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Abstract

Data-Parallel Language for Correct and Efficient Sparse Matrix Codes

by

Gilad Arnold

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bodík, Chair

Sparse matrix formats encode very large numerical matrices with relatively few nonzeros.
They are typically implemented using imperative languages, with emphasis on low-level
optimization. Such implementations are far removed from the conceptual organization of the
sparse format, which obscures the representation invariants. They are further specialized by
hand for particular applications, machines and workloads. Consequently, they are difficult
to write, maintain, and verify.

In this dissertation we present LL, a small functional language suitable for implement-
ing operations on sparse matrices. LL supports nested list and pair types, which naturally
represent compressed matrices. It provides a few built-in operators and has a unique com-
positional dataflow model. As a result, LL programs are often direct analogs of high-level
dataflow diagrams. This correspondence is useful when implementing sparse format con-
struction and algebraic kernels such as sparse matrix-vector multiplication (SpMV). Despite
its limited expressiveness, LL can specify interesting operations on real-world sparse formats.

Next, we present a full functional verifier for sparse codes written in LL. We use a higher-
order logic theorem prover, deploying standard simplification and introduction techniques.
We use novel parametric predicates for tracking relationships between mathematical objects
and their concrete representation. A simple heuristic tactic is used for automating proofs
of different sparse formats. A qualitative analysis shows that our rule base exhibits good
reusability and that the system easily extends to hierarchical formats.

Finally, we describe a compiler for LL programs that generates efficient, parallel C code.
We systematically map high-level nested datatypes onto compact and efficient low-level
types. This facilitates a straightforward, syntax-directed translation of code. Local optimiza-
tions improve the performance of nested loops and eliminate redundant memory accesses. A
coarse-grained heuristic loop parallelization scheme produces data-parallel code for execu-
tion on shared-memory multicore machines. Empirical evaluation shows that the sequential
throughput of generated SpMV code is within 0.94–1.09 of a handwritten implementation.
Parallel execution is 1.82–1.98 faster on two cores and 2.44–3.59 faster on four cores.
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The solutions all are simple—after you have arrived at them. But they’re simple
only when you know already what they are.
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Chapter 1

Introduction

1.1 Overview

Sparse matrix formats encode very large numerical matrices with a low nonzero density in
a way that makes them usable in later calculations. Computations with sparse matrices are
at the core of many applications in science and engineering. Due to an inherent emphasis on
efficiency and the way in which programming languages and computer systems have evolved,
sparse codes have been developed using low-level programming languages such as Fortran
and C. A number of techniques were developed for improving the throughput of sparse
matrix kernels [34, 33]. This trend, together with an increasing number of base formats
and an increasingly diverse set of target architectures and machine configurations, makes
the implementation of new formats, as well as modification of existing ones, dauntingly
complex.

This dissertation addresses the problem of writing correct and efficient sparse matrix
programs. We introduce LL, a small functional language that is suitable for implementing
operations on matrices, naturally and succinctly. We show how sparse codes written in LL
can be fully and automatically verified, thanks to LL’s limited expressive power and purely
functional semantics. We present a compiler for LL program, which generates low-level code
that is competitive with handwritten C programs and scales well when executed in parallel
on multicore machines.

1.2 Challenges with sparse matrix implementation

Implementing efficient operations on sparse matrices (a.k.a., kernels) that are tuned for par-
ticular machines and workloads is a complex task. Even elementary compression schemes—
such as the compressed sparse rows (CSR), jagged diagonals (JAD) and coordinate (COO)
formats described in Section 2.4—are based on intricate representation invariants. Simple
operations such as sparse matrix-vector multiplication (SpMV) require nested looping and
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indirect dereferencing of arrays. This work proposes a new programming paradigm for sparse
matrix kernels, which mitigates the implementation burden. It is our hope that more com-
plex kernels—such as recent communication-avoiding iterative solvers [25, 45] that amount to
hundreds of lines of C code—can be implemented naturally and succinctly via this approach.

The emergence of dedicated libraries of automatically tunable sparse matrix implemen-
tations [59, 60] has tremendously improved the availability of kernels to the end-user. At
the same time, it delegated the development effort to seasoned experts, further imposing an
artificial distinction between two kinds of experts: on the one hand, domain experts experi-
ment with ideas pertaining to a particular application, and use powerful dynamic languages
such as Python in creating unrefined prototypes. On the other hand, programming experts
implement solid, carefully tuned codes with emphasis on reliability and performance, which
dictates a choice of low-level, “bare bone” language such as Fortran or C. Our work aims to
unify these seemingly contradicting trends by providing a clear mapping from high-level pro-
grams to low-level code with good performance characteristics. It also addresses parallelism,
which adds another degree of complexity to traditional sparse matrix implementations [36].

While formal correctness used to get little attention by the scientific computing com-
munity, more work has been done in recent years on generating correct-by-construction
sparse codes. This is in large part associated with the emergence of synthesis frame-
works for sparse matrices—such as the sparse restructuring compiler by Bik et al. [6, 7]
and Bernoulli [39, 38]—whose transformational approach is guaranteed to be semantics pre-
serving (at least semi-formally). More recently, inductive synthesis approaches—such as the
Sketch synthesizer [55, 54]—have relied on combinatorial decision procedures for fully veri-
fying candidate programs. We observe that a tractable prover for sparse matrix programs is
a prerequisite for building a rigorous synthesis framework for this domain: in the inductive
case, it may allow one to scale beyond the capacity of combinatorial verifiers like SAT; in the
deductive (i.e., transformational) case, a formal domain theory is a necessary foundation for
discharging proof obligations during the synthesis process.1 This work presents new results
in automated formal verification of sparse matrix programs, building on the aforementioned
high-level programming model.

The goal of this research is to increase the productivity of programmers of sparse matrix
formats, allowing them to write concise, correct and efficient sparse matrix codes with ease.
We wish to show that a carefully designed high-level language is suitable for achieving this
goal.

1For an example of such framework designed for simpler domains, such as synthesizing divide-and-conquer
algorithms, see [53]. The Denali superoptimizer [37] uses a first-order theorem prover [26] in an analogous
fashion.
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1.3 LL: language, verifier, compiler

In this thesis we present LL, a small functional language for implementing sparse matrix
formats. Sparse matrix programs written in LL can be verified for full functional correctness
using an automated prover. They can be compiled into parallel low-level C code, which is
further compiled and executed efficiently on modern multicore architectures.

1.3.1 Implementing sparse formats using LL

We was designed to be powerful enough for describing interesting operations on a variety of
known sparse formats, naturally and succinctly. The implementation of operations on sparse
matrices in LL is distinguishable from a low-level, imperative implementation in several ways.

High-level datatypes and operators. LL has built-in pair and list types. We use lists
for representing vectors, and nested lists for matrices. For sparse matrices, we use a
combination of nested lists and pairs. For example, the compressed sparse rows (CSR)
format is a list of compressed matrix rows, each of which is a list of pairs of column
indexes and floating point values corresponding to nonzeros in the represented dense
matrix. The following is an LL representation of a small CSR matrix with four rows,
three of which are nonempty and contain a total of five values (denoted by letters) at
different column offsets:

[
[ (0, a) ]

[ (0, b) (1, c) ]
[ ]

[ (1, d) (3, e) ]
]

The tools for manipulating lists include maps, filters and reductions. The latter include
only a small set of associative and commutative operations on sets, such as summation
(arithmetic) and conjunction (Boolean). General reduction and recursion cannot be
expressed in LL, which is key to enabling automated verification. We show, however,
that the few supported operators are sufficient for expressing useful operations on a
wide variety of formats. For example, the multiplication of a CSR matrix by a dense
vector involves two maps—one traversing each compressed row, another for multiplying
each nonzero value in a row with the vector elements that corresponds to its column
position—and a summation of the products in each row.

Syntax-oriented dataflow model. The implementation of sparse matrix operations in
LL closely resembles their high-level dataflow view. This simplifies mapping from a
high-level diagram of a desired operation to a program that performs it. For example,
the multiplication of a CSR matrix such as the above can be naturally described using
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[
[ (0, a) ]
[ (0, b) (1, c) ]
[ ]
[ (1, d) (3, e) ]

]

map

[ (0, b) (1, c) ]

map

(0, b)

snd

fst

0

b

idx

q

[
q r s t

]

fmul

bq

[ bq cr ]

fsum

bq + cr

[
aq

bq + cr

0

dr + et
]

Figure 1.1: Dataflow view of high-level CSR SpMV

the high-level diagram in Figure 1.1. The functions fst and snd extract, respectively,
the first and second components from a pair; fmul multiplies a pair of floating point
values; and fsum adds a sequence of floats. It maps directly to the following LL code:

A -> [[(snd, (x, fst) -> idx) -> fmul] -> fsum]

The LL language is presented in Chapter 2, where we show how operations on complex
sparse formats can be expressed easily and effectively.

1.3.2 Verifying high-level sparse matrix codes

We developed a framework for full functional verification of sparse matrix formats written
in LL using a higher-order logic proof assistant, Isabelle/HOL [47]. We embed LL programs
into Isabelle’s typed lambda calculus, which allows us to leverage HOL’s rich library of
theories and tactics in proving their correctness. For the example CSR format, we take
two LL functions—csr and csrmv—that implement, respectively, the construction of a CSR
representation from a dense representation and multiplication of a CSR matrix by a dense
vector; we then pose the following verification goal: “for all matrices A and vectors x,
csrmv(csr(A), x) implements the dense multiplication Ax.” Our framework is based on the
following foundations:

Parametric representation relations. We use parametric predicates for tracking how a
function (e.g., csrmv(csr(A), x)) represents a mathematical object (e.g., Ax) through
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the deductive steps of the proof. These predicates can (i) express nested representa-
tion relations conveniently and concisely; and (ii) encapsulate intricate representation
invariants, separate from the proof rules which use them. For example, ilist speci-
fies a dense vector representation and alist a compressed vector representation using
index-value pairs. We can then assert a CSR representation of some matrix as an “ilist

representation, the elements of which are an alist representation whose elements are
represented by equality (i.e., scalars).” Each predicate encodes a set of integrity con-
straints, such as ensuring that the length of data structures matches the dimensions
of represented vectors and that all nonzero values are represented exactly once in a
compressed vector representation.

Proof by simplification and introduction. In our sparse matrix domain theory, simpli-
fication rules are used for rewriting subterms in proof goals into a simpler form. For
example, we simplify two consecutive maps, map f -> map g into a single map with
a composite inner functions, map (f -> g). However, simplification alone cannot en-
compass the full variety of compound functions. We therefore complement it with
introduction rules, which break a given goal into a set of smaller subgoals. For exam-
ple, we substitute a goal of the form “map f applied to A yields Ax” by “for all i, f(Ai)
yields the i-th element of Ax.”

Specifically, the use of parametric predicates for capturing nested representation relations
is the main novelty of our solution. We use automated tactics in discharging proof goals for
even the most complex formats described in Chapter 2. The verification framework itself is
presented in Chapter 3, where we evaluate its effectiveness and extensibility.

1.3.3 Compiling LL programs

We developed a compiler that translates high-level sparse matrix functions written in LL into
efficient data-parallel C code. While we share common goals and techniques with previous
efforts in this area—most notably, the NESL project [13, 12, 21]—we diverge from the
preexisting paradigm in several ways:

Simple translation model. We present a systematic approach for mapping high-level LL
types, such as compound objects with nested lists and pairs, into compact, reusable
and efficient C types. This allows us to do most of the compilation work in a syntax-
directed fashion, making our code generator straightforward while still producing C
code with very low constant overhead.

Sequential optimization. We place great emphasis on eliminating unnecessary memory
accesses along sequential execution paths and facilitating low-level loop optimizations.
The techniques used include exploiting rich type information such as constant lengths of
nested lists, fusion of reduction operators into preceding loops, and flattening of nested
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list indexing. Our benchmarks indicate that the throughput of LL-generated sequential
SpMV kernels is within 0.94–1.09 of that of a handcrafted reference implementation.

Coarse-grained parallelism. Unlike NESL, we refrain from vectorizing programs and opt
for simpler, heuristics-guided loop parallelization. This approach appears to be well-
suited for shared memory architectures such as multicore. Our benchmarks indicate
that the speedup due to parallel execution on two cores is within 1.82–1.98 of the
sequential case, and it is within 2.44–3.59 when executed on four cores.2

The LL compiler is presented in Chapter 4, along with benchmarks evaluating the effec-
tiveness of generated sparse matrix kernels.

1.4 Related work

1.4.1 Implementing sparse matrix formats

The problem of generating sparse matrix codes has been addressed is several lines of work.
Bik and Wijshoff [6, 7, 4, 5] pioneered research in synthesis of sparse matrix programs from
dense specifications. Their compiler replaced dense access patterns such as A[i][j] with
a representation function that maps to the corresponding value in a sparse representation.
It then applied restructuring code transformations—such as iteration space reordering—to
coalesce the code with a compressed hyperplane storage (CHS) format, which generalizes a
number of simpler formats including CSR and CSC (see Section 2.4). The compiler supported
a small set of simple built-in formats and could not extend to new and more complex ones.

The Bernoulli project [39, 38, 43, 1] is a system for synthesizing efficient low-level im-
plementations of matrix operations given a description of the sparse format using relational
algebra [56]. This permits rapid development of fast low level implementations, but requires
understanding of the underlying theory, which limited it impact.

Siek et al. have developed a C++ library [52, 41] that provides a convenient abstraction
for sparse matrix operations via generic programming. Using this library, and thanks to
feature languages such as operator overloading and template instantiation, programmers
can use idioms such as y += A * x in their code, where A is a sparse matrix and x and y

vectors, which contain numerical values of some parametric type. Their implementation is
part of the Boost C++ library and relies on generic graph algorithms for performing matrix
reordering optimizations [42].

The Sparse Polyhedral Framework (SPF) [40] enables sophisticated iteration space and
data access reordering. It is based on automatic generation of inspector/executor code during
program compilation, which can then adjust the order of data access based on the input to the

2These speedups were observed after scaling down the native CPU frequency, to reduce the saturation of
memory bandwidth.
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program at runtime. These adjustments may increase data locality and, therefore, improve
performance.

In LL, programmers express operations on sparse matrices directly, using a high-level
functional programming language. The framework does not perform automatic transforma-
tions other than local sequential optimizations and parallelization of loops. The dataflow
structure of the code generated by the LL compiler closely resembles that of the high-level
program. This gives the user a clear and straightforward execution model for LL programs.

1.4.2 Language design

The design of LL was inspired by several predecessor languages. Compared to other func-
tional languages, LL is pure, strongly typed, and has call-by-value semantics. Like SETL [51],
APL [35] and Python, it has built-in support for operations on lists (vectors). Like FP/FL [2,
3], it constitutes a unique function-level programming methodology, also known as a point-
free style [8, 31]. As in NESL [11, 12], programs are implicitly parallel and parallelized
automatically. The programming methodology entailed by LL’s dataflow model is reminis-
cent of visual programming environments such as LabVIEW, Max/MSP and others. That
said, LL provides no visual interface per se, and can be used as any other text-based language.

1.4.3 Implicit data parallelism

The NESL line of work [13, 9, 9, 10, 12] pioneered the field of implicit data-parallel languages
in the early 90’s, demonstrating how complex algorithms on nested data structures can be
expressed at a high-level of abstraction. Programs were then compiled to fully exploit the
parallelism available on massively parallel vector machines of the era. We find many of the
ideas embodied by NESL—such as the use of high-level constructs to express implicit parallel
operations, and the flattening of nested data strucutres—to be extremely useful for high-level
implementation of sparse kernels. However, our approach to parallel code generation diverges
from that of NESL, and appears to work better on modern day multicore architectures. An
in-depth analysis of the NESL parallelization model can be found in Section 4.2.2.

Data Parallel Haskell [18] is an effort to embed and augments the techniques introduced
by NESL in a modern functional language. It requires language extensions—including ex-
tensions to the type system of both the source language [17, 16] and the intermediate rep-
resentation [58]—in order to support vectorization. DPH is implemented as an extension to
the widely used Glasgow Haskell Compiler. However, its development appears have stalled
and it is not clear how applicable it is to the domain of sparse matrix formats.

The Intel Array Building Block (ArBB), formerly known as Ct [29, 30], is a C++ ex-
tension that provides an abstraction for parallel operations on segmented vectors. It is
implemented as a template library and uses a standard C++ compiler for generating calls to
a library of data parallel primitives. ArBB differs from LL (and other NESL-like languages)
in the level of abstraction it provides to programmers: it does not support operations on
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arbitrarily nested vectors, and it is up to the programmer to map nested list structures onto
flat or segmented arrays. Hence, ArBB may serve as an intermediate representation for
higher-level languages, including LL.

Copperhead [15] is a recent effort to embed a data-parallel code specializer in Python. The
Copperhead compiler uses program annotations to identify parts of a Python program that
can be compiled in a just-in-time fashion. It generates C++ code that is then executed by the
Python runtime. Copperhead is currently targeting emerging GPGPU environments such as
Nvidia’s CUDA. While Copperhead can be used for implementing sparse matrix formats, it
is a general purpose parallel language and not specifically designed for that purpose. Present
limitations of the Copperhead language and compiler prevent it from achieving performance
results that are comparable to hand-tuned low-level code (see Section 4.9).

1.4.4 Automated verification

We are not aware of previous work in which sparse matrix programs were successfully formally
verified, let alone an automated full functional verification. General principles underlying
our solution—in particular, the use of parametric representation relations—appear central to
harnessing the power of higher-order verification for proofs on nested data representations.
In one case, Duan et al. [27] verified a set of block ciphers using the interactive theorem
prover HOL-4. They proved that the decoding of an encoded text results in the original
data, relying heavily on inversion rules of the form f (f−1 x) = x. This approach does not
seem applicable to the significantly more complex domain of sparse matrix programs.

1.5 Conclusion

This thesis shows how productivity of programmers in a particular domain can benefit from
high-level programming models that were designed specifically for it. We show that a careful
selection of language features, along with identification of important abstractions underpin-
ning the representation of data in the particular domain of interest, are crucial to achieving
strong correctness guarantees and generating efficient and scalable code. It is our hope that
this work will break new grounds and lead to further developments in this direction.
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Chapter 2

The LL Language

2.1 Overview

This chapter describes LL—short for “little language”—a strongly typed, point-free [8, 31]
functional programming language designed for manipulating sparse matrix formats. LL bor-
rows influences from FP/FL [2, 3], NESL [13], SETL [51] and APL [35], but favors simplicity
and ease of programming over generality and terseness. LL provides several built-in func-
tions and combinators for operating on vectors and matrices. The language is restricted by
design, lacking custom higher-order functions, recursive definitions, and a generic reduction
operator. These limitations of LL, as well as its purely functional semantics, facilitate auto-
matic verification of sparse codes and allows rigorous optimization of low-level code that is
generated from LL programs.

2.2 Introduction to LL

LL is a small, restricted language designed to easily describe operations on compound data
objects, with emphasis on nested vectors and tuples. The design of LL aims to strike a
balance between ease of use and applicability to the problem domain on the one hand, and
amenability to verification and generation of efficient code on the other hand. We introduce
the basics of LL by constructing a simple matrix-vector multiplication example.

2.2.1 Types

LL is statically and strongly typed. Natively supported primitive types include integer
and floating-point numbers, and Boolean values. Compound types include pairs (or tuples,
in their more general form) and lists (a.k.a. vectors, as they have built-in random access
capability). The distinction between pairs and lists is an important one from the typing
standpoint: while pairs can be composed of different types, a list is homogeneous. This
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is similar to the distinction between product types and recursive types in strongly typed
languages like ML and its derivatives. It deviates from the approach taken by FP, where a
single heterogeneous aggregate is used for both purposes. This choice has proved essential
to verification using a HOL-based theorem prover (see Chapter 3). It is also essential for the
generation of efficient low-level code (see Chapter 4).

In the following, we denote primitive types by int, float and bool. Pair and tuple types are
denoted by (τ1, τ2) and (τ1, . . . , τk), respectively. List types are denoted by [τ ]. For example,
a list of type [float] can be used for representing a vector of floating-point numbers. Note
that compound types such as pairs and lists can contain arbitrary inner types, including
pairs and lists. For example, a matrix can be represented by [[float]], namely a list of rows,
where each row is a list of floating-point numbers. In general, there is no restriction on the
length of a list, so nested lists can have varying lengths.

2.2.2 Syntax and dataflow

LL supports a point-free programming model in which variables are not being used. Instead,
every function in the language assumes a single (possibly compound) input value and returns
a single output value. Means for passing values between functions boil down to a handful of
fixed higher-order operators (also called combinators):

Pair/tuple constructor. Denoted by (f1, . . ., fk), it feeds its single input to all functions
fi and constructs the tuple consisting of their respective outputs.

For example, suppose that Ai is a function that returns a row of a matrix of type [float]
and x returns a vector of the same type. Then the following function returns a pair of
vectors, ([float], [float]):

(Ai, x)

Function composition. Denoted by f -> g, it passes the output of f as an input to g.
An alternative notation g (f1, . . ., fk) resembles an ordinary application syntax in
many languages but is in fact shorthand for (f1, . . ., fk) -> g.

The zip built-in function takes a pair of lists and returns a single list containing pairs
of corresponding elements. Composed with the pair constructor above, it returns a list
of pairs of corresponding values in the two vectors, [(float, float)]:

(Ai, x) -> zip

Alternatively, the following form yields the exact same operation:
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zip (Ai, x)

List operators. Denoted by map f and filter g. The former applies f to each of the
elements of an input list and returns the list of outputs. The latter applies g of type
τ → bool to each of the input list’s elements and returns the list of elements for which
g yields true.

We can now turn our forming example into a complete vector inner product: having
zipped the two vectors, we compute the product of each pair of values in the list by
mapping with fmul, whose type is (float, float) → float. We then sum the products
using fsum, whose type is [float]→ float:

zip (Ai, x) -> map fmul -> fsum

Name binding. Denoted by l1, . . ., lk: f . Provided an input tuple (v1, . . . , vk), this con-
struct binds the label li to a constant function that returns v1, and executes f in the
new context. For example, x, y: (y, x) binds x and y to the first an second com-
ponents of the input pair, respectively, and returns a swapped pair. The LL binding
construct resembles a λ-abstraction in ordinary functional languages. Although it is a
deviation from the strict pipeline-style dataflow model, we found it very useful when an
input value is used multiple times in a sequence of computations, and when using values
inside list comprehensions. From a practical standpoint, name binding also improves
the efficiency of generated code compared to alternatives such as value replication and
distribution over lists.

We can use name binding to wrap our inner product example with another map, which
iterates over the rows of an input matrix A. Here Ai is bound to return the current
row that is being iterated on by the outer map:

A -> map (Ai: (Ai, x) -> zip -> map fmul -> fsum)

While name binding can improve code clarity, in this case we can achieve the same
functionality by using the id built-in function, which merely returns its input:

A -> map ((id, x) -> zip -> map fmul -> fsum)

However, name binding turns very useful if we do not assume that our input values—a
matrix and a vector—are named. In this case, we can use a binding construct to assign
the names A and x to the two components of a single input pair. Then we can use x

inside the map that iterates over rows in A. This gives us a complete matrix-vector
multiplication function.
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A, x: A -> map ((id, x) -> zip -> map fmul -> fsum)

The dataflow model of LL programs tightly corresponds to their syntactic structure.
With the exception of name binding, all dataflow edges are made explicit by the use of
composition, pair construction and comprehension. All named values are defined prior to
being used. As shown in Section 2.4, we rely on this correspondence when implementing
sparse codes in LL.

2.2.3 Productivity

Several measures were taken to make it easy for programmers to use LL, without compro-
mising the clean dataflow model.

Flexible syntactic convention. LL comes equipped with an alternative syntax for infix
arithmetic and Boolean logic. For example, f *. g stands for scalar multiplication
of two floating point values, and is shorthand for (f, g) -> fmul. LL also supports
vector arithmetic operators, such as fvmul whose type is ([float], [float])→ [float] and
which computes a cross product of two vectors of floats. This function also has an infix
version in the form of f **. g. In fact, it is sugar for (f, g) -> zip -> map fmul.
We can rewrite the above matrix-vector multiplication as:

A, x: A -> map (id **. x -> fsum)

Or, equivalently:

A, x: A -> map (fsum (id **. x))

LL is also equipped with list comprehension sugar, which eases the processing of lists.
The form [l1, . . ., lk: f ? g] is shorthand for

filter (l1, . . ., lk: f) -> map (l1, . . ., lk: g)

Any of the two functions, f and g, can be omitted; in this case the comprehension will
translate to either a filter or a map. Clearly, name binding is optional.

LL also supports a more verbose Python-style comprehension syntax of the form
[g for l1, . . ., lk in h if f]. This is equivalent to h -> [l1, . . ., lk: f ? g]. Like
Python, multiple bindings and conditionals are allowed in a single comprehension. This
version of comprehension syntax slightly deviates from the LL design guidelines: the
input h, the binding l1, . . . , lk, the filtering predicate f and the map function g are
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intermixed and appear out of order. Still, it provides a familiar construct for pro-
grammers adapting to LL’s syntax. We believe that newcomers to LL will gradually
appreciate the clarity and succinctness of LL’s native constructs.

We can revise our matrix-vector multiplication example to use comprehension, as fol-
lows:

A, x: A -> [id **. x -> fsum]

Or, using Python-style comprehension and application-style composition:

A, x: [fsum (Ai **. x) for Ai in A]

Function and type definitions. LL supports user-defined functions and type definitions.
Definitions are only permitted in the global scope. An exception to this rule is the
definition of ad hoc constant functions via name binding (see above), whose scope is
limited to their syntactically associated function.

