A Sparse Coding Method for Specification Mining and
Error Localization

Wenchao Li
Sanjit A. Seshia

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-163
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-163.html

December 25, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The authors acknowledge the support of the Gigascale Systems Research
Center, one of six research centers funded under the Focus Center
Research Program (FCRP), a Semiconductor Research Corporation entity.
This work was also supported in part by a Hellman Family Faculty Fund
Award.

A Sparse Coding Method for Specification Mining
and Error Localization

Wenchao Li and Sanijit A. Seshia

University of California at Berkeley

Abstract. Formal specifications play a central role in the design,fication,
and debugging of systems. We consider the problem of minpagications
from simulation or execution traces of reactive systems# waispecial focus on
digital circuits. We propose a novel sparse coding methatidhn extract specifi-
cations in the form of a set dfasis subtraced-or a set of finite subtraces each of
lengthp, we introduce theparse Boolean basis probleass the decomposition of
each subtrace into a Boolean combination of only a small murobbasis sub-
tracesof the same dimension. The contributions of this paper grevé¢lformally
define thesparse Boolean basis probleamd propose a graph-based algorithm
to solve it; (2) we demonstrate that we can mine useful spatifins using our
sparse coding method; (3) we show that the computed basd®ased to do si-
multaneous error localization and error explanation intérggthat is especially
applicable to post-silicon debugging.

1 Introduction

Formal specifications play a central role in system designeyTcan serve as abstract
models from which a system is to be synthesized. They candenieey properties that
the system must and must not exhibit, and thus find use in forerdication, testing
and simulation. Additionally, formal specifications arduable as contracts for use in
code maintenance. Finally, they are also useful in debyggyia error localization: e.g.,
if relevant assertions widely cover the program or desidailiag assertion can be used
to localize the source of the bug. In this paper, we are maiohcerned with the use of
formal specifications for error localization and debuggimgeactive systems

Unfortunately, in practice, comprehensive formal speaifans are rarely written
by human designers. It is more common to have instead a ctvapsave test suite used
during simulation or testing. There has therefore been nitehest in automatically
deriving specifications from simulation or execution tafeg. [12, 4]). It is important
to note that, since traces are rarely exhaustive, the piiepgrenerated from traces are
only likely specifications obehavioral signaturesf a design.

Different kinds of formal specifications provide differaradeoffs in terms of ease
of generation from traces, generality, and usefulnessrar éocalization. Buchi au-
tomata provide a very general formalism, and are typicallgrred by learning a finite
automaton from finite-length traces and interpreting itrandinite traces. However,
such automata tend to “overfit” the traces they are mined fieomd do not generalize
well to unseen traces — i.e., they are very sensitive to tloécelof traces/” they are

mined from and can easily exclude valid executions outsfdeeset7 . Linear tem-
poral logic (LTL) formulas are an alternative. One typigadtarts with templates for
common temporal logic formulas and learns LTL formulas & consistent with a
set of traces. If the templates are chosen carefully, suchulas can generalize well
to unseen traces. However, the biggest challenge is in @puprwith a suitable set of
templates that capture all relevant behaviors.

In this paper, we introduce a third kind of formal specifioatiwhich we term as
basis subtraceslo understand the idea of a subtrace, consider the viewrafa tis a
two-dimensional table, where one dimension is the spacgstém variables and the
other dimension is time. Aubtraceis a finite window, or a snapshot, of a trace. Thus,
justas a movie is a sequence of overlapping images, a trageiguence of overlapping
subtraces. Restricting ourselves to Boolean variable) sabtrace can be viewed as
a binary matrix. Given a set of finite-length traces, and aegerp, the traces can be
divided into subtraces of time-length The set of all such subtraces constitutes a set
of binary matrices. The basis subtraces are simply a settifazes that form a basis
of the set of subtraces, in that every subtrace can be exggrassa superposition of the
basis subtraces.

The form of superposition depends on the type of system laiatyzed. In this pa-
per, we focus on digital systems, and more concretely otadigjrcuits. In this context,
one can define superposition as a “linear” combination dve@semi-ring with Boolean
OR as the additive operator and Boolean AND as the multifVie@perator. The coef-
ficients in the resulting linear combination are either 1. The problem of computing
a basis of a set of subtraces turns out to be equivalent to Ee&wmatrix factorization
problem which decomposes a Boolean matrix into the prodiutt@ Boolean matri-
ces. If we seek the basis of the smallest size, the problemuisaent to finding the
ambiguous rankl3] of the Boolean matrix, which is known to be NP-complex8][

Given a set of subtraces, several bases are possible. kal@ecam’s Razor prin-
ciple, we seek to compute a “simple” basis that generalizdktosunseen traces. More
concretely, we seek to find a basis that is minimal in that sablrace is a linear combi-
nation of only a small number of basis subtraces. This yitldsparse basis problem
In this paper, we formally define this problem in the conteixBoolean matrix fac-
torization and propose a graph-theoretic algorithm toesthe sparse-version of the
problem. Such a problem is often referred to aparse codingroblem in the machine
learning literature, since it involves encoding a data stt &/“code” in a sparse manner
using few non-zero coefficients.

