
A Sparse Coding Method for Specification Mining and

Error Localization

Wenchao Li
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-163

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-163.html

December 25, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The authors acknowledge the support of the Gigascale Systems Research
Center, one of six research centers funded under the Focus Center
Research Program (FCRP), a Semiconductor Research Corporation entity.
This work was also supported in part by a Hellman Family Faculty Fund
Award.

A Sparse Coding Method for Specification Mining
and Error Localization

Wenchao Li and Sanjit A. Seshia

University of California at Berkeley

Abstract. Formal specifications play a central role in the design, verification,
and debugging of systems. We consider the problem of mining specifications
from simulation or execution traces of reactive systems with a special focus on
digital circuits. We propose a novel sparse coding method that can extract specifi-
cations in the form of a set ofbasis subtraces. For a set of finite subtraces each of
lengthp, we introduce thesparse Boolean basis problemas the decomposition of
each subtrace into a Boolean combination of only a small number of basis sub-
tracesof the same dimension. The contributions of this paper are (1) we formally
define thesparse Boolean basis problemand propose a graph-based algorithm
to solve it; (2) we demonstrate that we can mine useful specifications using our
sparse coding method; (3) we show that the computed bases canbe used to do si-
multaneous error localization and error explanation in a setting that is especially
applicable to post-silicon debugging.

1 Introduction

Formal specifications play a central role in system design. They can serve as abstract
models from which a system is to be synthesized. They can encode key properties that
the system must and must not exhibit, and thus find use in formal verification, testing
and simulation. Additionally, formal specifications are valuable as contracts for use in
code maintenance. Finally, they are also useful in debugging and error localization: e.g.,
if relevant assertions widely cover the program or design, afailing assertion can be used
to localize the source of the bug. In this paper, we are mainlyconcerned with the use of
formal specifications for error localization and debuggingin reactive systems.

Unfortunately, in practice, comprehensive formal specifications are rarely written
by human designers. It is more common to have instead a comprehensive test suite used
during simulation or testing. There has therefore been muchinterest in automatically
deriving specifications from simulation or execution traces (e.g. [12, 4]). It is important
to note that, since traces are rarely exhaustive, the properties generated from traces are
only likely specifications orbehavioral signaturesof a design.

Different kinds of formal specifications provide differenttradeoffs in terms of ease
of generation from traces, generality, and usefulness for error localization. Büchi au-
tomata provide a very general formalism, and are typically inferred by learning a finite
automaton from finite-length traces and interpreting it over infinite traces. However,
such automata tend to “overfit” the traces they are mined from, and do not generalize
well to unseen traces — i.e., they are very sensitive to the choice of tracesT they are

mined from and can easily exclude valid executions outside of the setT . Linear tem-
poral logic (LTL) formulas are an alternative. One typically starts with templates for
common temporal logic formulas and learns LTL formulas thatare consistent with a
set of traces. If the templates are chosen carefully, such formulas can generalize well
to unseen traces. However, the biggest challenge is in coming up with a suitable set of
templates that capture all relevant behaviors.

In this paper, we introduce a third kind of formal specification, which we term as
basis subtraces. To understand the idea of a subtrace, consider the view of a trace as a
two-dimensional table, where one dimension is the space of system variables and the
other dimension is time. Asubtraceis a finite window, or a snapshot, of a trace. Thus,
just as a movie is a sequence of overlapping images, a trace isa sequence of overlapping
subtraces. Restricting ourselves to Boolean variables, each subtrace can be viewed as
a binary matrix. Given a set of finite-length traces, and an integerp, the traces can be
divided into subtraces of time-lengthp. The set of all such subtraces constitutes a set
of binary matrices. The basis subtraces are simply a set of subtraces that form a basis
of the set of subtraces, in that every subtrace can be expressed as a superposition of the
basis subtraces.

The form of superposition depends on the type of system beinganalyzed. In this pa-
per, we focus on digital systems, and more concretely on digital circuits. In this context,
one can define superposition as a “linear” combination over the semi-ring with Boolean
OR as the additive operator and Boolean AND as the multiplicative operator. The coef-
ficients in the resulting linear combination are either0 or 1. The problem of computing
a basis of a set of subtraces turns out to be equivalent to a Boolean matrix factorization
problem which decomposes a Boolean matrix into the product of two Boolean matri-
ces. If we seek the basis of the smallest size, the problem is equivalent to finding the
ambiguous rank[13] of the Boolean matrix, which is known to be NP-complete [28].

Given a set of subtraces, several bases are possible. Following Occam’s Razor prin-
ciple, we seek to compute a “simple” basis that generalizes well to unseen traces. More
concretely, we seek to find a basis that is minimal in that eachsubtrace is a linear combi-
nation of only a small number of basis subtraces. This yieldsthesparse basis problem.
In this paper, we formally define this problem in the context of Boolean matrix fac-
torization and propose a graph-theoretic algorithm to solve the sparse-version of the
problem. Such a problem is often referred to as asparse codingproblem in the machine
learning literature, since it involves encoding a data set with a “code” in a sparse manner
using few non-zero coefficients.

