts for each relation. We
handle deductive and asynchronous rules separately. The done fact
for a deductive rule is true when all of the relations in the body of the
rule are henceforth unchanging. The done fact for an asynchronous
rule is henceforth true at some local timestamp after all facts derived
in the head relation are true at their respective locations. We assume
guarded asynchrony applies to the rules in this section.
5This expression is actually a rule. Consider the unsugared form:
p_done(L,T) ← node(L), time(T).

Let i be a non-async-recursive node. Repeat the following for
each element of p ∈ L(i). Assume the rules in P with head relation
p are numbered 1, . . . , ip. The rule for p_done() is:

p_done()← r1_done(), ..., rip_done().

Let the nodes in the collapsed PDG connected via incoming edges
to node i be denoted by E(i). Let the relations

⋃
k∈E(i) L(k) be named

p1, . . . , piq .
For each rule 1 ≤ j ≤ ip in P with head relation p, if j is:

Deductive: Add the rule:

r j_done()← p1_done(), ..., piq_done().

Asynchronous: For each asynchronous rule:

p(#N,W)@async← b1(#L,X1), ..., bl(#L,Xl),
¬c1(#L,Y1), ..., ¬cm(#L,Ym).

add the following set of rules:

p j_to_send(N,W)← b1(#L,X1), ..., bl(#L,Xl),
¬c1(#L,Y1), ..., ¬cm(#L,Ym).

p j_to_send_done()← b1_done(), ..., bl_done(),
c1_done(), ..., cm_done().

p j_send(#N,L,X)@async← p j_to_send(#L,N,X).

p j_ack(#N,L,X)@async← p j_send(#L,N,X).
r j_done_node(#L,N)@async← p1_done(#N), ...,

piq_done(#N),
(
∀X.p j_to_send(#N,L,X)⇒

p j_ack(#N,L,X)
)
.

r j_done()←
(
∀N.node(N)⇒ r j_done_node(N)

)
.

The first rule stores messages to be sent at the body (source’s)
location specifier, so the source can check whether all messages have
been acknowledged. The original destination location specifier is
stored as an ordinary column in the p j_to_send relation (indicated
by the absence of #). Note that because this first rule is a deductive
rule, as well as the only rule defining p j_to_send, the p j_to_send
relation is done at the same time as the body relations of the first rule,
as shown in the second rule. The third rule copies messages to the
correct destination location specifier, while including the location
specifier of the source (L). The fourth derives acknowledgments at
the source’s location specifier. The fifth rule (at the source) derives
a r j_done_node fact at a node when the source has an p j_ack for
each p j_send. Note that the causality constraint ensures that the
timestamp chosen for each r j_done_node message is greater than
any timestamp before the stable model satisfies the body of the rule.
The final rule (at the destination) asserts that rule j is done once
r j_done_node has been received from all nodes—intuitively, the
rule is done when all messages from all nodes have been received.

The formula ∀X.φ(W, X) where φ(W, X) is of the form p(W,X) ⇒
q(W,X) translates to forallφ(W), and the following rules are added:

pφ_min(W,X)← p(W,X), ¬pφ_succ(W,_̄,X),
pφ_succ_done().

pφ_max(W,X)← p(W,X), ¬pφ_succ(W,X,_̄),
pφ_succ_done().

pφ_succ(W,X,Y)← p(W,X), p(W,Y), X < Y,

¬pφ_not_succ(W,X,Y), pφ_not_succ_done().

pφ_not_succ(W,X,Y)← p(W,X), p(W,Y), p(W,Z),

X < Z, Z < Y.
forallφ_ind(W,X)← pφ_min(W,X), q(W,X).

forallφ_ind(W,X)← forallφ_ind(W,Y),

pφ_succ(W,Y,X), q(W,X).

forallφ(W)← forallφ_ind(W,X), pφ_max(W,X).

