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Abstract

In program debugging, reproducibility of bugs is a key re-
quirement. Unfortunately, bugs in concurrent programs are
notoriously difficult to reproduce compared to their sequen-
tial counterparts. This is because bugs due to concurrency
happen under very specific thread schedules and the like-
lihood of taking such corner-case schedules during regular
testing is very low. We propose concurrent breakpoints, a
light-weight and programmatic way to make a concurrency
bug reproducible. We describe a mechanism that helps to
hit a concurrent breakpoint in a concurrent execution with
high probability. We have implemented concurrent break-
points as a light-weight library (containing a few hundreds
of lines of code) for Java and C/C++ programs. We have
used the implementation to deterministically reproduce sev-
eral known non-deterministic bugs in real-world concurrent
Java and C/C++ programs involving 1.6M lines of code.
In our evaluation, concurrent breakpoints made these non-
deterministic bugs almost 100% reproducible.

1 Introduction

A key requirement in program debugging is reproducibility.
When a bug is encountered in a program execution, in order
to fix the bug, the developer first needs to confirm the exis-
tence of the bug by trying to reproduce the bug. Developers
also require that the bug can be reproduced deterministically
so that they can run the buggy execution repeatedly with the
aid of a debugger and find the cause of the bug. Reproducing
bugs for sequential programs is relatively easy when given
enough details. If all sources of non-determinism, such as
program inputs (and values of environment variables in some
cases), are recorded, a bug in a sequential program can be
reproduced deterministically by replaying the program with
the recorded inputs. Bugs in sequential programs can be re-
ported easily to a bug database because a user only needs to
report the input on which the sequential program exhibits the
bug.

Unfortunately, concurrent programs are notoriously diffi-
cult to debug compared to their sequential counterparts. This
is because bugs due to concurrency happen under very spe-
cific thread schedules and are often not reproducible during

regular testing. Therefore, even if a user reports the input
that caused a bug in a concurrent program, the developer
may not be able to recreate the bug and debug the cause
of the bug. Such non-deterministic bugs in concurrent pro-
grams are called Heisenbugs. One could argue that Heisen-
bugs could be made reproducible if the thread schedule is
recorded along with program inputs during a program execu-
tion. Unfortunately, recording and replaying a thread sched-
ule poses several problems: 1) It requires to observe the ex-
act thread schedule either through program instrumentation
or by using some specialized hardware. Instrumentation of-
ten incurs huge overhead and specialized hardware are often
not easily available. 2) Replaying a thread schedule requires
special runtime on the development side which could again
incur huge overhead.

Nevertheless, we need some information about the thread
schedule along with the program inputs to reproduce a
Heisenbug. We, therefore, ask the question: is there a better
way to provide necessary information about a thread sched-
ule along with program inputs so that one can reproduce a
Heisenbug? We would like the information about thread
schedule to be portable so that we do not need a special
runtime to reproduce the bug. In this paper, we propose a
simple light-weight technique to specify enough information
about a Heisenbug so that it can be reproduced with very
high probability without requiring a special runtime or a full
recording of the thread schedule.

Our technique for reproducibility is based on the observa-
tion that Heisenbugs can often be attributed to a set of pro-
gram states, called conflict states. A program execution is
said to be in a conflict state if there exists two threads such
that both threads are either 1) trying to access the same mem-
ory location and at least one of the accesses is a write (i.e.
a data race), or 2) they are trying to operate on the same
synchronization object (e.g. contending to acquire the same
lock). Depending on how a conflict state is resolved, i.e.
which thread is allowed to execute first, a concurrent pro-
gram execution could end up in different states. Such differ-
ence in program states often lead to Heisenbugs. Therefore,
in order to reproduce a Heisenbug, one should be able to
reach conflict states and control the program execution from
those states.

In this paper, we propose concurrent breakpoints, a light-



weight and programmatic tool that facilitates reproducibility
of Heisenbugs in concurrent programs. A concurrent break-
point is an object that defines a set of program states and
a scheduling decision that the program needs to take if a
state in the set is reached. Typically, the set of states de-
scribed by a concurrent breakpoint would be a set of conflict
states. Formally, a concurrent breakpoint is a tuple of the
form ({1, {2, ¢), where ¢; and {5 are program locations and
¢ is a predicate over the program state. A concurrent pro-
gram execution reaches a concurrent breakpoint (¢1, 3, ¢)
if there exists two threads ¢; and ¢, such that ¢; and ¢, are at
program locations ¢; and /5, respectively, and the states of ¢;
and ¢, jointly satisfy the predicate ¢. After reaching a state
denoted by a concurrent breakpoint, the program makes a
scheduling decision: it executes the next instruction of ¢; be-
fore ¢5. In this paper, we consider concurrent breakpoints in-
volving two threads; however, concurrent breakpoints could
easily be generalized to more than two threads.

We show that concurrent breakpoints could represent all
conflict states, i.e. they could represent data races and lock
contentions. We also illustrate that concurrent breakpoints
could represent other buggy states, such as a deadlock state
or a state where an atomicity violation or a missed notifica-
tion happens. We argue that the necessary information about
a buggy schedule could be represented using a small set
of concurrent breakpoints: if a program execution could be
forced to reach all the concurrent breakpoints in the set, then
the execution hits the Heisenbug. We show using probabilis-
tic arguments that concurrent breakpoints are hard to reach
during normal program executions. We propose a mech-
anism, called BTRIGGER, that increases the likelihood of
hitting a concurrent breakpoint during a program execution.
We provide a simplified probabilistic argument to show the
effectiveness of BTRIGGER in hitting a concurrent break-
point.

We have implemented concurrent breakpoints and
BTRIGGER as a light-weight library (containing a few hun-
dreds of lines code) for Java and C/C++ programs. We
have used the implementation to reproduce several known
Heisenbugs in real-world Java and C/C++ programs involv-
ing 1.6M lines of code. In our evaluation, concurrent break-
points made these non-deterministic bugs almost 100% re-
producible.