We apply the generated basis subtraces to the problem of error localization. In digi-
tal circuits, an especially vexing problem today is that of post-silicon debugging, where,
given an error trace with potentially only a subset of signals observable and no way to
reproduce the trace, one must localize the problem in space (to a small collection of
error modules) and time (to a small window within the trace).Error localization is of
course very relevant to “pre-silicon” verification as well.Our approach is to attempt to
reconstruct k-windows of an error trace using a basis computed from slicing a set of
good traces into subtraces of lengthp. The hypothesis is that the earliest windows that
cannot be reconstructed are likely to indicate the time of the error, and the portions that
cannot be reconstructed are likely to indicate the signals (variables) that are the source

of the problem. The technique can thus be applied forsimultaneouserror localization
and explanation. We apply this technique to representativedigital circuits.

To summarize, the main contributions of the paper are:

– We introduce the idea ofbasis subtracesas a formal way of capturing behavior of
a design as exhibited by a set of traces;

– We formally define thesparsity-constrained Boolean basis problemand propose a
graph-based algorithm to solve it.

– We demonstrate with experimental results that we can mine useful specifications
using our sparse coding method;

– We show that the computed bases can be used to do simultaneouserror localiza-
tion and error explanation in a setting that is especially applicable to post-silicon
debugging.

The rest of the paper is organized as follows. We begin in Sec.2 with basic termi-
nology and preliminaries. Sec. 3 introduces our approach tofinding a sparse basis. In
Sec. 4, we show how we can use our approach for performing error localization. Ex-
perimental results are presented in Sec. 5. Related work is surveyed in Sec. 6 and we
conclude in Sec. 7.

2 Preliminaries

In this section, we introduce basic notation used in the restof the paper. Sec. 2.1 in-
troduces notation representing traces of a reactive systemas matrices, and Sec. 2.2
connects the matrix representation with a graph representation.

2.1 Traces and Subtraces

We model a reactive system as a transition system(V, Σ0, δ) whereV is a finite set
of Boolean variables,Σ0 is a set of initial states of the system, andδ is the transition
relation. In generalV contains input, output and (internal) state variables. A state of the
systemσ is a Boolean vector comprising valuations to each variable in V . For clarity,
we restrict ourselves in this paper to synchronous systems in which transitions occur on
the tick of a clock, such as digital circuits, although the ideas can be applied in other
settings as well.

Let the state of the system at theith cycle (step) be denoted byσi. A complete trace
of the system of lengthl is a sequence of statesσ0, σ1, σ2, . . . , σl−1 whereσ0 ∈ Σ0,
and(σi−1, σi) ∈ δ for 1 ≤ i < l. Note however that the full system state and/or inputs
might not be observed or recorded during execution. We therefore define atraceτ as a
sequence of valuations to a subset of the variables inV ; i.e., τ = σ′

0, σ
′
1, σ

′
2, . . . , σ

′
l−1

whereσ′
i ⊆ σi. A subtraceτi,j of lengthj in τ is defined as the segment ofτ starting

at cyclei and ending at cyclei + j − 1, such thati ≥ 0 and i + j ≤ l, i.e. τi,j =
σi, σi+1, . . . , σi+j−1. We only consider subtraces of length at least2; i.e., containing at
least one transition.

For example, Equation 1 shows a traceτ of length4 where each state comprises a
valuation to two Boolean variables. We depict the trace in matrix form, where the rows
correspond to variables and the columns to cycles.

1 0 1 1
1 0 1 1

(1)

The subtraceτ0,2 of τ is
1 0
1 0

Let Tp be the set of all subtraces of lengthp in τ , i.e.Tp = {τi,p|0 ≤ i ≤ l − p}. For
anyτi,p ∈ Tp, we can view it as a Boolean matrix of dimension|V | × p. We can also
represent it using a vectorvp

i ∈ B
|V |×p by stacking the columns inτi,p (i.e., using a

column-major representation). For example,v2
0 as shown below represents the subtrace

τ0,2.

v2
0 =

[

1 1 0 0
]T

For brevity, we usevi for v
p
i when the length of each subtracep is obvious from the

context. Hence, we can representTp as a Boolean matrix with|V |×p rows andl−p+1
columns. For example, we can represent all the subtraces of length2 for the trace in
Equation 1 as the following matrix.









1 0 1
1 0 1
0 1 1
0 1 1









(2)

2.2 Boolean Matrices and Bipartite Graphs

A Boolean matrix can be viewed as an adjacency matrix for abipartite graph(bigraph,
for short). Recall that a bipartite graphG = 〈U, V, E〉 is a graph with two disjoint
non-empty sets of verticesU andV and such that every edge inE ⊆ U × V connects
one vertex inU and one inV . For a Boolean matrixM ∈ B

k1×k2 , denoteMi,j as the
entry in theith row andjth column ofM . Then,M can be represented by a bigraph
GM with U = {u1, u2, . . . , uk1

} andV = {v1, v2, . . . , vk2
}, such that there is an edge

connectingi ∈ U andj ∈ V if and only if Mi,j = 1. For example, the matrixX in
Equation 2 can be represented by the bigraphGX in shown in Figure 1.