The first four rules above compute a total order over the facts

in pφ. The final three rules iterate over the total order of pφ, and
checking each pφ to see if q also holds. If q does not hold for any p,
iteration will cease. However, if q holds for all p then forallφ is
true.

We additionally need to add a rule for the vacuous case of the
universal quantification. In general, we cannot write forallφ(W)
← ¬p(W,_̄), p_done()., because the variables in W do not obey
our safety restrictions. Thus, for every rule r that contains ∀X.φ(W, X)
in its body, we must duplicate r, replacing the ∀ clause with the
atom ¬p(W, _̄).

Note also that we are abusing notation for the < relation. We
previously defined < as a binary relation, but it is easy to define a
2n-ary version of < that encodes a lexicographic ordering over n-ary
relations. Here, we use < to refer to the latter.

4.2.2 Async Recursive Nodes
The difficulty with a relation p in an async recursive node is that
r is done when all messages have been received in the node, and
all messages have been received if p is done. To circumvent this
circular dependency, we introduce a specialized two-phase voting
protocol.

Consider an async recursive node i.
Let the asynchronous rules with head relations in L(i) be num-

bered 1, . . . , ip. Add the rule:

all_acki()← r1_done(), ..., rip_done().

For each rule j, add the rules for asynchronous rules in the previ-
ous section, except for the last two rules. Instead write:

r j_not_done()← p j_to_send(X), ¬p j_ack(X).
r j_done()← ¬r j_not_done().

We perform a two-round voting protocol among the nodes; the
node with the minimum identifier is the master. We assume that
guarded asynchrony does not apply to the relations that appear
in the head of any asynchronous rule in the following protocol.
The rules shown below begin the first round of voting. Nodes
vote complete_1i if all_acki is true—intuitively, if they have no
outstanding unacknowledged messages. Votes are sent to the node
with minimum identifier (the master).
not_node_min(L1)← node(L1), node(L2), L2 < L1.
node_min(L)← ¬not_node_min(L), node(L).
start_round_1i()← node_min(#L,L), ¬round_1i().
round_1i()@next← start_round_1i().
round_1i()@next← round_1i(), ¬start_round_2i().
vote_1i(#N)@async← start_round_1i(), node(N).
complete_1i(#M,N)@async← vote_1i(#N),

all_acki(#N), node_min(#N,M).
incomplete_1i(#M,N)@async← vote_1i(#N),

¬all_acki(#N), node_min(#N,M).

To persist votes until round 1 begins again, the following rules
are instantiated for k = 1 and 2.
complete_ki(N)@next← complete_ki(N),

¬start_round_1i().
incomplete_ki(N)@next← incomplete_ki(N),

¬start_round_1i().

To count votes, we assume the following rules are instantiated for
k = 1 and 2. Round 1 is restarted if some node votes incomplete_1i

in round 1—i.e., it has an outstanding unacknowledged message –
or incomplete_2i in round 2.

recv_ki(N)← complete_ki(N).
recv_ki(N)← incomplete_ki(N).
not_all_recv_ki()← node(N), ¬recv_ki(N).
not_all_comp_ki()← node(N), ¬complete_ki(N).
start_round_1i()← ¬not_all_recv_ki(),

not_all_comp_ki().

Once a node has received a vote_1i vote solicitation, it also
begins keeping track of whether it has sent any messages in the
async recursive component; this information is erased if another
vote_1i solicitation is received. The causality constraint implies
that ¬all_acki() is true if a message is sent, because messages
cannot be instantly acknowledged.
senti()← ¬all_acki().
senti()@next← senti(), ¬vote_1i().

Round 2 is started by the master if no node has an outstanding
message.
start_round_2i()← ¬not_all_recv_1i(),

¬not_all_comp_1i(), node_min(#L,L).

The voting for round 2 is shown below. Notes vote incomplete_2i

if they have sent any messages since the last vote_1i solicitation.
Recall that any incomplete_2i votes result in the protocol restart-
ing with round 1.
vote_2i(#N)@async← start_round_2i(), node(N).
complete_2i(#M,N)@async← vote_2i(#N),

all_acki(#N), ¬senti(#N), node_min(#N,M).
incomplete_2i(#M,N)@async← vote_2i(#N),

senti(#N), node_min(#N,M).

