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STOCHASTIC EQUATIONS

ON PROJECTIVE SYSTEMS OF GROUPS

STEVEN N. EVANS AND TATYANA GORDEEVA

Abstract. We consider stochastic equations of the form Xk = φk(Xk+1)Zk,
k ∈ N, where Xk and Zk are random variables taking values in a compact

group Gk, φk : Gk+1 → Gk is a continuous homomorphism, and the noise
(Zk)k∈N is a sequence of independent random variables. We take the sequence
of homomorphisms and the sequence of noise distributions as given, and in-
vestigate what conditions on these objects result in a unique distribution for
the “solution” sequence (Xk)k∈N and what conditions permits the existence
of a solution sequence that is a function of the noise alone (that is, the solu-
tion does not incorporate extra input randomness “at infinity”). Our results
extend previous work on stochastic equations on a single group that was orig-
inally motivated by Tsirelson’s example of a stochastic differential equation
that has a unique solution in law but no strong solutions.

1. Introduction

The following stochastic process was considered by Yor in [Yor92] in order to
clarify the structure underpinning Tsirelson’s celebrated example [Cir75] of a sto-
chastic differential equation that does not have a strong solution even though all
solutions have the same law.

Let T be the usual circle group; that is, T can be thought of as the interval
[0, 1) equipped with addition modulo 1. Suppose for each k ∈ N that µk is a Borel
probability measure on T. Write µ = (µk)k∈N. We say that sequence of T-valued
random variables (Xk)k∈N defined on some probability space (Ω,F ,P) solves the
stochastic equation associated with µ if

P[f(Xk) | (Xj)j>k] =

∫

T

f(Xk+1 + z)µk(dz)

for all bounded Borel function f : T → R, where we use the notation P[· | ·] for
condition expectations with respect to P. In other words, if for each k ∈ N we
define a T-valued random variable Zk by requiring

(1.1) Xk = Xk+1 + Zk,

then (Xk)k∈N solves the stochastic equation associated with µ if and only if for all
k ∈ N the distribution of Zk is µk and Zk is independent of (Xj)j>k.

Yor addressed the existence of solutions (Xk)k∈N that are strong in the sense that
the random variable Xk is measurable with respect to σ((Zj)j≥k) for each k ∈ N;
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that is, speaking somewhat informally, a solution is strong if it can be reconstructed
from the “noise” (Zj)j∈N without introducing additional randomness “at infinity.”
It turns out that strong solutions exist if and only if

lim
m→∞

lim
n→∞

n
∏

ℓ=m

∣

∣

∣

∣

∫

T
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[
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∫
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∣
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∣
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]

< ∞.

Yor’s investigation was extended in [AUY08], where the group T is replaced by
an arbitrary, possibly non-abelian, compact Hausdorff group. As one would expect,
the role of the the complex exponentials exp(2πih·), h ∈ Z, in this more general
setting is played by group representations. Interesting new phenomena appear when
the group is non-abelian due to the fact that there are irreducible representations
which are no longer one-dimensional.

We further extend the work in [Yor92, AUY08] by considering the following more
general set-up.

Fix a sequence (Gk)k∈N of compact Hausdorff groups with countable bases. Sup-
pose for each k ∈ N that there is a continuous homomorphism φk : Gk+1 → Gk.
Define a compact subgroup H ⊆ G :=

∏

k∈N
Gk by

(1.2) H := {g = (gk)k∈N ∈ G : gk = φk(gk+1) for all k ∈ N},

For example, if we take Gk = T for all k ∈ N, then the homomorphism φk is
necessarily of the form φk(x) = Nkx for some Nk ∈ Z and

H = {g = (gk)k∈N ∈ G : gk = Nkgk+1 for all k ∈ N}.

For a more interesting example, fix a compact group abelian group Γ, put Gk :=
G1,k × G2,k−1 · · · × Gk,1, where each group Gi,j is a copy of Γ, and define the
homomorphism φk by

φk(g1,k+1, g2,k, . . . , gk+1,1) := (g1,k+1 + g2,k, g2,k + g3,k−1, . . . , gk,2 + gk+1,1)

(where we write the group operation in Γ additively). Note that in this case H
is isomorphic to the infinite product ΓN, because an element h = (hi,j)(i,j)∈N×N

is uniquely specified by the values (hi,1)i∈N and there are no constraints on these
elements. The following pictures shows a piece of an element of H when Γ is the
group {0, 1} equipped with addition modulo 2.
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Assume for each k ∈ N that µk is a Borel probability measure Gk and write
µ = (µk)k∈N. We say that sequence of random variables (Xk)k∈N defined on some
probability space (Ω,F ,P), where Xk takes values in Gk, solves the stochastic equa-
tion associated with µ if

P[f(Xk) | (Xj)j>k] =

∫

Gk

f(φk(Xk+1)z)µk(dz)

for all bounded Borel function f : Gk → R. In other words, if for each k ∈ N we
define a Gk-valued random variable Zk by requiring

(1.3) Xk = φk(Xk+1)Zk,

then (Xk)k∈N solves the stochastic equation if and only if for all k ∈ N the dis-
tribution of Zk is µk and Zk is independent of (Xj)j>k. In particular, if (Xk)k∈N

solves the stochastic equation, then the sequence of random variables (Zk)k∈N is
independent.

