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1 Introduction
Despite the best efforts of the file and storage system com-
munity, file system images become corrupt and require re-
pair. In particular, problems with many different parts of
the file and storage system stack can corrupt a file sys-
tem image: disk media, mechanical components, drive
firmware, the transport layer, bus controller, OS drivers,
and the buggy file system code itself [2, 9, 17, 23].

Traditionally, file systems rely on an offline checker
utility, fsck [16], to repair all inconsistencies caused by
the corruption. Unfortunately, as the name suggests, of-
fline fsck can only work when the file system is not run-
ning. Furthermore, it has a bad reputation of being an
extremely slow process [13]. Since file system downtime
is usually avoided in reality, offline fsck is run very rarely
(e.g., every 30 mounts).

As a result, the occasionality of offline fsck is risky for
reliability; corruptions are not detected early in time, and
hence, corrupt data may potentially be used by the file
system. Worse, as file system data structures are highly
inter-connected, a corruption could easily spread to other
structures, creating a more corrupt file system. In extreme
cases, we have observed that a corruption could spread
such that the file system becomes unmountable [17].

Therefore, to improve file system reliability and avail-
ability, the file system should be armed with a continuous
checker and repair utility. The checker guarantees that
the file system does not use corrupt data structures, while
the repair restores the file system consistency without the
need to shut down the file system. Unfortunately, most of
today’s file systems lack such a utility [10, 13, 17]. To
build one, several challenges must be addressed.

First, to detect a corruption, the consistency of each
data structure and all of its fields needs to be verified
against the rest of the file system. This is an expensive
process since the whole file system must be scanned in or-
der to run the cross-checks. One way to alleviate the cost
is to use a fast corruption detection such as checksum-
ming. However, checksumming is often done at a coarse-
grained level (e.g., sector- or block-level). Such coarse-
grained corruption detection only reports that a block is
corrupt, but does not pinpoint which data structures are
corrupt within the block. The implication is that all data
structures within the corrupt block have to be repaired.

After corrupt data structures have been detected, one

can use existing redundancy to repair them on-the-fly.
However, the corruption detection and the redundancy
could appear in different levels of the storage stack (e.g.,
checksumming at the file system level, and parity at the
RAID-level). Ideally, the file system should be able to
cooperate with the storage subsystem to repair the cor-
ruption. Unfortunately, the current storage interface pro-
hibits such cooperation (e.g., the file system cannot repair
the block from the parity set because the parity blocks are
excluded by the interface).

Third, since redundancy is not always available, not all
important metadata can be repaired. For example, com-
monly directory names are not replicated. A corrupt di-
rectory name causes its subdirectories untraversable.

Lastly, when all forms of fast repair cannot fix the cor-
ruption, a full online fsck is needed. Designing a full on-
line fsck is tricky because it could unsafely modify data
structures that are being used by the file system and the
application. If not designed carefully, a complex manage-
ment of in-kernel data-structures is required [13]. More-
over, since the online fsck most likely mimics the proce-
dures in offline fsck, it must also be designed robustly; our
recent experience shows that existing offline fsck design
is remarkably complex and unreliable [11].

By addressing all the problems above, this paper pro-
poses how a continuous checker and repair should be
built, and how the file system has to be redesigned to make
it more amenable to our continuous checker and repair.

To detect a corruption in a fine-grained manner, we rec-
ommend the use ofdata-structure checksumming, with
which the file system can easily retain non-corrupt data
structures and repair only the corrupt ones. To repair the
corrupt data structures, we propose three solutions to con-
tinuous repair. These solutions are stackable, and can be
implemented independently. First, the file system should
use existing redundancy in the storage stack. To do that,
the storage interface has to supportcooperative repair.
Specifically, a small interface is added such that the file
system can delegate the repair to the underlying storage
subsystem. Second, we introduce asummary database
which stores partial redundancy of important file system
metadata. Metadata copies can be added or removed flex-
ibly depending on the level of availability needed. More-
over, the repair process can be made fast since we only
need to scan the compact database rather than the whole
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file system. Third, we design a full online fsck that could
distinguish safe and unsafe repairs. To achieve that, the
file system adds arepair bit for each file system data struc-
ture. The bit is set when the corresponding data structure
is corrupt. With this marker, our online fsck cannot per-
form unsafe repair (e.g., removal) on data structures with
the repair bit off. Hence, complex management of in-use
structures is unnecessary.