We apply the generated basis subtraces to the problem oflecadization. In digi-

tal circuits, an especially vexing problem today is thatastgsilicon debugging, where,
given an error trace with potentially only a subset of sigrdservable and no way to
reproduce the trace, one must localize the problem in sgaca gmall collection of
error modules) and time (to a small window within the traéayor localization is of
course very relevant to “pre-silicon” verification as wélur approach is to attempt to
reconstruct k-windows of an error trace using a basis coetpfrom slicing a set of
good traces into subtraces of lengthThe hypothesis is that the earliest windows that
cannot be reconstructed are likely to indicate the time efiror, and the portions that
cannot be reconstructed are likely to indicate the signaggbles) that are the source

of the problem. The technique can thus be appliedsfiaultaneougrror localization
and explanation. We apply this technique to representdigital circuits.
To summarize, the main contributions of the paper are:

— We introduce the idea dfasis subtraceas a formal way of capturing behavior of
a design as exhibited by a set of traces;

— We formally define thesparsity-constrained Boolean basis probland propose a
graph-based algorithm to solve it.

— We demonstrate with experimental results that we can mie&ulispecifications
using our sparse coding method;

— We show that the computed bases can be used to do simultaeeousocaliza-
tion and error explanation in a setting that is especiallyliapble to post-silicon
debugging.

The rest of the paper is organized as follows. We begin in 3&dth basic termi-
nology and preliminaries. Sec. 3 introduces our approadimtiing a sparse basis. In
Sec. 4, we show how we can use our approach for performing lealization. Ex-
perimental results are presented in Sec. 5. Related workveged in Sec. 6 and we
conclude in Sec. 7.

2 Preliminaries

In this section, we introduce basic notation used in the a€#lhe paper. Sec. 2.1 in-
troduces notation representing traces of a reactive syatematrices, and Sec. 2.2
connects the matrix representation with a graph representa

2.1 Traces and Subtraces

We model a reactive system as a transition systetiry, §) whereV is a finite set
of Boolean variablesy is a set of initial states of the system, ahé the transition
relation. In general’ contains input, output and (internal) state variables atespf the
systemo is a Boolean vector comprising valuations to each variabké.iFor clarity,
we restrict ourselves in this paper to synchronous systembich transitions occur on
the tick of a clock, such as digital circuits, although thead can be applied in other
settings as well.

Let the state of the system at tith cycle (step) be denoted by. A complete trace
of the system of lengthis a sequence of statesg, o1, 09, ...,0;,_1 Whereoy € Xy,
and(o;_1,0;) € § for 1 < i < I. Note however that the full system state and/or inputs
might not be observed or recorded during execution. We therelefine dracer as a
sequence of valuations to a subset of the variablds;ine., 7 = o(,01,05,...,0,_;
whereo] C o;. A subtracer; ; of lengthj in 7 is defined as the segment-oftarting
at cyclei and ending at cyclé + j — 1, such that > 0 andi 4+ j < [,i.e.r,; =
0i,0it1, - - -, Titj—1. We only consider subtraces of length at lexste., containing at
least one transition.

For example, Equation 1 shows a tracef length4 where each state comprises a
valuation to two Boolean variables. We depict the trace itrinéorm, where the rows
correspond to variables and the columns to cycles.

1011
1011 (1)

The subtracey » of 7 is
10
10

Let 7, be the set of all subtraces of lengttin 7, i.e. 7, = {r; ,|0 < i <[— p}. For
anyr;, € 7,, we can view it as a Boolean matrix of dimensiéfi x p. We can also
represent it using a vectef € BIVI*? by stacking the columns in; , (i.e., using a
column-major representation). For exampfeas shown below represents the subtrace
7'072.

w¥=[1100]"
For brevity, we use; for v when the length of each subtrages obvious from the
context. Hence, we can represépias a Boolean matrix witi/| x p rows and —p+1
columns. For example, we can represent all the subtracesngtri2 for the trace in
Equation 1 as the following matrix.

101
101
011 (2)

011

2.2 Boolean Matrices and Bipartite Graphs

A Boolean matrix can be viewed as an adjacency matrix fuipartite graph(bigraph,

for short). Recall that a bipartite gragh = (U,V, E) is a graph with two disjoint
non-empty sets of verticds andV” and such that every edge i C U x V' connects
one vertex inJ and one inV. For a Boolean matri®f € BF1 xk2, denote); ; as the
entry in the:™ row and;™ column of M. Then,M can be represented by a bigraph
G With U = {uq,ug, ..., ug, } andV = {vy,v9, ..., v, }, Such that there is an edge
connectingi € U andj € V if and only if M; ; = 1. For example, the matriX in
Equation 2 can be represented by the bigr&ghin shown in Figure 1.

A bicliqueis a complete bipartite graph; i.e., a bipartite gragh= (U’, V', E’)
whereE’ = U’ x V'. Given a bigraphG, amaximal edge bicliquef G is a biclique
G1=(Uy CU,V; CV,E; =U; x Vi) ifitis not contained in another biclique ¢,
that is, there does not exist another bicligiie = (Us C U, Vo C V, Ey = Us x V43)
and eithei/; C U, or V; C V. A biclique edge cove€ov of G is a set of bicliques
such that all the edgeB in G are covered by the set, thati& ¢ £,3G" = (U’ C
U V' CV,E") € Cov, s.t.e € E'. DenoteE¢,,, as the set of edges covered @yv.
The smallest number of bicliques needed is calleddiipartite dimensiorof G. For
example, a biclique cover for the bigrah in Figure 1 is shawhRigure 2.