LL has no support for higher-order functions, except for a fixed set of combinators.
This limits the expressive power of LL—in particular prohibiting arbitrary recursion—
but enables automated verification of programs. Although we were able to express a
wide variety of sparse matrix formats, we may extend LL with additional higher-order
constructs in order to support more operations on matrices in the future.

Implicit typing. LL deploys a Hindley-Milner [44] style global type inference for statically
typing programs without relying on user annotations. This frees programmers from
specifying the type of each and every syntactic construct in their code, while still
providing the safety guarantees of a statically typed language.

LL permits specifying optional type constraints for bound names, including named
function arguments. This is useful for imposing stricter type constraints that what
the compiler would have otherwise inferred. An example for that is the annotation of
fixed-length list inputs, covered in Section 4.6.1. It may also improve code readability
and clarify programmers’ intent.

Implicit parallelism. LL does not expose parallelism to the programmer. Instead, par-
allelism is implied by syntactic constructs such as list comprehensions and pair con-
structors. This paradigm follows other high-level languages like APL and NESL. It
allows programmers to design algorithms with sequential semantics and have them
later parallelized by the compiler.

We may extend LL with explicit parallel constructs in the future, to allow programmers
more control on workload distribution and synchronization. This may be necessary as
we apply LL to a larger variety of matrix computations.
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2.3 Specification of LL semantics

The LL language constructs and their intended meaning are summarized in Table 2.1 and
Table 2.2 (functions), and in Table 2.3 (actions). Every regular function (i.e., not a combi-
nator) takes a single input and produces a single output. Some functions have an alternative
syntactic form, shown in parentheses. For example, f == g is shorthand for (f, g) -> eq,
and f *. g is the same as (f, g) -> fmul.

To keep the language and its type system simple, we avoid overloading of arithmetic
functions for different types. Instead, we use distinct functions that operate on floating
point and vector types, as well as corresponding infix notation. For example, add (or +) is
used for integers, fadd (or +.) for floats, vadd (or ++) for vectors of integers and fvadd (or
++.) for vectors of floats. While it is generally possible to implement overloaded operations
in a functional language—e.g., via type classes [61]—we defer this to later phase in the
language implementation.

Note that tuples of labels in binding constructs are in fact generalized into arbitrarily
nested structures. This allows greater flexibility in decomposing compound inputs, similarly
to pattern matching constructs found in other functional languages like ML and Haskell.
The following decomposes a pair of nested pairs, the first of which containing two floats,
with a single binding construct:

((x :: float, y :: float), (h, w)): . . .

In this section we suffice for an informal definition of the semantics of LL constructs. An
unambiguous alternative definition is provided in Section 3.3 via translation of LL constructs
into Isabelle/HOL’s typed lambda calculus.

1::τi are optional annotations.
2n-ary tuples are treated as right-associated nested pairs.
3Floating-point and vector-level arithmetics are provided as fadd (+.), vadd (++), fvadd (++.), etc.
4Floating-point comparators are provided as fleq (<=.), etc.
5Floating-point and vector-level arithmetics are provided as fsum (/+.), vsum (/++), fvsum (/++.), etc.

6Sorting by floating-point keys provided as fsort and frsort, respectively.
7Tiling of two-dimensional lists provided as vblock : (int, int, [[τ ]])→ [[[[τ ]]]].
8Value naming is optional, f and h default to id, g defaults to true.
9if clause is optional; comprehension clauses can be chained as in Python.

10τ is optional annotation.
11τi are optional annotations.
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Function Type Meaning

id τ → τ The identity function
eq (==), neq (!=) (τ, τ)→ bool Equality/inequality
3 τ → int Integer constant
3.1415 τ → float Floating-point constant
true, false τ → bool Boolean constant (true or false)

f ? g | h τ → τ ′ where f : τ → bool,
g : τ → τ ′, h : τ → τ ′

Return output of g or h depend-
ing on output of f

l1::τ1, . . ., lk::τk: g 1 (τ1, . . . , τk)→ τ ′ where
g : (τ1, . . . , τk)→li:τ ′

i
→τi

τ ′

Bind each li to input tuple com-
ponent of type τi, then apply g

l1, . . ., lk = f: g Same as: f -> l1, . . . , lk: g
(f) Same as: f
(f1, f2, . . .,fk)

2 τ → (τ1, . . . , τk) where
fi : τ → τi

Construct a tuple of values from
the outputs of fi

fst, snd (τ1, τ2)→ τ1, (τ1, τ2)→ τ2 Extract the first/second compo-
nent of a pair

f -> g τ → τ ′ where f : τ → τ ′′,
g : τ ′′ → τ ′

Evaluate g on the output of f

g (f1,. . .,fk) Same as: (f1, . . . , fk) -> g
g ‘ f Same as: (f, id) -> g
add (+), sub (-), mul (*),
div (/), mod (%)

(int, int)→ int Arithmetic operators3

leq (<=), lt (<), geq

(>=), gt (>)
(int, int)→ bool Comparators4

sum (/+), prod (/*) [int]→ int Arithmetic reduction operators5

and (&&), or (||) (bool, bool)→ bool Boolean operators
neg (!) bool→ bool Boolean negation
conj (/&&), disj (/||) [bool]→ bool Boolean reduction operators

Table 2.1: LL functions: general, tuples, composition, arithmetic, Boolean logic
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Function Type Meaning

len [τ ]→ int List length
rev [τ ]→ [τ ] Reverse a list
idx ([]) ([τ ], int)→ τ Extract an element
vidx ({}) ([τ ], [int])→ [τ ] Extract a list of elements
distl (<<), distr (>>) (τ1, [τ2])→ [(τ1, τ2)],

(τ1, [τ2])→ [(τ2, τ1)]
Distribute a value from the
left/right over a list

zip ([τ1], [τ2])→ [(τ1, τ2)] Merge lists into a list of pairs
unzip [(τ1, τ2)]→ ([τ1], [τ2]) Break a list of pairs
enum [τ ]→ [(int, τ)] Enumerate list elements
concat [[τ ]]→ [τ ] Concatenate lists
infl (τ, int, [(int, τ)])→ [τ ] Inflate an associative list
aggr [(τ1, τ2)]→ [(τ1, [τ2])] Aggregate elements by key
sort, rsort [(int, τ)]→ [(int, τ)] Sort elements by ascend-

ing/descending key order6

trans [[τ ]]→ [[τ ]] Transpose a list of lists
block 7 (int, [τ ])→ [[τ ]] Break a list into fixed-length

sublists

map f [τ ]→ [τ ′]
where f : τ → τ ′

Apply f to each element

filter f [τ ]→ [τ ]
where f : τ → bool

Filter elements by predicate f

num (#) τ → int Index of the current element
[l1, . . ., lk = f: g ? h] 8 Same as: filter (. . .: g) -> map (. . .: h)
[f for l1, . . ., lk in g if h] 9 Same as: g -> [l1, . . . , lk: h ? f]

Table 2.2: LL functions: lists

Action Meaning

def l::τ = f 10 Bind l to function f with input type τ
def l (l1::τ1, . . ., lk::τk) = f 11 Same as: def l = (l1::τ1, . . ., lk::τk): f

type l = τ Bind l to type τ

Table 2.3: LL actions
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R: [0 1 3 3 5]
J: [0 0 1 1 3]
V: [a b c d e]

d = 2
P: [1 3 0 2]
D: [0 3 5]
J: [0 1 0 1 3]
V: [b d a c e]

(a) Dense matrix (b) CSR sparse format (c) JAD sparse format

Figure 2.1: Low-level CSR and JAD sparse formats

2.4 Implementing sparse matrix codes using LL

We survey a breadth of sparse matrix formats and describe how they can be created and used
in LL. Our study focuses on two routines: construction of the sparse format from a dense
representation of two-dimensional list; and multiplication of the sparse matrix by a dense
vector (SpMV for short). While the former is mostly used for illustrative purposes and for
framing the verification problem (see Chapter 3), the latter is a pivotal computational kernel
in numerous application ranging from scientific and high-performance computing, through
data mining and information retrieval, to physical simulations.

In this section we contrast LL sparse format implementations with their imperative world
equivalents. For efficiency reasons, low-level implementations insist on using flat, contiguous
arrays of primitive values when representing compressed matrices. It is up to the program-
mer to handle the details of segment layout and dereferencing. Instead, in LL we can use
nested lists with row-major semantics. Since nested lists can have varying lengths, they are
equally suitable for representing both dense (i.e., cube) and sparse data. We exploit LL’s
native support for arbitrary nesting of lists and pairs in capturing hierarchical compression,
naturally and concisely. In Section 4.4 we show how these high-level representations are
translated to low-level ones that closely resemble hand-written, efficient data structures.

2.4.1 Compressed sparse rows (CSR)

This format compresses each row by storing nonzero values together with their column
indexes. The resulting sequence of compressed rows is not further compressed, so empty
(all zero) rows are retained. This enables random access to the beginning of each row, but
requires linear traversal to extract a particular element out of a row. CSR is widely used
because it is relatively simple and entails good memory locality for row-wise computations
such as SpMV.

The low-level CSR representation of the example matrix in Figure 2.1(a) is shown in
Figure 2.1(b). The arrays J and V are used for storing, respectively, the column indexes and
values of non-zero matrix cells. The array R determines the beginning and ending position
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/* CSR construction. */

for (i = k = 0; i < m; i++) {

for (j = 0; j < n; j++)

if (M[i][j] != 0.0) {

J[k] = j;

V[k] = M[i][j];

k++;

}

R[i] = k;

}

/* CSR SpMV. */

zero (y, m);

for (i = k = 0; i < m; i++) {

for (y = 0; k < R[i]; k++)

y += V[k] * x[J[k]];

y[i] = y;

}

(a) (b)

Figure 2.2: CSR construction and SpMV implementation in C




a
b c

d e







(0, a) (1, 0.0) (2, 0.0) (3, 0.0)
(0, b) (1, c) (2, 0.0) (3, 0.0)

(0, 0.0) (1, 0.0) (2, 0.0) (3, 0.0)
(0, 0.0) (1, d) (2, 0.0) (3, e)







(
(0, a)

)
(
(0, b) (1, c)

)
(
·
)

(
(1, d) (3, e)

)




(a) (b) (c)

Figure 2.3: Conceptual phases in CSR construction

of each compressed row. For example, R[0] determines the beginning of the first row; R[1]
determines the position right past the end of the first row, which is also the beginning of the
second row; R[4] determines the end of the last row. Note that R pertains to segments in
both J and V, as the two buffers contain corresponding components in a sequence of logical
pairs.

Implementing CSR construction and multiplication in C—shown in Figure 2.2(a) and
(b)—is not trivial. Nested loops are used for traversing either the dense matrix (construction)
or the compressed index-value pairs (SpMV). Individual array cells are being dereferenced
via single or nested indirection. Sparse row boundaries are stored and used explicitly in the
code. For brevity, we omit memory allocation and initialization and assume that matrix
dimensions are known at compile-time. On the positive side, we note that the resulting
SpMV code is rather efficient, as the inner product of each row is computed incrementally
in registers.

Figure 2.3 shows the high-level stages in CSR compression mentioned above. Given (a),
each row is enumerated with column indexes, resulting in (b). Pairs containing a zero value
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[
[ a ]

[ b c ]

[ ]

[ d e ]
]

map

[ b c 0.0 0.0 ]

enum

[ (0, b) (1, c) (2, 0.0) (3, 0.0) ]

filter

(0, b)

snd

b

0.0

neq

true

?

[ (0, b) (1, c) ]

[
[ (0, a) ]

[ (0, b) (1, c) ]

[ ]

[ (2, d) (3, e) ]
]

Figure 2.4: Dataflow view of high-level CSR construction

are then filtered, yielding (c). Figure 2.4 shows a dataflow view of such a process. This maps
directly to the following LL function:

def csr = [enum -> [(snd, 0.0) -> neq ? ]]

Using name binding and infix notation may improve clarity, resulting in the following variant:

[enum -> [j, v: v != 0.0 ? ]]

Alternatively, one can use an explicit enumeration operator inside comprehensions. The
following variant performs the index enumeration after filtering out zero values, but in fact
entails the exact same semantics:

[[id != 0.0 ? (#, v)]]

Finally, a programmer may choose to use the more verbose Python-style comprehensions.
The following variant is equivalent to the first definition above:

def csr (A) = [[(j, v) for j, v in enum(r) if v != 0.0] for r in A]

Figure 2.5 gives a high-level view of the stages in CSR multiplication by vector. We
process each compressed row in isolation, as shown in (b). Within each row, each pair
of index and nonzero is processed as in (c). We multiply the nonzero by the value of x
corresponding to the column index of the nonzero, as in (d). The products of all nonzeros
in a given row is summed, shown in (e). The final result is the output vector shown in (f).
The high-level dataflow view of this computation is shown in Figure 1.1. It maps directly to
the following LL function:
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Figure 2.5: Conceptual phases in CSR SpMV: scalar operations
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Figure 2.6: Conceptual phases in CSR SpMV: vector operations

def csrmv (A, x) = A -> [[(snd, (x, fst) -> idx) -> fmul] -> fsum]

Using an alternative operator notation and name binding for improved code clarity:

A -> [[j, v: v *. x[j]] -> fsum]

And using a more verbose Python-style comprehension:

[fsum ([v *. x[j] for j, v in r]) for r in A]

Figure 2.6 shows a different way to compute CSR SpMV, this time using more powerful
operations on vectors. Each compressed row is multiplied separately, as shown in (b). First,
column indexes are separated from nonzero values as in (c). They are used to retrieve
corresponding values from x, shown in (d). The nonzeros and the retrieved x values are
paired, as in (e). It is left to multiply pairs, as in (f), and sum the products, resulting in the
inner product shown in (g). Such a computation can be expressed in LL as follows.

def csrmv (A, x) =

A -> [J, V = unzip: (V, x{J}) -> zip -> [fmul] -> fsum]
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More concisely, one can omit the name binding, and also deploy a vector cross product
operator in lieu of the zip and [fmul] operations.

A -> [unzip -> snd **. x{fst} -> fsum]

Although semantically equivalent, this code may be more amenable to vectorization due to
the use of vector-level operations such as gather and cross product.

CSR has been widely implemented in many sparse matrix frameworks. Since CSR SpMV
is naturally data parallel, it is frequently used as a running example in parallel language
research projects such as Bernoulli [39, 43], NESL [12], Data Parallel Haskell [18] and Cop-
perhead [15]. Therefore, in subsequent chapters we will be paying great attention to the
handling of CSR and its variants by the LL verifier and compiler framework.

2.4.2 Jagged diagonals (JAD)

This format deploys a clever compression scheme that allows handling of sequences of nonze-
ros from multiple rows, taking advantage of vector instructions. The ith nonzero values from
all rows are laid out consecutively in the compressed format, constituting a “jagged diago-
nal.” Since nonzeros are distributed differently in each row, column indexes need to be stored
as well. However, packing ith elements in a predetermined order—e.g., from the first to the
last row—induces a problem because some rows may contain less nonzeros than others. To
compensate for this fact, rows are sorted by decreasing number of nonzeros prior to being
stored as diagonals. The sorting permutation is stored together with the matrix, so the
correct order of rows can subsequently be reconstructed.

The JAD representation of the example matrix in Figure 2.1(a) is shown in Figure 2.1(c).
Here, too, the arrays J and V are used for storing corresponding column index and nonzero
content values along the jagged diagonals. The array D determines the beginning and end
boundaries of the two diagonals. The array P tracks the order of rows by which the diagonals
are stored. The scalar d stores the number of diagonals stored.

Low-level imperative implementations of JAD fuse the aforementioned stages into a single
loop nest, for better efficiency. This, however, complicates code comprehension, making it
hard to analyze and maintain. For example, Figure 2.7(a) shows the code for compressing
a dense matrix M into a JAD format, represented by P, D, J and V. It reads and writes a
single word at a time, relies heavily on array indirections (i.e., array accesses whose index
expressions are themselves array accesses), and explicitly spells out loop boundaries. There
is no distinguishing between the three construction steps, thus it provides little insight into
the nature of the JAD compression.

The aforementioned stages in JAD compression can be thought of as (i) compressing
each row of the dense matrix (as in CSR); (ii) sorting compressed rows by decreasing length;
and (iii) transposing the sorted compressed rows. These conceptual steps are visualized in
Figure 2.8. From this diagram, it is easy to derive an LL function the looks as follows:
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/* JAD construction. */

lenperm (M, P);

for (d = k = 0; d < n; d++) {

kk = k;

for (i = 0; i < n; i++) {

for (j = nz = 0; j < m; j++)

if (M[P[i]][j])

if (++nz > d) break;

if (j < m) {

J[k] = j;

V[k] = M[P[i]][j];

k++;

}

}

if (k == kk)

break;

D[d] = k;

}

/* JAD SpMV. */

zero (y, m);

for (dd = k = 0; dd < d; dd++)

for (i = 0; k < D[dd]; i++, k++)

y[P[i]] += V[k] * x[J[k]];

(a) (b)

Figure 2.7: JAD construction and SpMV implementation in C
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Figure 2.8: Conceptual phases in JAD construction
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Figure 2.9: Conceptual phases in JAD SpMV

def jad = csr -> lenperm -> (fst, snd -> trans)

The first step compresses rows by invoking the constructor for CSR sparse format (see
Section 2.4.1). In the second step, the function lenperm sorts the compressed rows by
decreasing length, returning both the row permutation and the sorted rows:

def lenperm = [(len, (#, id))] -> rsort -> [snd] -> unzip

Note that the output of this compression, which is the same as the resulting object in
Figure 2.8(d), is more abstract than the JAD format used by the C version of JAD in
Figure 2.1(c). Whereas LL formats rely on nesting of lists and pairs, C formats linearize the
outer list and create explicit indexing structures for accessing the inner lists. LL thus frees
the programmer from reasoning about these optimized data structure layouts, eliminating
dependence on explicit array indirection.

Figure 2.9 shows the high-level steps in JAD SpMV. (b) is obtained by computing,
for each diagonal, the cross-product of its induced vector of values with the elements of x
corresponding to their column indexes. These are transposed to obtain the lists of products
in each (nonzero) row as in (c). Products along rows are summed, obtaining (d). In (e), each
inner product is paired with its row index, which are then “inflated” to obtain the dense
result vector in (f). The following LL function implements these steps:
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def jadmv((P, D), x) =

D -> [unzip -> snd **. x{fst}] -> trans -> [sum] ->

zip (P, id) -> infl (0.0, m, id)

In comparison, consider the C version of JAD SpMV shown in Figure 2.7(b). Although
it is arguably concise, it is also quite cryptic: the clean separation between phases is violated
in favor of fusing the login: summation and permutation of the rows is done directly onto the
output vector y via indirection; iteration along diagonals is done using a single, continuous
index k. One hidden assumption is that the length of each diagonal—i.e., D[j +1]−D[j]—is
not greater than the length of the permutation vector P; this assumption is made explicit in
the LL version by the semantics of zip.

While JAD is of less practical interest due to the diminishing presence of large vector ma-
chines, it is still of interest from the specification and correctness point of view. We consider
it particularly challenging due to the intricate use of multiple data layout transformations
in the compression and decompression scheme, which has deemed brute force attempts at
verifying it intractable. Thanks to posing it as a purely functional transformation, and using
a special abstraction of various vector representations in HOL, we are able to automatically
verify the correctness of JAD compression and SpMV (see Chapter 3).

2.4.3 Coordinate (COO)

COO is a portable compression scheme where nonzeros are stored together with both their
row and column indexes in a single, arbitrarily ordered sequence. Its construction can be
implemented by (i) enumerating rows with their indexes; (ii) for each row, enumerating its
element with column indexes, then (iii) filtering out zeros while attaching row indexes to
each tuple; and finally (iv) concatenating the resulting lists into a single one. In LL, this
can be expressed as follows:

def coo =

enum -> [i, r: enum (r) -> [j, v: v != 0.0 ? (i, j, v)]] -> concat

Explicit enumeration can be replaced for an integrated use of comprehension indexes, as
follows:

[i = #: [v: v != 0.0 ? (i, #, v)]] -> concat

Alternatively, one can use a cascaded Python comprehension, as follows:

def coo (A) = [(i, j, v) for i, r in enum (A)

for j, v in enum (r) if v != 0.0]
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COO multiplication is less straightforward: one needs to account for the fact that nonze-
ros of a particular row might be scattered along the compressed list. It is necessary to
aggregate those values prior to computing the inner-product. This can be expressed as
follows:

def coomv (A, x) =

A -> aggr -> [i, r: (i, r -> [j, v: v *. x[j]] -> sum)] ->

infl (0.0, m, id)

This is one case where a C implementation is relatively straightforward, attributed to the
fact that COO has little structure and that it is a good fit for word-level operations. In the
following, the arrays I, J and V store the row/column indexes and nonzero values, respec-
tively:

/* COO SpMV. */

zero (y, m);

for (k = 0; k < nz; k++)

y[I[k]] += V[k] * x[J[K]];

While COO is widely used as a portable storage format, it is rarely deployed directly by
sparse kernels for most computational purposes due to its loose memory locality and excessive
use of indexes. We therefore concentrate on its specification and correctness aspects only. As
a future line of work, it may be interesting to consider COO as the starting point for various
format constructions, instead of a dense matrix—such an approach will model more closely
the actual use pattern that is implemented by various sparse matrix packages [57, 59].

2.4.4 Compressed sparse columns (CSC)

This is another standard format that is referred to in the literature [43] A CSC represen-
tation is obtained by compressing the nonzero values in the column direction, instead of
row direction as in CSR. In C, it is done by swapping the order of the loops iterating over
the dense matrix, and storing the row index with the nonzero values. In LL, it amounts to
prepending a transposition to CSR construction.

def csc = trans -> csr

Like COO, CSC SpMV calls for aggregation prior to summing row cross-products. The
following function (i) zips compressed columns with their corresponding vector elements;
(ii) for each pair of column and vector element, multiply nonzeros by this element, a list of
pairs of row index and a product value; (iii) concatenate all pairs, then (iv) aggregate all
products belonging to the same row; finally, (v) inflate into a dense vector form.
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def cscmv =

zip -> [cj, xj: cj -> [i, v: (i, v *. xj)]] ->

concat -> aggr -> [(fst, snd -> fsum)] -> infl (0.0, m, id)

Here, too, the fact that data layout is not in line with the computation entailed by
matrix-vector multiplication calls for additional steps to massage the result into a proper
vector form. A typical C implementation takes advantage of direct assignment to array
elements for incrementing the output vector, and is omitted here.

2.5 Hierarchical formats

This section evaluates the usability of LL for expressing sparse formats with hierarchical
compression schemes, providing insights on its applicability to complex real-world sparse
kernels. We first present SCSR, which further removes empty rows from a CSR represen-
tation. We then present two blocking schemes—cache blocking and register blocking—that
improve performance of SpMV kernels by improving temporal locality at two different levels
of the memory hierarchy. Locality is improved by reorganizing the computation to operate
on smaller segments of the input matrix, which in turn allows the reuse of memory segments
containing the vector for multiplication.

2.5.1 Sparse CSR (SCSR)

The SCSR format extends CSR with another layer of compression. It further compresses the
list of compressed rows by filtering out empty rows, namely rows that only contain zeros.
The remaining rows are associated with their row index. SCSR is beneficial in cases where
the nonzeros in the matrix are not uniformly distributed across rows.

Implementing SCSR in LL amounts to obtaining the CSR format, which compresses
individual rows, followed by compression of the resulting list of compressed rows. Again, LL
manages to express format construction as a pipeline of stages.

def scsr = csr -> [len != 0 ? (#, id)]

The corresponding SpMV implementation needs to account for the row indexes. It must also
inflate the resulting sparse vector into dense format:

def scsrmv(A, x) =

A -> [(fst, snd -> unzip -> snd **. x{fst} -> fsum)] ->

infl (0.0, m, id)

Alternatively, we can reuse SpMV for CSR:
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Figure 2.10: Dense and compressed 2× 2 block matrix representation

A -> unzip -> (fst, csrmv (snd, x)) -> zip -> infl (0.0, m, id)

SCSR is a good example of LL’s advantage when composing compression schemes. Com-
pare the above with what a similar implementation effort would look like if done in a language
like C. This is true even when a programmer merely extends an existing CSR implemen-
tation: (i) they would need to figure out how to extend the low-level representation in
Figure 2.1(b) to accommodate the additional index, and how the filtering of empty rows
affects the content stored in the existing data structure; (ii) they would need to intrusively
extend a CSR construction to implement storing of row indexes and the elimination of empty
rows; (iii) similarly, they would need to deploy an additional indirection when updating the
output vector with the products of a particular row during SpMV. All this amounts to a
non-trivial implementation effort. For the most part, it is the realization of how the low-
level data layout and its semantics change that poses a burden to programmers’ productivity.
LL frees programmers from such consideration, letting them focus on data transformation
instead.

2.5.2 Register blocking

This optimization was introduced in [60]. It is particularly useful when the nonzero values in
the matrix appear in small clusters (e.g., tridiagonal). The idea is to treat it as a matrix of
small dense matrices by partitioning it into uniformly sized rectangular blocks. These blocks
are the elements that are then being compressed—a zero block is one whose values are all
zeros. The size of these blocks is chosen so that the corresponding portion of the vector for
multiplication can reside in registers during processing of a block. Register-blocked formats
such as RBCSR have shown to significantly speed up throughput of SpMV kernels when
tuned for proper block sizes [34, 59].