Concurrent breakpoints can be used as regression test
cases for concurrent programs in a similar way we use data
inputs as regression test cases for sequential programs. A
set of concurrent breakpoints specifies the necessary infor-
mation about a thread schedule that leads a program to a
bug. After fixing a Heisenbug, the set of concurrent break-
points denoting the Heisenbug can be kept as a regression
test, in case a future change in the program leads to the same
problem.

Our idea about concurrent breakpoints is motivated by

recent testing techniques for concurrent programs, such as
CalFuzzer [17, 3931} [18]], AssetFuzzer [20], CTrigger [32],

Penelope [40], and PCT [3]]. In such testing techniques, one
first identifies potential program statements where a delay or
a context switch could be made to trigger a Heisenbug. De-
lays or context switches are then systematically or randomly
inserted at those program statements to see if the resulting
thread schedule could lead to a bug. The goal of this work is
not to systematically or randomly explore thread schedules
based on some prior information; rather, concurrent break-
points make sure that once a bug is found, the bug can be
made reproducible using a simple programmatic technique.
Concurrent breakpoints also ensure that anyone can repro-
duce the bug deterministically without requiring the original
testing framework and its runtime.

For reproducibility of Heisenbugs in concurrent pro-
grams, a number of light-weight and efficient techniques
have been proposed to record and replay a concurrent exe-
cution [29} 13617, 1351 44| 28| 24,133, [2]. A record and replay
system dynamically tracks the execution of a concurrent pro-
gram, recording the non-deterministic choices made by the
scheduler. A trace is produced which allows the program to
be re-executed, forcing it to take the same schedule. If cap-
tured in a trace, a concurrency bug can be replayed consis-
tently during debugging. Note that these record-and-replay
systems are automatic, but require heavy-weight machinery
to record or replay a buggy thread schedule. In contrast, con-
current breakpoints provide a manual mechanism to make a
Heisenbug reproducible and it requires no special runtime or
heavy-weight machinery.

2 Concurrent Breakpoint

We define a concurrent breakpoint as the tuple ({1, (s, ®),
where ¢; and ¢ are program locations and ¢ is a predicate
over the program state. A program execution is said to have
triggered a concurrent breakpoint (¢1, £2, ¢) if the following
conditions are met

o the program reaches a state that satisfies the following
predicate:

Jt1,ta € Threads . (t1.pc = £1) A (ta.pc =€)

/\(tl =+ tg) A ¢, and

e from the above state, the program executes the next
instruction of thread ¢; before the next instruction of
thread t.

That is, we say that a concurrent program execution
triggers a concurrent breakpoint ({1, {5, ¢) if the program
reaches a program state and takes an action in the state. The
state is such that it satisfies the predicate ¢ and there exists
two threads ¢; and to such that ¢; and ¢, are at program lo-
cations /7 and /5 in the state, respectively. The action at the
state executes the thread ¢; before the thread to. In practice,
we will restrict the predicate ¢ to the local states of ¢; and
ta, i.e. ¢ can only refer to variables local to ¢; and to. If v is



void foo (Point pl) {
pl.x = 10;

}

void bar (Point p2) {

t = p2.x;

Figure 1: Data Race

a local variable of thread t;, then we will denote the variable
using t;.v.

Note that in our definition, a concurrent breakpoint in-
volves two threads. The definition can be easily extended
to involve more than two threads. For example, a concur-
rent breakpoint ({1, 02, {3, ¢) involves three threads. Our
implementation of concurrent breakpoints, as described in
the subsequent section, can be extended accordingly. To
simplify exposition, in this paper, we restrict to concurrent
breakpoints involving two threads.

We next illustrate how we can trigger various kind of bugs
in a concurrent program using concurrent breakpoints. We
consider three kinds of common concurrency bugs: data
races, deadlocks, and atomicity violations. For each kind
of bug, we illustrate through an example, the representation
of the bug using a concurrent breakpoint.

For example, we can trigger a feasible data race in a
program, i.e. reach a state in which two threads are about
to access the same memory location and at least one of
them is a write, using a concurrent breakpoint as follows.
Consider the program in Figure [I] The concurrent break-
point (3,9,t1.p1 == t2.p2) represents the state where two
threads are at lines 3 and 9, respectively, and are about to
access the same memory location denoted by the field x of
the object referenced by both p1 and p2 and at least one of
the accesses is a write. Such a racy state or the concurrent
breakpoint could be reached if foo and bar are executed in
parallel by different threads on the same Point object. The
concurrent breakpoint also specifies that if the racy state is
ever reached, then the thread reaching line number 3 must
execute its next instruction before the thread reaching line
number 9 executes its next instruction. This forces the pro-
gram to resolve the data race in a particular order.

A deadlock in a concurrent program can also be rep-
resented using a concurrent breakpoint. Consider the
code of Jigsaw in Figure 2]  When the http server
shuts down, it calls cleanup code that shuts down the
SocketClientFactory. The shutdown code holds a
lock on the factory at line 867, and in turn attempts to ac-
quire the lock on csList at line 872. On the other hand,
when a SocketClient is closing, it also calls into the
factory to update a global count. In this situation, the locks

org.w3c.jigsaw.http.socket.SocketClientFactory{
130: SocketClientState csList;

574: synchronized boolean decrIdleCount () {

}

618: boolean clientConnectionFinished(...) {
623: synchronized (csList) {
626: decrIdleCount () ;
}
}
867: synchronized void killClients(...) {
872: synchronized (csList) {

}

Figure 2: Deadlock in Jigsaw

are held in the opposite order: the lock on csList is
acquired first at line 623, and then on the factory at line
574. The concurrent breakpoint (626,872, t;.csList ==
to.csList Aty.this == ¢9.this) represents this deadlock
state. The deadlock state is reached if any two threads ¢;
and to reach the line numbers 626 and 872, respectively, the
csList variable of both ¢; and ¢, point to the same object,
and the this pointer refers to the same objects in both ¢;
and 5.