The view of Boolean matrices as bigraphs is relevant for dgamsing a set of traces
into a set of basis subtraces. The following problem is irtgodrin this context.

uj

Vi

V2
us
V3 ‘

Uy
U V
Fig. 1. Bipartite graph for the matrix in Equation 2

[uy
V1/ Vo

(U2 Uz

Uy

V3

Fig. 2. Bicliqgue edge cover for the bigraph in Figure 1

Definition 1. Consider a Boolean matriX € B™*", theBoolean matrix factorization
problemis to findk and Boolean matrice® € B™** and.S € B**" such that

X =BoS Q)

That is, X is decomposed into a Boolean combination (denoted by theatipe) of
two other Boolean matrices, in which scalar multiplicati®the Boolean AND operator
A, and scalar addition (") is the Boolean OR operatar. In other words, we perform
matrix/vector operations over Boolean semi-ring witlas the multiplicative operator
andV as the additive operator. For example, the matrix in Equaioan be factorized
in the following way.

101 10
101| _[10] [t1o01
011~ |o1 Okll}
011 |01

We useM; to denote the!" column vector of a matri®/. Thus, the columns of matrix
X are X1, Xo,..., X,. We will refer to X as thedata matrixsince it represents the
traces which are the input data for error localization. W tb@ matrix B the basis
matrix because eacB; can be viewed as some basis vectoBinh. We call the matrix
S the coefficient matrix Each S; is a Boolean vector in which & in the ;! entry
indicates that thg™" basis vector is used in the decomposition aradherwise.

We can also rewrite the factorization in the following wayaaBoolean sum of the
matrices formed by taking the tensor (outer) product ofitheolumn in B and thei"
rowinS.

101 101 000
101 (101 000

011| = looo| T]o11
011 000/ |o11

Notice that the two matrices on the right hand side are eisdlgrthe bicliques in Fig-
ure 2.

Remark 1 Clearly, a solution always exists for the problem in Defonitil. This is
because one can always pitk= n such thatB = X andS = I (wherel is the
identity matrix). Hence, it is more interesting to fisdand S such that is minimized.
The smallest for which such a decomposition exists is called the ambiguank [13]
of the Boolean matriXX. It is also equal to the bipartite dimension of the bigra@k
corresponding to matriXX. The problem of finding a Boolean factorizationXfwith
the smallest is equivalent to finding a biclique edge cover@% with the minimum
number of bicliques. Both problems are NP-hard [28].

3 Specification Mining via Sparse Coding

In this section, we describe how specifications are minedspase Boolean matrix
factorization. The specifications we mine, basis subtrazas be viewed as temporal
patterns over a finite time window.

3.1 Formulation as Sparse Coding Problem

The notion of sparsity is borrowed from the wealth of literatin machine learning
such as sparse coding [20] and sparse principal componalysas(PCA) [33]. The
key insight is that sparsity often times provides a bettégrpretation of the data in
terms of the underlying concepts (albeit greater in numbenhe setting of mining
specification from a trace, we argue that each subtrace afce tan be viewed as a
superposition of patterns, and a potential specificatiom jmttern that is commonly
shared by multiple subtraces. These patterns are the ksatbabis subtraces

We present theparse Boolean basis problgor computing basis subtraces below.
A few different options are presented for formulating thelggem and we pick one with
a notion of sparsity that seems well-suited to our context.

Definition 2. Given X € B™*™ and a positive integet’, the sparsity-constrained
Boolean matrix factorization probleisto findk, B € B™**, andS € B**" such that

X =BoS

4
and |SZ|1 < O,Vl ()

Let us reflect on the above problem formulation. The constréi= Bo S imposes the
requirement that the input data (subtraces) representéd tmyst be reconstructed as
a superposition of the subtraces represented pwith S encoding the coefficients in
the superposition. The second constraffif; < C,V, encodes the sparsity constraint,
which ensures that each subtraceXins a sparse superposition of the subtraceB.in

More precisely, the definition above imposes a constrairthemumber ofis per
column of S. Similar to the Boolean matrix factorization problem in Déibn 1, a
solution always exists by setting = X andS = I (andk = n). Clearly, one must re-
strict the size of in order to get meaningful results fér andS. We therefore consider
the variant of the above problem that seeks the smallgsrming this as theparsity-
constrained Boolean basis problem this variant, sparsity is defined both in terms of
the restriction on thé matrix and on the size df. We describe how we address this
problemin Section 3.2. Note that, if we allawto be a function ok, then this problem
is also NP-hard since tH&oolean matrix basis probleis a special case of this when
C=k.

One might also consider defining sparsity in a somewhatreiffemanner. Instead
of imposing a L-norm constraint on the columns of the coefficient maffjxwe can
seekB and.S such that the total sparsity is minimized.

Definition 3. GivenX < B"*" and a positive integéek, thesparsity-optimized Boolean
matrix factorization problens the following optimization problem.

minimize S;
B.S ;' h (5)
subjectto X = Bo S

The main issue with this problem definition is thais fixed; in other words, one has to
“guess” a suitablé: for which B and .S can be computed. While modifications of this
problem that restrict or minimizecould potentially be useful, we leave an investigation
of these to future work.