Note that whether or not a sequence (Xk)k∈N solves the stochastic equation
associated with µ is solely a feature of the distribution of the sequence, and so we
say that a probability measure on the product group

∏

k∈N
Gk is a solution of the

stochastic equation if it is the distribution of a sequence that solves the equation
and write Pµ for the set of such measures.

In keeping with the terminology above, we say that a solution (Xk)k∈N is strong
if Xk is measurable with respect to σ((Zj)j≥k) for each k ∈ N. Note that whether
or not a solution is strong also depends only its distribution, and so we define
strong elements of Pµ in the obvious manner and denote the set of such probability
measures by Pstrong

µ .
Because applying the homomorphism φk to Xk+1 can degrade the “signal”

present in Xk+1 (for example, φk need not be invertible), the question of whether or
not strong solutions exist will involve the interaction between the homomorphisms
(φk)k∈N and distributions (µk)k∈N of the noise random variables and it introduces
new phenomena not present in [Yor92, AUY08].

An outline of the rest of the paper is as follows. In the Section 2 we examine the
compact, convex set of solutions and show that strong solutions are extreme points
of this set. We show that the subgroup H acts transitively on the extreme points of
the set of solutions and we relate the existence of strong solutions to properties of
the set of extreme points. In Section 3, we obtain criteria for the existence of strong
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solutions in terms of the the representations of the group Gk and the correspond-
ing Fourier transforms of the probability measures µk. In Section 3, we determine
the relationship between the existence of strong solutions and the phenomenon of
“freezing” wherein almost all sample paths of the random noise sequence agrees
with some sequence of constants for all sufficiently large indices. Finally, in Section
5 and 6, respectively, we investigate the example considered above of random vari-
ables indexed by the nonnegative quadrant of the two-dimensional integer lattice
and another example where each group Gk is the two dimensional torus and each
homomorphisms φk is a fixed ergodic toral automorphism.

2. Extreme points of Pµ and strong solutions

It is natural to first inquire whether Pµ is non-empty and, if so, whether it
consists of a single point; that is, whether there exist probability measures that
solve the stochastic equation associated with µ and, if so, whether there is a single
such measure. The question of existence is easily disposed of by Proposition 2.1
below. Note that because the group G =

∏

k∈N
Gk is compact and metrizable, the

set of probability measures on G equipped with the topology of weak convergence
is also compact and metrizable.

Proposition 2.1. For any sequence µ, the set Pµ is non-empty.

Proof. Construct on some probability space a sequence (Zk)k∈N of independent
random variables such that Zk has distribution µk. For each N ∈ N, define random

variables X
(N)
1 , . . . , X

(N)
N+1 recursively by

X
(N)
N+1 := eN+1 := identity in GN+1

and
X

(N)
k = φk(X

(N)
k+1)Zk, 1 ≤ k ≤ N,

so that for 1 ≤ k ≤ N the random variable φk(X
(N)
k+1)

−1X
(N)
k has distribution µk

and is independent of X
(N)
k+1, X

(N)
k+2, . . . , X

(N)
N .

Write PN for the distribution of the sequence (X
(N)
1 , . . . , X

(N)
N , eN+1, eN+2, . . .).

Because the space of probability measures on the group
∏

k∈N
Gk equipped with

the weak topology is compact and metrizable, there exists a subsequence (Nn)n∈N

and a probability measure P∞ such that PNn
→ P∞ weakly as n → ∞. It is clear

that P∞ ∈ Pµ. �

The question of uniqueness (that is, whether or not #Pµ = 1) is more demanding
and will occupy much of our attention in the remainder of the paper.

As a first indication of what is involved, consider the case where each measure µk

is simply the unit point mass at the identity ek of Gk. In this case (Xk)k∈N solves
the stochastic equation if Xk = φk(Xk+1) for all k ∈ N. Recall the definition of
the compact subgroup H ⊆ G :=

∏

k∈N
Gk from (1.2). It is clear that Pµ coincides

with the set of probability measures that are supported on H , and hence #Pµ = 1
if and only if H consists of just the single identity element. Note that if #H > 1
and (Xk)k∈N is a solution with distribution P ∈ Pµ that is not a point mass, then
Xk is certainly not a function of (Zj)j≥k = (ej)j≥k and the solution (Xk)k∈N is
not strong. Moreover, the probability measures P ∈ Pµ that are distributions of
strong solutions (Xk)k∈N are the point masses at elements of H and Pµ is the closed
convex hull of this set of measures.
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An elaboration of the argument we have just given establishes the following
result.