Atomicity has been shown as a widely applicable non-
interference property. A block of code in a concurrent pro-
gram can be specified as atomic. This means that for every
program execution where threads are arbitrarily interleaved,
there is an equivalent execution with the same overall behav-
ior where the atomic block of code is executed serially, that
18, the code block’s execution is not interleaved with actions
of other threads.

An atomicity violation can be represented using
a concurrent breakpoint. For example, consider
the code snippet in Figure from the Java class
java.lang.StringBuffer. In the append method,
sb.length () returns the length of sb and stores it in
the local variable 1en. A call to sb.setLength (0)
at this point by a second thread will make the length of
sb 0. This makes the value of len stale, i.e. 1en no
longer has the latest value of the length of sb. Therefore,
the call to sb.getChars (0, len,value, count)
in the append method by the first thread will throw an
exception. This is a classic atomicity violation of the
append method of StringBuffer. A concurrent
breakpoint, which would trigger this atomicity violation, is
(239,449,t;.sb == ty.this). The atomicity violation is
triggered if two threads ¢; and 5 reach the line numbers
449 and 239, respectively, the sb variable of ¢; and the




143: public synchronized int length(){...}
322: public synchronized void getChars(...){...}

437: public synchronized
StringBuffer append(StringBuffer sb) {

444 int len = sb.length();

449: sb.getChars (0, len, value, count);

}
239: public synchronized void setLength(...){
240:

}

Figure 3: Atomicity Violation in StringBuffer

Initially: o.x = 0;

void foo (XObject ol){ void bar (XObject o2){

1. synchronized(ol){ 10. 02.x = 1;

2 £1(); 11. synchronized(o2){
3 £2(); 12. £f6();

4 £3(); 13. }

5. f4(); 1

6. f£5();

7.}

8. 1f (o0l.x==0)

9 ERROR;

}

threadl executes foo (o) and
thread2 executes bar (o) concurrently

Figure 4: A program with a hard to reach concurrent break-
point (8,10,¢1.01 == t3.02)

this variable of to point to the same object, and the
thread reaching line 239 is executed before the other thread
from the state. This atomicity violation also results in an
exception if len > 0.

3 Triggering a Concurrent Break-
point

Given a concurrent breakpoint (¢1, {5, ¢), it is very unlikely
that two threads will reach statements labelled ¢; and /5,
respectively, at the same time in a concurrent execution,
even though each thread could reach the statements inde-
pendent of the other threads several times during the execu-
tion. Therefore, a concurrent breakpoint could be difficult
to hit during a normal concurrent execution unless we have
a mechanism to force an execution to the concurrent break-
point.

For example, consider the two-threaded program in Fig-
ure ] The program uses a shared memory location o . x
which is initialized to 0. The important statements in this

program are statements 8, 9, and 10. We add the other state-
ments in the program to ensure that statement 8 gets exe-
cuted after the execution of a large number of statements by
threadl and statement 10 gets executed by thread?2 at
the beginning.

Now consider the concurrent breakpoint (8, 10, ¢1.01 ==
t2.02). If we run the program, then the likelihood of reach-
ing a state where threadl is at line 8 and thread?2 is
at line 10 is very low. Therefore, the concurrent breakpoint
will hardly be hit by any program execution.

We next describe a mechanism that tries to force a pro-
gram execution to a concurrent breakpoint. We call this
mechanism BTRIGGER. We also provide a simplified prob-
abilistic argument to justify the effectiveness of BTRIGGER.
Recall that a concurrent breakpoint (¢1, {5, ¢) denotes a set
of program states and an action, where a state in the set sat-
isfies the following predicate:

dtq,to € Threads . (tl =+ tQ)/\(tl.pC = El)/\(tg.pc = gg)/\(b
The predicate can be rewritten as follows:
dt1,ty € Threads . (tl #* tg) A\ ¢t1 A\ qzﬁt2 A\ ¢t1t2

where ¢, only refers to local variables of thread ¢1, ¢, only
refers to local variables of thread ¢3, and ¢4, +, refers to local
variables of both ¢; and 5.

BTRIGGER works as follows. During the execution of a
program, whenever a thread reaches a state satisfying the
predicate ¢, where i € {1,2}, we postpone the execution
of the thread for 7" time units and keep the thread in a set
Postponed,, for the postponed period. We continue the ex-
ecution of the other threads. If another thread, say ¢, reaches
a state satisfying the predicate ¢;, where j € {1,2} then we
do the following. If there is a postponed thread, say t’, in
the set Postponed, where i # j and local states of the two
threads t and ¢’ satisfy the predicate ¢,+,, then we report
that the concurrent breakpoint has been reached. Otherwise,
we postpone the execution of the thread ¢ by 7" time units and
keep the thread in the set Postponed,; for the postponed pe-
riod. If the concurrent breakpoint is reached, we also order
the execution of threads ¢ and ¢’ according to the order given
by the concurrent breakpoint.

Note that we do not postpone the execution of a thread
indefinitely because this could result in a deadlock situation
if all threads reach either ¢; or ¢5 and none of the breakpoint
predicates are satisfied by any pair of postponed threads.

BTRIGGER ensures that if a thread reaches a state satis-
fying the concurrent breakpoint partly (i.e. reaches a state
satisfying the predicate ¢, or ¢,), it is paused for a reason-
able amount of time, giving a chance to other threads to catch
up and create a state that completely satisfies the concurrent
breakpoint. This simple mechanism increases the likelihood
of hitting a concurrent breakpoint.