3.2 Solving the Sparse Coding Problem

In this section, we describe an algorithm that solvessiharsity-constrained Boolean
matrix factorization problemand tries to minimizet. Our solution is guaranteed to
satisfy the sparsity constraint but may not be minimal imtgrof k. The algorithm
exploits the connection between the matrix factorizatiabpem and the biclique edge
cover problem described in Sec. 2. Specifically, it is bagedrowing a biclique edge
coverCov for the bigraphGx = (U, V, E) corresponding to matriX(. At each step,
a maximal edge biclique that covers some number of prewowstovered edges is
added taC'ov until Cov covers all the edges. The sparsity constraint is then ai@onist
on the number of maximal bicliques that can be used to coeeetlyes that connect
each vertex if/. (Recall that each vertex ivi corresponds to a colunt of S.)

Notice that this algorithm implicitly assumes that the skealb maximal edge bi-
cliques are givera priori. Computing this set is not easy: for instance, the closely-
related problem of finding a maximum edge biclique in a bigresgNP-complete [26].

Additionally, the number of maximal bicliques in a bigrapdncbe exponential in the
number of vertices [15], and so enumerating these is wast-exponential in the num-
ber of vertices. However, there do exist enumeration algms that are polynomial in
the combined input and output size [2]. We use an off-thdfa@lementation [1] of
the enumeration algorithm in [2] to compute the set of all et bicliques. We have
found that in practice the high complexity of deriving thét does not prevent us from
finding a good solution.

We now formally describe the algorithm which computésv, the biclique edge
cover.

(1) Initialize Cov to (). Associate each vertexe V' with a positive integer count,
and initialize eachw, to C'. Intuitively, «,, will ensure that the sparsity constraint
for the column ofS corresponding te is maintained.

Denote byF, the set of edges that connecta vertex V. Let E,» = E, \ Ecoy
andG, be the subgraph that is induced By .

(2) Giventhe set of maximal bicliqués for each maximum bicliqu€; = (U;, V;, E;)
€ I', associate with it a valug; that is equal to the number of edgesAnbut not
in Ecoy. In other wordsB; = |{e;|e; € E; \ Ecov}|. Initially, 8; = |U;| x |Vi].

(3) lterate untilE¢,, = E:

(a) Yv € V such thatv, = 1 andE,, # 0, Add G, to Cov. Update thes values
forallG; e I

(b) Add aG; € I' that has the highest positiyg and satifies the conditiovv; €
Vi, ap, > 110 Cov. In case of a tie, pick; that has the large$V/;|. Remove
G, from I" and update the values for the rest to the bicliques in the set.
Decrease all,, by 1.

The intuition for Step 3(a) is that if we have a vertexvith uncovered edges whose

sparsity countv, has reached, we must cover it (with the default biclique that includes
all the uncovered edges). In 3(b), we have the general chseewhere exists a maximal

biclique with vertices with sparsity counts greater thaim which case we use a greedy
heuristic based on the@value. The theoretical guarantees provided by our algorite

as follows.

Proposition 1. The above algorithm terminates in a finite number of steps.

Proof. (sketch) Itis clear that at each step of the iteration, attleae new biclique that
contains an extra edge is added to the edge cover. Since thigenwf edges is finite,
the algorithm will terminate in a finite number of steps. a

Proposition 2. The above algorithm finds a biclique edge cover for the bigrép

Proof. (sketch) Since the termination condition of the loop is whensetE -, con-
tains all the edges i&¥, Cov at all times contains bicliques, and the loop terminates in
a finite number of steps, the algorithm computes a bicliqueebver forG. O

Proposition 3. The above algorithm solves the sparsity-constrained Boolaatrix
factorization problem.

Proof. (sketch) Recall that thé" biclique G; added taC'ov corresponds to thd" col-
umn in the basis matri® multiplied with the;™ row in the coefficient matrixs. Also
note that the cardinality of the biclique cover is equal ®tlumber of bases whichis
SinceX can be written as a Boolean sum of the matrices formed by piyitig thei™
column of B with the i row of S, we essentially solves the Boolean matrix factoriza-
tion problem by finding a biclique edge cov@pv of Gx. The sparsity constraint for
the ™ column of S is then the maximum number of bicliquesdtov that can contain
the vertexv; € V. Since each time when a biclique containings added taC'ov, the
count atv; is decreased by and it never goes belo®, the sparsity contraint is satis-
fied. Thus, the algorithm solves tlsparsity-constrained Boolean matrix factorization
problem a

4 Application to Error Localization

The key idea in our approach is to localize errors by attemgtt reconstruct the error
trace from basis subtraces generated from correct traagshypothesis is that the
earliest section (subtrace) of the error trace that canagtbonstructed contains the
likely cause of the error. Our localization algorithm is geated in this section, along
with some theoretical guarantees. We begin with the prollefimition.

4.1 Problem Definition

Consider the problem of localizing an error given a set ofexdrtraces and a single
error trace. Our goal is to identify a small interval of theadiline at which the error
occurred. What makes the problem especially challengitigisthe input sequence that
generated the error trace is either unknown (or only pértiaown) or it is extremely
slow to re-simulate the input sequence (if known) on theamimdesign (also sometimes
referred to as a “golden model”). This means that a simpleratypdetection technique
which checks the first divergence of the error trace and tieecbtrace obtained by
simulating the golden model on the same input sequence duesark. One has to
use the set of correct traces to help localize the bug in thar énace. This setting
is especially applicable to post-silicon debugging whéxe bugs are often difficult
to diagnose due to limited observability, limited reproithility and susceptibility to
environmental variations.