Register blocking can be applied to a variety of sparse formats described in Section 2.4.
The 2 × 2 blocked representation of Figure 2.1(a) can be seen in Figure 2.10(a). Apply-
ing CSR compression to this blocked matrix results in the register-blocked CSR format in
Figure 2.10(b).
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Figure 2.12: Dataflow view of RBCSR SpMV

Constructing a RBCSR representation in LL is just a slight deviation from the ordinary
CSR construction shown in Section 2.4.1. It requires (i) partitioning the matrix into fixed
size blocks; and (ii) replacing the scalar zero test with a variant for a dense matrix (nested list
of values). The block dimensions r×c are assumed to be globally bound values. The relative
change compared to the dataflow view shown in Figure 2.4 is shown in Figure 2.11 with new
or different operations marked by a double line. The corresponding LL implementation looks
as follows.

def rbcsr (A) = vblock (r, c, A) -> [enum -> [(snd, 0.0) -> matneq ? ]]

The function matneq is implemented as follows.

def matneq (B, x) = B -> [[id != x] -> disj] -> disj

Multiplication of an RBCSR format is also quite similar to that of ordinary CSR, with the
following exceptions: (i) the vector for multiplication needs to be partitioned into blocks of
size c; (ii) scalar multiplication is replaced by dense matrix-vector multiplication, and scalar
summation by vector summation; and (iii) the overall blocked result needs to be concatenated
into a single, flat vector. The dataflow view of this computation and the relative difference
from the CSR SpMV shown is Figure 1.1 are shown in Figure 2.12 with new or different
operations marked by a double line. A corresponding LL implementation looks as follows.
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Rb: [ 0 1 3 ]
Jb: [ 0 0 1 ]
Vb: [ a 0.0 b c 0.0 0.0 0.0 d 0.0 0.0 0.0 e ]

Figure 2.13: Low-level RBCSR representation

zero (y, m);

for (i = 0; i < m / 2; i++, y += 2) {

double y0 = 0, y1 = 0;

for (k = Rb[i]; k < Rb[i + 1]; k++, Jb++, Vb += 4) {

int j = 2 * Jb[0];

double x0 = x[j], x1 = x[j + 1];

y0 += Vb[0] * x0;

y1 += Vb[2] * x0;

y0 += Vb[1] * x1;

y1 += Vb[3] * x1;

}

y[0] = y0; y[1] = y1;

}

Figure 2.14: 2× 2 RBCSR SpMV implementation in C

def rbcsrmv (A, x) =

xb = block (c, x):

A -> [[(snd, xb[fst]) -> dmv] -> fvsum] -> concat

The function dmv, which computes a dense matrix-vector multiplication, was introduced in
Section 2.2, and looks as follows:

def dmv (A, x) = A -> [id **. x -> fsum]

It is interesting to contrast this high-level approach with the how it is implemented in
C. A first challenge faced by the programmer is figuring out how data will be laid out in
flat arrays and what are the invariants that characterize the data structure. Contingent
with the continuous buffer approach, an array Vb contains the nonzero dense blocks laid
out consecutively in a row-major fashion. A separate array Jb holds the position indexes
of blocks. A third array Rb contains the beginning and end boundaries of the compressed
rows of blocks. A low-level representation of the abstract RBCSR matrix in Figure 2.10(b)
is shown in Figure 2.13. Note that it encapsulates the implicit assumption about the block
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size: since it is known to the programmer at compile time, no explicit boundary markers are
necessary to determine where each dense block in Vb starts and ends. This specialization
needs to be matched by the code that traverses this data structure.

Figure 2.14 shows a C implementation of RBCSR SpMV. It was adapted with minimal
alteration from the OSKI [59] autotuning framework, also described in [60]. It is interesting
to note the degree of specialization that this code exhibits: there are only two loops, but
in fact the innermost loop body represents two nested loops computing the dense block
multiplication, which have been fully unrolled by the programmer. The aforementioned
assumptions about block size are embedded as constants, in the form of fixed strides used
in advancing pointers and computing offsets.

We will further examine RBCSR in the context of verification and (in particular) com-
pilation and generation of efficient code. The implications of dealing with nested dense
matrices to verification are discussed in Section 3.7.5. The challenges in generating effi-
cient data structures for block types, and how code generation can take advantage of such
specialization, are discussed in Section 4.4 and Section 4.6.

2.5.3 Cache blocking

The idea in cache blocking is to reduce cache misses for the source vector x when it is too
large to entirely fit in cache during SpMV. We consider static cache blocking [33]. Here, too,
the matrix is partitioned into rectangular sub-matrices of size r× c. However, unlike register
blocking, these sub-matrices are themselves compressed. The lengths r and c are chosen
such that a portion of x of length c can reside in cache while it is multiplied by a matrix
block.

Our cache blocking scheme differs from the one in [33] in that blocks start columns are
multiples of c. This restriction is due to LL’s limited expressiveness, and might induce sub-
optimal space utilization. It is possible to relax it by augmenting LL so that it is expressive
enough to accommodate optimal block placement (e.g., by adding a built-in function). This
is beyond the scope of this work and has not been attempted.

The construction of a cache-blocked matrix is very similar to construction with register
blocking. The only difference is the additional compression of each block. The LL code for
constructing a cache-blocked CSR representation whose blocks are stored in CSR format is
shown below.

def cbcsr (A) =

vblock (r, c, A) ->

[enum -> [(snd, 0.0) -> matneq ? (fst, snd -> csr)]]

We again notice the similarity of cache-blocked SpMV with the register-blocked version.
The difference is in the function used for multiplying a block by a vector. The LL imple-
mentation of cache-blocked SpMV follows.
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def cbcsrmv (A, x) =

xb = block (c, x):

A -> [[(snd, xb[fst]) -> csrmv] -> fvsum] -> concat

Cache-blocked formats are not yet covered by our verification framework. Based on our
experience with other formats and the analysis in Section 3.8, we expect that it is doable
with relatively little effort.

2.6 Discussion

As we saw in this chapter, LL lifts tedious low-level data representations and intricate im-
perative computation into a cleaner functional form, exposing coarser-grained computation
stages and the flow of data from one stage to another. This encourages the programmer to
think about intermediate results as cohesive and consistent objects, and to associate them
with semantic invariants. LL is also well suited for composing transformations, as shown
with the hierarchical formats. It is generally possible to implement even more deeply nested
compression schemes—e.g., nest register blocking within a cache-blocked matrix—although
we did not attempt to do so.

These benefits are not merely due to the use of functional programming. We believe
that they are equally attributed to our careful selection of a very simple subset of functional
language features, designed with the sparse matrix domain in mind. In particular, the
absence of a direct notion of a “value” encourages expressing computations as composition
of functions. Unlike strict point-free languages such as FP [2], we support name binding
as an alternative means for distributing values over lists. This is important for convenience
of expression, as well as generation of efficient code (see Chapter 4). Other approaches for
generating sparse matrix implementations are discussed in Section 1.4 (p. 6).

There are limitations to what can be done in LL. LL excludes definitions of recursive
functions and a general fold operator, both of which are compensated for by a versatile set
of built-ins (e.g., zip and sum) and combinators for handling lists (e.g., map and filter).
These restrictions contribute to our ability to automatically verify LL programs because they
sidestep the need to infer induction hypotheses, which is a hard task for automated tools
(and humans).

It may be desirable to be able to use a restricted form of higher-order functions when
implementing sparse matrix codes. For example, the implementation of RBCSR and CBCSR
SpMV are identical except for the operators used for multiplying blocks—it makes sense to
replace these variants (dmv and csrmv) by a function argument and unify the two implemen-
tations. We have refrained from enriching LL with first-order functions for now because this
simplifies automatic verification and gives us broader verification coverage. It may be bene-
ficial to extend LL with a template mechanism as a substitute for fully fledged higher-order
functions, which will allow better code reuse in similar situations.
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A compiler from LL to C is presented in Chapter 4. Its implementation is yet exper-
imental and currently supports only a handful of sparse kernels, including SpMV of CSR
and register-blocked CSR formats. Further implementation effort is necessary for supporting
other useful formats, such as cache-blocked CSR, JAD and SCSR. This includes broaden-
ing the implementation of the built-in LL function library, and extending coverage of the
different analyses described in Chapter 4 to these functions as well.
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Chapter 3

Verifying High-Level Sparse Codes

3.1 Overview

In this chapter we present a verification framework for sparse matrix kernels written in LL.
Having framed sparse format construction and SpMV as functional programs (see Chapter 2),
we use Isabelle/HOL [47] to verify their full functional correctness. Our solution is based on
(i) parametric representation predicates that are able to capture structural and arithmetic
invariants of nested sparse formats; (ii) a sparse matrix theory consisting of simplification
and introduction rules for reasoning about the various operations used in sparse matrix
kernels; (iii) a tactic for applying rules that can automatically prove the correctness of
different formats. We demonstrate this approach with the CSR format. We then shown how
to extend it to other formats, including JAD, COO, and hierarchical formats like SCSR and
register blocking. Finally, we evaluate the generality and extensibility of our domain theory,
projecting on the feasibility of verifying new formats.

3.1.1 Motivation

There are at least two arguments for full functional verification of sparse matrix codes. First,
classical static typing is insufficient for static bug detection because these programs contain
array indirection, whose memory safety would be typically guaranteed only with run-time
safety checks. Dependent type systems may be able to prove memory safety but, in our
experience, the necessary dependent-type predicates would need to capture invariants nearly
as complex as those that we encountered during full functional verification. For example, to
prove full functional correctness, one may need to show that a list is some permutation of
a subset of values in another list; to prove memory safety, one may need to show that the
values in a list are smaller than the length of another list. Therefore, it seems that with little
extra effort, we can use theorem proving to extend safety to full functional correctness.

The second reason for full functional verification is synthesis of sparse matrix pro-
grams, including the discovery of new formats. This is applicable to deductive synthesis—
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e.g., [53, 37]—where a new implementation is derived from a reference implementation by
repeated application of transformations rules in a way that preserve the overall semantic of
the program. The rules we develop as part of our domain theory can serve for this purpose,
subject to finding proper ways to effectively explore the space of provably correct imple-
mentation variants. It is also applicable to inductive synthesis—e.g., [55]—where a new
implementation is found by searching a space of (potentially incorrect) candidates and at-
tempting to find one that fully complies with the specification. Here, a full functional verifier
is a prerequisite for synthesis because it is an arbiter of correctness of the selected imple-
mentation. The application of our domain theory to synthesis of sparse kernels is outside
the scope of this work. We discuss ideas for further work in this direction in Chapter 5.

3.1.2 Preliminary assumptions

In proving the correctness of LL programs in Isabelle/HOL we are making the following
assumptions as a baseline for the verification problem.

Correctness criteria. For each of the formats we consider with construction function fconst

and multiplication by vector fspmv, we frame the following verification goal: for all dense
matrices A and vectors x, fspmv(fconst(A), x) represents the mathematical value A · x.
Namely, we prove that fspmv computes the correct result with respect to the compres-
sion performed by fconst. In effect, our prover uses the user-provided constructor fconst

to automatically infer the representation invariant of the format at hand, freeing the
user from formalizing this invariant in HOL. That said, framing the problem as such
can be somewhat restrictive, especially since the compression of dense matrices is rarely
done in practice: since dense matrices are often prohibitively large to store and pro-
cess, most real-world applications of sparse kernels use the coordinate format (COO)
as the basis for the construction of other formats. We believe that our framework can
be adapted to such a use case scenario by encoding (or inferring) the representation
invariant of a COO representation, and requiring from the user a function f ′

const that
constructs the desired format from the COO representation. This is left for future
work.

Natural number arithmetic. Our proof rules are currently limited to reasoning on nat-
ural number. The reason is that there is built-in support for it in Isabelle/HOL, and
that for the purpose of matrix multiplication it is an acceptable proxy for other alge-
braic domains (e.g., integers and real numbers). Clearly, verifying correctness of true
floating point computations calls for a separate set of methodologies and tools, and is
beyond the scope of this work.

Sequential semantics. Isabelle/HOL models sequential execution of functions written in
typed λ-calculus programs. Although we consider LL programs to represent parallel
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computations, this is a reasonable assumption to make because the implicit parallelism
in LL has no effect on the overall semantics of programs.

3.2 Introduction to sparse format verification

Let us use the simple CSR format to give the rationale for the design of our proof system.
Suppose that A and x are concrete language objects that, respectively, contain dense repre-
sentations of a mathematical matrix B and a vector y. We want to prove that the product
of the CSR-compressed A with x produces an object that is a valid (dense) representation
of the vector B · y. Note that the multiplication is CSR-specific. Formally, our verification
goal is

csrmv(csr(A), x)
m
⊲ B · y

The goal expresses the relationship between a mathematical object and its concrete counter-

part with the representation relation a
k
⊲ b, which states that the concrete object a represents

the mathematical vector b: the lengths of a and b are k and for all i < k, a[i] equals bi. In the
course of the proof, we may need to track relationships on various kinds of concrete objects.
A key contribution of our verification framework is the definition of suitable representation
relations for the objects that arise in sparse matrix programs.

We use Isabelle/HOL, in interactive theorem prover for higher-order logic, as our under-
lying prover. It is an LCF-style theorem prover in which all parts of a proof are checked from
first principles by a small trusted kernel. We embed LL functions in Isabelle using typed
λ-calculus and Isabelle libraries. Our proofs deploy two techniques: (a) term simplification,
which rewrites subterms in functions into simpler, equivalent ones; and (b) introduction,
which substitutes a proof goal with a certain term for alternative goal(s) that do not contain
the term, and whose validity implies the validity of the original goal. In our example, term
simplification unfolds the definitions of csrmv and csr and applies standard rewrite rules
for simplifying function application and composition, map and filter operations on lists, and
extraction of elements from pairs. This results in the following goal:

[enum -> [snd != 0 ? ] -> [snd * x[fst]] -> sum](A)
m
⊲ B · y (3.1)

The LL function on the left enumerates each row of A into a list of column index and value
pairs, then filters out pairs whose second element is zero ([snd != 0 ? ]). For the remaining
pairs, it multiplies the second (nonzero) component with the value of x at the index given
by the first component ([snd * x[fst]]). Finally, it sums the resulting products (sum). So
far, simplification has done a good job.

To carry out the next step of the proof, we observe that the missing zeros do not affect the
result of the computation, so we would like to simplify the left-hand-side by rewriting away
the filter ([snd != 0 ? ]); this would effectively “de-sparsify” the left-hand side, moving it
closer to the mathematical right-hand-side. Unfortunately, standard simplification available
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in prover libraries cannot perform the rewrite; we would need to add a rule tailored to this
format. The hypothetical rule, shown below, would match p with snd != 0 and f with
snd * x[fst]:

∀y . ¬p(y) −→ f(y) = 0

[p ? ] -> [f] -> sum = [f] -> sum

The rule would achieve the desired simplification but we refrain from adding such a rule
because it would take a considerable effort to prove it. Additionally, the rule would be of
little use in cases where the LL operations appear in just a slightly syntactically different
way.

We instead resort to introduction, which—by substituting the current goal with a new set
of goals—isolates independent pieces of reasoning. In this case, an introduction rule is more
useful and more general than a simplification rule because it is concerned with a smaller
term in the current goal. Consequently, its validity is easier to establish.

Our first introduction rule substitutes the goal in Eq. (3.1), which assert a property of
the whole result vector, with an assertion about a single element of that vector. In effect,
this removes the outermost map from the LL function on the left-hand side. Semi-formally,
the rule for map can be stated as follows:

length of A is m ∀i < m . f(A[i]) = Bi

[f](A)
m
⊲ B (3.2)

In the goal in Eq. (3.1), f matches the entire chain of enum -> . . . -> sum and the new
subgoals are

(i) length of A is m

(ii) ∀i < m .

enum -> [snd != 0 ?] ->

[snd * x[fst]] -> sum (A[i]) =
∑

j<n

Bi,j · yj

We now need a second introduction step to remove the summation on both sides of the
equality: instead of requiring equivalence between sums of sequences of numbers, we will
require equivalence between the values in the sequences themselves. In order for such a rule
to be general enough, we need to permit arbitrary permutations of the values in a sequence
to prove programs that exploit associativity and commutativity of addition. A hypothetical
rule may look as follows, where [xi|p(xi)]i=a,...,a+δ denotes a construction of an ordered list
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of elements out of xa, . . . , xa+δ that satisfy p:

∃n′ ≤ n, permutation P .

f(A[i])
n′

⊲ [Bi,j | Bi,j 6= 0]j=P0,...,Pn−1

sum(f(A[i])) =
∑

j<n

Bi,j

This rule is problematic for two reasons. First, it is more complex than what we may
want to prove. For example, the premise constructs a filtered and permuted mathematical
vector on the right-hand side (via list comprehension), rather than keeping the mathematical
object untouched. This might hinder our ability to link our proof goal to the original input
matrix in the assumptions of the theorem. Second, the rule is not as general as we would
like because a concrete representation may contain zeros.

Our approach is to enrich the representation relation (a
k
⊲ b). This relation uses plain

equality to relate single elements from the two vector objects, which limits its applicability to
more subtle mappings. To express a relation where, say, each element in a concrete represen-
tation equals the corresponding vector element multiplied by some value, we parameterize
the representation relation with an inner relation that describes how individual elements
represent their mathematical counterparts. Individual elements need not be scalars; they
could be, recursively, lists. Therefore, inner relations could be parameterized by further
inner relations.

Our domain proof theory for sparse matrices is novel in two ways. First, we define
common representation relations that occur in our domain. Our infrastructure is powerful
because we (i) insist on relaxing invariants as much as possible (e.g., zeros may still be present
in a compressed representation); (ii) encapsulate many quantifications and implications in
the representation relations (e.g., universal quantification on all indexes of a vector, existence
of a permutation); (iii) include necessary integrity constraints in the representation relations
(e.g., lengths must match). The representation relations we define include indexed list (ilist),
where the element at position i represents the ith vector element; value list (vlist), in which all
nonzero values are represented; and associative list (alist), which contains index-value pairs.
These representation relations raise the level of abstraction and focus theory development
on these prevalent data representation. It is also crucial to scaling and automating proofs:
introduction depends on unification of goal terms with higher-order variables found in rules.
The use of representation predicates effectively canonicalizes terms in intermediate proof
goals, thereby preventing unrestrained branching due to unification of custom, fine-grained
terms. The use of representation relations also prevents oversimplification of proof terms by
concealing their internal conjuncts from Isabelle’s simplifier.

The second novelty is parameterizing the inner predicate, which describes how the vector
elements represent their mathematical counterparts. In the case of a vector of numbers, we
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use equality. For matrices, the inner relation relates a single row to its concrete indexed-list
representation (ilist); technically, the inner relation predicate is a parameter to the (outer)
representation predicate for the whole matrix. In addition to reducing the number of rules,
parameterization helps with syntactic matching and substitution of inner comparators during
introduction. For example, with a parameterized relation, an introduction rule for map
similar to that in Eq. (3.2) can be written more generally and concisely: the conclusion of
the rule contains an indexed-list representation relation where the concrete object is the term
[f](x) (i.e., map with an arbitrary function f over x) and the inner representation relation is
some arbitrary predicate P—our parameter. The premise of the rule is again an indexed-list
representation relation where the concrete object is x and the inner representation relation
is λi a b. P (i, a, f(b)). Fortunately, Isabelle can match and substitute terms that contain
parameters such as P (as well as f and x); these rules can thus be applied automatically.

3.3 Translating LL to Isabelle/HOL

We formalize an LL function f in Isabelle by applying to it a syntax-directed translation
function I[[f ]], shown in Table 3.1. It relies heavily on the theory of lists in Isabelle’s standard
library, as well as other standard features like product types, function composition, and so
on. This translation constitutes a shallow embedding [63] of LL in Isabelle/HOL. It is a
standard technique for formalizing languages when the goal is to verify the correctness of
programs written in those languages. In this approach, the functions and types of an object
language (LL) are written directly in the language of the theorem prover (typed λ-calculus).
Subsequent logical formulas relate to these translated programs as first-class HOL objects,
which allows to leverage existing support for proving properties of them.

We translate two implementations of CSR construction and SpMV from Section 2.4.1
into the following definitions (mildly simplified for better readability):

csr = map
(
(filter(λ(j, v).v 6= 0)) ◦ enum

)

csrmv (A, x) = map
(
listsum ◦ map (λ(x, y). x ∗ y) ◦

unsplit zip ◦

(λ(J, V ). (V, map (λi. x ! i) J)) ◦

unzip
)

A

(3.3)

We now pose the verification theorem: when A index-represents the m× n-matrix A′ and x
the n-vector x′, the result of CSR SpMV applied to a CSR version of A and to x represents

1When used with blocked formats, this function translates to concat_vectors (see Section 3.7.5).
2See Section 3.7.5.
3We rewrite [ . . . num . . . ] into enum -> [li, lv: lv -> . . . li . . . ], where li and lv are fresh labels used

for the position index and value of the current element, respectively.
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LL function (f) Isabelle/HOL function (I[[f ]])

id λx. x
eq, neq λ(x, y). x = y, λ(x, y). x 6= y
n, true, false λy. n, λy. true, λy. false

f ? g | h λx. if I[[f ]] x then I[[g]] x else I[[h]] x

l1,. . .,lk = f: g †
(
λ(x1, . . . , xk). I[[g[li/λy. xi]]] (x1, . . . , xk)

)
◦ I[[f ]]

(f1,f2,. . .,fk) λx. (I[[f1]] x, I[[f2]] x, . . . , I[[fk]] x)
fst, snd λ(x, y). x, λ(x, y). y
f -> g I[[g]] ◦ I[[f ]]
add, sub, mul, div, mod λ(x, y). x + y, λ(x, y). x− y, . . .
vadd, vsub, . . . I[[zip -> [add]]], I[[zip -> [sub]]], . . .
leq, lt, geq, gt λ(x, y). x ≤ y, λ(x, y). x < y, . . .
sum, prod foldl (op +) 0, foldl (op ∗) 1

and, or λ(x, y). x ∧ y, λ(x, y). x ∨ y
neg λx. ¬x
conj, disj foldl (op ∧) True, foldl (op ∨) False

len length

rev rev

idx λ(v, i). v ! i
vidx λ(v, s). map (λi. v ! i) s
distl, distr λ(x, v). map (λy. (x, y)) v, λ(x, v). map (λy. (y, x)) v
zip unsplit zip

unzip λl. (map fst, map snd)
enum λv. zip [0 .. < length v] v
concat concat1

infl λ(d, n, v). foldr (λ(i, x) v. v[i := x]) v (replicate n d)
aggr λxs. map (λk. (k, map snd (filter (λ(k′, v). k = k′) xs)))

(remdups (map fst xs))
sort, rsort sort_key fst, I[[sort -> rev]]
trans λv. [map (λv. v ! i) (takeWhile (λv. i < length v) v) .

i← [0 .. < if v = [] then 0 else length (v ! 0)]]
block, vblock block_vector, block_matrix2

map f map I[[f ]]
filter f filter I[[f ]]
num Eliminated via rewriting3

Table 3.1: LL embedding in Isabelle/HOL
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the m-vector that is equal to A′ · x′. More formally:

ilistM m n A′ A ∧ ilistv n x′ x

−→ ilistv m (λi. Σj < n. A′ i j ∗ x′ j) (csrmv (csr A, x))
(3.4)

In the following we present the formalism and reasoning used in proving this goal.

3.4 Formalizing vector and matrix representations

We begin by formalizing vectors and matrices in HOL. Mathematical vectors and matrices
are formalized as functions from indexes to values, namely nat → α and nat → nat →
α, respectively; note that the → type constructor is right-associative, hence a matrix is
a vector of vectors. Dimensions are not encoded in the type itself, and values returned
for indexes exceeding the dimensions can be arbitrary, which means that many functions
can represent the same mathematical entity. Concrete representations of dense and sparse
vectors/matrices are derived from the LL implementation and consist of lists and pairs.
Commonly used representations include indexed lists, value lists and associative lists, all of
which are explained below.

We introduce representation relations (defined as predicates in HOL) to link mathemat-
ical vectors and matrices with different concrete representations, for three reasons. First,
in proving correctness of functions we map operations on concrete objects to their mathe-
matical counterparts. This is easy to do for indexed list representations but gets unwieldy
with others. We encapsulate this complexity inside the definitions of the relations. Second,
a relation predicate can enforce integrity constraints of the representation. For example, an
associative list representation requires that index values are unique; or the lengths of a list
of indexed list representations need to be fixed. Third, for some representations (e.g., value
list) there exists no injective mapping from concrete objects to abstract ones, forcing us to
use relations rather than representation functions. Using relations across the board yields a
more consistent and logically lightweight framework.

3.4.1 Indexed list representation

An indexed list representation of an n-vector x′ by a list x is captured by the ilist predicate.
Note that we refrain from fixing vector elements to a specific type (e.g., integers) and instead
use type parameters α and β to denote the types of inner elements of the mathematical and
concrete vectors, respectively:

ilist :: nat→ (nat→ α→ β → bool)→

(nat→ α)→ [β]→ bool

ilist n P x′ x ⇐⇒

(length x = n) ∧ (∀i < n. P i (x′ i) (x ! i))
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The parameter P is a relation that specifies the representation of each element in the vector.
For ordinary vectors, it is equality of elements. However, P turns useful for matrix repre-
sentation, as we can use arbitrary relations to determine the representation of inner vectors.
We introduce abbreviations for the common cases of indexed list representations:

ilistv n x′ x ⇐⇒ ilist n (λj. op =) x′ x

ilistM m n A′ A ⇐⇒ ilist m (λi. ilistv n) A′ A

3.4.2 Associative list representation

An associative list representation is central to sparse matrix codes as it is often used in vector
compression. It is captured by the alist predicate:

alist :: nat→ (nat→ α→ β → bool)→

(α set)→ (nat→ α)→ [(nat, β)]→ bool

alist n P D x′ x ⇐⇒

distinct (map fst x) ∧

(∀(i, v) ∈ set x. P i (x′ i) v ∧ i < n) ∧

(∀i < n. x′ i 6∈ D −→ ∃v. (i, v) ∈ set x)

Here, distinct is a predicate stating the uniqueness of indexes (i.e., keys) in x. Each element
in an associative list must relate to the respective vector element, also requiring that index
values are within the vector length. Finally, each element in the vector that is not a default
value (specified by the set of values D) must appear in the representing list. Note that a
set of default values accounts for cases where more than one such value exists, as in the
case of nested vectors where each function mapping the valid dimensions to zero is a default
value. Also note that alist does not enforce a particular order on elements in the compressed
representation, nor does it insist that all default values are omitted.