We now describe a simplified probabilistic argument to
show the effectiveness of BTRIGGER. Consider a two



threaded program where each thread executes N steps and
the execution of one thread does not affect the execution
of the other thread, i.e. the two threads execute indepen-
dently. In these N steps, let us assume that a thread ¢ visits
a state satisfying ¢; M times uniformly at random and visits
a state satisfying the concurrent breakpoint m times, again
uniformly at random. Note that m < M. Then the prob-
ability that the two threads will reach a state satisfying the
concurrent breakpoint is
N—m C

1 — ™
Ne,

The above probability follows from the following facts.
Assume that thread ¢; has visited the m states satisfying the
concurrent breakpoint at time steps N1, No, . .., N,,, respec-
tively. The number of possible ways in which ¢5 could visit
m states, where each state satisfies the concurrent break-
point, within N steps is VC,,. Similarly, the number of
ways in which t5 could visit m states, where each state satis-
fies the concurrent breakpoint and is not visited at time steps
Ni,No,..., Ny, is mecrn-

The above probability is upper bounded by

m m
1-11- =
( Nm+1>

For m < N, this probability is approximately equal to (us-
ing the Binomial theorem)

m2

N—-m+1

In BTRIGGER, we pause a thread ¢ for 7" steps whenever it
reaches a state satisfying ¢;. Therefore, a thread now takes
N + MT time steps to complete its execution. Then the
probability that two threads ¢; and ¢5 will reach a state satis-
fying the concurrent breakpoint is greater than (using similar
reasoning as before)

N+MT7M7mTC
1_ m

N+1\/[T—Mcm

which is lower bounded by

mT
11— — ™
N+MT-M

For m < N, this probability is approximately equal to
m2T
N+MT-M

Therefore, BTRIGGER increases the probability of hitting
a concurrent breakpoint by a factor of at least
T(N-m+1)
N+ MT-M

abstract public class BTrigger {
private String name;

public BTrigger (String name) {
this .name = name;

}

abstract public
boolean predicateGlobal (BTrigger bt);

abstract public
boolean predicatelLocal ();

public
boolean triggerHere (boolean isFirstAction,
int timeoutInMS);

Figure 5: BTrigger API for Java

This factor increases if we increase 71" and decrease M which
is lower bounded by m. We can decrease M if we make the
concurrent breakpoint more precise, i.e. we make the con-
current breakpoint such that most states that satisfy ¢, A ¢y,
must also satisfy ¢¢,+,. We can increase 1" by making a
thread ¢ pause longer at a state satisfying ¢, but pausing a
thread longer increases the running time of the program. The
programmer can modify these two parameters (wait time 7’
and the precision of predicates) if she cannot hit a bug with a
concurrent breakpoint with high probability. The effects are
confirmed empirically in section [6]

4 A Concurrent Breakpoint Library

We have implemented BTRIGGER as a light-weight library
for Java and C/C++ programs. The breakpoints are inserted
as extra code in the program under test. The breakpoints can
be turned on or off like traditional assertions.

We next describe the design and implementation of a
concurrent breakpoint library for Java programs. The API
for C/C++ programs is similar to that of Java. While one
could specify a concurrent breakpoint using the notations
described above and then use a compiler to weave the nec-
essary code into a program, we provide a small library
which programmers could use directly in the program to
specify a concurrent library. Figure [5] shows the abstract
concurrent breakpoint class BTrigger and Figure [0] de-
scribes an implementation of the abstract class. The imple-
mentation allows one to specify a breakpoint of the form
(61, EQ, tl.Obj == tQ.Obj).

For example, Figure [7] shows the code in Figure [I] after
the insertion of the concurrent breakpoint (9, 3,¢;.p2 ==
to.p1). Note that the breakpoint is split into two statements
and inserted before line numbers 3 and 9, respectively. In
general, if we have a concurrent breakpoint (¢1,¢s, ¢:, A
¢ty N Gt,1,), We subclass BTrigger and encapsulate the
local states of the thread that are relevant to compute
&1, N Op, N G4, We also implement its abstract method



class ConflictTrigger extends BTrigger ({
private Object obj;

public ConflictTrigger (String name, Object obj) {
super (name) ;
this.obj = obj;

}

public
boolean predicateGlobal (BTrigger bt) {
if (name.equals (bt.name)) {
if ((bt instanceof ConflictTrigger)
&&obj==((ConflictTrigger)bt) .obj) {
System.err.println("Conflict");
return true;
}
}
return false;
}

public boolean predicateLocal() { }

Figure 6: Implementation of a concurrent breakpoint for
triggering data races

1:void foo (Point pl) {

2: .
(new ConflictTrigger ("triggerl"”,pl)).
triggerHere (false ,Global.TIMEOUT) ;
3: pl.x = 10;
4:
5:1}
6:
7:void bar (Point p2) {
8-

(new ConflictTrigger ("triggerl",p2)).
triggerHere (true,Global.TIMEOUT) ;
9: t = p2.x;
10: ...
11:}

Figure 7: Concurrent breakpoint to trigger the data race in
Fig. 1

class DeadlockTrigger extends BTrigger({
private Object lokl, 1lok2;

public DeadlockTrigger (String name,
Object 1lokl, Object 1ok2) {
super (name) ;
this.lokl = lokl;
this.lok2 = 1lok2;
}

public
boolean predicateGlobal (BTrigger bt) {
if (name.equals (bt.name)) {
if ((bt instanceof DeadlockTrigger)
&&lokl==((DeadlockTrigger)bt) .lok2
&&lok2==( (DeadlockTrigger)bt) .lokl) {
System.err.println ("Deadlock");
return true;
}
}
return false;
}

public boolean predicatelLocal() { }

Figure 8: Implementation of a concurrent breakpoint for

triggering deadlocks

predicateLocal so that it returns true if and only if ¢y,
(or ¢+, depending on the context) is satisfied. Similarly,
we implement the abstract method predicateGlobal so
that it returns true if and only if ¢, ,, is satisfied. The argu-
ment to the constructor of BTrigger uniquely identifies a
concurrent breakpoint. Two BTrigger instances with the
same name are considered to be part of the same concurrent
breakpoint. We create two instances of the subclass and call
their t riggerHere methods just before line numbers ¢,
and /o, respectively. The first argument of triggerHere
denotes the action: the first argument of the t riggerHere
at line number ¢ is set to true and the first argument of the
other triggerHere call is set to false. The second argu-
ment specifies the time for which a thread will pause if the
predicateLocal is satisfied. triggerHere returns
true if and only if the concurrent breakpoint is satisfied, i.e. if
both predicateLocal and predicateGlobal of the

instance on which triggerHere has been called returns
true.