A biclique is a complete bipartite graph; i.e., a bipartite graphG′ = 〈U ′, V ′, E′〉
whereE′ = U ′ × V ′. Given a bigraphG, a maximal edge bicliqueof G is a biclique
G1 = 〈U1 ⊆ U, V1 ⊆ V, E1 = U1 × V1〉 if it is not contained in another biclique ofG,
that is, there does not exist another bicliqueG2 = 〈U2 ⊆ U, V2 ⊆ V, E2 = U2 × V2〉
and eitherU1 ⊂ U2 or V1 ⊂ V2. A biclique edge coverCov of G is a set of bicliques
such that all the edgesE in G are covered by the set, that is,∀e ∈ E, ∃ G′ = 〈U ′ ⊆
U, V ′ ⊆ V, E′〉 ∈ Cov, s.t.e ∈ E′. DenoteECov as the set of edges covered byCov.
The smallest number of bicliques needed is called thebipartite dimensionof G. For
example, a biclique cover for the bigrah in Figure 1 is shown in Figure 2.

The view of Boolean matrices as bigraphs is relevant for decomposing a set of traces
into a set of basis subtraces. The following problem is important in this context.

Fig. 1. Bipartite graph for the matrix in Equation 2

Fig. 2. Biclique edge cover for the bigraph in Figure 1

Definition 1. Consider a Boolean matrixX ∈ B
m×n, theBoolean matrix factorization

problemis to findk and Boolean matricesB ∈ B
m×k andS ∈ B

k×n such that

X = B ◦ S (3)

That is,X is decomposed into a Boolean combination (denoted by the operator◦) of
two other Boolean matrices, in which scalar multiplicationis the Boolean AND operator
∧, and scalar addition (“+”) is the Boolean OR operator∨. In other words, we perform
matrix/vector operations over Boolean semi-ring with∧ as the multiplicative operator
and∨ as the additive operator. For example, the matrix in Equation 2 can be factorized
in the following way.









1 0 1
1 0 1
0 1 1
0 1 1









=









1 0
1 0
0 1
0 1









◦

[

1 0 1
0 1 1

]

We useMi to denote theith column vector of a matrixM . Thus, the columns of matrix
X areX1, X2, . . . , Xn. We will refer toX as thedata matrixsince it represents the
traces which are the input data for error localization. We call the matrixB the basis
matrix because eachBi can be viewed as some basis vector inB

m. We call the matrix
S the coefficient matrix. EachSi is a Boolean vector in which a1 in the jth entry
indicates that thejth basis vector is used in the decomposition and0 otherwise.

We can also rewrite the factorization in the following way asa Boolean sum of the
matrices formed by taking the tensor (outer) product of theith column inB and theith

row in S.








1 0 1
1 0 1
0 1 1
0 1 1









=









1 0 1
1 0 1
0 0 0
0 0 0









+









0 0 0
0 0 0
0 1 1
0 1 1









Notice that the two matrices on the right hand side are essentially the bicliques in Fig-
ure 2.

Remark 1 Clearly, a solution always exists for the problem in Definition 1. This is
because one can always pickk = n such thatB = X and S = I (whereI is the
identity matrix). Hence, it is more interesting to findB andS such thatk is minimized.
The smallestk for which such a decomposition exists is called the ambiguous rank [13]
of the Boolean matrixX . It is also equal to the bipartite dimension of the bigraphGX

corresponding to matrixX . The problem of finding a Boolean factorization ofX with
the smallestk is equivalent to finding a biclique edge cover ofGX with the minimum
number of bicliques. Both problems are NP-hard [28].

3 Specification Mining via Sparse Coding

In this section, we describe how specifications are mined viasparse Boolean matrix
factorization. The specifications we mine, basis subtraces, can be viewed as temporal
patterns over a finite time window.

3.1 Formulation as Sparse Coding Problem

The notion of sparsity is borrowed from the wealth of literature in machine learning
such as sparse coding [20] and sparse principal component analysis (PCA) [33]. The
key insight is that sparsity often times provides a better interpretation of the data in
terms of the underlying concepts (albeit greater in number). In the setting of mining
specification from a trace, we argue that each subtrace of a trace can be viewed as a
superposition of patterns, and a potential specification isa pattern that is commonly
shared by multiple subtraces. These patterns are the so-calledbasis subtraces.

We present thesparse Boolean basis problemfor computing basis subtraces below.
A few different options are presented for formulating the problem and we pick one with
a notion of sparsity that seems well-suited to our context.

Definition 2. Given X ∈ B
m×n and a positive integerC, the sparsity-constrained

Boolean matrix factorization problemis to findk, B ∈ B
m×k, andS ∈ B

k×n such that

X = B ◦ S

and |Si|1 ≤ C, ∀i

(4)

Let us reflect on the above problem formulation. The constraintX = B ◦S imposes the
requirement that the input data (subtraces) represented byX must be reconstructed as
a superposition of the subtraces represented byB, with S encoding the coefficients in
the superposition. The second constraint|Si|1 ≤ C, ∀i encodes the sparsity constraint,
which ensures that each subtrace inX is a sparse superposition of the subtraces inB.

More precisely, the definition above imposes a constraint onthe number of1s per
column ofS. Similar to the Boolean matrix factorization problem in Definition 1, a
solution always exists by settingB = X andS = I (andk = n). Clearly, one must re-
strict the size ofk in order to get meaningful results forB andS. We therefore consider
the variant of the above problem that seeks the smallestk, terming this as thesparsity-
constrained Boolean basis problem. In this variant, sparsity is defined both in terms of
the restriction on theS matrix and on the size ofk. We describe how we address this
problem in Section 3.2. Note that, if we allowC to be a function ofk, then this problem
is also NP-hard since theBoolean matrix basis problemis a special case of this when
C = k.