In the next two sections, Section 2 and 3, we present our
design of continuous read checker and repair. Section 4
describes the status of this work. Finally, we discuss re-
lated work and conclude in Section 5 and 6 respectively.

2 Continuous Read Checker
The goal of the read checker is to detect corruption caused
by low-level failures. One approach is to mimic tradi-
tional fsck, that is, the consistency of each data structure
and all of its fields is verified against the rest of the file
system. For example, to ensure that a given directory en-
try is not corrupt, all of its fields (inode number, record
length, directory name, etc.) must be consistent: the inode
that it is referring to must not be a free inode, no other di-
rectory points to the same inode, the subdirectory names
should be unique within the same directory, etc. This is
an expensive process since the whole file system must be
scanned in order to run the cross-checks. We believe this
is the reason why many commodity file systems skip such
a process and potentially use corrupt data [17].

A faster solution is the use of checksumming, which is
no longer considered expensive and has been deployed in
some of the recent file systems [9, 19, 21]. However, most
of the deployed checksumming is done at a coarse-grained
level (e.g., sector- or block-level). Such coarse-grained
corruption detection is not suitable for data structure re-
pair because it only reports that the block is corrupt, but
does not pinpoint the corrupt data structures within the
block. For example, in ext3, a 4-KB block contains 32
inodes, and since coarse-grained checksumming does not
pinpoint which inodes are corrupt, all the 32 inodes must
be repaired. Thus, we advocate that file systems should
employdata-structure checksumming, with which we can
easily retain non-corrupt data structures, and repair only
the corrupt ones.

To support data-structure checksumming, the location
of each data structure in a block must be at a known off-
set. Unfortunately, not all existing file systems structure
the content in alocation-independentmanner. For exam-
ple, in ext3, variable-length directory entries are placed
next to each other [6], thus, the location of succeeding en-
tries depend on the preceding ones. In this design, adding
a checksum to each directory entry is useless because if
a directory entry is corrupted, succeeding entries are un-
reachable and their checksums cannot be checked. Such
design hinders a good repair process; the ext3 fsck purges

all unreachable directory entries (although they could be
valid). As an alternative, one can place directory entries
in a location-independent manner such as in ReiserFS. In
ReiserFS, directory entries are represented with fixed-size
directory headers in the beginning of a directory block,
and the variable-length directory names are added in re-
verse order at the end of the block [5]. In this location-
independent design, a checksum can be added in the fixed-
length header.

3 Continuous Read Repair
To improve availability, corrupt data structures should be
repaired on-the-fly. We propose three solutions for per-
forming continuous repair. These solutions are stackable,
that is, if the first solution cannot fix the corruption, the
second one can pick it up, and so on. However, each solu-
tion can be implemented and used independently.

3.1 Leverage Storage System Redundancy
In the first approach, the repair depends on certain redun-
dancy such as mirroring or parity to exist at any level in
the storage stack. In such case, the repair can simply re-
construct the corrupt block from the redundancy.

However, one problem arises: the corruption detection
and the redundancy could appear in different levels of the
storage stack. For example, checksumming is done at the
file system level, but parity at the RAID-level. Ideally, we
want the file system to be able to repair the corrupt parity
set after detecting a corrupt block within the set. Unfortu-
nately, the current storage interface prohibitscooperative
repair; the file system cannot cooperate with the under-
lying storage system because the current storage interface
does not expose the redundancy. For example, a RAID-
5 system only exposes a linear array of blocks in which
parity blocks are excluded. Therefore, we advocate that
the thin interface between the storage and the file system
should expose more information and control [7, 8], in this
case to support a cooperative repair.