The entire async recursive node i is done when all nodes have
voted complete_2i.
done_recursioni()← ¬not_all_recv_2i(),

¬not_all_comp_2i().

For every relation p ∈ L(i), add the rule:

p_done()← done_recursioni().

4.3 Equivalence of coordination rewrite to
DedalusS

We first argue that the rules for computing p_done have the
desired effect.

Lemma 5 (Sealing). Assume a DedalusS program S with rela-
tion p. The Dedalus program P(S) contains a relation p_done
with the following property: in any of its stable models M, if
p_done(l,t) ∈ M, then p_done(l,s) ∈ M for all timestamps
s > t. Furthermore, if p_done(l,t) ∈ M, then p(l,s,c1,...,cn) ∈
M implies that p(l,t,c1,...,cn) ∈ M for all timestamps s > t.

Proof. We assume that p1_done(), ..., piq_done() have
the properties mentioned in the Lemma.

Clearly, p_done() has the properties mentioned in the Lemma
for the deductive case.

In the asynchronous case, p_done() is similarly correct; the
causality constraint implies that the timestamp on acknowledgments
is later than the timestamp on the facts they acknowledge, and thus
the timestamp on each node’s r j_node_done fact is greater than
the timestamp on the acknowledged facts. Thus, before a node
concludes p_done(), that node has all p facts.

In the asynchronous recursive case, the causality constraint en-
sures that every response in the second round is received at a time
greater than every response in the first round. Thus, between at
least the last response of the first round and the last response of
the second round, no node has outstanding messages and no node

sends a message. This implies that no node ever sends a message
again.

The above Lemma implies that the ultimate model of DedalusS

program S is the same as the ultimate model of Dedalus program
P(S), as relations in lower strata are complete before higher strata
rules are satisfiable.

4.4 Discussion
Applying the program transformation P to the garbage collection

program from Example 8 results in the addition of the following
rules.

Example 11. Synthesized rules for the garbage collection pro-
gram:
refers_to_to_send(M, Src, Dst)←

local_ptr_edb(N, Src, Dst), master(M).
refers_to_send(#M, L, Src, Dst)@async←

refers_to_to_send(#L, M, Src, Dst).
refers_to_ack(#N, L, Src, Dst)←

refers_to_send(#L, N, Src, Dst).
refers_to_done_node(#M, N)@async←

local_ptr_edb_done(#N), master(#N, M),
(∀X.refers_to_to_send(#N, M, X)⇒
refers_to_ack(#N, M, X)).

refers_to_done(M)← (∀N.node(N)⇒
refers_to_done_node(M, N)).

reach_done()← refers_to_done(),
(∀N.node(N)⇒ local_ptr_edb_done(N)).

One rule from the original program must also be rewritten to
include the new subgoal reach_done:

Example 12. Garbage collection rewrite
garbage(Addr)← addr_edb(Addr), root_edb(Root),

¬reach(Root, Addr), reach_done().

As we have shown, the resulting program has a single ultimate
model. This model corresponds exactly with one of the ultimate
models of the original program from Example 8: the model in
which ¬reach is not evaluated until reach is fully determined. The
rewrite has effectively forced an evaluation strategy analogous to
stratum-order evaluation in a centralized Datalog program.

Note also that the rewrite code is a generalization of the “coordina-
tion” code that a Dedalus programmer could have written by hand to
ensure that the local relation refers_to is a faithful representation
of global state. In distributed systems, global computation barriers
are commonly enforced by protocols based on voting: the two-phase
commit protocol from distributed databases is a straightforward ex-
ample [23]. In the synthesized protocol shown above, every agent
responsible for a fragment of the global state must “vote” that ev-
ery message they send to the coordinator has been acknowledged.
The coordinator must tally these votes and ensure that the vote is
unanimous for all agents. If the protocol completes successfully, the
coordinator may proceed past the barrier.