One might also consider defining sparsity in a somewhat different manner. Instead
of imposing a L1-norm constraint on the columns of the coefficient matrixS, we can
seekB andS such that the total sparsity is minimized.

Definition 3. GivenX ∈ B
m×n and a positive integerk, thesparsity-optimized Boolean

matrix factorization problemis the following optimization problem.

minimize
B,S

n
∑

i

|Si|1

subject to X = B ◦ S

(5)

The main issue with this problem definition is thatk is fixed; in other words, one has to
“guess” a suitablek for which B andS can be computed. While modifications of this
problem that restrict or minimizek could potentially be useful, we leave an investigation
of these to future work.

3.2 Solving the Sparse Coding Problem

In this section, we describe an algorithm that solves thesparsity-constrained Boolean
matrix factorization problemand tries to minimizek. Our solution is guaranteed to
satisfy the sparsity constraint but may not be minimal in terms of k. The algorithm
exploits the connection between the matrix factorization problem and the biclique edge
cover problem described in Sec. 2. Specifically, it is based on growing a biclique edge
coverCov for the bigraphGX = 〈U, V, E〉 corresponding to matrixX . At each step,
a maximal edge biclique that covers some number of previously uncovered edges is
added toCov until Cov covers all the edges. The sparsity constraint is then a constraint
on the number of maximal bicliques that can be used to cover the edges that connect
each vertex inV . (Recall that each vertex inV corresponds to a columnSi of S.)

Notice that this algorithm implicitly assumes that the set of all maximal edge bi-
cliques are givena priori. Computing this set is not easy: for instance, the closely-
related problem of finding a maximum edge biclique in a bigraph is NP-complete [26].

Additionally, the number of maximal bicliques in a bigraph can be exponential in the
number of vertices [15], and so enumerating these is worst-case exponential in the num-
ber of vertices. However, there do exist enumeration algorithms that are polynomial in
the combined input and output size [2]. We use an off-the-shelf implementation [1] of
the enumeration algorithm in [2] to compute the set of all maximal bicliques. We have
found that in practice the high complexity of deriving this set does not prevent us from
finding a good solution.

We now formally describe the algorithm which computesCov, the biclique edge
cover.

(1) Initialize Cov to ∅. Associate each vertexv ∈ V with a positive integer countαv

and initialize eachαv to C. Intuitively, αv will ensure that the sparsity constraint
for the column ofS corresponding tov is maintained.
Denote byEv the set of edges that connect a vertexv ∈ V . Let Ev′ = Ev \ ECov

andGv′ be the subgraph that is induced byEv′ .
(2) Given the set of maximal bicliquesΓ , for each maximum bicliqueGi = 〈Ui, Vi, Ei〉

∈ Γ , associate with it a valueβi that is equal to the number of edges inEi but not
in ECov. In other words,βi = |{ei|ei ∈ Ei \ ECov}|. Initially, βi = |Ui| × |Vi|.

(3) Iterate untilECov = E:
(a) ∀v ∈ V such thatαv = 1 andEv′ 6= ∅, Add Gv′ to Cov. Update theβ values

for all Gi ∈ Γ .
(b) Add aGi ∈ Γ that has the highest positiveβi and satifies the condition∀vi ∈

Vi, αvi
> 1 to Cov. In case of a tie, pickGi that has the largest|Ui|. Remove

Gi from Γ and update theβ values for the rest to the bicliques in the set.
Decrease allαvi

by 1.

The intuition for Step 3(a) is that if we have a vertexv with uncovered edges whose
sparsity countαv has reached1, we must cover it (with the default biclique that includes
all the uncovered edges). In 3(b), we have the general case, where there exists a maximal
biclique with vertices with sparsity counts greater than1, in which case we use a greedy
heuristic based on theβ value. The theoretical guarantees provided by our algorithm are
as follows.

Proposition 1. The above algorithm terminates in a finite number of steps.

Proof. (sketch) It is clear that at each step of the iteration, at least one new biclique that
contains an extra edge is added to the edge cover. Since the number of edges is finite,
the algorithm will terminate in a finite number of steps. ⊓⊔

Proposition 2. The above algorithm finds a biclique edge cover for the bigraph G.

Proof. (sketch) Since the termination condition of the loop is whenthe setECov con-
tains all the edges inG, Cov at all times contains bicliques, and the loop terminates in
a finite number of steps, the algorithm computes a biclique edge cover forG. ⊓⊔

Proposition 3. The above algorithm solves the sparsity-constrained Boolean matrix
factorization problem.

Proof. (sketch) Recall that theith bicliqueGi added toCov corresponds to theith col-
umn in the basis matrixB multiplied with theith row in the coefficient matrixS. Also
note that the cardinality of the biclique cover is equal to the number of bases which isk.
SinceX can be written as a Boolean sum of the matrices formed by multiplying theith

column ofB with theith row of S, we essentially solves the Boolean matrix factoriza-
tion problem by finding a biclique edge coverCov of GX . The sparsity constraint for
thejth column ofS is then the maximum number of bicliques inCov that can contain
the vertexvj ∈ V . Since each time when a biclique containingvj is added toCov, the
count atvj is decreased by1 and it never goes below0, the sparsity contraint is satis-
fied. Thus, the algorithm solves thesparsity-constrained Boolean matrix factorization
problem. ⊓⊔

4 Application to Error Localization

The key idea in our approach is to localize errors by attempting to reconstruct the error
trace from basis subtraces generated from correct traces. Our hypothesis is that the
earliest section (subtrace) of the error trace that cannot be reconstructed contains the
likely cause of the error. Our localization algorithm is presented in this section, along
with some theoretical guarantees. We begin with the problemdefinition.