Proposition 2.2. If H is non-trivial (that is, contains elements other than the
identity), then Pµ \ Pstrong

µ 6= ∅. In particular, if H is non-trivial and #Pµ = 1,

then Pstrong
µ = ∅.

Proof. Suppose that all solutions are strong. Let (Xk)k∈N be a strong solution.
By extending the underlying probability space if necessary, construct an H-

valued random variable (Uk)k∈N that is independent of (Xk)k∈N and is not almost
surely constant. Note that (Uk)k∈N is not σ((Xk)k∈N)-measurable and hence, a
fortiori, (Uk)k∈N is not σ((Zk)k∈N)-measurable.

Observe that

φk(Uk+1Xk+1)Zk = φk(Uk+1)φk(Xk+1)Zk = UkXk,

because φk(Uk+1) = Uk for all k ∈ N by definition of H . Hence, (UkXk)k∈N is also a
solution. Thus, (UkXk)k∈N is a strong solution by our assumption that all solutions
are strong. In particular, UkXk is σ((Zj)j ≥ k)-measurable for all k ∈ N. However,

Uk = (UkXk)X
−1
k is σ((Zj)j≥k)-measurable, and we arrive at a contradiction. �

From now on, we let Xk : G → Gk, k ∈ N, denote the random variable defined
by Xk((xj)j∈N) := xk and define Zk : G → Gk, k ∈ N, by Zk := φn(Xk+1)

−1Xk

Notation 2.3. Given a sequence of random variables S = (S1, S2, . . .) and k ∈ N,
set FS

k := σ((Sj)j≥k). Similarly, set FS := FS
1 and FS

∞ :=
⋂

k∈N
FS

k .

Notation 2.4. For any sequence µ = (µk)k∈N, the set of solutions Pµ is clearly a
compact convex subset. Let Pex

µ denote the extreme points of Pµ.

Lemma 2.5. A probability measure P ∈ Pµ belongs to Pex
µ if and only if the remote

future FX
∞ is trivial under P.

Proof. Our proof follows that of an analogous result in [AUY08].
Suppose that P ∈ Pµ and the σ-field FX

∞ is not trivial under P.
Fix a set A ∈ FX

∞ with 0 < P(A) < 1. Then,

P(·) = P(A)P(· |A) + (1− P(A))P(· |Ac).

Observe that P(· |A) 6= P(· |Ac), since P(A |A) = 1 6= P(A |Ac) = 0.
Note for each k ∈ N and B ⊆ Gk that

P{Xk φk(Xk+1)
−1 ∈ B |A} =

P({Xk φk(Xk+1)
−1 ∈ B} ∩A)

P(A)

=
µk(B)P(A)

P(A)
= µk(B)

because P ∈ Pµ and henceXk φk(Xk+1)
−1 is independent of FX

∞ under P. Similarly,
if C ∈ FX

k+1,

P({Xk φk(Xk+1)
−1 ∈ B} ∩C |A) = µk(B)P(C ∩ A)

P(A)

= P{Xk φk(Xk+1)
−1 ∈ B |A}P(C |A)

Thus, P(· |A) ∈ Pµ. The analogous argument establishes P(· |Ac) ∈ Pµ. Since
P(· |A) 6= P(· |Ac), the probability measure P cannot belong to Pex

µ .
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Now assume that P ∈ Pµ and FX
∞ is trivial under P. To show P is an extreme

point, it suffices to show that if P′ ∈ Pµ is absolutely continuous with respect to P,
then P = P′.

Note that a solution X is a time-inhomogeneous Markov chain (indexed in back-
wards time with index set starting at infinity) with the following transition proba-
bility:

P{Xk ∈ A |Xk+1} = µk{g ∈ Gk : φk(Xk+1)g ∈ A}.
Since P and P′ are the distributions of Markov chains with common transition

probabilities and P′ is absolutely continuous with respect to P, it follows that for
any measurable set A the random variables P(A | FX

∞) and P′(A | FX
∞) are equal

P-a.s. Because FX
∞ is trivial under both P and P′, it must be the case that P(A) =

P′(A). �

Corollary 2.6. All strong solutions P ∈ Pµ are extreme; that is, Pstrong
µ ⊆ Pex

µ .