More formally, the error localization problem we addresshis section can be
defined as follows.

Definition 4. Given an error trace of length and an integep, consider partitioning it
into non-overlapping subtraces each of lengttwithout the loss of generality, we as-
sumd is an integer multiple of; otherwise, the last subtrace can be treated specially).
Then, theerror localization problens to identify the subtrace containing the first
point of deviation of the error trace from the correct trace the same input sequence.

Figure 3 illustrates the problem.

One might note that the problem we define is not the only foreradr localization
that is desirable. For instance, one might also want to madiawn the fault to the sig-
nals/variables that were incorrectly updated. Also, timeight be more than one source

Signals [1 0 1[0 0 TI|{1 1

Fig. 3. Localizing the error to one of the subtraces of length

of an error, in which case one might want to identify all of oeirces. While these goals
are important, we contend that our algorithm to addressbiel@m defined above can
also be used to achieve these additional objectives. Fongeathe error explanation
technique we present below can be used to identify whiclalsées were incorrectly

updated and how. Similarly, one can apply our reconstrodtiased localization algo-
rithm iteratively to identify multiple subtraces that cantibe reconstructed from the
basis subtraces, and could potentially be used to identifijiple causes of an error.

4.2 Localization by Reconstruction

As described above, the key hypothesis underlying our @mprds that the earliest
section (subtrace) of the error trace that cannot be reeartst contains the likely
cause of the error.

Our error localization algorithm operates in the followstgps:

1. Given a set of correct tracs first obtain the set of aliniquesubtraces of length
p in 7. Denote this set by,,. Using the approach described in Section 2, convert
the set7, to a data matrixX .

2. Solve thesparsity-constrained Boolean basis problémn X for a given constant
C.

3. Given an error trace’, partition it into an ordered set gfsubtraces of length.
Denote this set by,. The elements ir7, are ordered by their positions .
Convert7, to a data matrixX”.

4. Starting fromX/, try to reconstrucfX; using the basis computed above with the
same sparsity constraiGt Returni as the location of the bug if the reconstruction
fails. In case all reconstructions succeed, returmdicating inability to localize
the error.

Algorithm 1 describes the above approach in more detaiys#eudo-code. It uses
the following subroutines:

— dataMatrix is the procedure that converts a set of subtraces to thespamding
data matrix described in Section 2.

Algorithm 1 Error localization in time

Input: Set of subtrace$, from set of correct trace®, 7, from error tracer’
Input: ConstantC' > 0
X = dataMatrix (7,)
X' = dataMatrix (7))
B = sparseBasi§X, C)
fori:=0—qg—1do
E =reconstructTrace(X;, B, C)
if £+ 0then
return ¢
end if
end for
return L

— sparseBasisolves thesparsity-constrained Boolean basis problesing the graph-
theoretic algorithm presented in Section 3 forwith a givenC, and returns the
computed basi$.

— reconstructTracesolves the following minimization problem.

minimize | X! ® (Bo S;)|1
subjectto |S;|;1 < C

where@ is the bit-wise Boolean XOR operator, and is interpretedplaentry-
wise on matrices.
Notice that for fixedC, this problem idixed-parameter tractablbecause we can

, k .
use a brute-force algorithm that enumerates all¥he., - () possibleS;s. It
===\t

can also be solved using a pseudo-Boolean optimizationutation, where the
Boolean variables in the optimization problem are the estinS;.

Error Explanation. DenoteS; as the optimal solution to the minimization problem in
Equation 6. If the minimum value is non-zero, thBn= X ® (B o S¥) is the minimum
difference between the error subtra€eand the reconstructed subtraBe S;. Notice
that E is also a subtrace, and can be interpreted as a finite seqakassignments to
system variables. In our experiende s a pattern that explains the error; we expand
further on this point using our experiments in Sec. 5.

4.3 Theoretical Guarantees

We now give conditions under which our error localizatiorpagach issound By
sound, we mean that when our algorithm reports a subtradeeasause of an error,
it is really an erroneous subtrace that deviates from cobretavior.

Since our approach mines specifications from traces, gs®@feness fundamentally
depends on the quality of those traces. Specifically, oundioeiss guarantee relies on
the set of trace$ satisfying the followingcoverage metricdefined over the transition
system(V, X, §) of the golden model:

1. Initial State CoveragefFor every initial statey € X, there exists some trace i
in which og is the initial state.

2. Transition CoverageFor every transitiojo, o’) € Xy, there exists some trace in
7 in which the transitior{c, o) occurs.

While full transition coverage can be difficult to achieve farge designs, there is
significant work in the simulation-driven hardware verifioa community on achieving
a high degree of transition coverage [29]. If achievingsiaon coverage is challenging
for a design, one could consider slicing the traces basedaties module boundaries
and computing tests that ensure full transition coveragi@mmodules, at the potential
cost of missing cross-module patterns.

Our soundness theorem relates test coverage with effaetef error localization.