To extend the interface, we need to decide which layer
should perform the repair: the file system or the storage
subsystem. If the repair is done by the file system, there
are two drawbacks. First, the interface must be extended
such that the file system is able to read all the redundancy
set. Second, all kinds of repair algorithm (e.g., parity cal-
culation, erasure-coded) must be implemented in the file
system layer. A solution to both drawbacks will break
modularity. Thus, we believe the correct solution is to
delegate the repair to the underlying storage system.

To delegate the repair to the storage subsystem, we pro-
pose a new simple interface,repair(B), whereB is the
block that should be repaired. Before beginning the repair
process, the storage subsystem should wait for any on-
going write to complete, and buffer new writes to the re-
dundant set until the repair finishes. The idea is the redun-
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DirEntryTable
ino entryNum entryIno entryName
2 1 2 .
2 2 2 ..
2 3 35 parent
35 1 35 .
35 2 2 ..
35 3 40 child 1
35 4 50 child 2

Table 1:Summary database for directory entries. The
table shows the partial content of a directory entry table.ino,
entryNum, entryIno and entryName represent a direc-
tory’s inode number and its subdirectory’s entry number, inode
number, and name respectively. Inode number 2 represents the
root inode (/). Entries number 1 and 2 are always reserved for
the “.” and “ ..” entries.

dancy set should not be interfered by any writes. After the
repair finishes successfully, the file system can read the
block again. We believe this simple interface can be eas-
ily introduced to support a powerful cooperative repair.

3.2 Partial Repair with Summary Database
Redundancy is not always available for repairing a cor-
rupt data structure; it may not exist in the storage stack or
it could also be corrupt. Fortunately, a corrupt data struc-
ture can be repaired from theimplicit redundancystored
within the file system. For example, suppose we have a
/parent/... directory path, and theparent’s directory
block is corrupt such that we cannot traverse to the sub-
directories. This corrupt content can be reconstructed by
physically scanning all directories and finding all direc-
tories whose “..” entries point to theparent directory.
Another example is when we want to reconstruct a corrupt
inode. One of the tasks in reconstructing the inode is to
ensure that the pointers to its data blocks are valid, specif-
ically, by verifying that the bitmap marks those blocks as
used, and no other inodes pointing to the same blocks.

The examples above suggest that repair is feasible even
in the absence of explicit redundancy. However, both
examples reveal two problems. First, not all important
metadata has implicit redundancy (e.g., directory name,
inode’s time). In such case, the repair can manufacture
a safe value [18]. For example, corrupt characters in di-
rectory name can be changed to valid ones (e.g., par#!$
to par ), inode time can be reset to current time, etc.
Nevertheless, this kind of repair might not be suitable for
important metadata such as directory names.

The second problem is more challenging: repair could
involve lots of cross-checks that require whole file system
scan. In the first example, all directory blocks are scanned
in order to find the orphan directories, while in the second,
all inodes are scanned to prevent duplicate blocks. This
makes continuous repair slow, intrusive, and unattractive.

Our solution to the problems above is to add a small

SELECT S.*
FROM DirEntryTable P, DirEntryTable S
WHERE // P.entryIno will be

// the /parent inode number
P.ino = 2 AND
P.entryName = ’parent’ AND
// Find the i-th subdir of
// the /parent directory
S.ino = P.entryIno AND
S.entryNum = i

Figure 1:Reconstructing a corrupt subdirectory entry.
This query returns the i-th subdirectory of the/parent direc-
tory from the summary database.

summary databasemanaged by the file system. The sum-
mary database stores partial metadata redundancy. As an
example, the directory entry table shown in Table 1 repli-
cates the directory hierarchy. With the summary database,
metadata copies can be added or removed flexibly de-
pending on the level of availability needed. For example,
one might want to replicate the directory hierarchy so that
users can still traverse the file system in the midst of cor-
ruption, or one does not want to replicate any metadata if
the underlying storage subsystem already employs a cer-
tain redundancy.

The summary database also enables a fast repair since
the repair only needs to scan the compact database rather
than the whole file system. For example, if the data-
structure checksum indicates that the i-th directory entry
of the/parent directory is corrupt, we can repair it by
running the query shown in Figure 1. The query obtains
the necessary information that will be used to reconstruct
the corrupt directory entry. Furthermore, by writing the
repair code in a declarative query language, we found that
the repair code can be made robust [11].