4.1 Problem Definition

Consider the problem of localizing an error given a set of correct traces and a single
error trace. Our goal is to identify a small interval of the timeline at which the error
occurred. What makes the problem especially challenging isthat the input sequence that
generated the error trace is either unknown (or only partially known) or it is extremely
slow to re-simulate the input sequence (if known) on the correct design (also sometimes
referred to as a “golden model”). This means that a simple anomaly detection technique
which checks the first divergence of the error trace and the correct trace obtained by
simulating the golden model on the same input sequence does not work. One has to
use the set of correct traces to help localize the bug in the error trace. This setting
is especially applicable to post-silicon debugging where the bugs are often difficult
to diagnose due to limited observability, limited reproducibility and susceptibility to
environmental variations.

More formally, the error localization problem we address inthis section can be
defined as follows.

Definition 4. Given an error trace of lengthl, and an integerp, consider partitioning it
into non-overlapping subtraces each of lengthp (without the loss of generality, we as-
sumel is an integer multiple ofp; otherwise, the last subtrace can be treated specially).

Then, theerror localization problemis to identify the subtrace containing the first
point of deviation of the error trace from the correct trace on the same input sequence.

Figure 3 illustrates the problem.
One might note that the problem we define is not the only form oferror localization

that is desirable. For instance, one might also want to narrow down the fault to the sig-
nals/variables that were incorrectly updated. Also, theremight be more than one source

Fig. 3. Localizing the error to one of the subtraces of lengthp

of an error, in which case one might want to identify all of thesources. While these goals
are important, we contend that our algorithm to address the problem defined above can
also be used to achieve these additional objectives. For example, the error explanation
technique we present below can be used to identify which variables were incorrectly
updated and how. Similarly, one can apply our reconstruction-based localization algo-
rithm iteratively to identify multiple subtraces that cannot be reconstructed from the
basis subtraces, and could potentially be used to identify multiple causes of an error.

4.2 Localization by Reconstruction

As described above, the key hypothesis underlying our approach is that the earliest
section (subtrace) of the error trace that cannot be reconstructed contains the likely
cause of the error.

Our error localization algorithm operates in the followingsteps:

1. Given a set of correct tracesT , first obtain the set of alluniquesubtraces of length
p in T . Denote this set byTp. Using the approach described in Section 2, convert
the setTp to a data matrixX .

2. Solve thesparsity-constrained Boolean basis problemfor X for a given constant
C.

3. Given an error traceτ ′, partition it into an ordered set ofq subtraces of lengthp.
Denote this set byT ′

p . The elements inT ′
p are ordered by their positions inτ ′.

ConvertT ′
p to a data matrixX ′.

4. Starting fromX ′
0, try to reconstructX ′

i using the basis computed above with the
same sparsity constraintC. Returni as the location of the bug if the reconstruction
fails. In case all reconstructions succeed, return⊥ indicating inability to localize
the error.

Algorithm 1 describes the above approach in more detail using pseudo-code. It uses
the following subroutines:

– dataMatrix is the procedure that converts a set of subtraces to the corresponding
data matrix described in Section 2.

Algorithm 1 Error localization in time
Input: Set of subtracesTp from set of correct tracesT , T ′

p from error traceτ ′

Input: ConstantC > 0
X = dataMatrix (Tp)
X ′ = dataMatrix (T ′

p)
B = sparseBasis(X, C)
for i := 0 → q − 1 do

E = reconstructTrace(X ′

i , B, C)
if E 6= 0 then

return i

end if
end for
return ⊥

– sparseBasissolves thesparsity-constrained Boolean basis problemusing the graph-
theoretic algorithm presented in Section 3 forX with a givenC, and returns the
computed basisB.

– reconstructTracesolves the following minimization problem.

minimize
Si

|X ′
i ⊕ (B ◦ Si)|1

subject to |Si|1 ≤ C
(6)

where⊕ is the bit-wise Boolean XOR operator, and is interpreted to apply entry-
wise on matrices.
Notice that for fixedC, this problem isfixed-parameter tractablebecause we can

use a brute-force algorithm that enumerates all the
∑

1≤i≤C

(

k

i

)

possibleSis. It

can also be solved using a pseudo-Boolean optimization formulation, where the
Boolean variables in the optimization problem are the entries inSi.

Error Explanation. DenoteS∗
i as the optimal solution to the minimization problem in

Equation 6. If the minimum value is non-zero, thenE = X ′
i ⊕ (B ◦S∗

i) is the minimum
difference between the error subtraceX ′

i and the reconstructed subtraceB ◦S∗
i . Notice

thatE is also a subtrace, and can be interpreted as a finite sequenceof assignments to
system variables. In our experience,E is a pattern that explains the error; we expand
further on this point using our experiments in Sec. 5.

4.3 Theoretical Guarantees

We now give conditions under which our error localization approach issound. By
sound, we mean that when our algorithm reports a subtrace as the cause of an error,
it is really an erroneous subtrace that deviates from correct behavior.