Figure [§|shows the implementation of a concurrent break-
point to trigger a deadlock state. The class records the
lock objects 1ok1, the lock that the thread has already
acquired and lok2, the lock that the thread is about to
acquire. If for two instances, c1 and c2, of this class
cl.lokl==c2.10k2 && cl.lok2==c2.lokl, then
the concurrent breakpoint denotes a deadlock. Usage of this
class is shown in Figure 0] The concurrent breakpoint in-
serted in the figure triggers a deadlock in the Jigsaw web-
server.

5 Inserting Concurrent Breakpoints

In this section, we describe two methodologies for inserting
concurrent breakpoints in programs in order to make Heisen-
bugs reproducible. Heisenbugs happen due to one or more
conflicting operations among various threads in a concurrent
program. Two threads are said to be in a conflicting state if

e they are trying to access the same memory location and
at least one of them is a write, or

e they are trying to operate on the same synchronization
object, e.g. trying to acquire the same lock.

If the threads are trying to access the same memory location
and at least one of them is a write, then the conflict state de-
notes a classic data race. If the threads are trying to acquire
the same lock in a conflicting state, then the conflicting state




org.w3c.jigsaw.http.socket.SocketClientFactory{
130: SocketClientState csList;

574: synchronized boolean decrIdleCount () {

}

618: boolean clientConnectionFinished(...) {

623: synchronized (csList) {

(new DeadlockTrigger ("trigger2",cslList,
this)) .triggerHere (true,Global.

TIMEOUT) ;
626: decrIdleCount () ;
}
}
867: synchronized void killClients(...) {

(new DeadlockTrigger ("trigger2", this,
csList)) .triggerHere (false ,Global.
TIMEOUT) ;
872: synchronized (csList) {

}

Figure 9: Concurrent breakpoint to trigger deadlock in Jig-
saw

denotes a lock contention. Depending on how a conflict is
resolved, i.e. which thread is allowed to execute first from a
conflicting state, a concurrent program could end up in dif-
ferent states. Heisenbugs often arise due to such difference
in program states. Therefore, if one could guess the con-
flicts that lead to a Heisenbug and resolve those conflicts in
a way such that the Heisenbug could definitely be reached,
then she could attribute those conflicts to the Heisenbug. We
next describe two methodologies to guess such conflicting
states.

Methodology I. If a Heisenbug is present in a concurrent
program, concurrent breakpoints can be inserted in the pro-
gram with the aid of a testing tool as follows. First a testing
technique for concurrent programs, such as CalFuzzer [17]]
and CTrigger [32], can be used to find various kinds of
Heisenbugs, such as data races, deadlocks, and atomicity vi-
olations, in a concurrent program. These tools also provide
useful diagnostic information whenever they find a bug. For
example, if CalFuzzer finds a data race, it reports the shared
memory involved in the data race and the line numbers of the
program statements where the data race happened. A sample
report is shown below:

Data race detected between

access of x.f at sample/Testl.java:line 15, and
access of y.f at sample/Testl.java:line 20.

Once we have such a bug report, we can easily insert a
concurrent breakpoint in the program to force the bug. For

example, for the above sample report, we insert the program
statements

(new ConflictTrigger ("triggerl",x)) .triggerHere (
true ,Global.TIMEOUT) ;

and

(new ConflictTrigger ("triggerl",y)) .triggerHere (
false ,Global.TIMEOUT) ;

at lines 15 and 20 of sample/Test1. java, respectively.
This denotes the concurrent breakpoint (15,20, t;.x==
ts.y). The concurrent breakpoint makes the data race re-
producible and resolves the race in one particular way. Sim-
ilarly, we can insert concurrent breakpoints to make dead-
locks and atomicity violations reproducible using bug re-
ports produced by a testing tool. For example, a deadlock re-
port produced by CalFuzzer for the deadlock in Jigsaw (see

Figure[2) is

Deadlock found:

ThreadlO trying to acquire lock this while
holding lock csList at org/w3c/jigsaw/http/
socket/SocketClientFactory.java:line 623

Threadl5 trying to acquire lock csList while
holding lock this at org/w3c/jigsaw/http/
socket/SocketClientFactory. java:line 872

To make this deadlock reproducible, we insert the program
statements

(new DeadlockTrigger ("trigger2",csList, this)).
triggerHere (true,Global.TIMEOUT) ;

and

(new DeadlockTrigger ("trigger2", this ,csList)).
triggerHere (false ,Global.TIMEOUT) ;

at lines 623 and 872 of
org/w3c/jigsaw/http/socket
/SocketClientFactory. java, respectively.

In our experiments, we used this methodology to make
previously known bugs found by CalFuzzer reproducible.
Note that one can argue that there is no need to insert a con-
current breakpoint because the cause of the bug has already
been found and can be reproduced by the testing tool that
discovered the bug. This is true; however, these testing tools
often use heavy machinery and program instrumentation to
reproduce the bug. Concurrent breakpoints make reproduc-
tion of bugs light-weight; it does not require instrumentation
of the entire program or any sophisticated record-and-replay
mechanism.