A potential drawback of storing extra partial redun-
dancy is that extra writes are added. Depending on the
amount of redundancy, the overhead of the extra writes
could be negligible. For example, if we only store di-
rectory hierarchy in the database, non-directory file op-
erations will not impose any overhead. Furthermore,
to improve spatial locality, each record in the summary
database is stored closely to the information it describes.

In an extreme and unfortunate case, the summary
database itself could be corrupt. In this case, the last and
only way to repair the corrupt data structure is to cross-
check the whole file system, which is an intrusive solu-
tion for the sake of repairing a single data structure. Thus,
instead of repairing it directly, the file system maintains
a statistic of unrepairable data structures, which will be
used as an indicator to run the final approach of continu-
ous repair,i.e., the full online fsck.

3.3 Full Online Fsck
The third approach of repair, a full online fsck, is initi-
ated when the number of unrepairable data structures in
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the second approach has exceeded a certain threshold (or
when a certain period of time has elapsed).

There are two big challenges in designing an online
fsck. First, while the online fsck is running, file sys-
tem data structures can be in-use (e.g., by open descrip-
tor, for directory cache, etc.). However, fsck has the
power to modify any metadata, including metadata re-
moval. This means that the online fsck could be in con-
flict with the file system and the application. For exam-
ple, if a /lost+found exists as a file, it will be deleted
since fsck wants to use that path as a directory. If an ap-
plication coincidentally created and is currently using the
lost+found file, the online fsck will be in conflict with
the application. This implies that an online fsck should be
able to identify the type of repair that can be performed
safely on-the-fly. Without such ability, an online fsck will
require complex management of in-kernel data-structures,
which is one of the big reasons why a full online fsck is
hard to design [13].

Second, fsck is complex. For example, the ext3 fsck,
written in 20,000 lines of low-level C code, performs
121 repairs and can identify and return 269 different er-
ror codes. Its checks and repairs range from simple (e.g.,
examining individual structures in isolation) to complex
ones (e.g., cross-checking all instances of multiple struc-
tures at the same time). Hence, a robust fsck is hard to
design and implement. In our recent work [11], we con-
firmed that existing offline fsck has many weaknesses:
fsck sometimes performs inconsistent repairs that can cor-
rupt the file system image, fsck also sometimes does not
use all available information and can lose portions of the
directory tree, and many more. This accentuates that a
robust online fsck should also be designed carefully.

To solve the first challenge, our online fsck follows one
important rule: it does not perform removal of data struc-
tures that could be in-use. We implement the rule by
adding arepair bit in each of the file system data struc-
tures. The bit is set when the corresponding data structure
is found corrupt (i.e., the checksum is wrong). Thus, this
marker guarantees that the file system can only use non-
corrupt data structures. Our online fsck then performs all
types of repair (update, addition, and removal) on data
structures that have been marked, but could only perform
update and addition (but not removal) on those that can
be in-use. Without the repair bit, an online fsck cannot
distinguish which data structures are safely repairable on-
the-fly.

It is possible that our online fsck has to delete an in-
use data structure. This implies that its checksum is valid
but the content is not consistent with the rest of the file
system. This case could only arise due to two factors: a
bug in the file system, or a complex failure scenario (e.g.,
lost write, misdirected write [20]) has occured in the stor-
age subsystem. Although this inconsistency cannot be re-

paired online, it cannot be ignored. Therefore, our online
fsck also keeps another statistic of the unrepairable in-use
data structures. This statistic will be used as a better indi-
cator to run the offline fsck, rather than using an arbitrary
number (e.g., on every 30 mounts).

To solve the second challenge, we leverage our recent
work in creating a more robust offline fsck [11]. The key
to our robust offline fsck is to use a high-level declarative
language and clearly separate each of the fsck components
(scanner, checker, repair, and flusher). In this design, the
scanner scans the metadata from the disk and loads them
to a temporary database, on which the repair will take
place. The checks and repairs are built as a collection of
robust declarative queries, similar to the one in Figure 1.
We found that a declarative query language is an excellent
match for the cross-checks that must be made across the
different structures of a file system. Unlike existing offline
fsck, the repair is reflected to the temporary database first.
After all inconsistencies have been repaired, the flusher
reflects all the database updates to their home location.