Theorem 1. Given a transition systet# for the golden model and a set of finite-length
traces7 of Z satisfying initial state and transition coverage, if Algbm 1 is invoked
on 7 and an arbitrary error tracer’, then Algorithm 1 is sound; viz., if it reports a
subtrace ofr’ as an error location, that subtrace cannot be exhibitedzby

Proof. (sketch) The proof proceeds by contradiction. Suppose ritfga 1 reports a
subtrace ofr’ as the location of the error. Recall that a subtrace must bength at
least2. Thus, if we compute basis subtraces of lengjtlany transition of the golden
modelZ can be expressed as a superposition of these basis sularacksnce recon-
structed from the basis subtracBs since7 contains all transitions of. A subtrace
reported as an error location, in contrast, is one that ddmmexpressed as a superpo-
sition of the basis subtraces and heneeonstructTrace will report that it cannot be
reconstructed. Thus, any subtrace reported as an errdirdondsy Algorithm 1 cannot
be a valid transition of the golden modgl a

We also note that, in theory, it is possible for Algorithm Imdss reporting a sub-
trace that is an error location, if that subtrace is expbdssis a superposition of basis
subtraces. However, experiments indicate that it is ug@aiturate in pinpointing the
location of the error. Details of our experiments are predith Sec. 5.

5 Experimental Results

In this section, we evaluate our sparse coding approachrtergee specifications and
localize error based on the following criteria.

(1) Are the computed “basis subtraces” meaningful? Thadasthey correspond to
some interesting specifications of the test circuit.

(2) Do the “basis subtraces” capture sufficient underlyingtsre of a trace? That is,
can they be used to reconstruct traces that are generatadufneeen input se-
guences?

(3) How accurately can we localize an error in an unseen tfgeeerated by unseen
input sequences)?

(4) How good are the error explanations?

We first use a 2-port arbiter as an illustrative example tduata our approach.
The 2-port arbiter is an arbiter that takes two Boolean ismatrresponding to two
potentially competing requests, and produces two Booledputs corresponding to
the two grants. It implements a round-robin scheme suchitlvetl give priority to
the port at which a request has not been most recently granged,, r; denote the
input requests angy, g; denote the corresponding output grants. Figure 4 shows part
of a trace of the arbiter over the request and grant signdls. ifiput requests were
randomly generated and the trace Wa8 cycles long.

o 0Ol 0|11 100
1o 010 011
g (0|1 0|01 1 00O
81 110 O |1]0 0 1 1
Time .

Fig. 4. A normal trace of a 2-port round-robin arbiter

We used a sliding window of lengthto collect a set of subtraces. We then applied
our sparse coding algorithm described in Section 3.2 taek# set of “basis subtraces”.
We chose a sparsity dffor this experiment.

(1) Figure 5 shows some of the basis subtraces computed.WMébsarve that basis
(a) and (b) correspond to the correct behavior of the arlgitenting a request at the
same cycle when there is no competing request. Basis (c)ssttat when there are
two competing requests at the same cycle, the arbiter fistgone of the requests and
the ungranted request will stay asserted the next cycletardgets granted.

oS O©O o O

(a) (b) (©)

Fig. 5. Three basis subtraces computed via sparse coding

(2) We further simulated the arbiter with random inputs &eofl00 times each
for 100 cycles. For each of these traces, we also use a sliding wiridgartition
them into subtraces of length Using the basis computed from Figure 4, we tried to

reconstruct these subtraces and succeeded in every atfEnigptvas because all the
sub-behaviors were fully covered in the trace from which lthses were computed,
even though unseen subtrace exists in the new traces.

(3) For each of the00 trace in (2), we randomly injected a single bit error (flipgpin
its value) at a random cycle to one of the four signals in thedr Our task was to test if
we could localize the error to a subtrace of lengithat contained it. The traces used in
the experiments can be foundittp://www.eecs.berkeley.edu/"wenchaol
[arbiter.tar.gz

The following example illustrates one of the experimeniguFe 6 shows a snapshot
of the trace irerrl.xt

95 96 97 98 99
10O 0 0 1 0

0 0 0 0 o0

2|0 0 0 1 0

2|0 0 1 0 0

Fig. 6. Bit flip at r; at cycle97

Using the approach described in Algorithm 1, the subtracéaioing the error was
correctly identified. Figure 7 shows the error subtrace.

9% 97 98
0 0 1
mlo 0 o
2|0 0 1
g0 1 o0

Fig. 7. Error subtrace as identified

Following Equation 6, Figure 8 shows the subtra€e® (B o S;) that minimizes
| X! @ (B oS;)l1 and serves as an error explanation.

Clearly, this subtrace reveals the injected error. Behallig the regest at; was
not granted as it should had been. Note that multiple ernolagrations (solutions to the
minimization problem in Equation 6) can exist. Figure 9 sk@mother error explana-
tion subtrace produced for the example above.

9% 97 98
o 0 0
o 1 0
@0 0 o
g 10 0 0

Fig. 8. Error explanation subtrace

9% 97 98
o 0 0
0 0 o
@0 0 o
g0 1 0

Fig. 9. Alternative error explanation subtrace

This subtrace does not directly reveal the injected bit Hipwever, it still pinpoints
the bug behaviorally — a grant was producegdatvhen no corresponding request was
made.

(4) In Section 4.2, we argue that the minimum difference leetwan error subtrace
and any possible reconstructed subtrace using the compatésl can serve as an ex-
planation for the error. In thg3 traces for which the error was correctly localized, the
injected bit error was also uncovered by solving the optatidn problem in Equation 6.