An explicit goal of our work with Dedalus has been to view
general distributed systems through a model-theoretic lens. From
this perspective, the connection between coordination protocols
that enforce barriers and stratified evaluation of logic programs is
clear. Indeed, global stratification requires a coordination protocol
to ensure a global consensus on set completion before negation is
applied.

5. RELATED WORK
Dedalus shares features with a long history of deductive database

systems. The purely declarative semantics of Dedalus, based on the
reification of logical time into facts, are closer in spirit and interpre-
tation to Statelog [29] and the languages proposed by Cleary and
Liu [15, 30, 33] than to languages that admit procedural semantics
to deal with update and deletion over time [12, 16]. Previous work
in temporal deductive databases attempted to compute finite repre-
sentations for periodic phenomena [13]: we reuse many of these
results in Dedalus.

Significant recent work ([4, 9, 14, 32]) has focused on applying de-
ductive database languages extended with networking primitives to
the problem of specifying and implementing network protocols and
distributed systems. Theorem 1 resembles the correctness proof of
“pipelined semi-naive evaluation” for distributed Datalog presented
by Loo et al. [31]. In general, however, the language extensions
proposed in much of this prior work added expressivity and domain
applicability but compromised the declarative semantics of Datalog,
making formal analysis difficult [35, 36]. In designing Dedalus,
we tried to recover and extend the model-theoretic analyses appli-
cable to pure Datalog, while preserving the features appropriate to
modeling loosely coupled distributed systems.

Specification languages such as TLA [28] and I/O Automata [34]
employ first-order logic and set theory to model and prove properties
about distributed systems, and a subset of both languages produce
executable code. Like Dedalus, TLA expresses concurrent systems
in terms of constraints over valuations of state, and temporal logic
that describes admissible transitions. Dedalus differs from TLA in
its minimalist use of temporal constructs (@next and @async), and
in its model-theoretic semantics. I/O Automata model distributed
systems at a lower level than Dedalus, as a composition of state
machines with explicitly specified transition systems. We intend
to further explore the relationship of Dedalus to these traditional
distributed systems formalisms.

Recently, Ameloot et al. explored Hellerstein’s CALM theorem
using relational transducers [8]. They proved that monotonic first-
order queries are exactly the set of queries that can be computed
in a coordination-free fashion in that transducer formalism. Their
work uses some different assumptions than ours—for example, they
assume that all messages sent by a node are multicast to a fixed set
of neighbors, whereas Dedalus permits arbitrary unicast. Relational
transducers have also been used to specify and show the correctness
of interactive web services and electronic commerce workflows
(e.g., [2, 17, 18]).

Abiteboul et al. recently proposed Webdamlog [1], another dis-
tributed variant of Datalog that bears many similarities to Dedalus.
They demonstrate that Webdamlog has an operational semantics
similar to the operational semantics in Dedalus [3], and provide con-
servative conditions for confluence based on a variant of (node-local)
stratification. Our work additionally provides a model-theoretic se-
mantics for DedalusS that corresponds to the operational semantics.
DedalusS programs (which are guaranteed to be confluent) also
admit a broader use of negation—ensured via a synthesized coordi-
nation protocol—than the stratification conditions of Webdamlog.

6. FUTURE WORK
An obvious topic for future work is to extend beyond our focus on

“one-shot” executions over fixed inputs. Some distributed computa-
tions are continuous services whose semantics need to be described
with respect to subsets or subsequences of their inputs and outputs.
To this end, models from stream queries may be useful (e.g., [11]).
Our network model makes similar assumptions of finiteness—in

particular we have ignored dropped messages (infinite delays) and
the standard practice of timeout logic for dealing with them. In
our applied work [4, 5] we have modeled timeouts as messages
that arrive asynchronously under the control of an external “clock”
agent. Programs that reason about timeouts typically “seal” the
contents of IDB relations based on the inherently non-deterministic
subset of messages that “beat the clock.” It would be interesting to
characterize a useful family of ultimate models in such programs
without resorting to the full power of Dedalus.