Methodology II. Our second methodology requires more
manual effort than our first methodology. This methodology
is useful for Heisenbugs, such as missed notifications, that
cannot be detected easily using concurrency testing tech-
niques. If a concurrent program shows a Heisenbug rarely
during stress testing, we run an off-the-shelf data race de-
tector such as Eraser to find all potential conflicting states,
i.e. data races as well as lock contentions and contentions
over synchronization objects. Note that a data race detector



could trivially be modified to detect all potential lock con-
tentions and contentions over synchronization objects. Cal-
Fuzzer [17] has such an implementation. We go over the re-
ported list of potential conflict states and try to find if some
conflict states look suspicious and could be the cause for the
Heisenbug. We insert concurrent breakpoints correspond-
ing to those conflict states one-by-one. For each concurrent
breakpoint, we also try both actions and see if the Heisen-
bug manifests more frequently during repeated executions.
If for a concurrent breakpoint the Heisenbug starts manifest-
ing more frequently, we try either to increase the pause time
or to improve the precision of the breakpoint so that the fre-
quency of the Heisenbug increases. Note that our probabilis-
tic analysis in the previous section suggests that increasing
the pause time or improving the precision of the concurrent
breakpoint should increase the probability of hitting a con-
current breakpoint. For example, we increase the pause time
in BTRIGGER from 100 milliseconds to 1 second or 10 sec-
onds and see if the Heisenbug becomes more frequent. We
also try to make the concurrent breakpoint more precise by
adding more context under which the concurrent breakpoint
should reach. For example, we could say that the concurrent
breakpoint could only be true if some particular statement
has been executed more than 7200 times. We repeat this
process with other conflict states that look suspicious until
we reach a stage where the Heisenbug becomes frequent,
i.e. happens on almost every execution.

We next describe this methodology on a missed notifica-
tion bug in log4j 1.2.13, a logging library in Java.

1. First, we observed that in 5 out of 100 test executions,
the program would stall.

2. After running a conflict detector, we got the following
lock contentions:

Lock contention:
org/apache/log4j/AsyncAppender. java:line 100,
org/apache/log4j/AsyncAppender.java:line 309

Lock contention:
org/apache/log4j/AsyncAppender.java:line 236,
org/apache/log4j/AsyncAppender. java:line 309

Lock contention:
org/apache/log4j/AsyncAppender.java:line 100,
org/apache/log4j/AsyncAppender. java:line 236

Lock contention:
org/apache/log4j/AsyncAppender. java:line 277,
org/apache/log4j/AsyncAppender.java:line 309

Line 100 is in the append function that has a wait
and not1ify within the synchronized block. Line 236
is in the setBufferSize function. Line 277 is in
the close function with a notify in the synchro-
nized block. Line 309 is inside the run function of
the Dispatcher thread, with a wait and notify in the
synchronized block.

3. For each of the conflicts, we added concurrent break-
points before the lock acquisitions. We resolved the
contention in both ways, i.e. the left lock (in the first

column of the table below) acquisition is allowed be-
fore the right lock acquisition and vice-versa. The re-
sults of this experiment are summarized in the follow-

ing table.

| Conflict resolve order [ System stall (%) [ BP hit (%) ‘
100 — 309 0 100
309 — 100 0 100
236 — 309 100 100
309 — 236 0 100
100 — 236 0 100
236 — 100 0 100
309 — 277 97 3
277 — 309 99 1

4. From the table in step 3, we can infer the following.

(a) From the second pair, we inferred that when the
lock at line 236 is acquired before line 309, the
concurrent breakpoint was always triggered and
resulted in a system stall. If the locks are acquired
in the opposite order, the system did not stall.

(b) From the fourth pair, we can see that adding the
breakpoint resulted in much more frequent system
stalls; however, the concurrent breakpoint was not
reached in most of the executions. Therefore, we
can conclude that the system stall happens be-
cause of a different set of conflicts.

(c) Note that when we added concurrent breakpoints
for the first and third pair of statements, the sys-
tem did not stall irrespective of the order in which
we resolved the lock conflicts.

5. Based on the above observations, we can insert a break-
point at the second pair of statements and make the stall
bug reproducible.

6 Evaluation

We have applied BTRIGGER to 15 Java benchmark pro-
grams and libraries and three C/C++ programs. The Java
programs and libraries had previously known bugs such as
data races, atomicity violations, deadlocks, stalls, and ex-
ceptions. We used bugs reports produced by CalFuzzer [17]]
to insert concurrent breakpoints in these programs using
methodology I from section [5] except for three bugs. The
three bugs—stalls in jigsaw, lucene, and log4j due to missed
notifications—were reported in bug databases and the break-
points were added using methodology II. We added a total
of 31 breakpoints to 15 Java programs with over 850K to-
tal lines of code. After the insertion of suitable concurrent
breakpoints, i.e. breakpoints that make a Heisenbug almost
reproducible, we ran each program with the breakpoints 100
times to measure the empirical probability of hitting the
breakpoint. We performed the experiments on a dual socket
quad-core Intel Xeon 2GHz Linux server with 8GB of RAM.



We used the following benchmarks for our evaluation:
cachedj, a fast thread-safe implementation for caching
Java objects; hedc, a web-crawler from ETH; three compu-
tationally intensive multi-threaded applications: moldyn,
montecarlo, and raytracer from the Java Grande Fo-
rum [16]; and Jigsaw, W3C’s leading-edge Web server
platform. For Jigsaw, we used a test harness that simulates
multiple clients making simultaneous web page requests and
sending administrative commands to control the server.

We also evaluated our tool on the following libraries
with known bugs: java.lang.StringBuffer,
jJava.util.Collections$SynchronizedList
backed by an Arraylist, and
Collections$SynchronizedMap backed by a
LinkedHashMap, Jjava.util.logging, which
provides core logging facilities, javax.swing, which
provides portable GUI components, 1og4j, an elaborate
logging library, lucene, an indexing and searching library,
and pool, an object pooling API.

We applied BTRIGGER for C/C++ on pbzip2, a parallel
compression tool, Apache httpd 2.0.45 web server, and vari-
ous versions of MySQL servers. The details of the bugs were
retrieved from related papers [23} 45] and from the actual
bug reports in the bug databases. Based on this knowledge,
the breakpoints were added manually at the conflict states
such that each bug is repeatedly reproducible.