Since our approach mines specifications from traces, its effectiveness fundamentally
depends on the quality of those traces. Specifically, our soundness guarantee relies on
the set of tracesT satisfying the followingcoverage metricsdefined over the transition
system(V, Σ0, δ) of the golden model:

1. Initial State Coverage:For every initial stateσ0 ∈ Σ0, there exists some trace inT
in whichσ0 is the initial state.

2. Transition Coverage:For every transition(σ, σ′) ∈ Σ0, there exists some trace in
T in which the transition(σ, σ′) occurs.

While full transition coverage can be difficult to achieve for large designs, there is
significant work in the simulation-driven hardware verification community on achieving
a high degree of transition coverage [29]. If achieving transition coverage is challenging
for a design, one could consider slicing the traces based on smaller module boundaries
and computing tests that ensure full transition coverage within modules, at the potential
cost of missing cross-module patterns.

Our soundness theorem relates test coverage with effectiveness of error localization.

Theorem 1. Given a transition systemZ for the golden model and a set of finite-length
tracesT of Z satisfying initial state and transition coverage, if Algorithm 1 is invoked
on T and an arbitrary error traceτ ′, then Algorithm 1 is sound; viz., if it reports a
subtrace ofτ ′ as an error location, that subtrace cannot be exhibited byZ.

Proof. (sketch) The proof proceeds by contradiction. Suppose Algorithm 1 reports a
subtrace ofτ ′ as the location of the error. Recall that a subtrace must be oflength at
least2. Thus, if we compute basis subtraces of length2, any transition of the golden
modelZ can be expressed as a superposition of these basis subtracesand hence recon-
structed from the basis subtracesB, sinceT contains all transitions ofZ. A subtrace
reported as an error location, in contrast, is one that cannot be expressed as a superpo-
sition of the basis subtraces and hencereconstructTrace will report that it cannot be
reconstructed. Thus, any subtrace reported as an error location by Algorithm 1 cannot
be a valid transition of the golden modelZ. ⊓⊔

We also note that, in theory, it is possible for Algorithm 1 tomiss reporting a sub-
trace that is an error location, if that subtrace is expressible as a superposition of basis
subtraces. However, experiments indicate that it is usually accurate in pinpointing the
location of the error. Details of our experiments are provided in Sec. 5.

5 Experimental Results

In this section, we evaluate our sparse coding approach to generate specifications and
localize error based on the following criteria.

(1) Are the computed “basis subtraces” meaningful? That is,do they correspond to
some interesting specifications of the test circuit.

(2) Do the “basis subtraces” capture sufficient underlying struture of a trace? That is,
can they be used to reconstruct traces that are generated from unseen input se-
quences?

(3) How accurately can we localize an error in an unseen trace(generated by unseen
input sequences)?

(4) How good are the error explanations?

We first use a 2-port arbiter as an illustrative example to evaluate our approach.
The 2-port arbiter is an arbiter that takes two Boolean inputs corresponding to two
potentially competing requests, and produces two Boolean outputs corresponding to
the two grants. It implements a round-robin scheme such thatit will give priority to
the port at which a request has not been most recently granted. Let r0, r1 denote the
input requests andg0, g1 denote the corresponding output grants. Figure 4 shows part
of a trace of the arbiter over the request and grant signals. The input requests were
randomly generated and the trace was100 cycles long.

Fig. 4.A normal trace of a 2-port round-robin arbiter

We used a sliding window of length3 to collect a set of subtraces. We then applied
our sparse coding algorithm described in Section 3.2 to extract a set of “basis subtraces”.
We chose a sparsity of4 for this experiment.

(1) Figure 5 shows some of the basis subtraces computed. We can observe that basis
(a) and (b) correspond to the correct behavior of the arbitergranting a request at the
same cycle when there is no competing request. Basis (c) shows that when there are
two competing requests at the same cycle, the arbiter first grants one of the requests and
the ungranted request will stay asserted the next cycle and then gets granted.

Fig. 5.Three basis subtraces computed via sparse coding

(2) We further simulated the arbiter with random inputs another 100 times each
for 100 cycles. For each of these traces, we also use a sliding windowto partition
them into subtraces of length3. Using the basis computed from Figure 4, we tried to

reconstruct these subtraces and succeeded in every attempt. This was because all the
sub-behaviors were fully covered in the trace from which thebases were computed,
even though unseen subtrace exists in the new traces.

(3) For each of the100 trace in (2), we randomly injected a single bit error (flipping
its value) at a random cycle to one of the four signals in the trace. Our task was to test if
we could localize the error to a subtrace of length3 that contained it. The traces used in
the experiments can be found inhttp://www.eecs.berkeley.edu/˜wenchaol
/arbiter.tar.gz .

The following example illustrates one of the experiments. Figure 6 shows a snapshot
of the trace inerr1.txt .

Fig. 6.Bit flip at r1 at cycle97

Using the approach described in Algorithm 1, the subtrace containing the error was
correctly identified. Figure 7 shows the error subtrace.

Fig. 7. Error subtrace as identified

Following Equation 6, Figure 8 shows the subtraceX ′
i ⊕ (B ◦ Si) that minimizes

|X ′
i ⊕ (B ◦ Si)|1 and serves as an error explanation.