Concurrent with this research, our team has been developing
a practical language for implementing distributed systems called
Bloom [10]. Bloom has built-in support for input streams, including
“periodic” relations, in which tuples appear at regular (wall clock)
intervals and which are the basis of timeout logic. Instead of relying
on language restrictions like those presented in this paper, Bloom
offers the full power of Dedalus. However, we use the intuition
of DedalusS to motivate a (necessarily) conservative static analy-
sis for confluence of Bloom programs. The analysis can mark a
program as confluent if it is only uses the constructs of Dedalus+.
Otherwise, the analysis alerts the programmer to uses of negation
(and aggregation) that are applied over asynchronously-delivered
messages or their consequences. The programmer must then manu-
ally “guard” these negative constructs with coordination logic, and
manually verify the confluence of the result. This allows program-
mers to choose from (and implement) a wide variety of coordination
protocols, as opposed to our approach here in which a compiler
synthesizes a simple, generic protocol. In practice, the performance
tradeoffs between these protocols can be substantial, depending on
the execution environment.

As future work, it would helpful to formally characterize these
practical tradeoffs, and automatically synthesize efficient and prov-
ably confluent coordination logic suited to the environment. The
observation that two programs have the same complexity in a Tur-
ing Machine model does not mean they have similar network per-
formance characteristics in the operational semantics of network
transducers. We are pursuing work on a complexity model that will
address this.

7. REFERENCES
[1] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A

rule-based language for web data management. In PODS,
2011.

[2] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. J. Comput.
Syst. Sci., 61(2):236–269, 2000.

[3] P. Alvaro, T. J. Ameloot, J. M. Hellerstein, W. Marczak, and
J. Van den Bussche. A Declarative Semantics for Dedalus.
Technical Report UCB/EECS-2011-120, EECS Department,
University of California, Berkeley, Nov 2011.

[4] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M.
Hellerstein, and R. C. Sears. BOOM Analytics: Exploring
Data-centric, Declarative Programming for the Cloud. In
EuroSys, 2010.

[5] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.
Consistency Analysis in Bloom: a CALM and Collected
Approach. In CIDR, 2011.

[6] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein,
D. Maier, and R. Sears. Dedalus: Datalog in Time and Space.
In Proceedings of the Datalog 2.0 Workshop (to appear),
2011.

[7] T. J. Ameloot. (personal communication), 2011.
[8] T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational

Transducers for Declarative Networking. In PODS, 2011.
[9] N. Belaramani, J. Zheng, A. Nayate, R. Soulé, M. Dahlin, and

R. Grimm. PADS: A policy architecture for distributed storage
systems. In NSDI, 2009.

[10] Bloom programming language.
http://www.bloom-lang.org.

[11] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly
progress detection in iterative stream queries. In VLDB, 2009.

[12] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi,
S. Tsur, and C. Zaniolo. The LDL System Prototype. IEEE
Trans. on Knowl. and Data Eng., 2(1):76–90, 1990.

[13] J. Chomicki and T. Imieliński. Temporal Deductive Databases
and Infinite Objects. In PODS, pages 61–73, 1988.

[14] D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation of a
declarative sensor network system. In SenSys, 2007.

[15] J. G. Cleary, M. Utting, and R. Clayton. Data Structures
Considered Harmful. In Australasian Workshop on
Computational Logic, 2000.

[16] M. A. Derr, S. Morishita, and G. Phipps. The Glue-Nail
Deductive Database System: Design, Implementation, and
Evaluation. The VLDB Journal, 3:123–160, 1994.

[17] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. In ICDT, 2009.

[18] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven web applications. J. Comput. Syst.
Sci., 73:442–474, 2007.