3.4.3 Value list representation

Sometimes concrete objects contain only the values of the elements in a given vector, without
mention of their indexes. This value list representation often occurs prior to computing a
cross- or dot-product. It is captured by the vlist predicate, which states that the list of values
can be zipped with some list of indexes p to form a proper associative list representation.
The length restriction ensures that no elements are dropped from the tail of x:

vlist :: nat→ (nat→ α→ β → bool)→

(α set)→ (nat→ α)→ [β]→ bool

vlist n P D x′ x ⇐⇒

∃p. length p = length x ∧

alist n P D x′ (zip p x)
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Additional representations can be incorporated into our theory. For example, when a
matrix is compressed into an associative list, a dual-index representation relation can be
defined similarly to alist.

3.5 Verifying CSR

We prove Eq. (3.4) using term rewriting and introduction rules. Introduction rules are used
whenever further rewriting cannot be applied. An introduction rule is applied by resolution:
applying the rule G x ∧H y −→ F x y to the goal F a b yields two new subgoals, G a and
H b.

The theorem in Eq. (3.4) makes the following two assumptions:

ilistM m n A′ A (3.5)

ilistv n x′ x (3.6)

which are added to the set of available introduction rules as true −→ . . . . The conclusion of
Eq. (3.4) is our initial proof goal:

ilistv m (λi. Σj < n. A′ i j ∗ x′ j) (csrmv (csr A) x) (3.7)

3.5.1 Simplifying the goal

We begin by applying Isabelle’s simplifier using Eq. (3.3) and standard rules for pairs, lists,
arithmetic and Boolean operators. This removes most of the function abstractions, compo-
sitions and pair formations due to the translation from LL. Our new goal is analogous to
Eq. (3.1):

ilistv m (λi. Σj < n. A′ i j ∗ x′ j)

(map (λr. listsum (map (λv. snd v ∗ x ! fst v)

(filter (λv. snd v 6= 0) (enum r)))) A)

(3.8)

Solving the entire goal using rewriting alone calls for simplification rules that are too
algorithm-specific. For example, the rule

(∀x ∈ set xs. ¬ P x −→ f x = 0)

−→ listsum (map f (filter P xs)) = listsum (map f xs)
(3.9)

allows further simplification of Eq. (3.8), but fails for all formats that introduce more complex
operations between map and filter.
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3.5.2 Introduction rules on representation relations

Consider the equation in the conclusion of Eq. (3.9). We know that it holds when the two
lists, xs and filter P xs, value-represent the same vector. By introducing rules, describing
when it is allowed to apply map, filter and enum operations to value list representations, we
prove that the result of listsum in Eq. (3.8) equals the mathematical dot-product.

Figure 3.1 shows the introduction rules used in proving Eq. (3.4). Application of intro-
duction rules is syntax directed, choosing rules whose conclusion matches the current goal.
Given Eq. (3.8), the prover applies ilist-map, which moves the map from the representing
object into the inner representation relation, followed by ilist-listsum, which substitutes
listsum with an equivalent notion of value-represented rows. This results in

ilist m
(
λi r′ r. vlist n (λj. op =) {0} r′

(map (λv. snd v ∗ x ! fst v)

(filter (λv. snd v 6= 0) (enum r)))
)

(λi j. A′ i j ∗ x′ j) A

Further simplification is not possible at this point, nor can we modify the vlist relation
inside ilist. Luckily, ilist-vlist matches our goal, lifting the inner vlist to the outermost
level and permitting to further operate on the concrete parameters of vlist. Note that ilist-
vlist has two assumptions, resulting in new subgoals

ilist m ?Q ?B′ A (3.10)

and

∀i < m. vlist n (λj. op =) {0} (λj. A′ i j ∗ x′ j)
(
map (λv. snd v ∗ x ! fst v)

(filter (λv. snd v 6= 0) (enum (A ! i)))
)

(3.11)

In Eq. (3.10), ?Q and ?B′ are existentially quantified variables. They do not get instan-
tiated when we apply ilist-vlist, and the subgoal in Eq. (3.10) merely certifies that A has
length n. Therefore, the prover is allowed to instantiate them arbitrarily and Eq. (3.10) is
discharged by the assumption Eq. (3.5).

The rules vlist-map, alist-filter and alist-enum can now be applied to Eq. (3.11).
Note that applying them amounts to the effect of simplification using the rule in Eq. (3.9).
However, they can be applied regardless of the way in which the three operations—map,
filter and enum—are intertwined. Therefore, they are applicable in numerous cases where
the context imposed by Eq. (3.9) is too restrictive.

4The predicate P and the vector z′ are arbitrary, they just help to state that x is a list of length m.
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ilist n (λi a b. P i a (f b)) x′ x

ilist n P x′ (map f x)
ilist-map

ilist m (λi r′ r. vlist n (λj.op =) {0} r′ (f r)) A′ A

ilist m (λi r′ r. r′ = listsum (f r)) (λ i. Σ j < n. A′ i j) A
ilist-listsum

ilist m Q B′ A
∀i < m. vlist n (P i) (D i) (f (A′ i) i) (g (A ! i) i)

ilist m (λi r′ r. vlist n (P i) (D i) (f r′ i) (g r i)) A′ A
ilist-vlist

alist m (λi r′ r. P i r′ (f (i, r))) D x′ x

vlist m P D x′ (map f x)
vlist-map

alist n P D x′ x
(∀i < n. ∀v v′. ¬ Q (i, v) ∧ P i v′ v −→ v′ ∈ D)

alist n P D x′ (filter Q x)
alist-filter

ilist m P x′ x

alist m P D x′ (enum x)
alist-enum

ilist n (λi v′ v. v′ = f i v) x′ z
ilist n (λi v′ v. v′ = g i v) y′ z

ilist n (λi v′ v. v′ = f i v ∗ g i v) (λi. x′ i ∗ y′ i) z
ilist-mult

ilistv m x′ y ilist m P z′ x

ilist m (λi v′ v. v′ = y ! i) x′ x
ilist-nth4

ilistM m n A′ A i < m

ilistv n (A′ i) (A ! i)
ilistv → ilistM

Figure 3.1: Introduction rules for verifying CSR SpMV
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The alist-filter rule forces us to prove that filter only removes default values, in the
form of the following new subgoals:

∀i < m. ∀j < n. ∀v v′.

¬ snd (j, v) 6= 0 ∧ v′ = v ∗ x ! j −→ v′ ∈ {0} (3.12)

∀i < m.

ilist n (λj v′ v. v′ = v ∗ x ! j) (λj. A′ i j ∗ x′ j) (A ! i)

Fortunately, the subgoal in Eq. (3.12) is completely discharged by the simplifier. The re-
maining goal is solved using the ilist-mult, ilist-nth, and ilistv→ ilistM , as well as the
assumptions Eq. (3.5) and Eq. (3.6).

3.6 Automating the proof

The above proof outline already dictates a simple proof method. Isabelle’s tactical lan-
guage [62] provides us with ample methods and combinators that can be used to implement
custom proof tactics. Our proof method is implemented as follows:

1. The simplifier attempts to rewrite the goal until no further rewrites are applicable,
returning the new goal. If no rewrite rule could be applied, it returns an empty goal.

2. The resolution tactic attempts to apply each of the introduction rules and returns a new
goal state for each of the matches. It is possible that more than one rule matches a given
goal, e.g. ilist-map and ilist-nth both match ilist n (λi v′ v. v′ = y ! i) x′ (map f x),
resulting in a sequence of alternative goal states to be proved.

Invoking the proof method leads to a depth-first search on the combination of the two
sub-methods. It maintains a sequence of goal states, initially containing only the main goal.
After each successful application of either sub-method, the result is prepended to the head
of the sequence. A failure at any level causes the search to backtrack and continue with the
next available goal state. When the top element of the goal state sequence is empty, the
main goal has been discharged and the proof is complete.

3.7 Verifying additional sparse formats

We examine to what extent our prover design allows us to verify additional formats without
adding excessively many rules. By this we validate the basic principles that guide our do-
main theory development: minimizing reliance on format-specific rules, avoiding duplication
of logic, and keeping representation relations general, for example by keeping the type of
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the value stored in the matrix parametric. In this section, we extend our prover to verify
additional formats that are strictly more complex than CSR.

For each of these formats, we consider only a single implementation variant from those
presented in Section 2.4 and Section 2.5, as a representative for a larger class of similar
implementations. Our experience indicates that our prover can overcome variations in
implementations—both syntactic and operational—thanks to Isabelle’s simplifier success-
fully canonicalizing these differences, requiring only minor tweaks to the prover’s rule base.

3.7.1 Jagged diagonals (JAD)

A prominent feature of JAD’s proof goal is the double use of transpose, once during compres-
sion (jad) and once during multiplication (jadmv). In modeling transposition in Isabelle we
use the takeWhile list operator, which extracts the longest contiguous prefix of list elements
(in this case, compressed rows) that satisfy some predicate (the row contains at least k ele-
ments, for a varying value of k). The proof relies on the premise that compressed rows are
sorted by decreasing length prior to being transposed, in which case the takeWhile operation
is the same as filtering. More introduction rules were added for handling other operators
used in these functions, including infl, rev and sort_key. This was sufficient for the prover
to complete the proof.

The ability to prove full functional correctness of JAD SpMV documents the strength of
our prover. No other verification framework that we know of can (i) handle the complex data
transformations in JAD compression, and (ii) prove correctness of arithmetic operations on
the resulting sparse representation.

3.7.2 Coordinate (COO)

The COO format is challenging because it associates matrix values with both row and
column coordinates, and also because it requires concatenation and aggregation operations.
It turns out that the COO pair coordinates do not call for a new representation relation. In
fact, thanks to how the functions coo and coomv are composed, we need to handle the pair
coordinates only between concatenation (in coo) and aggregation (in coomv). The simplifier
moves these two functions together; therefore, we introduce a rule to relate the representation
of the input and output of aggr (concat xs), allowing the prover to automatically complete
the proof.

vlist n (λi. vlist m (λj a b. a = snd b ∧ i = fst b) {0})
{x.∀j < m.x j = 0} M xs

alist n (λi. vlist m (λi.op =) {0})
{x.∀j < m.x j = 0} M (aggr (concat xs))

alist-aggr-concat
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3.7.3 Compressed Sparse Columns (CSC)

As CSC exhibits a peculiar use of concatenation and aggregation operations, it is handled
similarly to COO. In contrast to COO, the input list to concat represents a transposed
matrix, hence we use a rule similar to alist-aggr-concat above, but with a transposed
matrix M .

3.7.4 Sparse CSR (SCSR)

The SCSR format applies another layer of compression on top of ordinary CSR. SCSR
demonstrates the ability of our prover to peel off the additional compression layer and prove
correctness of the overall result, while requiring only two rules in addition to those needed
by CSR (see Table 3.2).

3.7.5 Blocked formats

It is easy to extend our prover to blocked formats because our matrices are of parametric
type—the prover can work with matrices of numbers as well as with matrices whose elements
are matrices. Parameterization of matrices was expressed with Isabelle/HOL type classes,
which are used to restrict types in introduction rules.

We use a theory of finite matrices [49]. Here, too, the size of a matrix is not encoded in
the matrix type (denoted α matrix) but it is required that matrix dimensions are bounded.
To represent matrices as abstract values, we introduce the matrix conversion function:

matrix :: nat→ nat→ (nat→ nat→ α)→ α matrix

The first two parameters specify the row and column dimensions, respectively. The third
parameter is the abstract value encoded into the matrix.

We also extend the theory with the following conversion functions, which allow us to
model operations on blocked compressed formats:

block_vector :: nat→ nat→ [α]→ [α matrix]

block_matrix :: nat→ nat→ nat→ nat→ [[α]]→ [[α matrix]]

concat_vectors :: nat→ [α matrix]→ [α]

The operation block_vector m k x transforms the list x of length nk into a list of n k-
vectors; block_matrix m n k l A transforms the object A, representing an mk × nl-matrix,
into an object representing an m × n-matrix of k × l-blocks; concat_vectors k x is the
inverse operation, unpacking k-vectors into a single long vector. These are used to model,
respectively, the LL functions block, vblock and concat in the implementation of blocked
formats, respectively. Note that these functions use a richer set of parameters compared to
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k 6= 0
ilistv n (λi. block k 1 (λi′ j. A′ (i ∗ k + i′))) A

ilistv (n ∗ k) A′ (concat_vectors k A)
ilist-concat_vectors

l 6= 0 ilistv (m ∗ l) x′ x

ilistv m (λi. block l 1 (λi′ j′. x (i ∗ l + i′)))
(block_vector m l x)

ilist-block_vector

k 6= 0 l 6= 0 ilistM (m ∗ k) (n ∗ l) A′ A

ilistM m n (λi j. block k l (λi′ j′.A′(i ∗ k + i′)(j ∗ l + j′)))
(block_matrix m n k l A)

ilist-block_matrix

Figure 3.2: Introduction rules for verifying blocked sparse formats

their LL origins (e.g., the number of blocks). We argue that this is a reasonable price to pay
for being able to verify blocked formats.

This code shows register-blocked CSR implementation in Isabelle:

rbcsr m n k l A = map (filter (λ(i, v). v 6= 0) ◦ enum)

(block_matrix m n k l A)

rbcsrmv m n k l (A, x) =

concat_vectors k

(map (listsum ◦

(map (λv.snd v ∗ block_vector n l x ! fst v))) A)

We require that block dimensions are greater than zero and properly divide the respective
matrix and vector dimensions. The correctness theorem follows:

k 6= 0 ∧ l 6= 0 ∧ ilistM (m ∗ k) (n ∗ l) A′ A ∧ ilistv (n ∗ l) x′ x

−→ ilistv (m ∗ k) (λi. Σj < n ∗ l. A′ i j ∗ x′ j)

(rbcsrmv m n k l (rbcsr m n k l A, x))

(3.13)

After adding the introduction rules in Figure 3.2 and a few rewrite rules for matrix, the
prover automatically proves Eq. (3.13).
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3.8 Evaluation

The verifier described in this chapter can prove full functional correctness of a variety of
sparse formats, quickly and automatically. In the following, we describe our experience with
other approaches for verifying sparse matrix programs. We then evaluate the success of our
current approach in terms of applicability and extensibility.

Prior to focusing on functional programming models for implementing sparse codes, we
experimented with different approaches to verifying imperative programs. However, even
the simple CSR format proved rather complex to handle in any of these approaches, which
we describe here:

Hoare logic / VCGen. We began experimenting with Hoarse-style pen-and-paper proofs,
using either first-order judgements or inductive predicates in describing representation
invariants of the sparse format. This convinced us that invariants in first-order logic of
even relatively small programs are not amenable to manipulation by hand. While the
use of inductive predicates showed more potential to scale, it was also more restrictive
to work with. One particular problem has to do with the direction in which inductive
definitions are folded and unfolded. This is a known problem in logic domains that
deal with inductive constructions, and requires the use of inversion techniques [23, 19].

We next turned to mechanized verification of our CSR sparse matrix routines using
ESC/Java [28], a verification condition generator (VCGen) and checker for Java pro-
grams. We were able to prove that a sparse matrix-vector multiplication returns the
desired result with respect to a dense matrix multiplication. However, this approach
proved impractical for two reasons:

• The first-order invariants and the reasoning provided by the framework were in-
sufficient for capturing the full correctness property. For example, we could not
reason directly about a sum of a sequence of values or account for arbitrary
permutations of values. Consequently, our proofs were limited to cases were the
nonzero values of the matrix are compressed in the original column order, whereas
in general they need not be.

• Developing proofs amounted to writing very large loop invariants, preconditions
and postconditions. These largely outnumbered the actual lines of code by a
factor of 3–7 depending on the procedure being verified.

The aforementioned limitations rendered this approach inappropriate and impractical.
We were motivated to look for more automated techniques and better abstractions for
handling the complexity of sparse matrix manipulation.

Abstract interpretation. We used TVLA [50], a parametric framework based on three-
valued logic, in an attempt to find a more automated technique for reasoning about
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sparse matrices via powerful abstractions. We modeled dense and sparse matrix data
structures using nested lists, with additional structural constraints and predicates for
tracking dense-to-sparse mapping. We succeeded in analyzing a simple sparse for-
mat construction and inferred the desired invariant concerning the mapping of values
between the dense matrix and the sparse representation. However, the verification of
matrix-vector multiplication led to a combinatorial state explosion due to array random
access. Moreover, the TVLA formulation was suited for capturing relational invariants
and had no built-in support for asserting arithmetic properties such as equivalence of
terms. It, too, thus proved inappropriate for the verification problem at hand.

Satisfiability. We experimented with verifying sparse codes using SAT-based bounded
model checking. This technique was successfully used in verifying full functional cor-
rectness of small programs involving arithmetic, arrays and loops in the context of
inductive synthesis [55, 54]. It uses a straightforward translation from imperative se-
mantics to circuits, posing the correctness problem as unsatisfiability of the inverse
property. Unfortunately, our prover scaled poorly for operations on even the simplest
CSR sparse matrix format.

The aforementioned experiments convinced us that verifying the correctness of sparse matrix
routines calls for a higher level of program abstraction and, accordingly, a logical framework
capable of tracking intricate properties of such programs compactly and efficiently. Turning
our attention to functional programs allowed us to replace explicit loops over arrays with
maps and a fixed set of reductions over lists, which in turn simplified the formulation and
encapsulation of inductive invariants.

We now analyze the coverage of proof rules in our domain theory and project on its
extensibility and applicability to new formats. We hypothesize that, thanks to the use of
parametric representation relations, our rule base exhibits a high degree of reusability, and
is therefore likely to extend to additional formats with diminishing implementation efforts.

In total, 24 rules were needed to prove our sparse formats, including both introduction
and simplification rules. Introduction rules were needed to (i) reason about some language
construct such as map, sum and filter, in the context of a certain representation (e.g.,
rules ilist-map, ilist-listsum, alist-filter in Figure 3.1); and (ii) formalize algebraic
operations on vector and matrix representations, such as extracting an inner representation
relation (ilist-vlist) and substituting a vector representation with a matrix representation
(ilistv → ilistM). Most operators were handled by a single introduction rule; a few (e.g.,
map) required one rule per representation relation.

Table 3.2 summarizes the reuse of the rules that were needed for proving five sparse
formats. On average, fewer than 19% of rules used by a particular format are specific to
this format, while over 66% of these rules are used by at least three additional formats,
a significant level of reuse. This implies that the large majority of rules needed to verify
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Reuse degree # Rules Avg. LOC CSR SCSR COO CSC JAD Total %

1 11 28.3 1 2 5 3 11 18.3
2 3 6.3 3 3 6 10.0
3 1 6.0 1 1 1 3 5.0
4 5 6.4 3 5 4 3 5 20 33.3
5 4 2.3 4 4 4 4 4 20 33.3

Table 3.2: Rule reuse in sparse matrix format proofs

new formats is already in use by other formats. Even of the rules needed for more complex
formats (CSC and JAD), only up to a third are format-specific.

On the other hand, format-specific rules tend to be harder to prove, as indicated by the
average number of lines of Isar [62] code required to prove the rules. A detailed examination
reveals that two rules for handling an aggr-concat sequence (used in CSC and COO) account
for over a hundred lines each. We believe that these rules can be refactored for better reuse
of simpler lemmas and greater automation. Note that most of the effort in proving JAD
was invested in stating and proving the simplification of transpose-transpose composition.
Table 3.2 does not account for these rules, as they are quite general and were implemented
as an extension to Isabelle’s theory of lists.

3.9 Discussion

This chapter shows how sparse format implementations written in LL can be verified for
full functional correctness using a higher-order logic theorem prover. We are not aware of
previous work on verifying full functional correctness of sparse matrix codes. We are not even
aware of work that verified their memory safety without explicitly provided loop invariants.

Our own attempts at verification included ESC/Java, TVLA and SAT-based bounded
model checking, neither of which was satisfactory (see Section 1.2, p. 1). Furthermore, neither
of these tools was capable of proving higher-order properties like the ones we currently prove.
This led us to raising the level of abstraction and deferring to purely functional programs
where loops are replaced with comprehensions and specialized reduction operators.

The use of parametric representation relations allows us to verify a variety of different
formats using a relatively small number of proof rules. By keeping proof rules general
and preferring resolution of specific terms (via introduction rules) over simplification of
compound expressions, we are able to achieve a high degree of reuse of rules. This suggests
that extension of our proof theory to new formats is likely to require only incremental theory
development efforts.

The development of effective verification frameworks for any domain in higher-order logic
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requires deep proficiency in interactive theorem proving theory and practice. This often
hinders its attractiveness as a viable method for developing verification frameworks. Most
notably, higher-order theorem proving is characterized by a dichotomy between the program
operational specification (as expressed in LL functions) and reasoning on deeper semantic
invariants, such as those encapsulated by higher-order representation relations. Alternatives
to HOL, such as dependently typed languages and their associated proof logic [22], mark a
step forward in integrating deeper reasoning with programming and may represent a more
scalable approach to provably correct domain-specific programming.

Our Isabelle/HOL theory of sparse matrices, along with the proofs of formats mentioned
in this chapter, are publicly available as a source code repository. We encourage the interested
reader to download it, here: https://bitbucket.org/garnold/isabelle-sparse

https://bitbucket.org/garnold/isabelle-sparse
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Chapter 4

Compiling LL Programs

4.1 Overview

In this chapter we consider the problem of translating programs written in LL into efficient
data-parallel C code. Our base compilation approach is straightforward: we deploy a syntax-
directed translation from high-level language constructs to a target C program, modeling
the monadic dataflow in the LL program via value assignment to temporaries. We use
a NESL-like flattening scheme for representing arbitrarily nested datatypes and insist on
properly abstracting them using hierarchical C types and macros. We use a simple analysis
to infer the sizes of output buffers and deploy an allocation strategy for temporary buffers
that reduces memory management overhead. The result is a simple code generator that
produces clean and well structured C programs, which are well-suited for further tweaking
and reuse by programmers. However, it leaves a lot to be desired in terms of low-level
performance, and does not utilize parallel hardware. The rest of this chapter describes a
set of sequential optimizations and a parallelization scheme, which together yield parallel
code whose dataflow, communication and synchronization resemble those of handwritten
kernels. We conclude by evaluating the performance of two example kernels generated from
LL programs on a multicore machine and show that they are competitive with handwritten
C implementations.

4.2 Introduction to compilation of LL code

4.2.1 Compiling a high-level vector language

There have been several languages that raised the level of abstraction in which vector pro-
grams are written. Early examples include set-based languages like SETL [51], the APL
family of languages for processing massive array-based data [35], and the influential FP/FL
function-level languages [2, 3]. Recent dynamic languages (e.g., Python) incorporate high-
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level constructs such as list comprehension, which are a convenient alternative form for
dependence-free loops. These language all share the goal of promoting productivity and ease
of programming. However, their implementations are based on dynamic interpretation and
deemphasize the low-level performance of programs.

The goal of the LL compiler is to generate efficient C code that can be deployed in sparse
matrix programs and is amenable to further reuse. This chapter focuses on four aspects of
the compilation process:

Parsing and semantic analysis. The compiler front-end performs the mundane tasks nec-
essary to obtain a typed abstract syntax tree (AST) representation of the LL program.
In addition to inferring the type of each functional program node, it also infers symbolic
size boundaries of output values that are generated at each node. This information
is necessary for proper allocation of memory buffers during program execution. The
front-end is described in Section 4.3.

Datatype representation. We implement a data abstraction layer that hides the intrica-
cies of compound object handling. As a result, the translation process is fairly straight-
forward, and the code generated clean and relatively easy to maintain and reuse. A
data abstraction layer maps high-level LL types that were found to be used in the
program—including primitives, pairs, lists and nested types—to their corresponding C
representation. In doing so, we insist on (i) keeping the coherent view of compound
data object intact, providing a consistent API for manipulating them; as well as (ii) ob-
taining a “flat” layout of nested list types, which ensures a minimal memory footprint,
efficient handling of lists through various functions, and good runtime characteristics.
The data abstraction layer is described in Section 4.4.

Syntax-directed translation. We deploy a syntax-directed translation of LL functions
into C. Dataflow edges—which are implicit in LL in the form of function composition
and pair constructors—translate into value assignment to temporaries. Map and filter
constructs translate to loops that traverse an input list object. Built-in functions are
implemented as library function calls. This process is described in Section 4.5.

Sequential optimization. The sparse kernels generated by naïve translation from LL can
be seven times slower than a handwritten version. In order to mitigate this problem,
we identify a small set of optimizations that (i) allow an underlying C compiler to
optimize loops; (ii) replace dynamic buffer allocation with static array declarations
when possible; (iii) eliminate the use of temporary buffers between adjacent loops;
and (iv) streamline the traversal of nested data structures in nested loops. These
optimizations are described in Section 4.6.
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4.2.2 Nested data-parallelism

High-level languages have been used for specifying implicitly parallel computations. In LL,
we deploy a simple heuristic loop parallelization scheme that results in programs with long
sequential execution threads, which are well-suited for execution on multicore platforms.
This is different from the approach taken in previous work, most notably NESL [12], which
pioneered the field of nested data-parallel languages.