While these results are preliminary, they indicate thatsparse coding approach
provides a completely new way to do specification mining amdrdocalization.

6 Related Work

We survey related work along two dimensions: work on minipgcifications from
traces, and approaches to perform error localization.

6.1 Specification Mining

The study of automatically generating specifications geek bs early as 1974 [6][30].
Many techniques have been recently proposed to automgtieserse-engineer speci-
fications from programs [27][14][4][12]. These specificais can be simple predicates
or temporal specifications which specify the ordering ofrdéseor rules of API usage.
The generated specifications can then be used to formalifiy \eeprogram’s correct-
ness, to assist in bug finding [31], or to detect maliciousavadrs [7].

Many techniques seek to learn specifications dynamicadiyfan execution trace
(or a set of traces). Daikon [12] is one of the earliest tob&t tine single-state in-

variants or pre-/post-conditions in programs. In contrast focus on mining (tempo-
ral) properties over a finite window for reactive (hardwategigns in this work. Most
existing mining tools produce temporal properties in thefof automata. Automata-
based techniques generally fall into two categories. Tisé ¢lass of methods learn a
single complex specification (usually as a finite automatwer a specific alphabet,
and then extract simpler properties from it. For instana@m#ons et al. [4] first pro-
duce a probabilistic automaton that accepts the trace ardaktract from it likely
properties. However, learning a single finite state macfioma traces is NP-hard [16].
To achieve better scalability, an alternative is to firsteaultiple small specifications
and then post-process them to form more complex state meshiingler et al. [10]
first introduce the idea of mining simple alternating patserSeveral subsequent ef-
forts [31][32][14] built upon this work. For example, Jat§t4] locates all instances
of the alternating patterfu b)* and a resource usage pattéab* ¢)*. The tool then
composes these patterns into larger ones by using a seteoéintfe rules. In previous
work, we proposed a specification mining approach simila¥aeert that focuses on
patterns relevant for digital circuits [21] and showed hbwe tan be applied to error
localization. However, such approaches are limited by #ie@tpatterns. The present
work seeks to remove this limitation by inferring desigresific patterns in the form of
basis subtraces.

Specifications can also be generated by reasoning aboutdgeam statically. For
example, Alur et al. [3] proposes the use of predicate attitratogether with automata
learning to automatically synthesize interface specificatfor Java classes. Static and
dynamic analyses complement each other. We refer the tal¢t1] for a detailed
comparison of the two techniques.

6.2 Error Localization

The problem of error localization and explanation has beaomstudied in literature,
both in the software testing and model checking communitB&sce et al. [17, 18]
present an approach based on distance metrics which, gigenrderexample (error
trace), finds a correct trace as “close” as possible to thar énaice according to the
distance metrics. Ball et al. [5] present an approach tolilmog errors in sequential
programs. They use a model checker as a subroutine, withaileeidea to identify
transitions of an error trace that are not in any correctetmaicthe program, and use
this for error localization. Both of these approaches djgeva error traces generated
by model checking, and thus have full observability of theuits and state variables.
In contrast, in our context of post-silicon debugging, theetrace is only partially
observed and not reproducible.

In the software testing community, researchers have attihip use predicates and
mined specifications to localize errors [22, 9]; howevegsthrely on human insight in
choosing a good set of predicates/templates. In contrastagproach automatically
derives specifications in the form of basis subtraces, wbhahbe seen as temporal
properties over a finite window. Program spectra [19], whigtiude computing pro-
files of program behavior such as summaries of the branchpatbs traversed, have
also been proposed as ways to separate good traces frontraoes; however, these

techniques are of limited use for digital circuits sinceythely on the path structure of
sequential programs and give no guarantees on soundness.

In the area of post-silicon debugging (see [23] for a recentey), the problem of
error localization has received wide attention, but fewsgohs are available. The IFRA
approach [24, 25], which has proved effective for processoes, is based on adding
on-chip recorders to a design to collect “instruction fowt{s” which are analyzed of-
fline with some input from human experts. However, this apphorelies heavily on
knowledge of processor designs and is not easily extensild¢her kinds of designs
such as communication and interface logic. Li et al. [21}d@roposed the use of mined
specifications to perform error localization; howevers thpproach relies on human in-
sight in supplying the right templates to mine temporaldéapecifications and provides
no guarantees on soundness. The Backspace [8] systemseiiites problem of repro-
ducibility by attempting to reconstruct one or more “likérror traces by performing
backwards reachability guided by recorded signaturessitgy state; such a system is
complementary to the techniques proposed herein for ercatikation.

7 Conclusion and Future Work

In this paper, we have presentedsis subtracesa new formalism to capture system
behavior from simulation or execution traces. We showedtom@mpute sparsebasis
from a set of traces using a graph-based algorithm. We fudémonstrated that the
generated basis subtraces can be effectively used forlecadization and explanation.
In terms of future work, we envisage two broad directiongriaving scalability and
applying the ideas to other domains. Since the Boolean Ipasisem and its sparse
variants can be computationally expensive to solve, thiakitidy of the approach is
somewhat limited. In this context, it would be interestingise slightly different defi-
nitions of a basis (for example, using the field of rationather than the semi-ring we
consider) so that the problem of computing a sparse basays@mial-time solvable.
Moreover, the ideas introduced in this paper should be becajte beyond digital
circuits to software, cyber-physical systems, and anadog/d-signal circuits. Explor-
ing these application domains could provide a rich sourgeablems for future work.