Proof. By definition, if P ∈ Pµ is strong, then Xk ∈ FZ
k for all k ∈ N. Thus,

FX
k = FZ

k for all k ∈ N and hence FX
∞ = FZ

∞. The last σ-field is trivial by the
Kolmogorov zero-one law. �

Remark 2.7. There can be extreme solutions that are not strong. For example,
suppose that the Gk = Γ, k ∈ N, for some non-trivial group Γ, each φk is the
identity map, and each µk is the Haar measure on Γ. It is clear that Pµ consists
of just the measure

⊗

k∈N
µk (that is, Haar measure on G), and so this solution is

extreme. However, it follows from Proposition 2.2 that this solution is not strong.

It is clear that if P ∈ Pµ and h = (hk)k∈N ∈ H , then the distribution of the
sequence (hkXk)k∈N also belongs to P ∈ Pµ. Moreover, if P ∈ Pex

µ , then it follows
from Lemma 2.5 that the distribution of the sequence (hkXk)k∈N also belongs to
Pex
µ . Similarly, if P ∈ Pstrong

µ , then the distribution of the sequence (hkXk)k∈N also

belongs to Pstrong
µ . We record these observations for future reference.

Lemma 2.8. The collection of maps Th : Pµ → Pµ, h ∈ H, defined by Th(P)(·) =
P{(hkXk)k∈N ∈ ·} constitute a a group action of H on Pµ. The set Pex

µ of extreme

solutions and the set Pstrong
µ of strong solutions are both invariant for this action.

It follows from the next result that either Pstrong
µ = ∅ or Pstrong

µ = Pex
µ . For the

purposes of the proof and later it is convenient to introduce the following notation.

Notation 2.9. For k, ℓ ∈ N with k < ℓ, define φℓ
k : Gℓ → Gk by

φℓ
k = φk ◦ φk+1 ◦ · · · ◦ φℓ−1,

and adopt the convention that φk
k is the identity map from Gk to itself.

Theorem 2.10. The group action (Th)h∈H is transitive on Pex
µ .

Proof. For k ∈ N, define X ′
k :
∏

k∈N
(Gk ×Gk ×Gk) → Gk (resp. X ′′

k :
∏

k∈N
(Gk ×

Gk×Gk) → Gk) and Yk :
∏

k∈N
(Gk×Gk ×Gk) → Gk) by X ′

k((x
′
j , x

′′
j , yj)j∈N) = x′

k

(resp. X ′′
k ((x

′
j , x

′′
j , yj)j∈N) = x′′

k and Yk((x
′
j , x

′′
j , yj)j∈N) = yk).

Suppose that P′,P′′ ∈ Pµ. Write P′
z(·) (resp. P′′

z (·)) for the regular conditional
probability of P′{X ∈ · |Z = z} (resp. P′′{X ∈ · |Z = z}).

Define a probability measure Q on
∏

k∈N
(Gk ×Gk ×Gk) by

Q{(X ′, X ′′, Y ) ∈ A′ ×A′′ ×B} =

∫

G

P′
z(A

′)P′′
z (A

′′)1B(z) (
⊗

k∈N

µk)(dz).
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By construction, φk(X
′
k+1)

−1 X ′
k = φk(X

′′
k+1)

−1 X ′′
k = Yk for all k ∈ N, Q-a.s.,

the distribution of the pair (X ′, Y ) under Q is the same as that of the pair (X,Z)
under P′, and the distribution of the pair (X ′′, Y ) under Q is the same as that of
the pair (X,Z) under P′′. In particular, the distributions of X ′ and X ′′ under Q

are, respectively, P′ and P′′.
Suppose for some k ∈ N that Φ′ : G → R and Φ′′ : G → R are both bounded

FX
k+1-measurable functions and Ψ : Gk → R is a bounded Borel function. Then,

Φ′ ◦X ′ :
∏

j∈N
(Gj ×Gj ×Gj) → R is FX′

k+1-measurable and Φ′′ ◦X ′′ :
∏

j∈N
(Gj ×

Gj ×Gj) → R is FX′′

k+1-measurable, and hence, by the construction of Q (using the
notations ν[·] and ν[· | ·] for expectation and conditional expectation with respect
to a probability measure ν),

Q[Φ′ ◦X ′ Φ′′ ◦X ′′ | FY ] = Q[Φ′ ◦X ′ | FY ] Q[Φ′′ ◦X ′′ | FY ]

= P′
Y [Φ

′ ◦X ] P′′
Y [Φ

′′ ◦X ]

is FY
k+1-measurable. Thus, by the construction of Q and the independence of the

elements of the sequence (Yj)j∈N under Q,

Q[Φ′ ◦X ′ Φ′′ ◦X ′′Ψ ◦ Yk] = Q[Q[Φ′ ◦X ′Φ′′ ◦X ′′ Ψ ◦ Yk | FY ]]

= Q[Q[Φ′ ◦X ′Φ′′ ◦X ′′ | FY ]Ψ ◦ Yk]

= Q[P′
Y [Φ

′ ◦X ]P′′
Y [Φ

′′ ◦X ]] Q[Ψ ◦ Yk]

= Q[Φ′ ◦X ′ Φ′′ ◦X ′′] Q[Ψ ◦ Yk].