In NESL, a programmer can write an expression for multiplying pairs of numbers in a
two-level nested list (i.e., a list of lists of pairs) using nested comprehension expressions, as
follows:

{ {x * y : x, y in Ai} : Ai in A }

The idea behind the NESL data parallel compilation process—known as the vectorization
transform—is to translate nested loops that operate over nested lists into a chain of vector
primitives that operate over flat and segmented vectors containing atomic value types. The
example NESL expression shown above is compiled into the following single vector operation,
where Ax and Ay are vector operands that contain all the first and second values from pairs
in A:

vec_mul (Ax, Ay)

It is now up to a vector abstraction layer [10] and the underlying hardware to parallelize this
computation step and execute it efficiently. On the parallel, lockstep-style SIMD machine
of the era (such as the Thinking Machines CM-2) this could be done very efficiently with
perfect load balancing. Note that parallel workload distribution is oblivious of the lengths
of nested lists, which may be arbitrary. Once the pair-wise multiplication is computed, the
result vector is broken down into lists whose lengths are the same as those in the nested
list A. Furthermore, the NESL compiler can vectorize arbitrarily nested loop constructs by
systematically lifting the semantics of loop bodies and flattening nested list objects [13].

We argue that the parallelism induced by NESL’s vectorization transform is critically
flawed from the viewpoint of modern architectures, where computational cores are fewer and
vastly more powerful, and synchronization and communication are expensive. We demon-
strate this claim using a simple SpMV example.

Let A be a sparse matrix in CSR format (see Section 2.4.1). Multiplying A by a vector x

can be expressed using the following NESL comprehension syntax:

{ sum ({ Aij * x[j] : j, Aij in Ai }) : Ai in A }
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The NESL compiler stores the nested lists of A in three separate vectors: one vector contains
all the column indexes, a second contains all nonzero cell contents, and a third encodes the
boundaries of each of the compressed rows (called segments). Here, we name them Ajs,
Aijs and Aseg, respectively. It then transforms the function into a sequence of three vector
operations: the first fetches the cell values in x that correspond to all the column indexes in
Ajs; the second multiplies those values element-wise with all their corresponding nonzeros
in Aijs; the third sums the resulting products within the segments defined by Aseg.

t1 = vec_idx (x, Ajs)

t2 = vec_mul (Aijs, t1)

out = seg_sum (Aseg, t2)

The parallel execution dataflow of this code is shown in Figure 4.1. The red frames indi-
cate units of parallel execution. It is well-suited for massively parallel SIMD architectures,
where fine-grained parallelism improves the overall throughput. However, several attributes
make it unsuitable for execution on prevailing parallel architectures, such as shared mem-
ory multicore machines: (i) multiple workload distribution points (red arrows) induce load
balancing and scheduling overhead; (ii) single primitive operations (idx, mul) in parallel
blocks prohibit instruction-level optimization (pipelines, superscalar); (iii) unnecessary com-
munication through memory buffers (black arrows) induces latencies and saturates memory
bandwidth; and (iv) multiple synchronization points (green arrows) induce signaling over-
head and lead to frequent idling.

A more desirable execution scheme is shown in Figure 4.2. It trades parallelism granu-
larity for exposing longer instruction sequences, thus improving on all of the aforementioned
issues.1 This style of parallelism is widespread in SPMD programming, where a single block
of code executes in parallel on different chunks of data. Fewer synchronization points al-
low each of the threads to run more efficiently. Optimizations are then applied to improve
the sequential performance of threads yet further, by eliminating various communication
overheads.

It is generally possible to reconstruct synchronization-free serial execution flow from vec-
torized programs, as was described by Chatterjee [21]. However, it requires multiple analysis
steps for recovering dependencies between inputs and outputs of adjacent functional blocks
and reestablishing nested data structures that were lost in the course of vectorization. These
analyses are done conservatively and may fail to discover some dependencies. Moreover, cer-
tain NESL transformations—e.g., the distribution of free variables to all list elements when
compiling comprehensions—cannot be reversed without knowledge of the original high-level
program.

1Note that even the communication through temporary buffer t2 is avoidable if the summation is fused into
the preceding parallel loop, accumulating the sum into a scalar register within each segment (see Section 4.6).
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x: Ajs:

vec_idx

idx idx idx · · · idx idx

t1:

Aijs:

vec_mul

mul mul mul · · · mul mul

t2:

Aseg:

seg_sum

sum sum · · · sum

out:

dist

sync

dist

sync

dist

sync

Figure 4.1: Fully vectorized parallel CSR SpMV



CHAPTER 4. COMPILING LL PROGRAMS 59

Ajs:

Aseg:

x:

idx idx idx · · · idx idx

Aijs:

mul mul mul · · · mul mul

t2:

sum sum · · · sum

out:

dist

sync

Figure 4.2: CSR SpMV with coarse-grained parallelism
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We generate SPMD-style data parallel code directly from LL programs. We do so by
applying a simple parallelization transformation, which converts maps with certain charac-
teristics into parallel loops. In generating low-level parallel code we use OpenMP [20], a
widespread and portable framework that provides a convenient abstraction for dispatching
and synchronization of parallel threads. Our layout of nested list data structures allows us
to quickly partition data for processing by parallel threads in a load balanced fashion. This
parallelization scheme results in synchronization free serial execution flows within parallel
threads, as exemplified in Figure 4.2. It is described in Section 4.7. As shown in Section 4.8.3,
LL generated parallel code achieves substantial speedups on multicore architectures.

In this chapter we do not address SIMD parallelism and consider it a topic for future
research. Modern day SIMD, such as SSE instructions on Intel processors, can be applied
to loops within parallel threads, and is therefore orthogonal to the kind of parallelism that
we generate. Furthermore, we experimented with replacing ordinary double precision reads,
multiplications and additions with SSE intrinsics in the reference SpMV kernel shown in
Figure 4.18. Our measurements indicated that the throughput of the SIMD variant is within
0.87–1.08 (median 0.97) of the non-SIMD one, depending on the matrix at hand. We conclude
that the two-fold double precision floating point SIMD available with current SSE technology
is not substantially beneficial for SpMV performance.

4.3 The LL compiler front-end

The LL front-end consists of a parser and a semantic analyzer. The latter includes a program
normalization phase, type inference, inlining, and size inference.

4.3.1 Parsing, normalization, type inference and inlining

The parser implements the grammar that expands the constructs shown in Table 2.1 (p. 15)
through Table 2.3 (p. 16). We use a GLR parser generator (Bison) to avoid tedious disam-
biguation between nested name binding constructs and tuple functions.2 The output of the
parser is an abstract syntax tree (AST), which provides a hierarchical, unambiguous view of
the program structure.

Parsing is followed by a program normalization phase, where syntactic sugar—including
infix/prefix operators, application, multi-arity tuples and list comprehension—is expanded
into canonical forms.

The LL compiler deploys a standard Hindley-Milner [44] style global type inference algo-
rithm. The type system accommodates type parameters, which can instantiate to arbitrary

2 Since name binding in LL can contain nested parentheses, in parsing an expression such as
(a, (b, c)):. . . it is only the colon that disambiguates a name binding from a tuple function. In LR,
this causes a reduce/reduce conflict exceeding any fixed lookahead, which necessitates a delayed evaluation.
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types. For example, the type of an integer constant is τ → int, where τ is a type parameter.3

The inference of types in compound constructs is based on a prescribed set of rules corre-
sponding to the semantics of each construct. The type of such constructs often depends on
the input/output types of its components. For example, the type of a pair (f1, f2) depends
on the types of f1 and f2. Therefore, type inference of LL programs is a recursive, bottom-up
process.

Hindley-Milner type inference uses unification to constrain type parameters into more
concrete forms. In LL, unification occurs in the following cases: (i) a pipe construct f -> g,
where the output type of f is unified with the input type of g; (ii) a pair constructor (f, g),
where the input types of f and g are unified; (iii) a filter construct filter f , where the out-
put type of f is unified with bool; and (iv) a name binding construct (x :: τ1, y :: τ2): f ,
where the input type is unified with an optionally provided type annotation (τ1, τ2). A type
error occurs when unification is attempted with two incompatible types: a list with a non-list,
a pair with a non-pair, or two different primitive types (e.g., int and bool).

Unification is known to infer the most general types for a program. This means that the
inferred types of some constructs may still contain type parameters. For example, the type
of the following function for swapping the components of a pair is (τ1, τ2)→ (τ2, τ1):

def swap = (snd, fst)

As with built-in functions, a parametric type of a user defined function is further constrained
and instantiated when the function is used in the context of another function. For example,
if the aforementioned swap function is to be used is the following context, its type parameters
τ1 and τ2 will both instantiate to int due to being unified with the input type of sub:

def swap_and_sub = swap -> sub

That said, once an entire program is typed, only those functions whose types are fully
instantiated will be considered for code generation.

Finally, the LL front-end inlines user-defined functions into their invocations, instantiat-
ing type parameters in inlined definitions accordingly. Full inlining in LL is possible thanks
to the absence of recursion. While inlining may cause bloating, we find that it is necessary
for improving the performance of generated code.

To demonstrate the output of the LL front-end, consider the dense matrix-vector multipli-
cation introduced in Section 2.2.2 (p. 10). The AST representation of this function definition
after parsing, normalization and type inference is shown in Figure 4.3. The double-lined box
represents a function definition action (see Table 2.3); single-lined boxes represent func-
tional blocks (see Table 2.1 and Table 2.2) and are each assigned input and output types
(see Section 2.2.1, p. 9).

3In LL, we treat constants as functions that ignore their inputs, and hence have an arbitrary input type.
This eliminates the distinction between “functions” and “values”, and allows to treat both uniformly.
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1 def dmv = •

2 A, x: • :: ([[float]], [float])→ [float]

3 • -> • :: ([[float]], [float])→ [float]

4 A :: ([[float]], [float])→ [[float]] 5 map • :: [[float]]→ [float]

6 • -> • :: [float]→ float

7 (•,•) :: [float]→ ([float], [float])

8 id :: [float]→ [float] 9 x :: [float]→ [float] 10 • -> • :: ([float], [float])→ float

11 zip :: ([float], [float])→ [(float, float)] 12 • -> • :: [(float, float)]→ float

13 map • :: [(float, float)]→ [float] 14 fsum :: [float]→ float

15 fmul :: (float, float)→ float

Figure 4.3: Typed AST representation of dense matrix-vector multiplication
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4.3.2 Size inference

The purpose of size inference is to associate with each node in a function’s AST the size
of the output of that node. This information is used by the back-end to generate memory
allocation directives. Size inference uses symbolic descriptors for capturing dependencies
between lengths of lists at different locations in the program. The analysis propagates size
descriptors via symbolic execution. The result is an over-approximation of the actual sizes
of intermediate values in the computation, relative to the size of the input.

A size descriptor of a data value in LL is a symbolic construct whose hierarchical structure
mirrors the type of that value. The size of an atomic value—e.g., a number—is denoted by
the terminal symbol ‘·’. The size of a pair is denoted by (s1, s2), where s1 and s2 denote the
sizes of the first and second components, respectively. The size of a list is denoted by [l : s],
where l is the length of the list and s the size of elements in the list. A length is either an
identifier that represents an actual runtime value, or is unknown and denoted by ‘?’. For
nested lists, we use cascaded length descriptors of the form l1/l2/ . . . /lk, where k is the depth
of the list nesting and, for each 1 ≤ i < k, li+1 is an upper bound on the sum of lengths
of all the lists whose length is represented by li. Cascaded length descriptors are important
when reasoning about the lengths of nested list objects. In particular, the fact that l1 ≤ li
for i > 1 later allows the code generator more freedom in allocating buffers for temporary
computation values: it may extract the runtime value for l1 and use it for allocating an
output buffer; or it can use the runtime value for li, which may be available prior to entering
the map, to make a single buffer allocation that is large enough to contain any single list
output. As shown in Section 4.4, the low-level layout of nested lists is designed to capture
the total length of lists at a given nesting depth, making it easy to extract at runtime.

For example, consider the AST representation of a dense matrix-vector multiplication
shown in Figure 4.3. The input to this function is a pair consisting of a dense matrix of type
[[float]], which is later bound to A, and a vector of type [float], which is later bound to x.
The analysis associates with the input a type descriptor of the form ([l1 : [?/l2 : ·]], [l3 : ·]).
This means that A has l1 rows, and while the length of each row is not known a priori, and
might even differ from row to row, the sum of lengths of all rows is l2:

l2 =
l1−1∑

i=0

len (A[i])

The vector x has l3 elements.
Figure 4.4 is analogous to Figure 4.3 and shows the result of size inference applied to the

same function. Each node is associated with an input and output size descriptor. We trace
the process of size inference for this simple function:

• The analysis of the binding construct (node 2) decouples the size descriptors for the
dense matrix and vector and associates them with the bound names A and x, re-
spectively. Consequently, the analysis of the named function A (node 4) returns the
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1 def dmv = •

2 A, x: • ([l1 : [?/l2 : ·]], [l3 : ·])→ [l1 : ·]

3 • -> • ([l1 : [?/l2 : ·]], [l3 : ·])→ [l1 : ·]

4 A ([l1 : [?/l2 : ·]], [l3 : ·])→ [l1 : [?/l2 : ·]] 5 map • [l1 : [?/l2 : ·]]→ [l1 : ·]

6 • -> • [l4 : ·]→ ·

7 (•,•) [l4 : ·]→ ([l4 : ·], [l3 : ·])

8 id [l4 : ·]→ [l4 : ·] 9 x [l4 : ·]→ [l3 : ·] 10 • -> • ([l4 : ·], [l3 : ·])→ ·

11 zip ([l4 : ·], [l3 : ·])→ [l3 : (·, ·)] 12 • -> • [l3 : (·, ·)]→ ·

13 map • [l3 : (·, ·)]→ [l3 : ·] 14 fsum [l3 : ·]→ ·

15 fmul (·, ·)→ ·

Figure 4.4: Size inference of dense matrix-vector multiplication
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associated size descriptor as its output size, [l1 : [?/l2 : ·]], which is forwarded via the
pipe (node 3) as the input size to the outer map (node 5).

• The analysis of the outer map (node 5) peels off the outermost length of the input size
descriptor—in this case, l1—and substitutes a fresh length identifier l4 for the unknown
inner length ‘?’. As a result, the size descriptor at the entry to the map body (node 6)
is [l4 : ·], where l4 is only defined in the context of the map. This step also emits
a constraint on the new length symbol, namely l4 ≤ l2; we know that l2 represents
the sum of lengths of all lists whose length is represented by l4. This constraint is
important: it allows the code generator to use either the runtime value of l4 to allocate
an output buffer inside the map, or it can use the runtime value of l2 for allocation
prior to entering the map, knowing that it is over-approximating l4.

• The output size descriptor of the pair construct (node 7) is the pair of output descrip-
tors of its components: id (node 8) merely propagates its input size, [l4 : ·]; x (node 9)
returns the size descriptor associated with the bound name, [l3 : ·]. Hence, the output
size of node 7 is ([l4 : ·], [l3 : ·]).

• The rule for inferring the output size of zip (node 11) does the following:

1. Returns as output a list size descriptor whose length is one of the lengths of its
two inputs, and whose element size is the pair of its inputs’ element sizes. In this
example, it is [l3 : (·, ·)].

2. Emits a constraint on the length of the two inputs, namely l4 = l3.

Note that every built-in LL function has a similar rule for inferring its output size
given its input size. These rules may introduce new length symbols and constraints.
The detailed list of inference rules is omitted.

• The analysis of the inner map (node 13) peels off the outermost length—in this case,
l3—and propagates (·, ·) to the inner function, fmul (node 15). The rule for the lat-
ter returns ·. Leaving the map, the analysis re-wraps this size descriptor with the
previously removed length, resulting in [l3 : ·].

• The analysis of fsum (node 14) returns ·. This is propagated back as the output size
of nodes 12, 10 and 6.

• Finally, the analysis of the outer map (node 5) re-wraps the size resulting from the
body function (node 6) with the previously removed length, resulting in [l1 : ·]. This
size is propagted back as the output size of nodes 3 and 2.

As shown in this example, the size inference analysis revealed the necessary information
for allocating sufficiently large buffers for values emitted during the computation of the
function. Specifically, it found that:
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1. The buffer necessary to store the output of the inner map (node 13) should be of length
l3, which is the length of the input right-hand side vector.

2. The buffer necessary to store the output of the outer map (node 5)—which is also
the output of the whole function—should be of length l1, the same as the length (i.e.,
number of rows) of the input matrix.

Constraints emitted during the process can be used for validating runtime invariants by
adding assertions to the generated code. In this example, upon entering the body of the
outer map, the code generator can emit a statement of the form assert (l4 == l3), where
both lengths are replaced with expressions that extract the appropriate list lengths.

The size inference analysis applies nicely to the benchmarks evaluated in Section 4.8,
allowing precise and efficient allocation of buffers (see Section 4.5):

• For CSR SpMV, it precisely infers that (i) the size of the intermediate list of products
generated for each compressed row is equal to the length of that row, and does not
exceed the sum of lengths of all the rows; and (ii) the size of the output vector is the
same as the number of rows in the compressed input matrix.

These map, respectively, to the outputs of nodes 7 and 5 (as well as 3 and 2) in
Figure 4.10. In the example generated code in Figure 4.11, they determine the sizes of
the temporary v4 (declared in line 13) and the output value *out.

• In the case of RBCSR the analysis infers that (i) the size of the list of products
computed as part of the dense block multiplication equals the column dimension of the
block; (ii) the computation of dense products along a row results in a list whose length
is bounded by the total number of blocks, and its elements are vectors whose size is the
row dimension of blocks; (iii) the outermost map over the rows of the blocked matrix
results in a list whose length is equal to the length of the input matrix (i.e., the number
of rows of blocks), and its elements are vectors whose length is the row dimension of
blocks.4

These facts allow for a sound and efficient allocation scheme that can be generated at compile-
time.

4.4 Representation of high-level datatype

The translation of LL programs relies on a data representation scheme that maps opera-
tions on high-level data values to C objects. The goal of this representation is two-fold. On
the one hand, it implements an efficient representation of nested lists and pairs that mini-
mizes memory footprint and improves the runtime characteristics of memory usage. This is

4Precise size inference for RBCSR is made possible thanks to incorporating fixed-length list inference (see
Section 4.6.1).
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[
[ (0, 1.0) ]

[ (0, 2.0) (1, 3.0) ]

[ ]

[ (1, 4.0) (3, 5.0) ]
]

[
0 1 3 3 5

]

[
(0, 1.0) (0, 2.0) (1, 3.0) (1, 4.0) (3, 5.0)

]

︷ ︸︸ ︷
c.len + 1

r
[

0 1 3 3 5
]

d.d0
[

0 0 1 1 3
]

d.d1
[

1.0 2.0 3.0 4.0 5.0
]

︸ ︷︷ ︸
d.c.len

(a) Nested (b) Flattened list of lists (c) Segregated list of pairs

Figure 4.5: Flattening of a CSR representation

achieved via datatype flattening, which maps arbitrarily nested data values onto an aggre-
gate of flat vectors. On the other hand, it hides the complexities of a low-level representation
and facilitates a straightforward translation process of LL programs into C. It does so by
providing a data abstraction layer that consists of a coherent type hierarchy and an API for
manipulating objects that represent nested data values.

4.4.1 Datatype flattening

This technique maps a high-level nested datatype onto a small number of flat arrays con-
taining primitive data values. Flattened data structures are necessary for efficient sequential
processing as well as data parallelism. In the sequential case, they minimize memory frag-
mentation and dramatically improve the temporal locality of looping constructs, maximizing
cache utilization and improving the effectiveness of prefetching. Flattening also turns high-
level operations like zip/unzip and concatenation into trivial, constant time ones. In the
parallel context, datatype flattening facilitates vectorization, which is the basis for NESL’s
data parallelization, described in Section 4.2.2. The idea was first introduced in the early
work of Blelloch and Sabot [13].

Flattening is based on two principles: (i) a list of lists of elements of type τ maps to a
long, consecutive list of τ ’s and a buffer of segment descriptors (integers) determining the
start/end indexes of each of the inner lists; and (ii) a list of pairs of types τ1 and τ2 maps to
two lists of elements of types τ1 and τ2, respectively.

Figure 4.5 demonstrates flattening on a small CSR matrix data object: (a) the high-
level, nested data structure; (b) a segmented representation obtained by flattening of the
nested list; (c) a pair of segmented lists obtained by segregating the values of the pairs in
the list. Note that the two resulting segmented lists (denoted by d.d0 and d.d1) share the
same segment buffer (denoted by r). The end result is equivalent to a standard array-based
representation of CSR used by a majority of scientific applications.5 Finally, flattening can be

5Notice that the flattened representation in Figure 4.5(c) is identical to the low-level data structure shown
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Type specification T [[τ ]]: Canonical type name L[[τ ]]:

T [[int]] → int

T [[float]] → double

T [[bool]] → bool

T [[(τ0, τ1)]] → struct {L[[τ0]] d0; L[[τ1]] d1;}

T [[[τ ]]] → struct {l_t c; T ′[[[τ ], ε]]}

T ′[[[(τ0, τ1)], i]] → T ′[[[τ0], i0]] T ′[[[τ1], i1]]
T ′[[[[τ ]], i]] → size_t *ri; L[[[τ ]]] di;
T ′[[[τ ], i]] → L[[τ ]] *di;

L[[int]] → int

L[[float]] → double

L[[bool]] → bool

L[[τ ]] → L′[[τ ]]_t

L′[[int]] → i

L′[[float]] → f

L′[[bool]] → b

L′[[(τ0, τ1)]] → pL′[[τ0]]L′[[τ1]]
L′[[[τ ]]] → lL′[[τ ]]

Figure 4.6: Mapping of LL types to C

applied to any nested type of arbitrary depth by recursively applying the two aforementioned
principles.

4.4.2 Data abstraction layer

The data abstraction layer does two things: (i) it systematically packs flattened data repre-
sentations into hierarchical C type definitions; and (ii) it generates a set of API methods for
manipulating objects of these types. This allows us to separate the handling of data values
from the generation of code that implements the flow of data values through the program.
At the same time, data abstraction does not prohibit optimization of data representation.
As we show in Section 4.6, optimizing the data representation is done by enhancing the type
declarations together with the methods that are used for manipulating them.

The first role of the data abstraction layer is to map all LL types that are being used by
the program to encapsulated and modular type definitions in C. The result of mapping an
LL type τ is a C type declaration:

typedef T [[τ ]] L[[τ ]];

Here, T [[τ ]] generates a C type specification and L[[τ ]] a canonical type name for τ . These
two functions are defined in Figure 4.6. T [[τ ]] implements the recursive datatype flattening
described in Section 4.4.1. However, it only applies one of the two flattening principles,
which applies to the type at hand, τ . It then uses L[[τ ′]] to declare a field that corresponds
to a nested type τ ′, and delegates further flattening to the generation of T [[τ ′]]. The names
generated by L[[τ ]] take the form pt1t2 when τ is a pair type and lt when it is a list type.

in Figure 2.1(b) (p. 17).
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/* Type: [[float]] */

typedef struct {

l_t c; /* Bookkeeping data */

size_t *r; /* Row segments */

lf_t d; /* Flattened rows */

} llf_t;

/* Type: [float] */

typedef struct {

l_t c; /* Bookkeeping data */

double *d; /* Row content */

} lf_t;

/* Type: [[(int, float)]] */

typedef struct {

l_t c; /* Bookkeeping data */

size_t *r; /* Row segments */

lpif_t d; /* Flattened rows */

} llpif_t;

/* Type: [(int, float)] */

typedef struct {

l_t c; /* Bookkeeping data */

int *d0; /* Column indexes */

double *d1; /* Nonzero values */

} lpif_t;

(a) Dense matrix [[float]] (b) CSR matrix [[(int, float)]]

Figure 4.7: Implementation of LL matrix types in C

For example, llf_t stands for a “list of lists of floats” (used for representing a dense matrix)
and llpif_t is a “list of lists of pairs of integers and floats” (representing a CSR matrix).

A simple example of a hierarchical, flattened datatype is that of a dense matrix whose
high-level type is [[float]]. The result of datatype generation is a C type llf_t, which in turn
uses another C type lf_t for storing the concatenated rows of the matrix. The definition of
the two types in shown in Figure 4.7(a). Here, the buffer r in the encapsulating type, llf_t,
contains the segment descriptors that split the contiguous list of numerical values d.d into
rows. Fields of type l_t are used for internal bookkeeping of their respective objects, such
as storing the lengths of lists: c.len is length of the segment list and d.c.len is the total
length of the flattened list of matrix rows; c.size and d.c.size store the allocated size of
these buffers, respectively. Note that lf_t is a valid representation for [float] and can be
used elsewhere. This leads to a consistent use of types throughout the generated code.