We design our online fsck similar to our robust offline
fsck, but with slight modifications. First, since this pro-
cess is online, before scanning the disk and loading the
temporary database, we wait for ongoing file operations
to finish and freeze new ones temporarily. The scanning
works similar to a disk scrubbing utility, but it is metadata-
driven [3]. It also sets the repair bit of all data struc-
tures with incorrect checksums. After all metadata has
been scanned and loaded into the temporary database, the
halted file operations can proceed, and the repair phase
can begin. During the repair, any modification is only re-
flected to the temporary database rather than to the file
system. Since we are keeping two copies of metadata
(one each in the file system and the temporary database),
we must keep both copies synchronized. Thus, each file
system operation is also reflected onto the database. For
example, if there is a foreground operation that deletes a
directory during the repair process, the directory records
in the temporary database will also be removed. Finally,
all data structures that have been repaired in the temporary
database are reflected to their home location (the summary
database is also updated).

4 Status
We plan to build a continuous checker and repair utility
for the ext2 file system. Adding a checksum and a repair
bit to each of the ext2 data structures should be straight-
forward. A little more work needs to be done for changing
the ext2 directory structure to be location-independent.
Extending the storage interface to support a cooperative
repair should also be straightforward. In particular, we
plan to leverage a previous work done in our group [8]. In
that work, the storage interface is extended to support co-
operation between file system journaling and RAID syn-
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chronization. To implement the summary database and
the full online fsck, we will reuse much of the compo-
nents of our recent work in redesigning the ext2 offline
fsck [11]. In that work, we have implemented the scan-
ner, and rewritten all the 121 repairs in SQL. The only
things left are to add a lightweight database support (e.g.,
SQLite [1]) into the file system, and a synchronization
support between the file system and the database.

5 Related Work
Our first solution to continuous repair is similar to
ZFS [19]. In particular, ZFS performs an online repair
from the redundancy stored in RAID-Z [3]. However, the
cooperation between ZFS and RAID-Z requires a fully
transparent interface; as Bonwick stated, the repair is “im-
possible if the file system and the RAID array were sepa-
rate products” [3]. On the other hand, we propose a more
generic solution by adding a simple repair interface. Fur-
thermore, ZFS’s repair fully depends on existing redun-
dancy; ZFS does not propose a full online fsck by which
corruptions are repaired in the absence of redundancy.

Partial online fsck has been proposed before. Chunkfs
supports a partial online fsck but only on partitions that
can be offline for a while [12]. McKusick suggests a back-
ground fsck [15], however, it could only repair simple in-
consistencies such as lost resources, but not complex ones
such as directory corruption.

To flexibly add partial redundancy, we suggested I/O
shepherding in recent research [10]. However, since re-
pairing is the focus of this paper, we believe using the
summary database is a better approach; a repair could re-
quire lots of cross-checks which are more robust if imple-
mented with database techniques. Integrating a database
into the file system is not a new concept. Amino [22] in-
tegrates a full database engine to support extensibility and
complete ACID properties. We only intend to add a light-
weight database that sufficiently supports our purpose.

In this paper, we only discuss continuous read check-
ing, which could not catch file system bugs early in time.
Continuous write checking can be performed similar to
our online fsck. In particular, for each write, the file sys-
tem cross-checks the update with the rest of the file sys-
tem. Since performing such a check for each write im-
poses a great overhead, the check can be implemented as
dynamic distributed probes [14].

6 Conclusion
File system reliability is important, but availability is also
highly demanded. It is not uncommon that some sys-
tems sacrifice reliability in favor of availability [4]. Such
choice should not be an option for file systems. Thus, file
systems should be armed with a continuous checker and
repair utility. Furthermore, such utility should be care-
fully designed such that it is robust, fast, and safe. To

achieve that, we have proposed three stackable continu-
ous repair solutions, which when combined will increase
the file system reliability and availability significantly.
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