6.1 Results

Table [I| summarizes the results for our experiments on Java
programs. For each benchmark, we report the lines of code.
We report the normal runtime (in seconds) of each bench-
mark in the third column. The fourth column reports the run-
time of each benchmark with concurrent breakpoints added.
The fifth column reports the overhead (in percentage) of run-
ning each benchmark with concurrent breakpoints. The sixth
column reports the type of bug for which we added the con-
current breakpoints, with numbers to distinguish between
different bugs. The seventh column describes the error pro-
duced due to the bug. The eighth column gives the empiri-
cal probability of triggering the breakpoints and causing the
bug, which is the fraction of executions that hit the bug over
100 executions. The ninth column states any additional pa-
rameters or conditions that were used to make the concurrent
breakpoints more precise.

For most of the benchmarks, the overhead of running the
program with the concurrent breakpoint library was within
40% of the normal runtime. However, in some cases where
we increased the waiting time to achieve a higher probability
of hitting the breakpoint, the overhead became as large as
13x. We will discuss this issue in section[6.2]

For Jigsaw, we cannot accurately measure the running
time due to its interactiveness as a server and we do not re-
port it. In cases when the system stalled, we report the time
that we first detected the stall, e.g. when the deadlock con-

ditions have been met. Stalls due to missed notifications are
detected by large timeouts; therefore, the runtime and over-
head for such errors are omitted.

In some cases, the overhead is negative. hedc is a web
crawler whose running times can fluctuate with the net-
work status and cause inaccuracies. For some of the smaller
benchmarks such as synchronizedMap, the overhead is
negligible and within the margin of error.

Table [2] summarizes the results for our experiments on
C/C++ programs. We report the size of the program in
lines of code and the type of error that is reproduced us-
ing BTRIGGER. Since the programs we experimented on are
continuously running servers (except pbzip2), the runtime of
the program and probability of reproducing the bug is mean-
ingless because all the bugs are eventually reproduced given
enough client requests. Instead, we report the mean-time-
to-error (MTTE) in column 4, to show the effectiveness of
BTRIGGER in reproducing bugs quickly. Column 5 denotes
the number of concurrent breakpoints that were required to
consistently reproduce the error.

The results show that each bug can be reproduced very
quickly. For the programs that crashed due to the bug, the
MTTE corresponds to the mean time to the next crash after
re-execution. For non-crashing bugs, the MTTE is calcu-
lated by counting the visible artifacts of the bug during the
span of its execution. All the bugs are reproduced within a
few seconds, showing the effectiveness of using concurrent
breakpoints for reproducing complex bugs.

6.2 Increasing the Pause Time of Breakpoints

Most of the bugs in Java programs were triggered with prob-
ability close to 1.0, when we added a concurrent breakpoint.
However, some bugs were triggered with lower probability,
as low as 0.63. For such bugs, we increased the pause time of
the breakpoints. For example, in racel for hedc, the break-
point was triggered with probability 0.87 when the pause
time was 100 milliseconds. When we increased the pause
time to 1 second, the breakpoint triggered with probability
1.0. Similarly for Swing, the deadlock occurred with prob-
ability 0.63 when the pause time was 100 milliseconds and
the probability increased to 0.99 when the pause time was
increased to 1 second. In both of these cases, the probability
was increased by lengthening the pause time at the break-
points, but the runtime overhead increased as well.

6.3 Improving the Precision of Breakpoints

In benchmarks where breakpoints increased the execution
time significantly, we found that refining the local predicates
was useful to prevent unnecessary waiting. In cache4 j, the
test harness generates a fixed number of objects during ini-
tialization. The constructor of CacheObject is involved
in an atomicity violation, but with a weak local predicate
(based on the program counter and lock object), the break-



Runtime (seconds)
Benchmark LoC |Normal | w/ ctr | Overhead (%) | Breakpoint type/no.| Error |Prob. | Comments
2.089 4.9 racel 1.00
. 2.116 6.2 race2 0.99
cachedj 3897199205 101 5.5 race3 1.00
2.051 3.0 atomicity 1 1.00 |ignoreFirst=7200
2.042 14.7 racel 0.87 | wait=100ms
hedc 29.947| 1.780| 3.835 1154 racel 1.00 | wait=1000ms
1.659 -6.8 race2 0.96 | wait=1000ms
deadlock1 stall 1.00
deadlock2 stall 1.00
jigsaw 160K - - -| missed-notifyl stall 1.00 | Meth. II
racel stall 1.00
race2 1.00
. 0.190| 0.208 9 deadlock1 stall 1.00
logdj 1.2.13 32095 5133 . [ missed-notifyl stall | 1.00|Meth. 1T
logging 4250 0.140| 0.140 0 deadlock1 stall 1.00
lucene 171K| 0.136| 0.159 17 deadlock]1 stall 1.00
1.204 9.7 racel 1.00 | bound=4
moldyn 12901 10981 305 18.6 race2 1.00 | bound=10
montecarlo 3560 1.841| 2.162 17.4 racel 1.00 | bound=10
pool 11,025| 0.131 - -| missed-notifyl stall 1.00 | Meth. II
1.274 16.1 racel test fail | 1.00
1.196 9.0 race2 test fail | 1.00
raytracer 1860 10971360 24.0 race3 1.00
1.428 30.2 raced 1.00
stringbuffer 1320 0.131] 0.159 21 atomicity 1 exception| 1.00
. 5.597 521 deadlock]1 stall 0.63 | wait=100ms
swing 422K 1090215 03 1230|  deadlockl stall | 0.99 | wait=1000ms
. . 0.134| 0.142 6 atomicityl exception| 1.00
synchronizedList | 7913 | —5-3—5 735 2| deadlockl stall | 1.00
. 0.132| 0.173 31 atomicity1 1.00
synchronizedMap | 8626 —5331—5737 2 deadlockl stall | 1.00
. 0.132| 0.183 39 atomicity 1 exception| 1.00
synchronizedSet | 8626 | —5=51— 732 2| deadlockl stall | 1.00

Table 1: Experimental results for Java programs

point will wait too many times causing a large execution
overhead. In this case, we observed that the breakpoint was
triggered after some fixed large number of timeouts for the
breakpoint in the constructor. Therefore, we ignored the first
n timeouts by adding the predicate this Breakpoint Hit >
n (where n = 7200 in our case) to the local predicate in the
constructor of CacheOb ject. This helped us to reduce the
execution time by removing the unnecessary waits.