As a slightly more complicated example, consider the type [[(int, float)]] that is used for
CSR matrices such as the one in Figure 4.5(a). The result of datatype generation is a C type
llpif_t, which uses another C type lpif_t for storing the actual contiguous data elements
of the nested lists of pairs. The definition of the two types is shown in Figure 4.7(b). The
mapping of fields of the encapsulating type, llpif_t, to actual data content is exemplified
in Figure 4.5(c). Notice how the list of pairs is stored using two separate buffers, d.d0 (for
column indexes) and d.d1 (for nonzeros). The lengths stored in c.len and d.c.len in this
case are 4 and 5, respectively.
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Plen(v) = P (v, P ′
len)

Pterm(v) = P (v, P ′
term)

Pmono(v) = P (v, P ′
mono)

P (v, p) =





P (v.d0, p) ∧ P (v.d1, p) if typeof(v) = L[[(t0, t1)]]

P ′(v, p, [t], ε) if typeof(v) = L[[[t]]]

true otherwise

P ′(v, p, [t], i) =





P ′(v, p, [t0], i0) ∧ P ′(v, p, [t1], i1) if t = (t0, t1)

p(v, [t], i) ∧ P (v.di, p) if t = [t′]

p(v, [t], i) otherwise

P ′
len(v, [t], i) =





v.c.len < v.c.size if t = [t′]

v.c.len ≤ v.c.size otherwise

P ′
term(v, [t], i) =





v.ri[v.c.len] = v.di.c.len if t = [t′]

true otherwise

P ′
mono(v, [t], i) =




∀k . 0 ≤ k < v.c.len =⇒ v.ri[k] ≤ v.ri[k + 1] if t = [t′]

true otherwise

Figure 4.8: Data structure integrity constraints
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initτ (t: τ, l1: int, . . ., lk: int) Initialize t with nested lengths l1 through lk

len (s: [τ ]) Return the number of elements in list s
get[τ ] (t: τ, s: [τ ], j: int) Get the j-th element of s into t
set[τ ] (t: [τ ], s: τ, j: int) Set the (fixed size) j-th element of t to s
iter[τ ] (i: [τ ]′, s: [τ ]) Initialize i for iterating over s
read[τ ] (t: τ, i: [τ ]′) Read the next element of iterator i to t
append[τ ] (t: τ, s: [τ ]) Setup t for appending an element to s
write[τ ] (t: [τ ], s: τ) Commit appended value in s to t

pair (t: (τ1, τ2), s1: τ1, s2: τ2) Form a pair t of the values of s1 and s2

Table 4.1: Data layer API used by generated code

Several invariants govern the integrity of C data objects whose types are generated by
the process described in Figure 4.6. They ensure that the content of segment buffers are
sane and that the lengths of different buffers are properly correlated. These invariants are
specified in Figure 4.8. The higher-order predicates P and P ′ follow the inductive structure
of the nested type, whereas the specialized predicates Plen, Pterm and Pmono enforce particular
properties:

Sanity of buffer lengths. For each bookkeeping field c that governs a data buffer, c.len ≤
c.size; if c governs a segments buffer, then c.len < c.size.6 Note that a single
bookkeeping field may govern both data and segment descriptor buffers, in which case
the stricter requirement applies. This predicate is defined by Plen.

Consistency of terminal segment value. For each segments buffer r that is controlled
by a field c and governs a list field d, the index that terminates the final segment of
the list must equal the length of the list, namely r[c.len] = d.c.len. This predicate
is defined by Pterm.

Monotonicity of segment values. For each segments buffer r that is controlled by field
c, r[k] ≤ r[k + 1] for all 0 ≤ k < c.len. This predicate is defined by Pmono.

The second role of the data abstraction layer is to provide an API for compound datatypes,
which hides the complexities of handling segment offsets, multiple assignments and memory
management, and allows simple code generation. The API is shown in Table 4.1. Note that
some of these methods have type-specific implementation that is generated by the type ab-
straction layer (e.g., get[τ ]), while others are type agnostic (e.g., pair). All of these methods
induce a constant time overhead: read/write iterators are implemented via aliasing to the

6Segment values encode both the start and end indexes of each segment, hence the length of a segment
buffer must be strictly greater than the number of sublists it specifies.
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data buffers; the set operation, which performs actual copying, is only provided for lists of
elements of a known fixed size and hence induces a constant time overhead as well. Note
that the actual methods are implemented as macros, and hence expand to operations at the
caller’s context with no invocation overhead. Following are example get methods for types
[[float]] (llf_t) and [[(int, float)]] (llpif_t), used for extracting the j-th row of a dense and
a CSR matrix, respectively.

#define get_llf(t, s, j) \

lf_t t; \ /* Declare target object */

t.c.len = (s).r[j + 1] - (s).r[j]; \ /* Compute sublist length */

t.d = (s).d.d + (s).r[j]; /* Alias value array */

#define get_llpif(t, s, j) \

lpif_t t; \ /* Declare target object */

t.c.len = (s).r[j + 1] - (s).r[j]; \ /* Compute sublist length */

t.d0 = (s).d.d0 + (s).r[j]; \ /* Alias index array */

t.d1 = (s).d.d1 + (s).r[j]; /* Alias nonzero value array */

For example, applying get_llpif with j equals 1 to the CSR representation in Figure 4.5(c)
will initialize a target object of type lpif_t (see definition above). Its d0 and d1 fields will
alias the subparts of the index and nonzero value buffers, respectively, that correspond to
the second compressed row. The length that will be stored in the c field of the target object
is 2. The actual data that is referenced by this object is highlighted in red in Figure 4.5(c).

Data layer API method implementations are generated automatically for each type that
is being used in the program. In general, their generation follows the hierarchical structure
of LL types and their corresponding C types. This process is guided by the same rules that
were used for generating type definitions, shown in Figure 4.6. The full specification of the
API method generation process is omitted.

4.5 Syntax-directed translation

The LL compiler back-end applies a set of rules that entails a recursive translation of the
program. It is applied to the root of each function definition, generating a C implementation
for each. A subset of these translation rules is shown in Figure 4.9. One kind of rules,
denoted by F [[a]], governs the translation of actions, such as a function definition. The
second kind of rules, denoted by F ′[[e, Γ, vin, vout]], translates functional building blocks and
takes four arguments: e is the functional construct to be translated, Γ is the environment

7Note that the implementation of some built-in functions is specialized for different types. The code
generator annotates the invocation of such functions accordingly.
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F [[def f= e]] →

void def_f (L[[κ′(e)]] *out, L[[κ(e)]] *in)

{

F ′[[e, ∅, *in, *out]]
}

F ′[[v1, v2: e, Γ, vin, vout]] →

L[[τ1]] v1;

F ′[[fst, Γ, vin, v1]]
L[[τ2]] v2;

F ′[[snd, Γ, vin, v2]]
F ′[[e, Γ ∪ {v1, v2}, vin, vout]]

where κ(e) = (τ1, τ2)

F ′[[e1 -> e2, Γ, vin, vout]] →
L[[κ′(e1)]] v;
F ′[[e1, Γ, vin, v]]
F ′[[e2, Γ, v, vout]]

where v is fresh

F ′[[f, Γ, vin, vout]] →
{

vout = f; if f ∈ Γ
f (vout, vin); otherwise7

F ′[[map e, Γ, vin, vout]] →

append[κ′(e)] (v′, vout);
int vj;
for (vj = 0; vj < len (vin);

vj++) {

get[κ(e)] (v, vin, vj);
F ′[[e, Γ, v, v′]]
write[κ′(e)] (vout, v′);

}

where vj, v, v′ are fresh

F ′[[(e1, e2), Γ, vin, vout]] →

L[[κ′(e1)]] v1;

F ′[[e1, Γ, vin, v1]]
L[[κ′(e2)]] v2;

F ′[[e2, Γ, vin, v2]]
pair (vout, v1, v2);

where v1, v2 are fresh

Figure 4.9: Syntax-directed translation rules
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of bound names, vin is an input identifier and vout is an output identifier. Translation rules
makes use of the input and output types of the functional unit to which they are applied,
extracted using κ(e) and κ′(e), respectively. The function L[[τ ]] obtains the name of the C
type that implements the LL type τ (see Figure 4.6). The translation also uses the datatype
API methods shown in Table 4.1.

The translation rules constitute a mapping from the LL high-level dataflow model to the
more traditional control flow and dataflow used in imperative programs:

• The translation of name binding declares new variables and assigns to them the respec-
tive components of the input. It then translates the inner function in an environment
that contains these newly declared variables.

• A pipeline (left-to-right functional composition) can be viewed as an explicit dataflow
edge. Its translation propagates the output of the first function as input to the second
function using a temporary.

• Named functions translate to either (i) copying from a bound name variable, if the
name corresponds to a variable that is present in the current environment; or (ii) a
function invocation.

• A map translates to a loop that iterates over the elements of the list, applies the inner
function to each, and appends the results to the output list.

• Pair construction merely embeds its two inputs in a single output variable.

Note that the rules in Figure 4.9 are simplified for presentation purposes. For example, they
do not handle name scoping, buffer management, runtime checks and error conditions.

Consider the CSR SpMV kernel that was introduced in Section 2.4.1 (p. 17). Its typed
AST representation is shown in Figure 4.10. Figure 4.11 shows the C code that is generated
from this AST using the rules in Figure 4.9. We annotated certain lines with comments that
specify the LL construct for which code is being generated, along with the identifiers that
specify the input/output dataflow.

Notice how buffer allocation is handled in this example. Thanks to size inference, we
can determine that the length of the output (*out) equals the number of rows in the input
matrix (v1) and initialize it accordingly (line 12). Also, the length of the temporary buffer
v4 is known to be equal to the length of each row processed by the inner map (loop in lines
26–48), or len (v3). However, size inference also tells us that this buffer is no larger than
the sum of lengths of all rows, or len (v1.d). It is therefore beneficial to initialize it once
outside the loop nest (line 14) and reset it to “empty” right before the inner loop (line 21).

It should be noted that the code generated by the LL compiler does not currently im-
plement proper memory deallocation. We anticipate that, due to the cycle-free nature of
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1 def csrmv = •

2 A, x: • :: ([[(int, float)]], [float])→ [float]

3 • -> • :: ([[(int, float)]], [float])→ [float]

4 A :: ([[(int, float)]], [float])→ [[(int, float)]] 5 map • :: [[(int, float)]]→ [float]

6 • -> • :: [(int, float)]→ float

7 map • :: [(int, float)]→ [float] 8 fsum :: [float]→ float

9 • -> • :: (int, float)→ float

10 (•,•) :: (int, float)→ (float, float) 11 fmul :: (float, float)→ float

12 snd :: (int, float)→ float 13 • -> • :: (int, float)→ float

14 (•,•) :: (int, float)→ ([float], int) 15 idx :: ([float], int)→ float

16 x :: (int, float)→ [float] 17 fst :: (int, float)→ int

Figure 4.10: Typed AST representation of CSR SpMV
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1 void def_csrmv (lf_t *out, pllpiflf_t *in)
2 {
3 llpif_t A; /* A, x: A -> map (...) / *out <- *in */
4 fst (A, *in);
5 lf_t x;
6 snd (x, *in);
7

8 llpif_t v1; /* A -> map (...) / *out <- *in */
9

10 v1 = A;
11

12 init_lf (*out, len (v1)); /* Initialize result vector. */
13 lf_t v4;
14 init_lf (v4, len (v1.d)); /* Initialize vector of products (advanced). */
15

16 append_lf (v2, *out); /* map (map (...) -> fsum) / *out <- v1 */
17 int j1;
18 for (j1 = 0; j1 < len (v1); j1++) {
19 get_llpif (v3, v1, j1);
20

21 empty_lf (v4); /* map (...) -> fsum / v2 <- v3 */
22

23 append_lf (v5, v4); /* map ((..., ...) -> fmul) / v4 <- v3 */
24 int j2;
25 for (j2 = 0; j2 < len (v3); j2++) {
26 get_lpif (v6, v3, j2);
27

28 pff_t v7; /* (snd, (x, fst) -> idx) -> fmul / v5 <- v6 */
29

30 double v8; /* (snd, (x, fst) -> idx) / v7 <- v6 */
31 snd (v8, v6);
32

33 double v9;
34 plfi_t v10; /* (x, fst) -> idx / v9 <- v6 */
35

36 lf_t v11; /* (x, fst) / v10 <- v6 */
37 v11 = x;
38 int v12;
39 fst (v12, v6);
40 pair (v10, v11, v12);
41

42 idx_plfi (v9, v10); /* idx / v9 <- v10 */
43

44 pair (v7, v8, v9);
45

46 fmul (v5, v7); /* fmul / v5 <- v7 */
47 write_lf (v4, v5);
48 }
49

50 fsum (v2, v4); /* fsum / v2 <- v4 */
51 write_lf (*out, v2);
52 }
53 }

Figure 4.11: Generated code for CSR SpMV
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aliasing in LL programs, a reference counting based scheme will constitute a precise and
efficient solution.8

Finally, the performance characteristics of this naïvely generated C code is suboptimal
compared to what is reasonable to expect from a handwritten variant. Most notably, the
use of memory buffers for storing intermediate results in loops (i.e., products of compressed
rows) is highly detrimental to the overall performance of the code: not only does it in-
duce unnecessary memory write and read operations, it also pollutes the cache and tampers
with locality of reference. In the following section we show techniques for eliminating such
inefficiencies.

4.6 Sequential optimization

Loop-based code that is generated using the naïve translation scheme shown in Section 4.5
suffers from several shortcomings and needs to be further optimized in order to perform on
par with handwritten C code. Inefficiencies are attributed to (i) redundant reads/writes
to memory, which can be eliminated through loop fusion, data structure optimization, and
streamlined indexing of buffers; and (ii) unoptimized loops, which can be optimized via
a more rigorous type analysis. This section presents three separate techniques that our
compiler deploys in order to eliminate the above redundancies. Our goal is not to perform
low-level optimizations such as register mapping and loop unrolling; rather, it is to make the
generated code amenable to such optimization by an underlying C compiler.

As an overarching example, consider the register-blocked CSR (RBCSR) SpMV shown
in Section 2.5.2 (p. 28). It reprises here, with the inner dense matrix-vector function (dmv)
replaced with its definition.9 We assume that the dimensions of blocks are fixed at r rows
and c columns and that they are computation constants.

def rbcsrmv (A, x) =

xb = block (c, x):

A ->

[[(snd, xb[fst]) ->

Aij, xj:

Aij -> [(id, xj) -> zip -> [fmul] -> fsum]] -> fvsum] ->

concat

To avoid the full complexity of this relatively subtle kernel we break it down into smaller
parts: (i) we use the inner loops that compute the dense matrix-vector multiplication of

8A similar scheme is used by the interpreter of the K language—a descendant of APL that is used as the
basis for high-throughput database systems—and is known to be efficient and robust.

9Inlining of user-defined functions is part of the processing done by the LL compiler front-end.
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blocks—highlighted by a red frame—in demonstrating the effect of fixed list length inference
(Section 4.6.1); (ii) we focus on the composition of maps with summation operations—
highlighted by a green frame—in demonstrating the effect of reduction fusion (Section 4.6.2);
finally, (iii) we focus on the looping structure of the whole function in demonstrating the
effect of nested index flattening (Section 4.6.3).

4.6.1 List fixed-length inference

The goal of this technique is to exploit information about lengths of lists that is known at
compile-time in facilitating several code improvements. We extend our high-level types for
capturing constant list lengths and deploy a propagation-based inference for finding such
lengths. We then extend the back-end to take advantage of this knowledge in generating
enhanced datatype layouts and emitting loop code that is more amenable to further opti-
mization.

Consider the multiplication of dense blocks inside the RBCSR SpMV function shown
above (highlighted by a red frame). Without additional information, the inferred types for
Aij and xj are, respectively, [[float]] and [float]. This can be seen in the typed AST of the
dense multiplication function in Figure 4.3 (where they are named A and x, respectively).
This leads to three separate yet related outcomes:

1. The data abstraction layer will generate an ordinary low-level nested list representation
for Aij, as shown in Figure 4.7(a). The outer aggregate, llf_t, will include a segment
buffer r. However, as the length of rows in blocks is fixed at c, we can predict that
the sequence of values in the segment buffer must be in increments of c; and since the
number of rows is r, we can predict that its length will be r + 1. An example sequence
of segment values is 0, c, 2c, . . . , rc.10

In accordance with the data structure layout, the methods generated for accessing
rows inside a dense block such as get_llf are obliged to refer to the segment buffer
in determining the offset and length of a given row. The result is a suboptimal data
representation and a redundant computation that uses it: using segment buffers for
representing fixed length sublists results in excess memory usage and unnecessary read-
/write operations.

It is also of note that the relaxed view on the dimensions of dense blocks has further
effects outside the dense multiplication sub-function:

• The input matrix A—of type [[(int, [[float]])]], or llpillf_t—uses a redundant
segment buffer for determining the boundaries of whole blocks, although they are
known to be increments of the number of lines in a block, r.

10Note that segment offsets are not necessarily zero-based so there are many possible such sequences.
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• The blocked vector xb—of type [[float]], or llf_t—uses a redundant segment
buffer for determining the boundaries of blocks, although they are known to be
increments of c.

• The output of the second map—of type [[float]], or llf_t—uses a redundant seg-
ment buffer for determining the boundaries of the dense matrix-vector products,
although they are known to be increments of r.

By extension, the data abstraction methods that govern the handling of these low-level
type representations are suboptimal.

2. As shown in Figure 4.9 and exemplified in Figure 4.11, the boundaries of the loops
that correspond to the two maps over dense blocks will be determined at runtime by
the length of the list that is being iterated upon. This is suboptimal because we can
predict that these two loops will iterate exactly r and c times, respectively. Given this
knowledge, and given that r and c are often small constants, we could take advantage
of unconditional loop unrolling and eliminate looping overhead entirely.

3. The output of the inner loop—the one that implements [fmul]—will write to a buffer
whose size depends on some runtime length (see Section 4.3.2). This is suboptimal
because we can predict that it will be of size c. Had we retained this knowledge, we
could declare this buffer as an array on the stack. This would have saved the dynamic
allocation overhead in this case. But more importantly, in conjunction with uncondi-
tional loop unrolling it would allow the C compiler to map array cells to registers and
to substitute array dereferences in loops with operations on registers.11

We solve these inefficiencies by extending LL types to capture constant list lengths. The
user can annotate certain values in the program with nested list types that are known to have
a fixed length. The compiler propagates this knowledge—along with knowledge gathered
from other numerical constants in the program—and enriches the previously inferred generic
list types with constant qualifiers. The compiler back-end, in turn, uses this knowledge for
(i) generating efficient data representation and API methods for nested types with constant
list lengths; (ii) setting constant loop boundaries; and (iii) allocating fixed length buffers on
the stack. As is evident from the evaluation in Section 4.8.2, exploiting these properties at
the level of C code is paramount to realizing the benefits of register blocking.

Inferring length-enriched list types. Fixed-length extended list types are of the form
[τ ]n, where n ∈ N. For example, a user can specialize a dense matrix-vector multiplication
kernel for a specific block size, say 4× 3, as follows:

11Taking full advantage of such optimizations in the RBCSR case also depends on proper fusion of the
fsum operation into the preceding loop, see Section 4.6.2.
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def dmv (A :: [[float]{3}]{4}, x :: [float]{3}) = ...

The compiler front-end enriches list types with fixed-length qualifiers via an abstraction-
based propagation algorithm. Abstract descriptors for this analysis are analogous to length-
extended LL types, with the added feature that integer types can optionally be marked by
constant qualifiers as well. This allows the analysis to track confluences between integer
constants and constant lengths of lists.

The analysis itself is similar to the size inference described in Section 4.3.2. Starting from
the root, it extracts length-enriched user type annotations and merges them with previously
inferred generic types to create an input abstract descriptor; it then uses node-specific rules
to propagate constant information through the AST. The result is a function whose typed
nodes are enriched with constant qualifiers.

As an example, consider a length-enriched dense matrix-vector multiplication. Its AST
version is identical to the one in Figure 4.3. But now we have the additional knowledge
that the input type of the function body (node 2) is ([[float]3]4, [float]3). Following are the
highlights of the analysis process:

• The inferred length-enriched descriptor at the input to the first map (node 5) is
[[float]3]4. The outer list dimension is peeled off, propagating [float]3 as the input
to the inner function (node 6).

• It is easy to see how the inferred length-enriched abstraction descriptor at the input to
the zip function (node 11) is ([float]3, [float]3). Propagation of length-enriched types
through this node results in [(float, float)]3.

• The latter is propagated as the input descriptor to the second map (node 13). The
analysis of this node infers that the output descriptor is [float]3.

• Finally, the analysis of the outer map (node 5) yields a length-enriched output descrip-
tor of [float]4.

Evidently, the analysis discovered the necessary facts about fixed-length qualifiers for the
back-end to optimize data object representation and allocation, as well as loop boundaries.

The process exemplified above can be applied to the fully fledged RBCSR SpMV that is
annotated as follows:

def rbcsrmv (A :: [[(int, [[float]{3}]{4})]], x :: [float]) =

xb = block (3, x): ...

In this case, it also uses the fact that the descriptor at the input to block is (int3, [float]),
yielding an output type [[float]3]. This is propagated through the outermost two maps,
causing xj to have a length-enriched type of [float]3. From here, the analysis is the same as
that of the dense multiplication kernel.
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Enhanced low-level datatype representation. The type abstraction layer is extended
to handle fixed-length list types accordingly. We map LL list types of the form [τ ]n, with
any value of n, to a single parametric low-level type. For example, both [float]4 and [float]3
map to the same type nlf_t. Here, the n qualifier indicates that the following list takes a
length parameter. The back-end is responsible for substituting constant values for length
parameters during code generation, based on the specific constant lengths inferred for each
program location.

A data structure that implements a nested list with a fixed inner list length does not
contain a segment buffer. Instead, it contains a scalar offset value to the first element,
stored in the b field. The length of each segment (a.k.a., stride) comes from the provided
length parameter. For example, the nested type [[float]3]4 translates to the following type
declarations, which are the fixed-length equivalents of the types shown in Figure 4.7(a):

/* Type: [[float]{n0}]{n1} */

typedef struct {

nl_t c;

int b; /* Offset to beginning of first segment */

nlf_t d;

} nlnlf_t;

/* Type: [float]{n} */

typedef struct {

nl_t c;

double *d;

} nlf_t;

Notice that the type nlf_t contains the same data as the plain lf_t in Figure 4.7(a).12 As
hinted above, the difference is in the associated length parameter, which will be attached to
every use of this type in the generated code.

The data abstraction layer generates specialized methods for handling length-enriched
lists. For example, getting the j-th sublist of an object of type [[float]3]4 is done by the
following macro. Here, the type parameters are marked n0 (for the inner lists) and n1 (for
the outer list). Contrast this implementation with that of get_llf shown in Section 4.4.2.

#define get_nlnlf(t, s, j, n0, n1) \

nlf_t t; \

t.c.len = n0; \

t.d = (s).d.d + (s).b + (n0) * (j);

12The bookkeeping field for fixed-length lists of type nl_t is identical in content to the plain l_t used with
ordinary lists. We differentiate the type name to distinguish its use in different contexts.
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It should be noted that the C compiler disseminates type parameters during macro ex-
pansion, then treats them as constant literals through subsequent optimization phases. For
example, the multiplication expression (n0) * (j) in the above macro is replaced with an
increment by a constant (in this case 3) via an ordinary strength reduction optimization.

Another enhancement is concerned with initialization macros, where dynamic buffer al-
locations are replaced with array declarations. Buffer pointers—such as .d.d in the above
example—then point to the statically allocated buffers. Interestingly, a standard optimiz-
ing compiler (GCC) can optimize dereferences to such buffers: array cells are mapped to
registers, and array dereferences with fixed offsets translate to operations on those registers,
instead of memory.

Constant loop boundaries. A map that is applied to a fixed-length list entails a loop
whose boundary conditions are constant expressions. An optimizing compiler can unroll
these loops entirely, eliminating conditional branches and substituting constants for uses of
loop indexes.

The overall result is code that largely resembles what an expert programmer achieves
through laborious coding: manually unrolled loops, careful optimization of register use,
and elimination of unnecessary segment buffers. Fixed-length inference is embedded in the
LL compiler front-end, as part of the semantic analysis phase. Enhancements to datatype
handling and code generation are implemented in the back-end. The extension to code
generation is embedded in the existing syntax-directed translation and does not necessitate
an additional AST traversal.

4.6.2 Reduction fusion

The goal of fusion is to eliminate writing of loop output to temporary memory buffers. We
perform local AST rewriting and annotate map nodes with a new notion of embedded reduc-
ers, which results in a significantly faster code with less communication through memory.

Figure 4.12 shows a partial AST representation of the RBCSR SpMV kernel that includes
the sequence of three innermost nested maps. The first map (node 2) iterates over dense
blocks along a compressed row; the second map (node 5) iterates over rows of a dense block;
the third map (node 8) computes products along a dense row. Here we assume that list
types of dense blocks are annotated with fixed dimensions of 4× 3 (see Section 4.6.1).

Embedded reducers. Our first observation is that the outputs of the maps at nodes 2
and 8 are used as direct inputs for summation operations (nodes 3 and 9, respectively), via
composition operators (nodes 1 and 7). These are highlighted by red frames in Figure 4.12.
The translation rules in Figure 4.9 dictate that a memory buffer is allocated for storing the
intermediate result (a list). The use of an intermediate buffer induces significant performance
penalty: every iteration of the preceding loop writes to this buffer, and every iteration of
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1 • -> • :: [(int, [[float]3]4)]→ [float]4

2 map • :: [(int, [[float]3]4)]→ [[float]4]
3 fvsum :: [[float]4]→ [float]4

4 • -> • :: (int, [[float]3]4)→ [float]4

5 map • :: [[float]3]4 → [float]4

6 • -> • :: [float]3 → float

7 • -> • :: [(float, float)]3 → float

8 map • :: [(float, float)]3 → [float]3
9 fsum :: [float]3 → float

10 fmul :: (float, float)→ float

Figure 4.12: Typed AST representation of RBCSR SpMV inner maps
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the succeeding reduction (summation in this case) reads from it. Things get much worse in
the presence of cache misses (e.g., when the buffer gets big enough). Finally, the allocation
overhead is also considered, although it can be amortized by moving it outside the loop nest.