Therefore, by a standard monotone class argument, Yk is independent of F (X′,X′′)
k+1 .

Consequently, the sub-σ-fields FY and F (X′,X′′)
∞ are independent.

Suppose now that P′,P′′ ∈ Pex
µ . Observe for k < n that

X ′
k(X

′′
k )

−1

=

[

φn
k (X

′
n)

n−1
∏

m=k

φm
k (Ym)Yk

][

φn
k (X

′′
n)

n−1
∏

m=k

φm
k (Ym)Yk

]−1

Q− a.s.

= φn
k (X

′
n)φ

n
k (X

′′
n)

−1,

(2.1)

and so there exists a G-valued random variable W ∈ FX′,X′′

∞ such that Wk =
X ′

k(X
′′
k )

−1, Q-a.s. From the above, W is independent of the sub-σ-field FY . By
construction, W takes values in the subgroup H .

Let Q(· |W = h) be the regular conditional probability for Q given W = h ∈ H ,
so that

(2.2) Q(·) =
∫

H

Q(· |W = h)Q{W ∈ dh}.

It follows that
Q{X ′

k = φk(X
′
k+1)Yk, ∀k ∈ N |W = h} = 1

for Q{W ∈ dh}-almost every h ∈ H . Moreover, because W is independent of FY

it follows that Q{Y ∈ ·} = Q{Y ∈ · |W = h} =
⊗

k∈N
µk for Q{W ∈ dh}-almost

every h ∈ H . Thus, Q{X ′ ∈ · |W = h} ∈ Pµ for Q{ǫ ∈ dh}-almost every h ∈ H
and, by (2.2),

P′(·) = Q{X ′ ∈ ·} =

∫

H

Q{X ′ ∈ · |W = h}Q{W ∈ dh}.
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This would contradict the extremality of P′ unless

P′(·) = Q{X ′ ∈ · |W = h}, for Q{W ∈ dh}-almost every h ∈ H.

Similarly,

P′′(·) = Q{X ′′ ∈ · |W = h}, for Q{W ∈ dh}-almost every h ∈ H.

By (2.1),

Q{X ′
k = hkX

′′
k ∀k ∈ N |W = h} = 1, for Q{W ∈ dh}-almost every h ∈ H.

Therefore,

P′ = Th(P
′′), for Q{W ∈ dh}-almost every h ∈ H.

�

Notation 2.11. Given P0 ∈ Pex
µ , let Hstab

µ (P0) := {h ∈ H : Th(P
0) = P0} be the

stabilizer subgroup of the point P0 under the group action (Th)h∈H .

Remark 2.12. It follows from the transitivity of H on Pex
µ that for any two proba-

bility measures P′,P′′ ∈ Pex
µ the subgroups Hstab

µ (P′) and Hstab
µ (P′′) are conjugate.

Corollary 2.13. A necessary and sufficient condition for #Pµ = 1 is that
Hstab

µ (P0) = H for some, and hence all, P0 ∈ Pex
µ .

Proof. This is immediate from Theorem 2.10 and the observation that #Pµ = 1 if
and only if #Pex

µ = 1. �

Corollary 2.14. If Hstab
µ (P0) is non-trivial for some, and hence all, P0 ∈ Pex

µ ,

then Pstrong
µ = ∅.

Proof. As we observed prior to the statement of Theorem 2.10, it is a consequence
of that result that either Pstrong

µ = ∅ or Pstrong
µ = Pex

µ .

Suppose that P0 ∈ Pstrong
µ is such that Hstab

µ (P0) is non-trivial. By working on

an extended probability space, we may assume that there is an Hstab
µ (P0)-valued

random variable (Uk)k∈N that is independent of (Xk)k∈N and is not almost surely
constant. The distribution of the solution (UkXk)k∈N is also P0 and, in particular,
this solution is strong. However, this implies that

σ(UkXk) ⊆ σ((φj(Uj+1 Xj+1)
−1 Uj Xj)j≥k)

= σ((φj(Xj+1)
−1 Xj)j≥k)

= FZ
k

for all k ∈ N, and hence Uk is FZ
k -measurable for all k ∈ N, because Xk is FZ

k -
measurable by the assumption that P0 ∈ Pstrong

µ . However, because the sequence
(Uk)k∈N is independent of the sequence of (Xk)k∈N and not almost surely constant,
it follows that that (Uk)k∈N is not σ((Xk)k∈N)-measurable, and hence a fortiori,
(Uk)k∈N is not σ((Zk)k∈N)-measurable. We thus arrive at a contradiction. �
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3. Representation theory and the existence of strong solutions

Notation 3.1. Let G be the set of all unitary, finite-dimensional representations
of the compact group G =

∏

k∈N
Gk.