[19] H. Gaifman, H. Mairson, Y. Sagiv, and M. Y. Vardi.
Undecidable Optimization Problems for Database Logic
Programs. Journal of the ACM, 40:683–713, July 1993.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., 1979.

[21] M. Gelfond and V. Lifschitz. The Stable Model Semantics For
Logic Programming. In ICLP/SLP, pages 1070–1080, 1988.

[22] J. Gray. The transaction concept: Virtues and limitations
(invited paper). In VLDB, pages 144–154, 1981.

[23] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[24] J. M. Hellerstein. The Declarative Imperative: Experiences
and Conjectures in Distributed Logic. SIGMOD Rec.,
39:5–19, September 2010.

[25] N. Immerman. Relational Queries Computable in Polynomial
Time. Information and Control, 68:86–104, 1986.

[26] N. Immerman. Descriptive Complexity. Springer, 1999.
[27] L. Lamport. Time, Clocks, and the Ordering of Events in a

Distributed System. Communications of the ACM,
21(7):558–565, 1978.

[28] L. Lamport. The temporal logic of actions. ACM Toplas,
16(3):872–923, May 1994.

[29] G. Lausen, B. Ludäscher, and W. May. On active deductive
databases: The statelog approach. In Transactions and
Change in Logic Databases, pages 69–106, 1998.

[30] M. Liu and J. Cleary. Declarative Updates in Deductive
Databases. Journal of Computing and Information,
1:1435–1446, 1994.

[31] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative Networking: Language, Execution and
Optimization. In SIGMOD, 2006.

[32] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.

Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative networking. Communications of the
ACM, 52(11):87–95, 2009.

[33] L. Lu and J. G. Cleary. An Operational Semantics of Starlog.
In Proc. Principles and Practice of Declarative Programming,
pages 131–162. Springer-Verlag, 1999.

[34] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[35] Y. Mao. On the declarativity of declarative networking. In
NetDB, 2009.

[36] J. A. Navarro and A. Rybalchenko. Operational Semantics for
Declarative Networking. In PADL, 2009.

[37] J. A. Pérez, A. Rybalchenko, and A. Singh. Cardinality
abstraction for declarative networking applications. In CAV,
2009.

[38] D. Saccà and C. Zaniolo. Stable Models and
Non-Determinism in Logic Programs with Negation. In
PODS, pages 205–217, 1990.

[39] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session Guarantees for Weakly
Consistent Replicated Data. In Proceedings of the Third
International Conference on Parallel and Distributed
Information Systems, PDIS ’94, pages 140–149, Washington,
DC, USA, 1994. IEEE Computer Society.

[40] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In
SOSP, 1995.

[41] J. D. Ullman. Principles of Database and Knowledge-Base
Systems: Volume II: The New Technologies. W. H. Freeman &
Co., New York, NY, USA, 1990.

APPENDIX
A. PROOF OF LEMMA 1

Proof. Using the construction presented by Gaifman et al. [19], it
is possible to write a Datalog program that encodes any two-counter
machine’s transition relation and an arbitrarily long finite successor
relation in the EDB, and define a 0-ary output relation accept that is
true if and only if the two-counter machine accepts and the transition
and successor relations are valid. As the construction is possible in
Datalog, it is also possible in Dedalus.

We add the following rules to the construction, to non-deterministically
decide whether to run the machine or not:
message(0)@async.
message(1)@async.
run_machine()← message(0), message(1).
accept()← message(0), ¬message(1),

input_valid().
accept()← ¬message(0), message(1),

input_valid().

Note that the first two lines are actually rules.
For valid inputs, the ultimate model is accept() if and only if

either message(0) and message(1) are assigned the same times-
tamp and the machine accepts, or if the timestamps are different.
For invalid inputs, all ultimate models are empty.

If we could decide confluence for this program, we could decide
whether there is any valid input for which an arbitrary two-counter
machine halts in an accepting state.