We eliminate the communication penalty by embedding summation operations into the
maps that precede them. Essentially, we rewrite a function of the form map (fmap) -> freduce

into map/freduce (fmap). This technique is an instance of loop fusion, a well-known optimiza-
tion for improving performance of adjacent loops. In LL, where adjacent functional blocks
communicate through intermediate variables, fusion is particularly beneficial. We focus on
fusing maps that are followed by reductions, as seen in the RBCSR example. We call the
specialization of a map to incorporate a reduction functionality an embedded reducer.

Figure 4.13 shows the effect of incorporating embedded reducers into the highlighted maps
in Figure 4.12. The reducer-equipped maps (nodes 1 and 7) are annotated appropriately,
instructing the code generator to emit summation code directly inside the loops. In this
case, the former map (node 1) accumulates outputs of type [float]4; the latter map (node 7)
accumulates outputs of type float.

Reducer derivation. We now observe that the second map (node 5)—highlighted by a
red frame in Figure 4.13—is the last function to be executed in the body of the first map
(node 1). Its output is a list of floats, which is then summed by the embedded reducer at
node 1. This computation is redundant, because the value computed on the i-th iteration
of node 6 (a single float) can be directly added to the i-th position of the reducer at node 1
(a list of floats). Hence, the second map (node 5) can avoid writing to a temporary output
buffer in this case.

We remedy this inefficiency by propagating a derivative of an embedded reducer of a map
(in this case, node 1) as we process its body. When the last operation in the body is itself a
map (in this case, node 5), it “consumes” the derived reducer: the inner map can then use
its own iteration index i to accumulate its i-th output directly into the i-th position of the
outer map’s reducer.

Figure 4.14 shows the effect of deriving a reducer for the second map (node 5). A
derived reducer is annotated with the number of the outer node, where the original reducer
was defined (node 1). The reducer at the outer node is marked “consumed” (denoted by
parentheses), indicating that the summation operation takes place at an inner node.

Reducer shadowing. We now observe that the embedded reducer at the first map (node 1)—
highlighted by a green frame in Figure 4.13—may not be as efficient as it should. In partic-
ular, updating each element in this object of type [float]4 requires that we read its current
value (i.e., compute the correct offset and fetch the value from memory), perform the addi-
tion, and store the new value. It may be necessary to use a memory allocated buffer even
when the output has a known fixed length, as in this case. The reason is that it may be
nested in yet another map and be part of a larger buffer of unknown size. This is actually
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1 map/+ • :: [(int, [[float]3]4)]→ [float]4

4 • -> • :: (int, [[float]3]4)→ [float]4

5 map • :: [[float]3]4 → [float]4

6 • -> • :: [float]3 → float

7 map/+ • :: [(float, float)]3 → float

10 fmul :: (float, float)→ float

Figure 4.13: Embedded reducers in RBCSR SpMV
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1 map/(+̃) • :: [(int, [[float]3]4)]→ [float]4

4 • -> • :: (int, [[float]3]4)→ [float]4

5 map/+1 • :: [[float]3]4 → [float]4

6 • -> • :: [float]3 → float

7 map/+ • :: [(float, float)]3 → float

10 fmul :: (float, float)→ float

Figure 4.14: Complete reducer optimization in RBCSR SpMV



CHAPTER 4. COMPILING LL PROGRAMS 87

the case with the RBCSR example, where the vectors resulting from the map at node 1 are
concatenated to form the final result.

We mitigate this problem by shadowing embedded reducers whose type is a list of stat-
ically known size. The idea is to allocate a temporary “shadow” buffer on the stack, which
has the same length as the reducer, and accumulate values to this buffer. Once the accumula-
tion is completed, the shadow reducer is copied (“deshadowed”) once onto the actual output
buffer. Shadowing can boost performance of nested maps significantly. This is especially
true when inner loops are unrolled, and a shadow reducer can be mapped to registers.

Figure 4.14 shows the final AST after shadowing the reducer at the first map (node 1).
A shadowed reducer is denoted by a tilde.

This completes the reducer optimization for the RBCSR kernel, and results in the fol-
lowing dataflow:

• The third map (node 7) accumulates the results of multiplication into a scalar reducer
variable directly. This variable can be optimized into a register by the C compiler.

• The second map (node 5) accumulates the values in the latter variable into the i-th
position of the shadow reducer of the outer map (node 1). Thanks to the optimizations
described in Section 4.6.1, accumulation to this shadow reducer amounts to operations
on registers, rather than memory.

• At the end of each iteration of the outer map (node 1) the content of the shadow
reducer is copied to the permanent output buffer.

The overall result is code whose dataflow largely resembles a carefully handcrafted low-
level implementation, with minimal communication through memory. The embedded reducer
logic does not require a separate transformation phase and is implemented as an extension to
the syntax-directed translation: (i) embedding is triggered by matching patterns in the AST
and performing local tree rewrites; (ii) reducer derivation is done by propagation through
the recursive translation process; and (iii) reducer shadowing is a node-local optimization.

4.6.3 Nested index flattening

As shown in Section 4.5, a map induces successive reads of values from an input list, using
the list’s get method. Nested maps over deeply nested data structures require, at each level,
that offsets of sublists be computed and pointers initialized accordingly. Often times this
involves reading from segment buffers. When done repeatedly throughout the loop nest,
these reads amount to a substantial portion of the execution time.

Nonetheless, we observe that nested maps often encode a linear sweep over one or more
buffers containing primitive values. This is due to the data structures that are generated
by datatype flattening (see Section 4.4.1). For example, consider the complete map nest in
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1 map • [[(k1 :: int, [[k2 :: float]])]]

2 map • [(k1 :: int, [[k2 :: float]])]

3 • -> • (·, [[k2 :: float]])

4 (•,•)

6 snd 7 • -> •

9 (•,•) 10 idx

13 xb 14 fst

5 Aij, xj: • ([[k2 :: float]], [?])

8 • -> •

11 Aij 12 map • [[k2 :: float]]

15 • -> • [k2 :: float]

16 (•,•) 17 • -> • ([k2 :: float], [?])

18 id 19 xj 20 zip 21 map • [(k2 :: float, ?)]

22 fmul

Figure 4.15: Flat index propagation in RBCSR SpMV
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RBCSR multiplication, shown in Figure 4.15. This figure omits type annotations; for now
we ignore the annotations to the right of some of the nodes. This computation induces two
separate linear traversals: (i) the block index integer values are read through subsequent
iterations of the second map (node 2); (ii) the floating point values inside blocks are read
through subsequent iterations of the fourth map (node 21).

Our goal is to identify linear traversal patterns of buffers containing primitive values, and
to replace naïve sublist extraction with a more economical, linearly advancing pointer.

Identifying linear traversal. Candidates for linear traversal are maps whose input type
is a list that contains a primitive value type that is not nested within another list. In this
example, the input type of node 2 is [(int, [[float]])], suggesting that the integer component
may be linearly read, which is indeed the case.

However, it is also necessary to ensure that the order of reads from each candidate buffer
is not interrupted by any of the nodes between the function entry point and the node at
which they occur. For example, the input for node 21 is of type [(float, float)], suggesting
that both float components may be linearly read. In this case, however, only the first
component—containing values in dense blocks—induces linear reads from a buffer. The
second float component represents values in the right-hand side vector, whose access pattern
is non-linear: it is governed by block index values and is therefore random.

Furthermore, it is also essential to track how a pointer that is initialized to some buffer
outside the loop nest is to be used by the loop in which the same buffer is read. For example,
the buffer containing dense block floating point values, and that is nested in four levels of
lists (i.e., [[(int, [[float]])]]) at the entry to the outermost loop, is actually accessed as the
left-hand side components of the list of pairs (i.e., [(float, float)]) that is processed by the
innermost map (node 21).

We implement a dataflow analysis that infers, for each functional node in the program,
the set of buffers whose values are read in a linear fashion. It also associates with each such
buffer a symbol representing the pointer that is set to point to this buffer at the entry to
the function. Here, too, we use an abstraction of buffer pointers—called an index tree—
that mirrors the structure of LL types: a primitive value that is nested in one or more
loops can be assigned a pointer symbol, k. For presentation purposes, we also annotate
pointers with their value type. In our example, the abstract descriptor at the entry (node 1)
is [[(k1 :: int, [[k2 :: float]])]], indicating that a two-level nested buffer of integer values is
pointed to by k1, and a four-level nested buffer of floats is pointed to by k2.

Similarly to size inference (Section 4.3.2) and fixed list length inference (Section 4.6.1), the
inference of “flat indexes” in LL functions is performed by propagating abstract descriptors
using node-specific semantic rules. In the following, we trace the analysis of the RBCSR
SpMV function shown in Figure 4.15. The descriptors to the right of some of the nodes show
the inferred index trees at their input.
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• The descriptor at the input to the outermost map (node 1) indicates two- and four-level
nested pointers to an integer and float buffer, respectively. The map rule peels off the
outermost list layer and propagates the inner descriptor to the body function.

• At the second map (node 2) we find that the left-hand side integer input component
can be read using a linear pointer, k1. This fact is used by the code generator when
emitting get method calls at the beginning of the loop body that implements the map
(see below).

The analysis then peels off another list layer. The descriptor obtained is a pair whose
left component is a primitive (denoted by ‘·’) and whose right component contains a
pointer to a float buffer (k2) inside a two-level nested list.

• The analysis of a pair constructor (nodes 4 and 9) merely aggregates the output de-
scriptors of its two descendants. The snd and fst functions (nodes 6 and 14) return
the respective components of their input, [[k2 :: float]] and ‘·’.

The inference of flat indexes through idx (node 10) is interesting to note. The de-
scriptor at the input to this function is a pair whose left component is a doubly-nested
list of floats. However, even if the input descriptor for this input contains a definite
index symbol—e.g., [[k′ :: float]]—the output cannot contain such a pointer: the idx

function uses its right input component to select an arbitrary element from its left
input component. Therefore, the output descriptor in this case must be [?].

Consequently, the descriptor at the input to node 5 is ([[k2 :: float]], [?]).

• The analysis of a name binding is more tricky. In the general case, binding may
introduce implicit dataflow edges into the program. Therefore, it is not safe to assume
that an input descriptor to a binding construct that contains a valid linear pointer
(e.g., [[k2 :: float]] which is bound to Aij at node 5) can be forwarded to the output of
a corresponding named function (e.g., Aij at node 11). Extra care must be given to
multiple uses of the named function, which necessitate replication of the original input
pointers. In this case, however, it is safe to propagate the descriptor as is at node 11.

• The analysis of the third map (node 12) is analogous to that of the previous maps.
The pair constructor (node 16) and its descendants id and xj (nodes 18 and 19) result
in ([k2 :: float], [?]) at the input to node 17.

• Interestingly, the zip function preserves pointers in its argument, although it rearranges
their structure into a list of pairs. In this case, it results in [(k2 :: float, ?)] at the input
to node 21.

• Arriving at the fourth map (node 21) we find that the left-hand side float input com-
ponent can be read using a linear pointer, k2. The analysis then removes the list layer,
propagating (·, ·) to fmul (node 22).
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Notice that the analysis identified the two linear buffer reads that are present in the RBCSR
SpMV kernel, highlighted in red in Figure 4.15.

Flat indexed datatype methods. Having identified the linear pointers available at each
map, the LL compiler can specialize code generation to take advantage of this knowledge.

The first part of this specialization is the initialization of pointers to suitable buffers. The
data abstraction layer extends the datatype API with index methods for each type that is
used in the program. These methods initialize a set of pointers to point to the beginning of
particular buffers in the object they are given as argument. For example, index_llpxillxf
initializes two pointers to an object of type [[(int, [[float]])]], as marked by the x qualifier: one
pointer points to the integer buffer containing block indexes (xi); the second pointer points to
the floating point buffer containing dense block content (xf). These pointers model the two
linear traversals that were discovered by our analysis. The index methods are hierarchical
and modular, similar to other methods generated by the data abstraction layer. They take
a sequence of indexes to be initialized, a source object s, and an offset off. For the RBCSR
example, they look as follows:

#define index_llpxillxf(k1, k2, s, off) \

index_lpxillxf (k1, k2, (s).d, (s).r[off]);

#define index_lpxillxf(k1, k2, s, off) \

int *k1 = (s).d0 + (off); \

index_llxf (k2, (s).d1, (off));

#define index_llxf(k1, s, off) \

index_lxf (k1, (s).d, (s).r[off]);

#define index_lxf(k1, s, off) \

double *k1 = (s).d + (off);

Note that the use of an index method is analogous to invoking a sequence of get opera-
tions to extract a particular primitive value out of a nested data object. The differences are
that (i) no intermediate values such as sublists are being constructed; and (ii) the value that
is being extracted is a reference to a location in a buffer, rather than the content stored at
that location.

In order to take advantage of indexes in loops, the data abstraction layer also generates
enhanced get methods that make use of indexed buffers. For example, get_lpxillxf imple-
ments an efficient extraction of the integer component. This method will be used by the code
generated for the second map in Figure 4.15 (node 2), instead of the ordinary get_lpillf.
Here, the value assigned to t.d0 is read using a direct dereference of pointer k1:
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#define get_lpxillxf(t, s, j, k1, k2) \

pillf_t t; \

t.d0 = k1[j]; \

t.d1.c.len = (s).r1[j + 1] - (s).r1[j]; \

t.d1.r = (s).d1.r + (s).r1[j]; \

t.d1.d = (s).d1.d;

The overall effect of index flattening is crucial for deeply nested loops, such as those
exhibited in RBCSR SpMV. Both inference and emission of index-aware API calls are im-
plemented as part of the syntax-directed translation process done by the compiler back-end.
The data abstraction layer is extended accordingly.

4.7 Implicit parallelism

The LL compiler deploys a simple, syntax-based parallelization scheme, where maps are
converted into data-parallel loops and pair constructors into parallel tasks. A simple heuris-
tic guides the selection of constructs to parallelize, which prohibits nested parallelism and
favors data parallelism over task parallelism. Partitioning of data accounts for proper load
balancing. This results in coarse-grained parallelism, exhibiting long synchronization-free
threads, as shown in Section 4.2.2. It goes hand-in-hand with the sequential optimizations
described in Section 4.6 and achieves good utilization of resources on multicore machines
with real-world datasets.

4.7.1 Parallelization transformation

We identify two forms of parallelism, corresponding to syntactic constructs in LL programs:
(i) maps represent an implicit data-parallel computation on a list; (ii) a pair constructor
represents an implicit task-parallel computation on any object. In both cases, the parallel
threads are free from data dependencies, thanks to LL’s dataflow model and its side-effect-
free semantics.

The above constructs also entail a basic distribution/synchronization scheme that corre-
sponds to the program’s syntactic structure: (i) parallel loops entail data distribution prior
to entering the loop and a synchronization right past the loop’s scope; (ii) pair constructors
entail a synchronization point right past the constructor’s scope. While this may result in
an unnecessarily fined-grained synchronization, it proved sufficient in our benchmarks (see
Section 4.8). The scheme can be coarsened via further analysis (see discussion in Section 4.9).

Parallelization of LL functions is implemented as an AST transformation and performed
prior to translation. We follow a simple heuristic in deciding which constructs should be
parallelized:
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• A map is parallelized only if it is not nested in a parallel map and if the output type
of its inner function has a fixed size. The latter requirement means that a partitioning
of the input already gives us a definite partition of the output buffers. This allows
the loop body to write directly to the memory section that corresponds to its output
chunk within a single, flattened data object (see Section 4.4.1).

The parallelization of maps replaces [f] with [|f|], which is an explicitly parallel
map whose semantics is otherwise equivalent to that of the sequential map.

• A pair is parallelized only if it is not nested in a parallel map and does not contain a
parallel map.

The parallelization of pairs replaces (f, g) with (|f, g|), an explicitly parallel pair
constructor.

The resulting scheme does not contain nested data parallelism, and strictly favors data
parallelism over task parallelism. While this conceptually limits the amount of parallelism
that can be extracted from a given program, we found it to be sufficient for the typical uses
of LL programs, namely applying a uniform transformation to a large (possibly nested) list
object. Similar observations were made by Catanzaro et al. in the context of generating
parallel GPU code [15]. In the rest of this chapter we focus solely on data parallel loops,
which is the only form of parallelism present in our benchmarks.

The result of this transformation is an explicitly parallel LL function. It is then handed
to the code generator for emitting parallel low-level code. The parallelized versions of the
example kernels used earlier is similar, both having their outermost map turned into a parallel
map: for the CSR SpMV in Figure 4.10 it is node 5; for the (partial) RBCSR SpMV shown
in Figure 4.15 it is node 1.

4.7.2 Generating parallel code with OpenMP

The LL back-end generates parallel C code by emitting OpenMP directives. Figure 4.16
shows the skeleton of a parallel CSR SpMV kernel generated by our compiler. Contrast this
code with the sequential version shown in Figure 4.11. We highlight the differences between
the parallel map (lines 9–37) and an ordinary sequential map:

• Declaring a special partition variable (p1 on line 8) of type [int]. The values in this list
will mark the start and ending indexes of the input list that will be processed by each
of the parallel threads. Note that the computation of the actual partition happens
inside the parallel block, as it depends on the number of threads spawned at runtime.

• The whole loop code block is marked with #pragma omp parallel (line 9). This di-
rective instructs OpenMP to spawn an execution of the same code block on multiple
threads.
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1 void def_csrmv_par (lf_t *out, pllpiflf_t *in)
2 {
3 llpif_t A;
4 ll_fst (A, *in);
5 lf_t x;
6 ll_snd (x, *in);
7

8 li_t p1;
9 #pragma omp parallel default(none) shared(p1)

10 {
11 #pragma omp single
12 {
13 int p2; /* Partition workload. */
14 p2 = omp_get_num_threads ();
15 init_li (p1, p2);
16 aux_partition (p1, A, p2);
17 }
18

19 int p3; /* Get current partition. */
20 int v2;
21 int v3;
22 p3 = omp_get_thread_num ();
23 aux_getpart (v2, v3, p1, p3);
24

25 int j1;
26 index (k1, k2, A, v2);
27 for (j1 = v2; j1 < v3; j1++) {
28 get (v4, A, j1, k1, k2);
29 double v5;
30

31 /* Loop body... */
32

33 set_lf (*out, v5, j1);
34 }
35 }
36 (*out).c.len = (A).c.len;
37 }

Figure 4.16: Skeleton of generated code for parallel CSR SpMV
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• Inside the parallel block, we use a #pragma omp single (line 11) to specify a code
block to be executed only by the leader thread, with a barrier right after it. In
this block we (i) obtain the dynamic number of threads in the current group us-
ing omp_get_num_threads (line 14); and (ii) invoke a library function aux_partition

(line 16) to compute a partition of the input data, to be stored in p1.

• Next, each thread (i) obtains its number using omp_get_thread_num (line 22); then
(ii) uses this number to obtain the start and ending indexes marking its share of work
by calling the aux_getpart library function (line 23).

• The loop itself is slightly different from an ordinary sequential loop, as its boundaries
are determined by the partition (v2 and v3) and are not necessarily zero-based. Conse-
quently, it must use get and set methods with an explicit index (j1) upon reading the
input value and writing the output, respectively. Note that set is well defined because
the output type has a fixed size that is statically known.

• Past the loop body, we set the length of the output object to its overall aggregate
length (line 36).

The advantages of using OpenMP are evident from this example. It gives us the right
amount of control over parallel invocation, while abstracting away low-level thread man-
agement and synchronization. Our benchmarks indicate that the overhead due to OpenMP
directives is negligible. OpenMP is a natural choice for implementing data parallel com-
putations on a shared memory, multicore platform. However, it is likely not a good fit
for hybrid architectures such as GPUs, which require more elaborate abstractions such as
CUDA [48, 32].

Our partitioning function, aux_partition, is designed to achieve two goals:

1. Load balancing with respect to nested list lengths. In the case of a list of lists—
e.g., [[(int, float)]] in CSR SpMV—it will consider the total length of nested sublists in
each partition chunk as a proxy for the actual workload, rather than the number of
sublists in each chunk. This is important because the lengths of nested lists may be
not uniformly distributed.

2. Prefer utilization of all computational cores over assigning an average chunk to each
participating core. In effect, we may end up with several underloaded partitions, but
we are less likely to have idling ones.

Partitioning implements the algorithm shown in Figure 4.17. It takes as input a segment
buffer S describing n segments and a number of partition chunks k. The start/end positions
of segment 1 ≤ j ≤ n are represented by Si−1 and Si, respectively.13 Note that all the arith-
metic operations in this algorithm—including division—have integer semantics. It returns a
buffer P with the following guarantees:

13This is the standard representation of a segment buffer shown in Section 4.4.1.
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function Partition(S,n,k)
P0 ← 0
for i← 1 . . . k do

t← (Sn−S0)·i
k

+ S0

j ← n−Pi−1

k−i+1 + Pi−1

while Sj < t do j ← j + 1
while j > Pi−1 ∧ Sj−1 > t do j ← j − 1

Pi ← j

end

return P

end

Figure 4.17: Nested list partitioning algorithm

• P is a valid segmentation of S, namely P0 = 0, Pk = n, and ∀1 ≤ i ≤ k . Pi−1 ≤ Pi.

This stems from the fact the that partition chunks are formed by a non-decreasing
sequence of k + 1 indexes, the first of which is zero. The computation of the target
coverage t guarantees that Pk = Sn.

• For each 1 ≤ i ≤ k, the end index of the i-th partition chunk is the smallest that
covers i

k
of the total lengths of all segments. Formally, SPi

− S0 ≥
(Sn−S0)·i

k
and

Smax{Pi−1,Pi−1} − S0 ≤
(Sn−S0)·i

k
.

This is due to the two-step process by which the end index of the next partition is
determined: (i) guessing a good candidate, assuming a uniform length distribution of
the remaining segments; (ii) adjusting the initial guess until it satisfies the minimal
coverage requirement.

This algorithm converges quickly in practice, especially when the lengths of the input list
segments are more-or-less even. In this case, it will be linear by k (the number of threads).
This is much preferred over a naïve implementation that is linear by n (the number of
segments).

4.8 Evaluation

We experimented with both sequential performance and parallel scaling of compiled LL
code. Our benchmarks include two kernels—SpMV of CSR and RBCSR formats—run on a
variety of real-world matrix inputs. Our results indicate that optimized sequential LL code
can perform as fast as handcrafted C code, and that LL’s parallelization scheme achieves
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Name Rows × Columns Nonzeros Nonozeros/row Total density

bcsstk35 30237 × 30237 1450163 47.96 0.00159
crystk03 24696 × 24696 1751178 70.91 0.00287
dense2 2000 × 2000 4000000 2000.00 1.00000
mac_econ_fwd500 206500 × 206500 1273389 6.17 0.00003
nasasrb 54870 × 54870 2677324 48.79 0.00089
olafu 16146 × 16146 1015156 62.87 0.00389
qcd5_4 49152 × 49152 1916928 39.00 0.00079
raefsky3 21200 × 21200 1488768 70.22 0.00331
rail4284 4284 × 1092610 11279748 2632.99 0.00241
rma10 46835 × 46835 2374001 50.69 0.00108
scircuit 170998 × 170998 958936 5.61 0.00003
venkat01 62424 × 62424 1717792 27.52 0.00044

Table 4.2: Benchmark matrix suite

substantial speedups on shared memory architectures.14 They also support the viability of
our approach of optimizing LL programs only to the extent necessary for a good underlying
C compiler to perform low-level optimization.

4.8.1 Preliminary

In our experiments we have used a set of 12 matrices whose characteristics are shown in
Table 4.2. Five of them—mac_econ_fwd500, qcd5_4, rail4284, rma10 and scircuit—are
unstructured, unsymmetric matrices that were studied in the context of optimization for
GPU by Williams et al. [64]. Of the remaining matrices, four are symmetric (bcsstk35,
crystk03, nasasrb, olafu) and two are unsymmetric (raefsky3 and venkat01). The dense2

matrix is a dense matrix in sparse format. All of the matrices, with the exception of dense2
and qcd5_4, can be found on the UFL Sparse Matrix Collection [24].

We ran our benchmarks on an Intel Core i7-2600 3.4 GHz machine with 4 GB of DDR3
memory. This is a single-socket quad-core processor capable of running up to 8 virtual
threads via Intel’s Hyper-Threading Technology (HTT).15 The CPU frequency can be scaled
down to 1.6 GHz, which we use in evaluating scalability of parallel execution (see Sec-
tion 4.8.3). We used GCC version 4.4.3. In evaluating GCC’s ability to optimize C code
that is generated from LL programs, we used the -O3, -m64 and -funroll-all-loops flags.
These flags trigger the highest degree of performance optimizations, instruct the compiler to
generate 64-bit instructions and to unroll all loops to the fullest extent possible, including

14We did not directly compare against a handwritten parallel SpMV. Intel’s Math Kernel Library (MKL),
the state-of-the-art in parallel sparse linear algebra, is closed source.

15In our benchmarks we only use up to four threads utilizing the four physical cores.
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int i, next_i, k = R[0];

for (i = 0, next_i = 1; i < m; i = next_i, next_i++) {

double y = 0.0; /* Accumulate row output. */

int next_R = R[next_i]; /* Sparse row boundary. */

while (k < next_R) {

int j = J[k];

double v = V[k];

y += v * X[j]; /* Compute inner product. */

k++;

}

Y[i] = y; /* Store row output. */

}

Figure 4.18: Reference C implementation of CSR SpMV

those whose termination condition is not known at compile-time; we found that this entails
a slight performance improvement over the ordinary -funroll-loops flag, which only unrolls
loops whose bounds are statically known.