Any irreducible representations of G is equivalent to a tensor product represen-
tation of the form

(gk)k∈N 7→ ρ(k1)(gk1)⊗ · · · ⊗ ρ(kn)(gkn
),

where {k1, . . . , kn} is a finite subset of N and ρ(kj) is a (necessarily finite-
dimensional) irreducible representation of Gkj

for 1 ≤ j ≤ n. Furthermore, an
arbitrary element of G is equivalent to a (finite) direct sum of irreducible represen-
tations.

Notation 3.2. For k ∈ N write ιk : Gk 7→ G for the map that sends h ∈ Gk

to (e1, . . . , ek−1, h, ek+1, . . .), where, as above, ej is the identity element of Gj for
j ∈ N.

Consider an arbitrary representation ρ ∈ G. It is clear from the above that if
P ∈ Pstrong

µ , then ρ ◦ ιk(Xk) is FZ
k -measurable for all k ∈ N. Note that ρ ◦ ιk is

a representation of Gk and all representations of Gk arise this way. On the other
hand, because, by the Peter-Weyl theorem, the closure in the uniform norm of the
(complex) linear span of matrix entries of the irreducible representations of Gk is
the vector space of continuous complex-valued functions on Gk, it follows that if
ρ ◦ ιk(Xk) is FZ

k -measurable for all k ∈ N for an arbitrary representation ρ ∈ G,
then P ∈ Pstrong

µ . This observation leads to the following definition and theorem.

Notation 3.3. Set

Hstrong
µ := {ρ ∈ G : ∃P ∈ Pex

µ such that ρ ◦ ιk(Xk) is FZ
k -measurable P-a.s. ∀k ∈ N}.

Theorem 3.4. The set Pstrong
µ of strong solutions is non-empty (and hence equal

to Pex
µ ) if and only if Hstrong

µ = G.
Proof. The result is immediate from the discussion preceding the statement of the
theorem once we note that if P′ and P′′ both belong to Pex

µ then, by Theorem 2.10,
there exists h ∈ H such that P′′ is the distribution of hX = (hkXk)k∈N under
P′ and so ρ ◦ ιk(Xk) is FZ

k -measurable P′′-a.s. if and only if ρ ◦ ιk(hkXk) is FZ
k -

measurable P′-a.s. (recall that Zk = φ(Xk+1)
−1 Xk = φ(hkXk+1)

−1 hkXk when
h ∈ H); therefore, ρ◦ ιk(Xk) is FZ

k -measurable P′′-a.s. if and only if [ρ◦ ιk(hk)] [ρ◦
ιk(Xk)] is FZ

k -measurable P′-a.s., which is in turn equivalent to ρ ◦ ιk(Xk) being
FZ

k -measurable P′-a.s. by the invertibility of the matrix ρ ◦ ιk(hk). Thus,

Hstrong
µ = {ρ ∈ G : ρ ◦ ιk(Xk) is FZ

k -measurable P-a.s. ∀k ∈ N }
for any P ∈ Pex

µ . �

Theorem 3.4 is still somewhat unsatisfactory as a criterion for the existence of
strong solutions because it requires a knowledge of the set Pex

µ of extreme solutions.
We would prefer a criterion that was directly in terms of the sequence (µk)k∈N. In
order to (partly) remedy this situation, we introduce the following objects.

Notation 3.5. Fix ρ ∈ G. For k, ℓ ∈ N with k ≤ ℓ, set

Rℓ
k :=

∫

Gℓ

ρ ◦ ιk ◦ φℓ
k(z)µℓ(dz).
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Let
Hdet

µ := {ρ ∈ G : lim
m→∞

lim
n→∞

∣

∣det(Rn
kR

n−1
k · · ·Rm

k )
∣

∣ > 0 ∀k ∈ N}
and

Hnorm
µ := {ρ ∈ G : lim

m→∞
lim
n→∞

‖Rn
kR

n−1
k · · ·Rm

k ‖ > 0 ∀k ∈ N},
where ‖ · ‖ is the ℓ2 operator norm on the appropriate space of matrices.

Proposition 3.6. Fix P ∈ Pµ.

(i) If ρ ∈ Hdet
µ , then

P[ρ ◦ ιk(Xk) | FX
∞ ∨ FZ

k ] = ρ ◦ ιk(Xk)

for all k ∈ N. In particular, if P ∈ Pex
µ , then ρ ◦ ιk(Xk) is FZ

k -measurable
for all k ∈ N.

(ii) If ρ /∈ Hnorm
µ , then

P[ρ ◦ ιk(Xk) | FX
∞ ∨ FZ

k ] = 0

for some k ∈ N. In particular, if P ∈ Pex
µ , then ρ ◦ ιk(Xk) is not FZ

k -
measurable for some k ∈ N.