Clearly, this subtrace reveals the injected error. Behaviorally, the reqest atr1 was
not granted as it should had been. Note that multiple error explanations (solutions to the
minimization problem in Equation 6) can exist. Figure 9 shows another error explana-
tion subtrace produced for the example above.

Fig. 8.Error explanation subtrace

Fig. 9. Alternative error explanation subtrace

This subtrace does not directly reveal the injected bit flip.However, it still pinpoints
the bug behaviorally – a grant was produced atg1 when no corresponding request was
made.

(4) In Section 4.2, we argue that the minimum difference between an error subtrace
and any possible reconstructed subtrace using the computedbasis can serve as an ex-
planation for the error. In the83 traces for which the error was correctly localized, the
injected bit error was also uncovered by solving the optimization problem in Equation 6.

While these results are preliminary, they indicate that oursparse coding approach
provides a completely new way to do specification mining and error localization.

6 Related Work

We survey related work along two dimensions: work on mining specifications from
traces, and approaches to perform error localization.

6.1 Specification Mining

The study of automatically generating specifications goes back as early as 1974 [6][30].
Many techniques have been recently proposed to automatically reverse-engineer speci-
fications from programs [27][14][4][12]. These specifications can be simple predicates
or temporal specifications which specify the ordering of events, or rules of API usage.
The generated specifications can then be used to formally verify a program’s correct-
ness, to assist in bug finding [31], or to detect malicious behaviors [7].

Many techniques seek to learn specifications dynamically from an execution trace
(or a set of traces). Daikon [12] is one of the earliest tools that mine single-state in-

variants or pre-/post-conditions in programs. In contrast, we focus on mining (tempo-
ral) properties over a finite window for reactive (hardware)designs in this work. Most
existing mining tools produce temporal properties in the form of automata. Automata-
based techniques generally fall into two categories. The first class of methods learn a
single complex specification (usually as a finite automaton)over a specific alphabet,
and then extract simpler properties from it. For instance, Ammons et al. [4] first pro-
duce a probabilistic automaton that accepts the trace and then extract from it likely
properties. However, learning a single finite state machinefrom traces is NP-hard [16].
To achieve better scalability, an alternative is to first learn multiple small specifications
and then post-process them to form more complex state machines. Engler et al. [10]
first introduce the idea of mining simple alternating patterns. Several subsequent ef-
forts [31][32][14] built upon this work. For example, Javert [14] locates all instances
of the alternating pattern(a b)∗ and a resource usage pattern(a b∗ c)∗. The tool then
composes these patterns into larger ones by using a set of inference rules. In previous
work, we proposed a specification mining approach similar toJavert that focuses on
patterns relevant for digital circuits [21] and showed how this can be applied to error
localization. However, such approaches are limited by the set of patterns. The present
work seeks to remove this limitation by inferring design-specific patterns in the form of
basis subtraces.

Specifications can also be generated by reasoning about the program statically. For
example, Alur et al. [3] proposes the use of predicate abstraction together with automata
learning to automatically synthesize interface specifications for Java classes. Static and
dynamic analyses complement each other. We refer the readers to [11] for a detailed
comparison of the two techniques.

6.2 Error Localization

The problem of error localization and explanation has been much studied in literature,
both in the software testing and model checking communities. Groce et al. [17, 18]
present an approach based on distance metrics which, given acounterexample (error
trace), finds a correct trace as “close” as possible to the error trace according to the
distance metrics. Ball et al. [5] present an approach to localizing errors in sequential
programs. They use a model checker as a subroutine, with the core idea to identify
transitions of an error trace that are not in any correct trace of the program, and use
this for error localization. Both of these approaches operate on error traces generated
by model checking, and thus have full observability of the inputs and state variables.
In contrast, in our context of post-silicon debugging, the error trace is only partially
observed and not reproducible.

In the software testing community, researchers have attempted to use predicates and
mined specifications to localize errors [22, 9]; however, these rely on human insight in
choosing a good set of predicates/templates. In contrast, our approach automatically
derives specifications in the form of basis subtraces, whichcan be seen as temporal
properties over a finite window. Program spectra [19], whichinclude computing pro-
files of program behavior such as summaries of the branches orpaths traversed, have
also been proposed as ways to separate good traces from errortraces; however, these

techniques are of limited use for digital circuits since they rely on the path structure of
sequential programs and give no guarantees on soundness.

In the area of post-silicon debugging (see [23] for a recent survey), the problem of
error localization has received wide attention, but few solutions are available. The IFRA
approach [24, 25], which has proved effective for processorcores, is based on adding
on-chip recorders to a design to collect “instruction footprints” which are analyzed of-
fline with some input from human experts. However, this approach relies heavily on
knowledge of processor designs and is not easily extensibleto other kinds of designs
such as communication and interface logic. Li et al. [21] have proposed the use of mined
specifications to perform error localization; however, this approach relies on human in-
sight in supplying the right templates to mine temporal logic specifications and provides
no guarantees on soundness. The Backspace [8] system addresses the problem of repro-
ducibility by attempting to reconstruct one or more “likely” error traces by performing
backwards reachability guided by recorded signatures of system state; such a system is
complementary to the techniques proposed herein for error localization.

7 Conclusion and Future Work

In this paper, we have presentedbasis subtraces, a new formalism to capture system
behavior from simulation or execution traces. We showed howto compute asparsebasis
from a set of traces using a graph-based algorithm. We further demonstrated that the
generated basis subtraces can be effectively used for errorlocalization and explanation.