In our runs we insisted on sampling at least five different runs of each configuration of
matrix, kernel, optimizations, and block size. In reporting performance we use the median
result for each such configuration and indicate the range of lowest and highest results with
an error bar. The standard unit we use for performance is “million floating point operations
per second” (or MFLOP/s for short). This value represents the overall throughput of a
numerical algebra kernel with respect to the minimal number of operations necessary to
compute the result. In the case of SpMV, it is twice the number of nonzero values in the
matrix, as each nonzero induces one multiplication and one addition. Note that all floating
point values and operations in our code are double precision (64-bit).

4.8.2 Sequential performance

We evaluate the sequential performance of LL generated code for the CSR and RBCSR
SpMV kernels. Our hypotheses are: (i) for the non-blocked kernel, embedded reducers and
flattened indexing lead to C code that is as fast as handwritten sequential code; (ii) register
blocking requires fixed-length list inference as well in order to yield similarly competitive C
code.

For comparison, we use a standard reference C implementation. CSR SpMV is imple-
mented as a straightforward doubly-nested loop. It is shown in Figure 4.18. We considered
three slightly different variants of the same kernel and chose the one for which GCC pro-
duced the best performing machine code. Our RBCSR implementation was derived from an
optimized RBCSR kernel used in the OSKI sparse linear algebra library. The original OSKI
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int k = *Rb++;

while (mb--) {

double y[RB_ROWS] = { 0 }; /* Accumulate block row output. */

int i, next_k = *Rb++; /* Block sparse row boundary. */

while (k++ < next_k) {

int jb = *Jb++; /* Get block index. */

for (i = 0; i < RB_ROWS; i++) {

double *xb = X + jb * RB_COLS;

int blkncol = RB_COLS;

while (blkncol--)

y[i] += *V++ * *xb++; /* Dense row inner product. */

}

}

k--;

for (i = 0; i < RB_ROWS; i++)

*Y++ = y[i]; /* Store block row output. */

}

Figure 4.19: Reference C implementation of RBCSR SpMV
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version reads particular values from the x vector into individual scalar variables (declared
with the register qualifier). It also accumulates the multiplication results along a block row
into individually declared variables. Accordingly, the two loops that compute the dense block
multiplication are fully unrolled by hand. This ensures that the benefit of register blocking
is being exploited, but results in a large number of kernel variants tailored for different block
sizes. Unlike in OSKI, we refrain from unrolling the two innermost loops that perform the
dense block multiplication. Consequently, we do not use scalar variables for reading values
from the x vector nor to accumulate products along a row. We found that GCC is fully
capable of doing this for us, resulting in code that has the same performance characteristics
as the manually unrolled version, yet is parametrizable by block size. Our C implementation
of RBCSR is shown Figure 4.19. Here, too, we considered two slight variants and chose the
one with the better performance characteristics.

We measured the performance of the LL generated code with different sequential opti-
mizations applied. For CSR, we used the following combinations:

• an unoptimized variant;

• a variant using index flattening (see Section 4.6.3);

• a variant using embedded reducers (see Section 4.6.2);

• and a variant using both.

For RBCSR, we used the following combinations:

• an unoptimized variant;

• a variant using fixed-length list inference (see Section 4.6.1);

• a variant adding index flattening to fixed-length lists;

• a variant adding embedded reducers to fixed-length lists;

• and a variant that combines them all.

We found it useless to try further combinations without fixed-length list inference; without
it, the presumed advantage of RBCSR is nonexistent.

In measuring RBCSR performance, we also tested each kernel with a variety of block
sizes. Due to the complexity of modern day architectures, and the uncertainty regarding in-
tricate compiler optimizations and their effect on performance, memory optimizations such
as register blocking are considered highly unpredictable; finding the best performing block
size is often left for an automatic performance tuning framework (a.k.a., autotuner). There-
fore, we report the best performing block sizes among 25 different ones ranging from 2 × 2
to 8× 8 cells.
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Figure 4.20: Performance of LL generated sequential SpMV (part 1)
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Figure 4.21: Performance of LL generated sequential SpMV (part 2)
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The benchmark results for the sequential SpMV kernels are shown in Figure 4.20 and
Figure 4.21. Each of the graphs shows the performance of C and LL implementations of
two kernels for a given matrix out of the set shown in Table 4.2. Each column in a graph
depicts the median MFLOP/s achieved by the corresponding implementation. The columns
are split into two groups, the left-hand side showing the performance for CSR and the right-
hand side showing RBCSR. In each of the groups, the ‘C’ column indicates the reference
implementation (see Figure 4.18 and Figure 4.19). The ‘LL’ columns indicate code that was
generated from an LL program: the leftmost column uses none of the sequential optimizations
described in Section 4.6; further columns add optimizations, where ‘L’ indicates fixed-length
lists, ‘I’ indicates index flattening and ‘R’ indicates embedded reducers. In the RBCSR
group, the ‘C’ column shows the performance using an optimal block size, which is shown
in a label above the column. The performance of each of the LL generated implementations
is measured using the same block size, and these columns are marked by a star. However,
in cases were better performance was exhibited with an LL implementation using a different
block size, an additional column is present with the alternative block size showing above it.

CSR. Without the reducer optimization, the performance of LL code is within a factor
of 0.57–0.80 of the reference C implementation. With the reducer optimization it is within
1–1.09, essentially surpassing the throughput of the reference implementation on most bench-
marks. The index flattening optimization has little to no effect on performance. This vali-
dates our hypothesis that an LL non-blocked SpMV kernel is competitive with handwritten
C code.

RBCSR. First, it is interesting to note that register blocking can improves performance
compared to ordinary CSR by a factor of up to 1.93 on some matrices, but it can worsen it for
others. Indeed, register blocking is known to only be beneficial with matrices whose nonzeros
tend to appear in small clusters. It is also interesting to see how different variants of RBCSR
SpMV entail different optimal block sizes and how significant the effect of block size can be.
While some matrices entail a uniform optimal block size across all implementations—e.g.,
nasasrb, olafu, qcd5_4 and venkat01—others perform best at varying block sizes—e.g.,
bcsstk35, dense2 and rma10.

The unoptimized LL implementation of RBCSR performs within a factor of 0.14–0.28
of the reference implementation, depending on the choice of block size. Enabling fixed-
length list inference, and consequently allowing the C compiler to unroll the innermost
loops, speeds it up to 0.23–0.39. However, it is not until the reducer optimization is enabled
that we see substantial improvement in performance, at a factor of 0.78–0.96 of the reference
implementation, depending on block size. Here we can also see the benefit of the index
flattening optimization: as the loop nest is deeper, avoiding repeated reading of segment
buffers becomes more beneficial. With all the optimizations combined and with an optimal
block size selection, the LL code performs within 0.94–0.98 of the reference implementation.
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This validates our hypothesis regarding the competitiveness of LL code for the blocked SpMV
kernel.

4.8.3 Parallel scaling

We evaluate the scaling of parallel LL generated code for the CSR and RBCSR SpMV
kernels. Our hypotheses are: (i) our parallelization scheme is well-suited for a shared mem-
ory architecture such as multicore, increasing performance accordingly with the number of
cores used; (ii) our parallelization scheme induces minimal overhead and a exhibits a good
utilization of resources.

The comparison methodology for parallel kernel performance is different from the one
used in the sequential case. Here we measure the performance of a single parallel LL imple-
mentation running on one, two and four cores. The implementation chosen in this case is one
with all the sequential optimizations mentioned enabled; we also enable the parallelization
transformation (see Section 4.7), designated by ‘P’.

The benchmark results for the parallel SpMV kernels are shown in Figure 4.22 and
Figure 4.23. Each of the graphs shows the performance of CSR and RBCSR kernels with
a specific matrix out of the set shown in Table 4.2. Each column in a graph depicts the
median MFLOP/s achieved by the corresponding kernel executed on a given number of
cores. Error bars indicate the lowest and highest results. Here, too, the columns are split
into two groups, the left-hand side showing the performance of CSR and the right-hand side
showing RBCSR. In each group we present the performance of the corresponding kernel on
one, two and four cores. As in the sequential case, for each parallel execution of RBCSR we
use the same block size as the single-core optimal block size (marked by a star). However,
in cases were a different block size yields better performance, a second column shows the
optimal performance with the corresponding block size shown above it. Finally, Figure 4.24
and Figure 4.25 present the relative speedup of parallel runs compared to their respective
single-core run.

CSR. Running CSR SpMV on two cores yields a speedup of 1.58–1.96 with a median
speedup of 1.62; running it on four cores yields 1.71–3.17 with a median of 1.85. The two
matrices achieving the most substantial speedups—mac_econ_fwd500 and scircuit—both
exhibit low single-core throughput at 949 and 682 MFLOP/s, respectively. Running on four
cores increases their throughput to about 2200 MFLOP/s. This can be attributed to the
matrices’ special structure, which leads to a computational bottleneck in the sequential case:
the former has a largely diagonal structure; in the latter case it is due to the proximity of
column indexes of nonzeros across neighboring rows. In both cases, parallel execution on
multiple cores leads to better utilization of the memory bandwidth and cache, and proves
highly beneficial.



CHAPTER 4. COMPILING LL PROGRAMS 105

 0

 1000

 2000

 3000

 4000

 5000

 6000

1C 2C 4C 1C 2C*
4C*

4C

M
F

LO
P

/s

 

bcsstk35

LL-CSR-RIP LL-RBCSR-LRIP

6x3

3x3

 0

 1000

 2000

 3000

 4000

 5000

 6000

1C 2C 4C 1C 2C*
4C*

M
F

LO
P

/s

 

crystk03

LL-CSR-RIP LL-RBCSR-LRIP

3x3

 0

 1000

 2000

 3000

 4000

 5000

 6000

1C 2C 4C 1C 2C*
4C*

4C

M
F

LO
P

/s

 

dense2

LL-CSR-RIP LL-RBCSR-LRIP

8x4

6x8

 0

 1000

 2000

 3000

 4000

 5000

 6000

1C 2C 4C 1C 2C*
4C*

M
F

LO
P

/s

 

mac_econ_fwd500

LL-CSR-RIP LL-RBCSR-LRIP

2x2

 0

 1000

 2000

 3000

 4000

 5000

 6000

1C 2C 4C 1C 2C*
4C*

M
F

LO
P

/s

 

nasasrb

LL-CSR-RIP LL-RBCSR-LRIP

6x6

 0

 1000

 2000

 3000

 4000

 5000

 6000

1C 2C 4C 1C 2C*
4C*

M
F

LO
P

/s

 

olafu

LL-CSR-RIP LL-RBCSR-LRIP

6x6

Figure 4.22: Performance of LL generated parallel SpMV (part 1)
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Figure 4.23: Performance of LL generated parallel SpMV (part 2)
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Figure 4.24: Relative speedup in LL generated parallel SpMV (part 1)
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Figure 4.25: Relative speedup of LL generated parallel SpMV (part 2)
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RBCSR. The speedup of RBCSR due to parallel execution on two cores lies with 1.32–
1.86 of the single-core performance with a median speedup of 1.57; running on four cores
yields between 1.37–2.42 with a median of 1.81. A notable speedup is seen with olafu, a
highly clustered matrix whose manipulation benefits largely from register blocking. It is
the only matrix for which a quad-core RBCSR tops the 5000 MFLOP/s mark by a large
gap, achieving 6060 MFLOP/s. Here, too, we see how different block sizes induce different
performance characteristics, although the difference between them is not as significant as
with varying optimization levels in sequential kernels.

The observed speedups with both CSR and RBCSR appear to be quiet modest, suggesting
a sub-linear scaling of parallel execution of LL kernels. However, it may be that speedups are
limited due to the memory bound nature of SpMV. To validate this possibility, we executed
the same set of benchmarks with the CPU frequency scaled down to a low of 1.6 GHz. This
decreases the computational throughput of the processor and thus reduces the gap between
the CPU speed and memory latency.

The results of this benchmark are shown in Figure 4.26 and Figure 4.27. The relative
speedups of these parallel runs compared to their respective single-core run are shown in Fig-
ure 4.28 and Figure 4.29. These graphs are structured analogously to the ones in Figure 4.22
through Figure 4.24.

We first notice that single-core performance of both CSR and RBCSR has decreased to
0.52–0.61 (median 0.55) of the corresponding execution at the native processor speed. This
is to be expected as the single-core execution did not saturate the memory bandwidth in
either of the cases.

On the other hand, we notice that quad-core performance of both kernels is within 0.6–
0.95 (median 0.88) of the corresponding execution at the native processor speed. In effect,
the overall throughput of a quad-core execution with a slowed down CPU frequency is close
to the maximal throughput achieved with native CPU frequency. With the scaled down
CPU frequency, the relative speedups due to dual-core execution are 1.82–1.94 (median
1.86) for CSR and 1.87–1.98 (median 1.91) for RBCSR. The speedups running on four cores
are 2.79–3.59 (median 2.93) for CSR and 2.44–3.31 (median 2.86) for RBCSR.

All of this evidence suggests that the humble speedups observed with the native CPU
frequency can indeed be attributed to memory bandwidth saturation and are inherent to
SpMV. Together with the previous results, it validates our hypothesis that LL’s paralleliza-
tion scheme is well-suited for multicores and that performance increases with the number of
cores used.

To validate the second hypothesis regarding resource utilization on parallel executions,
we measured the distribution of floating point operations across the different threads in two-
and four-core runs. For RBCSR, we used a single block size of 2×2 as representative of other
block sizes. Table 4.3 shows the difference in FLOP count between the most loaded thread
and the least loaded one for each test, both as an absolute number and as a percentage
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Figure 4.26: Parallel performance with scaled down CPU frequency (part 1)
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Figure 4.27: Parallel performance with scaled down CPU frequency (part 2)
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Figure 4.28: Parallel speedup with scaled down CPU frequency (part 1)
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Figure 4.29: Parallel speedup with scaled down CPU frequency (part 2)
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Test Two threads Four threads
CSR RBCSR CSR RBCSR

bcsstk35 82 0.01% 344 0.02% 78 0.01% 336 0.04%
crystk03 16 0.00% 16 0.00% 214 0.02% 608 0.06%
dense2 - - - -
mac_econ_fwd500 2 0.00% 80 0.00% 22 0.00% 56 0.00%
nasasrb 24 0.00% 24 0.00% 112 0.01% 312 0.02%
olafu 192 0.02% 168 0.01% 224 0.04% 168 0.03%
qcd5_4 - - - -
raefsky3 160 0.01% 448 0.03% 208 0.03% 352 0.05%
rail4284 12260 0.11% 18376 0.08% 12684 0.23% 50560 0.43%
rma10 194 0.01% 928 0.03% 346 0.03% 712 0.05%
scircuit 4 0.00% 16 0.00% 20 0.00% 32 0.00%
venkat01 16 0.00% 128 0.01% 80 0.01% 192 0.02%

Table 4.3: Workload imbalance in multi-threaded execution of LL kernels

of the workload of the least loaded thread. For all but one matrix, the observed maximal
load imbalance is as high as 0.06% and as many as 928 FLOPs. In the case of rail4284,
the load imbalance is as high as 0.23% (12684 FLOPs) for CSR and 0.43% (50560 FLOPs)
for RBCSR running with four threads. This is due to the large variation in the number of
nonzeros per row in this matrix. In all of these cases, workload distribution across multiple
threads is very good.

We also measured the actual execution time of individual threads in two- and four-way
parallel executions of both CSR and RBCSR. The results indicate a 40–50 microsecond
difference between the fastest and slowest threads, in most of the test cases. In some cases
larger gaps of up to 300 microseconds were observed, and in one case we observed a 2.5
millisecond gap. However, there was no correlation between these results and the difference
in FLOPs shown in Table 4.3. This leads us to categorize these differences as fluctuations
due to the execution environment.

Finally, we measured the actual time spent on partitioning the workload by the master
thread during multithreaded execution. Distributing the workload for four threads took up to
11 microseconds for CSR and up to 7 microseconds for RBCSR. This is a negligible overhead
compared to the time spent in actual computation. We conclude that the parallelization of
LL kernels exhibits a good utilization of resources and induces minimal overhead.

4.9 Discussion

The results in this chapter are promising in two ways: (i) they demonstrate that, for the
particular domain of sparse matrix kernels, it is possible for domain experts to directly
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experiment with programing at a high-level and generate low-level code that is immediately
usable; and (ii) they show that trading parallelism granularity for reduced communication
can make NESL-like programs execute efficiently on modern day architectures such as shared
memory multicore.

Other recent projects have had similar goals. Notable among them is Copperhead [15], a
Python specializer that compiles high-level data parallel code to run on a GPU. Unlike LL,
Copperhead compiles functions in a just-in-time fashion, which gives it the extra advantage
of being able to tune the code to the actual input at hand. However, Copperhead does
not place as much emphasis on optimizing sequential execution threads as the LL compiler
does. Most notably, Copperhead nested lists can be either entirely flexible or entirely fixed
(i.e., a multidimensional array), but not an mix of both. Unlike LL, optimizing a nested
list structure to a cube representation is based on the actual input and decided at runtime.
This makes Copperhead unsuitable for implementing tiling optimizations in sparse kernels.
Additionally, Copperhead does not perform nested list access optimization such as reducer
derivation and nested index flattening.

Data Parallel Haskell (DPH) is another recent effort that aims to embed the ideas intro-
duced by NESL in a modern and actively developed functional language [18]. The Haskell
type system is augmented to support explicitly parallel types, allowing to formally char-
acterize data distribution and aggregation and obtain more control over the parallelization
of different parts of the computation. It also augments the NESL vectorization transform
to support additional types, and performs optimizations such as loop fusion. An example
SpMV kernel is reported to perform within a factor of 0.4–0.5 of a reference C implemen-
tation. Although it scales nicely with the number of parallel execution cores, the gap in
throughput between the reference and the generated C code is significant.

We address several shortcomings in the current implementation of the LL compiler and
discuss opportunities for future research.

More rigorous type enrichment. The fixed list length enrichment described in Section 4.6.1
is only able to specialize lists whenever the propagation algorithm encounters a con-
crete constant length value. More broadly, we do not formally establish fixed-length
lists as a strict subtype of regular lists in LL.

There are cases were a more powerful formalism could yield a stricter characterization
of list types in LL programs. For example, we know that block always produces a
list of lists of the same fixed length, even if we cannot infer at compile time an actual
length constant. Accordingly, we could have used an efficient nested list representation
for the output of this function, one that does not use a segment buffer at the outermost
level.16 Furthermore, having a proper subtyping relation for fixed-length lists would
lead to more efficient type representations elsewhere in the program, due to unification.

16In fact, the representation of fixed-length sublists described in Section 4.6.1 is parametric by the actual
length value.
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Another possible enhancement is representing symbolic length expressions in the length
analysis phase. Along with fixed-length list subtypes, this would allow to capture de-
pendencies between different list objects in the program, even when the actual lengths
are not compile-time constants.17

Better synchronization inference. Synchronization in parallel LL code is guided by its
syntactic structure and may be unnecessarily fine grained. Similarly, elimination of
synchronization points is done via AST rewriting, such as map fusion.

This scheme may benefit from a more informed notion of data distribution. For ex-
ample, the decision as to whether or not two consecutive parallel maps should be
fused should consider whether a single load distribution prior to the first map leads to
properly balanced inputs for the second map’s parallel threads as well. In this case,
synchronization and distribution between the maps are not required, and they should
be fused. Otherwise, it may be beneficial to impose a synchronization, and avoid fusing
the loops.

Another shortcoming is concerned with unnecessarily fine-grained task parallelism.
For example, if we can show that the two components resulting from a (parallel)
pair constructor are used independently by different components of a subsequent pair
constructor, then the body functions of these two constructs can be fused together and
synchronization eliminated.

Synchronization analyses along similar lines were proposed by Chatterjee [21] and
Catanzaro et al. [15]. We defer the implementation and evaluation of such methods to
future work.

More parallelism. The parallelization scheme described in Section 4.7 can benefit from
more informed and intricate program transformations.

One example is implementing vectorization of loops within parallel threads. Vector-
ization is key to utilizing computational resources on GPUs. It is, however, becoming
gradually more effective in multicores with the advent of wider SIMD capabilities such
as Intel AVX.

Another area for improvement is in the selection of maps for parallelization. The
current scheme assumes (implicitly) that parallelizing and distributing the load at the
outermost level is beneficial. However, this may not be the case in general: specifically,
it may be that inner loops are better candidates for parallelization as they represent a
more suitable workload for distribution (e.g., significantly more list elements).

Furthermore, the fact that LL does not parallelize nested maps means that some com-
putations cannot be properly load balanced.18 It may be beneficial to support nested

17A similar concept is used for inferring whole buffer lengths, described in Section 4.3.2.
18Similar concerns are discussed in the context of other nested data parallel languages, e.g. [15, 14].
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parallel invocation, which can be guided by runtime information such as the total num-
ber of threads in encapsulating parallel loops and the relative payload assigned to a
given nested map. All of these will make LL usable in situations where single-level
parallelism is not enough.

Finally, the LL compiler should support parallelization of additional loop construct,
specifically maps with non-fixed output types and filters. In both cases writing directly
to a designated output buffers is not possible, since offsets are not known a priori. In
the former case, an additional copying step is necessary for concatenating the results
from parallel threads once their lengths are determined. Copying itself can be done in
parallel. In the latter case, filtering can be implemented as a two-step process: first, a
bitmap buffer is computed that indicates which elements satisfy the filter predicate, and
the total length of these elements for each thread; second, write offsets are computed
for each thread, and copying is performed to those offsets (in parallel). To compensate
for possible workload imbalance in the copying phase, an intermediate load distribution
step may be used as well.

Our implementation of the LL compiler, along with the benchmarking suite described in
this chapter, are publicly available as a source code repository. We encourage the interested
reader to download it, here: https://bitbucket.org/garnold/llc

https://bitbucket.org/garnold/llc
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Chapter 5

Conclusion

LL raises the level at which sparse formats are implemented: instead of low-level data
structures and intricate computations of “one word at a time”, programmers compose func-
tional transformations on high-level data objects. LL makes dataflow explicit, allows natural
composition and reuse of code, and makes it easy to track the invariants that govern the
representation of matrix contents.

The limited expressiveness of LL proved to be central to our ability to automatically
verify a variety of sparse formats. This eliminated the need to deal with provision and dis-
covery of custom inductive invariants. The second important novelty is the identification of
representation relations that govern the domain of sparse matrix formats, and their formal-
ization as parametric predicates in HOL. This allowed us to keep our theory rule base small
and reusable, and to separate the specification of representation invariants from the proof of
transformations that manipulate them.

Finally, LL’s functional semantics, fixed set of operators and simple dataflow model en-
ables a straightforward compilation process that produces efficient, reusable and maintain-
able C code. Also central to our approach are the systematic mapping of high-level LL types
to a hierarchical, compact C types; the identification of crucial optimizations for eliminating
redundancies in sequential execution threads; and the implementation of a coarse-grained
loop parallelization scheme that is well-suited for execution of data parallel sparse kernels
on multicore platforms.

The three components of the LL project described in this work—language, verifier and
compiler—constitute an ecosystem that improves the productivity of sparse matrix format
developers. It is our hope that our results will serve as foundation for developing new
methodologies and frameworks for programmers in this domain. This work entails a number
of open questions and opportunities for further research, and in the following we mention
several of them.

LL in the real world. It remains to show whether LL can successfully deal with a broader
set of sparse formats and kernels other than SpMV. One aspect of this question pertains
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to LL expressive limitations, and to possible future extensions (e.g., a general purpose
reduction operator) to mitigate them.

Another part concerns expanding the compiler support for additional language prim-
itives, better optimization, and more extensive heuristics. In general, it is unclear
whether the approach we followed in implementing the compiler—namely, achieving
superior sequential performance separate from (and prior to) program parallelization—
will continue to be beneficial as it has been so far.

Notable in this context is the implementation of communication avoiding iterative
methods, such as those described in [25, 45]. These techniques are based on the expan-
sion of transitive data dependencies along an iterative application of a simpler sparse
kernel such as SpMV. The goal is to infer a set of overlapping input chunks that will
both improve the cache efficiency of the computation of particular chunks of the out-
put, and eliminate the communication between adjacent chunks. Although we have
had initial success with prototyping such a computation in LL, it remains to show
whether it can be verified and compiled into efficient code.

Beyond compilation: autotuning and synthesis. Following the recent success of auto-
tuning libraries for sparse matrix formats, it is an accepted fact that no single imple-
mentation is optimal across all machine and for all types of applications and workloads.
One outcome of this observation is that no single deterministic compilation process will
generate code that is universally optimal. Therefore, we consider the linking the LL
compiler to an autotuning back-end an important research goal and a fertile ground
for further collaboration.

On a separate note, we believe that our work on functional verification of sparse codes
can be lifted to facilitate synthesis of new formats. Particularly interesting is the use
of deductive proof rules in searching through a space of implementation variants. Gen-
erally speaking, this is allowing simplification to occur in both directions. Without
proper means for bounding the implementation space exploration, such a process is
bound to diverge and unlikely to yield useful results. However, we may be able to
adapt techniques for efficiently pruning such exploration. One notable approach that
is exemplified in the Denali superoptimizer [37] uses E-DAGs for representing poten-
tially unbounded application of congruence rules in an efficient, bounded form [46].
Extending this technique for higher-order parametric congruence relations, as well as
expanding application of introduction rules, can lead to interesting and useful results.

Sparse format conversion. In this work we focused on the relationship between a sparse
representation and a dense mathematical object. Consequently, it was natural to use
a sparse format constructor, which assumed as input a dense data structure, as a
prerequisite for our verification method. However, dense matrix formats are of very
little interest in reality: in most real-world situations, a portable and general purpose
sparse format such as COO is used for encoding input payloads.
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This observation changes the assumptions underlying some parts of our work. One
interesting question is whether LL is applicable to conversion between different sparse
representations. If so, it will be interesting to see whether our proof theory can handle
input representations which are themselves (other) sparse formats.
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