Another cause for increased execution time was that some
breakpoints were triggered many times in an execution. For
example, in moldyn the breakpoint that causes a data race
was observed hundreds of times within a single execution.
We added a bound to the local predicate, i.e. triggers <
bound, and increased triggers whenever the race break-
point was triggered. This decreased the execution time to
a reasonable level as reported in the table.
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Refining the local predicate for deadlocks also helped
in cases where the deadlock depended on the context of
the breakpoint. For example, in Swing, the method
addDirtyRegionO () of class RepaintManager is
called within many contexts, but the deadlock occurs only if
the corresponding BasicCaret lock is held. We increased
the pause time of the breakpoint in addDirtyRegionO ()
to get higher probability, but this caused the overall run-
time to increase significantly because the thread was paus-
ing at the breakpoint even when a lock on BasicCaret
was not held and the deadlock could not possibly hap-
pen. Therefore, to eliminate this unnecessary overhead,
we added the predicate isLockTypeH eld(type), where
type=BasicCaret, to the local predicate of the break-
point in addDirtyRegionO (). The refinement de-
creased the execution time significantly, without sacrificing



Benchmark LoC Error MTTE! (sec) |[#CBR? | Comments
pbzip2 0.9.4 2.0K | program crash 1.2 2 null pointer dereference
log corruption 0.14 1 (Bug #25520)
Apache httpd 2.0.45270K server crash 0.33 3 buffer overflow
MySQL 4.0.12 526K | log omission 0.12 2 (Bug #791)
MySQL 3.23.56 468K | log disorder 0.065 1 (Bug #169)
MySQL 4.0.19 539K | server crash 2.67 3 null pointer dereference (Bug #3596)

Table 2: Experimental results for C/C++ programs (! Mean Time To Error. 2 No. of concurrent breakpoints required.)

the probability of hitting the deadlock.

7 Related Work

Record and replay systems [21, 29, 36, [7, 134 26] have
been used to reproduce non-deterministic bugs and enable
cyclic debugging. However, most record and replay sys-
tems require instrumentation of the program source or bi-
nary and other heavy-weight techniques incurring high over-
head. BTRIGGER, on the other hand, is a light-weight tech-
nique for bug reproducibility requiring small manual pro-
grammatic additions instead of instrumentation of the en-
tire program. ODR [2] and PRES [33] reduce overhead by
recording only partial execution information, but require a
potentially expensive offline search for reproducing execu-
tions.

There is a large body of work [38] I8, 19, 42| 37, |6, [1,
4, [11} 25} 10] on finding concurrency bugs, using static
and dynamic analyses. Random testing has also been pro-
posed to find real bugs in concurrent programs. Active test-
ing [39,18L117]] uses a biased random model checker to guide
the scheduler towards buggy states. ConTest [30] adds ran-
dom noise to the scheduler to increase the probability of hit-
ting concurrent bugs. PCT [5]] uses a randomized scheduler
to probabilistically guarantee finding concurrency bugs of a
certain depth. Although these tools are largely successful in
finding bugs, it is sometimes hard to convey to the devel-
oper the information required to deterministically reproduce
bugs. Using BTRIGGER, we can specify the relevant parts of
the schedule required to reproduce the bug in a light-weight
programmatic manner that does not require the developer to
download and run any tools.

IMUnit [[15] proposes a novel language to specify and ex-
ecute schedules for multithreaded tests. The proposed lan-
guage is based on temporal logic and testing requires in-
strumentation of code. IMUnit is less intrusive as it does
not require to modify code. BTRIGGER can be also seen
as a mechanism to constrain thread schedules; however, we
do not introduce a new language to write concurrent break-
points and our approach requires no code instrumentation,
but it requires manual breakpoint insertion.

Model checking is a promising technique to find concur-
rency bugs in programs before they manifest in the wild;
however, the cause of the bug can be difficult to pinpoint
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in an error trace returned by a model checker. A number
of researchers have tried to minimize an error trace and ex-
tract useful counterexamples when a bug is found [3}[14}[13]].
Statistical sampling techniques can find bugs in the sequen-
tial setting [22]], and extensions have been proposed to dis-
cover concurrency bugs [41]]. Program slicing [43| 46] is
a popular debugging approach that determines which parts
of a program are relevant to a particular statement (e.g. a
bug). Precise slicing for concurrent programs is undecidable
in general but a number of work have investigated efficient
approximate approaches for debugging [19} 127, [12].

8 Discussion

Traditionally, programmers have used various ad-hoc tricks,
such as inserting sleep statements and spawning a huge num-
ber of threads, to make a Heisenbug reproducible. These
tricks are often found in various bug reports that are filed
in open bug databases. We proposed a more scientific and
programmatic technique to make a Heisenbug reproducible.
We described how one can use concurrent breakpoints to
reproduce Heisenbugs in concurrent programs. We empir-
ically showed that concurrent breakpoints could be used to
make Heisenbugs in real-world programs almost always re-
producible in a light-weight and programmatic way. We be-
lieve that concurrent breakpoints could also be used in other
novel ways.

For example, concurrent breakpoints could be used to
constrain the thread scheduler of a concurrent program. This
is because a concurrent breakpoint can denote a conflict
state, i.e. a program state where an execution can make a
non-deterministic choice, and specify a particular resolution
of the conflict state. Therefore, if we can denote all possible
conflict states in a program using concurrent breakpoints and
specify their resolutions, we can force the program to take a
unique thread schedule. Therefore, concurrent breakpoints
could be used to write concurrent units tests that exercise
a specific thread schedule. In general, one could use a few
concurrent breakpoints to limit the number of allowed thread
schedules.
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