B. QBF IN Dedalus

We assume that the QBF formula is in prenex normal form:
Q1 x1Q2 x2 . . .Qn xn(x1, . . . , xn). The textbook recursive algorithm
for QBF [20] involves removing Q1 and recursively calling the al-
gorithm twice, once for F1 = Q2 x2 . . .Qn xn(0, x2, . . . xn) and once
for F2 = Q2 x2 . . .Qn xn(1, x2, . . . , xn) for x1. If Q1 = ∃, then the
algorithm returns F1 ∨ F2; if Q1 = ∀, then F1 ∧ F2.

The leaves of the tree of recursive calls can each be represented
as an n-bit binary number, where bit i holds the value of xi. Assume
the left child of a node at depth i of the recursive call tree represents
binding xi to 0, and the right child 1.

Our algorithm is intuitively similar to a postorder traversal of this
recursive call tree. Recursively, first visit the left node, then visit
the right node, then visit the root. If we are visiting a leaf node, we
evaluate the formula for the given variable binding and store a 0 or
1 at the node depending on whether the formula is false or true for
that particular binding. If we are visiting a non-root node at level
i, we apply the quantifier Qi to the values stored in the child nodes.
Even though the recursive call tree is exponential in size, we only
require O(n) space due to the sequentiality of the traversal.

First, we iterate through all of the n-bit binary numbers, one per
timestamp. We assume that the order over the variables is such that
the leftmost variable in the formula (the high-order bit) is the x1

(the first), and the rightmost is xn (the last). Thus, our addition is
“backwards” in that it propagates carries from xi to xi−1:
carry(V)← var_last(V).
one(V)@next← carry(V), ¬one(V).
one(V)@next← one(V), ¬carry(V).
carry(U)← carry(V), one(V), var_succ(U, V).

At each timestep, we check whether the current assignment of
values to the variables makes the formula true. We omit these rules
for brevity. If the formula is true, then formula_true() is true at
that timestep.

The following rules handle how nodes set their values to either 0
or 1. Note that we only require 2n bits of space for this step: each
depth 1, . . . , n in the recursive call tree has two one-bit registers
(labelled by constant symbols a and b) representing the current
values of the children in the traversal.
var_sat_in associates a depth with a given truth value (0 or

1). This value is placed into var_sat at depth V in register a if a
is empty, or b otherwise. Once a value is placed in register b, it
is deleted in the immediate next timestamp. As we will see later,
before with this deletion, the parent node applies its quantifier to the
values in the two registers.

The truth value at depth n (denoted by var_last) is the truth
value of the formula (formula_true()) for the assignment of vari-
ables at the current timestep.
var_sat_in(V, 1)← formula_true(), var_last(V).
var_sat(a, V, B)@next← var_sat_in(V, B),

¬var_sat(_, V, _).
var_sat(b, V, B)@next← var_sat_in(V, B),

var_sat(a, V, _)..
var_sat(N, V, B)@next← var_sat(N, V, B),

¬var_sat(b, V, _).

var_sat_left_in associates a value with the parent of a given
depth. This is used for propagating the result of the quantifier
application to the parent. The cases for existential (exists) and
universal (forall) quantifiers are clear.

var_sat_in(N, U, B)← var_sat_left_in(V, B),
var_succ(U, V).

var_sat_left_in(vn, 1)← exists(vn),
var_sat(_, vn, 1).

var_sat_left_in(vn, 0)← exists(vn),
var_sat(a, vn, 0), var_sat(b, vn, 0).

var_sat_left_in(vn_succ, 1)← forall(vn),
var_sat(a, vn, 1), var_sat(b, vn, 1).

var_sat_left_in(vn_succ, 0)← forall(vn),
var_sat(_, vn, false).

Finally, the entire formula is satisfiable(1) (satisfiable) if the
output of the first quantifier is 1, and satisfiable(0) (unsatisfi-
able) if the output of the first quantifier is 0.
satisfiable(B)← var_sat_left_in(V, B),

var_first(V).