Proof. The proof follows that of an analogous result in [AUY08] with modifications
required by the greater generality in which we are working.

Consider claim (i). Fix ρ ∈ Hdet
µ and k ∈ N. For ℓ > k we have

(3.1) ρ ◦ ιk(Xk) = ρ ◦ ιk ◦ φℓ
k(Xℓ) ρ ◦ ιk ◦ φℓ−1

k (Zℓ−1) · · · ρ ◦ ιk ◦ φk
k(Zk).

For k ≤ m ≤ n put

Ξm
n := ρ ◦ ιk ◦ φn

k (Zm) · · · ρ ◦ ιk ◦ φm
k (Zm).

Note that
P[Ξm

n ] = Rn
k · · ·Rm

k .

For any p ≥ k, the matrix ρ ◦ ιk ◦ φp
k is unitary, and so ‖ρ ◦ ιk ◦ φp

k(h)‖ = 1 for all
h ∈ Gp. By Jensen’s inequality, ‖Rp

k‖ ≤ 1. In particular, | det(Rp
k)| ≤ 1. Hence,

lim
m→∞

lim
n→∞

| det(P[Ξm
n ])|

exists and is given by

sup
m

inf
n≥m

| det(Rn
k )| · · · | det(Rm

k )|.

Moreover, there are constants ǫ > 0 and M ∈ N such that | det(P[Ξm
n ])| ≥ ǫ

whenever n ≥ m ≥ M . It follows from Cramer’s rule that the matrices P[Ξm
n ] are

invertible with uniformly bounded entries for n ≥ m ≥ M .
Set Φm

n := P[Ξm
n ]−1Ξm

n for n ≥ m ≥ M . The matrices Φm
n have uniformly

bounded entries and
P
[

Φm
n+1 |σ((Zp)

n
p=m)

]

= Φm
n ,

so that (Φn)n≥m is a bounded matrix-valued martingale with respect to the fil-
tration (σ((Zp)

n
p=m))n≥m. Thus, limn→∞ Φm

n =: Φm
∞ exists and is FZ

m-measurable
P-a.s. for each m ≥ M . Consequently, limn→∞ Ξm

n =: Ξm
∞ also exists and is

FZ
m-measurable P-a.s. for each m ≥ M . Part (i) is now clear from (3.1).
Now consider part (ii). Fix ρ /∈ Hnorm

µ and k ∈ N such that

lim
m→∞

lim
n→∞

∥

∥Rn
kR

n−1
k · · ·Rm

k

∥

∥ = 0.



STOCHASTIC EQUATIONS 11

It follows from (3.1) that for n ≥ m ≥ k

P
[

ρ ◦ ιk(Xk) | FX
n ∨ σ((Zj)

m
j=k)

]

= ρ ◦ ιk ◦ φn
k (Xn)R

n−1
k · · ·Rm+1

k

ρ ◦ ιk ◦ φk
m(Zm) · · · ρ ◦ ιk ◦ φk

k(Zk).

Since ρ(g) is a unitary matrix for all g ∈ G, the norm of the right-hand side is at
most ‖Rn−1

k · · ·Rm+1
k ‖, which, by assumption, converges to 0 as n → ∞ followed by

m → ∞. Thus, by the reverse martingale convergence theorem and the martingale
convergence theorem,

P
[

ρ ◦ ιk(Xk) | FX
∞ ∨ FZ

k

]

= lim
m→∞

lim
n→∞

P
[

ρ ◦ ιk(Xk) | FX
n ∨ σ((Zj)

m
j=k)

]

= 0.

�

The following result is immediate from Theorem 3.4 and Proposition 3.6.

Theorem 3.7. The following containments hold

Hnorm
µ ⊇ Hstrong

µ ⊇ Hdet
µ .

Thus, Hdet
µ = G implies that Pstrong

µ 6= ∅ and Hnorm
µ 6= G implies that Pstrong

µ = ∅.
The following is a straightforward equivalent of Theorem 3.7 and we omit the

proof.

Corollary 3.8. If

lim
m→∞

lim
n→∞

∣

∣

∣

∣

∣

det

(

n
∏

ℓ=m

∫

Gℓ

ρ ◦ φℓ
k(z)µℓ(dz)

)∣

∣

∣

∣

∣

> 0

for all irreducible representations ρ of Gk for all k ∈ N, then Pstrong
µ 6= ∅. If

lim
m→∞

lim
n→∞

∥

∥

∥

∥

∥

n
∏

ℓ=m

∫

Gℓ

ρ ◦ φℓ
k(z)µℓ(dz))

∥

∥

∥

∥

∥

= 0

for some irreducible representation ρ of Gk for some k ∈ N, then Pstrong
µ = ∅.