Acknowledgement

The authors acknowledge the support of the Gigascale SgsRamsearch Center, one
of six research centers funded under the Focus Center RbsBesgram (FCRP), a
Semiconductor Research Corporation entity. This work &s supported in part by a
Hellman Family Faculty Fund Award.

References

1. Maximal biclique enumeration.
http://genome.cs.iastate.edu/supertree/downlodudfbétreadme.html.

2. G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, an&iBieone. Consensus al-
gorithms for the generation of all maximal biclique®iscrete Appl. Math. 145:11-21,
December 2004.

[RE

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Alur, P.éerny, P. Madhusudan, and W. Nam. Synthesis of interfageifsgations for java
classes. IlPOPL, pages 98-109, 2005.

. G. Ammons, R. Bodik, and J. R. Larus. Mining specificatiom POPL, pages 4-16, 2002.
. T. Ball, M. Naik, and S. K. Rajamani. From symptom to causealizing errors in coun-

terexample traces. IROPL, pages 97-105, 2003.

. M. Caplain. Finding invariant assertions for provinggmams. InProceedings of the inter-

national conference on Reliable softwapages 165-171, 1975.

. M. Christodorescu, S. Jha, and C. Kruegel. Mining spegtifias of malicious behavior. In

ESEC-FSE’'0O7pages 5-14, 2007.

. F. M. de Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. YaBgckspace: Formal analysis

for post-silicon debug. IFMCAD, pages 1-10, 2008.

. N. Dodoo, L. Lin, and M. D. Ernst. Selecting, refining, andlaating predicates for program

analysis. Technical Report MIT-LCS-TR-914, MIT Laboratéor Computer Science, 2003.
Engler, D. et al. Bugs as deviant behavior: a generaloggprto inferring errors in systems
code. InNSOSR pages 57-72, 2001.

M. D. Ernst. Static and dynamic analysis: Synergy anditguadn WODA pages 24-27,
2003.

Ernst, M. et al. The daikon system for dynamic detectidikely invariants. Sci. Comput.
Program, 69(1-3):35-45, 2007.

V. Froidure. Rangs des relations binaires, semigrollpes de relations ambigues PhD
thesis, June 1995.

M. Gabel and Z. Su. Javert: fully automatic mining of gahéemporal properties from
dynamic traces. IIiFSE pages 339-349, 2008.

S. Gaspers, D. Kratsch, and M. Liedloff. On independets and bicliques in graphs. In
H. Broersma, T. Erlebach, T. Friedetzky, and D. PaulusmitgorsgGraph-Theoretic Con-
cepts in Computer Sciencelume 5344 ot ecture Notes in Computer Scienpages 171—
182. Springer Berlin / Heidelberg, 2008.

E. M. Gold. Complexity of automatic identification frorivgn data. 37:302—-320, 1978.

A. Groce. Error explanation with distance metricsTARCAS LNCS 2988, pages 108-122,
2004.

A. Groce, S. Chaki, D. Kroening, and O. Strichman. Errplanation with distance metrics.
Software Tools for Technology Transfer (ST, 18():229—-247, 2006.

M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. Anggrical investigation of the
relationship between spectra differences and regresaidtsf Softw. Test., Verif. Reliab.
10(3):171-194, 2000.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparsding algorithms. Iin NIPS
pages 801-808. NIPS, 2007.

W. Li, A. Forin, and S. A. Seshia. Scalable specificatianimg for verification and diag-
nosis. InProceedings of the Design Automation Conference (DA&Yes 755-760, June
2010.

B. Liblit, A. Aiken, A. X. Zheng, and M. |. Jordan. Bug istlon via remote program
sampling. INPLDI, pages 141-154, 2003.

S. Mitra, S. A. Seshia, and N. Nicolici. Post-siliconidation: Opportunities, challenges
and recent advances. Rroceedings of the Design Automation Conference (DA@yes
12-17, June 2010.

S. Park and S. Mitra. Ifra: Instruction footprint redogiand analysis for post-silicon bug
localization in processors. DAC, 2008.

S. B. Park, A. Bracy, H. Wang, and S. Mitra. Blog: Posieit bug localization in processors
using bug localization graphs. DAC, 2010.

R. Peeters. The maximum edge biclique problem is NP-mmiscrete Applied Mathe-
matics 131(3):651-654, 2003.

27

28.

29.

30.
31.

32.

33.

. S. Sankaranarayanan, F. lvanti, and A. Gupta. Minbrady specifications using inductive
logic programming. INCSE pages 131-140, 2008.

D. J. Siewert.Biclique covers and partitions of bipartite graphs and d@ighs and related
matrix ranks of 0,1 matricePhD thesis, 2000.

S. Tasiran and K. Keutzer. Coverage metrics for funefioalidation of hardware designs.
IEEE Design & Test of Computer$8(4):36—45, 2001.

B. Wegbreit. The synthesis of loop predica@smmun. ACM17(2):102-113, 1974.

W. Weimer and G. C. Necula. Mining temporal specificatifor error detection. ITACAS
pages 461-476, 2005.

Yang, J. et al. Perracotta: mining temporal api rulemfimperfect traces. IWCSE pages
282-291, 2006.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principahpgonent analysis.Journal of
Computational and Graphical Statistict5:2006, 2004.