In terms of future work, we envisage two broad directions: improving scalability and
applying the ideas to other domains. Since the Boolean basisproblem and its sparse
variants can be computationally expensive to solve, the scalability of the approach is
somewhat limited. In this context, it would be interesting to use slightly different defi-
nitions of a basis (for example, using the field of rationals rather than the semi-ring we
consider) so that the problem of computing a sparse basis is polynomial-time solvable.

Moreover, the ideas introduced in this paper should be be applicable beyond digital
circuits to software, cyber-physical systems, and analog/mixed-signal circuits. Explor-
ing these application domains could provide a rich source ofproblems for future work.

Acknowledgement
The authors acknowledge the support of the Gigascale Systems Research Center, one
of six research centers funded under the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation entity. This work was also supported in part by a
Hellman Family Faculty Fund Award.

References

1. Maximal biclique enumeration.
http://genome.cs.iastate.edu/supertree/download/biclique/readme.html.

2. G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B.Simeone. Consensus al-
gorithms for the generation of all maximal bicliques.Discrete Appl. Math., 145:11–21,
December 2004.

3. R. Alur, P.Černý, P. Madhusudan, and W. Nam. Synthesis of interface specifications for java
classes. InPOPL, pages 98–109, 2005.

4. G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. InPOPL, pages 4–16, 2002.
5. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause:localizing errors in coun-

terexample traces. InPOPL, pages 97–105, 2003.
6. M. Caplain. Finding invariant assertions for proving programs. InProceedings of the inter-

national conference on Reliable software, pages 165–171, 1975.
7. M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious behavior. In

ESEC-FSE’07, pages 5–14, 2007.
8. F. M. de Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang.Backspace: Formal analysis

for post-silicon debug. InFMCAD, pages 1–10, 2008.
9. N. Dodoo, L. Lin, and M. D. Ernst. Selecting, refining, and evaluating predicates for program

analysis. Technical Report MIT-LCS-TR-914, MIT Laboratory for Computer Science, 2003.
10. Engler, D. et al. Bugs as deviant behavior: a general approach to inferring errors in systems

code. InSOSP, pages 57–72, 2001.
11. M. D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA, pages 24–27,

2003.
12. Ernst, M. et al. The daikon system for dynamic detection of likely invariants. Sci. Comput.

Program., 69(1-3):35–45, 2007.
13. V. Froidure. Rangs des relations binaires, semigrollpes de relations non ambigues. PhD

thesis, June 1995.
14. M. Gabel and Z. Su. Javert: fully automatic mining of general temporal properties from

dynamic traces. InFSE, pages 339–349, 2008.
15. S. Gaspers, D. Kratsch, and M. Liedloff. On independent sets and bicliques in graphs. In

H. Broersma, T. Erlebach, T. Friedetzky, and D. Paulusma, editors, Graph-Theoretic Con-
cepts in Computer Science, volume 5344 ofLecture Notes in Computer Science, pages 171–
182. Springer Berlin / Heidelberg, 2008.

16. E. M. Gold. Complexity of automatic identification from given data. 37:302–320, 1978.
17. A. Groce. Error explanation with distance metrics. InTACAS, LNCS 2988, pages 108–122,

2004.
18. A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with distance metrics.

Software Tools for Technology Transfer (STTT), 8(3):229–247, 2006.
19. M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An empirical investigation of the

relationship between spectra differences and regression faults. Softw. Test., Verif. Reliab.,
10(3):171–194, 2000.

20. H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. InIn NIPS,
pages 801–808. NIPS, 2007.

21. W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for verification and diag-
nosis. InProceedings of the Design Automation Conference (DAC), pages 755–760, June
2010.

22. B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote program
sampling. InPLDI, pages 141–154, 2003.

23. S. Mitra, S. A. Seshia, and N. Nicolici. Post-silicon validation: Opportunities, challenges
and recent advances. InProceedings of the Design Automation Conference (DAC), pages
12–17, June 2010.

24. S. Park and S. Mitra. Ifra: Instruction footprint recording and analysis for post-silicon bug
localization in processors. InDAC, 2008.

25. S. B. Park, A. Bracy, H. Wang, and S. Mitra. Blog: Post-silicon bug localization in processors
using bug localization graphs. InDAC, 2010.

26. R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied Mathe-
matics, 131(3):651–654, 2003.

27. S. Sankaranarayanan, F. Ivanči, and A. Gupta. Mining library specifications using inductive
logic programming. InICSE, pages 131–140, 2008.

28. D. J. Siewert.Biclique covers and partitions of bipartite graphs and digraphs and related
matrix ranks of 0,1 matrices. PhD thesis, 2000.

29. S. Tasiran and K. Keutzer. Coverage metrics for functional validation of hardware designs.
IEEE Design & Test of Computers, 18(4):36–45, 2001.

30. B. Wegbreit. The synthesis of loop predicates.Commun. ACM, 17(2):102–113, 1974.
31. W. Weimer and G. C. Necula. Mining temporal specifications for error detection. InTACAS,

pages 461–476, 2005.
32. Yang, J. et al. Perracotta: mining temporal api rules from imperfect traces. InICSE, pages

282–291, 2006.
33. H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis.Journal of

Computational and Graphical Statistics, 15:2006, 2004.