Under a further assumption, we get a representation theoretic necessary and
sufficient condition for the existence of strong solutions.

Definition 3.9. A Borel probability measure ν on a compact Hausdorff group Γ
is conjugation invariant if

∫

Γ

f(g−1xg) ν(dx) =

∫

Γ

f(x) ν(dx)

for all g ∈ Γ and bounded Borel functions f : Γ → R.

Remark 3.10. Note that if Γ is abelian, then any Borel probability measure ν on Γ
is conjugation invariant.

Corollary 3.11. Suppose that each probability measure µk, k ∈ N, is conjugation
invariant. Then,

Hnorm
µ = Hstrong

µ = Hdet
µ

and Pstrong
µ 6= ∅ if and only if

lim
m→∞

lim
n→∞

∣

∣

∣

∣

∣

n
∏

ℓ=m

∫

Gℓ

χ ◦ φℓ
k(z)µℓ(dz)

∣

∣

∣

∣

∣

> 0

for each character χ of an irreducible representation of Gk for all k ∈ N.
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Proof. The result is immediate from Corollary 3.8 and Lemma 3.12 below. �

The following lemma is well-known, but we include a proof for the sake of com-
pleteness.

Lemma 3.12. If ν is a conjugation invariant Borel probability measure on a com-
pact Hausdorff group Γ and ρ is an irreducible representation of Γ with character
χ, then

∫

Γ

ρ(x) ν(dx) =

∫

Γ

χ(x) ν(dx) × I,

where I is the identity matrix.

Proof. Let λ be the normalized Haar measure on Γ. By assumption,
∫

Γ

ρ(x) ν(dx) =

∫

Γ

∫

Γ

ρ(g−1xg)λ(dg) ν(dx).

Now, for x, y ∈ Γ we have
∫

Γ

ρ(g−1xg)λ(dg) ρ(y) =

∫

Γ

ρ(g−1xgy)λ(dg)

=

∫

Γ

ρ(yh−1xh)λ(dh)

= ρ(y)

∫

Γ

ρ(h−1xh)λ(dh),

and so the matrix
∫

Γ ρ(g
−1xg)λ(dg) commutes with the matrix ρ(y) for all y ∈ Γ.

It follows from Schur’s Lemma that
∫

Γ
ρ(g−1xg)λ(dg) = cI for some constant c,

and taking traces of both sides gives c = χ(x). �

4. Freezing

Recall that the Hilbert-Schmidt norm of a matrix A is given by ‖A‖HS :=

tr(A∗A)
1
2 , where A∗ is the adjoint of A (this norm is also called the Frobenius

norm and the Schur norm). Write d(ρ) for the dimension of a unitary representation
ρ ∈ G, and note that ‖ρ(x)‖2HS = tr(I) = d(ρ). If ν is a probability measure on G,
then ‖

∫

G ρ(x) ν(dx)‖2HS ≤ d(ρ) by Jensen’s inequality.

Notation 4.1. Set

Hfreeze
µ :=

{

ρ ∈ G :
∞
∑

m=k

[

d(ρ) −
∥

∥

∥

∥

∫

Gk

ρ ◦ ιk ◦ φm
k (z)µm(dz)

∥

∥

∥

∥

2

HS

]

< ∞ ∀k ∈ N

}

.

Proposition 4.2. Suppose that each group Gk, k ∈ N, is finite. Then, Hfreeze
µ = G

if and only if for some (equivalently, all) P ∈ Pµ there are constants ck,m ∈ Gk,
k,m ∈ N, k ≤ m, such that

P{φm
k (Zm) 6= ck,m i.o.} = 0

for all k ∈ N.

Proof. Write µm
k for the probability measure on Gk that is the push-forward of the

probability measure µm on Gm by the map φm
k : Gm → Gk. For simplicity, we write

µm
k (g) instead of µm

k ({g}) for g ∈ Gk. It is clear that P{φm
k (Zm) 6= ck,m i.o.} = 0
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k ≤ m for all k ∈ N for some family of constants ck,m ∈ Gk, k,m ∈ N, if and only
if P{φm

k (Zm) 6= c∗k,m i.o.} = 0 where c∗k,m is any family with the property

µ(c∗k,m) = max{µm
k (g) : g ∈ Gk}

and, by the Borel-Cantelli lemma, this in turn occurs if and only if
∞
∑

m=k

µ(Gk\{c∗k,m}) < ∞

for all k ∈ N.
Now,





∑

g∈Gk

µm
k (g)2





1/2

≥ max
g∈Gk

µm
k (g) = µm

k (ck,m) = µm
k (ck,m)

∑

g∈Gk

µm
k (g) ≥

∑

g∈Gk

µm
k (g)2.

By Parseval’s equality,

∑

g∈Gk

µm
k (g)2 =

1

#Gk

∑

ρ∈Ĝk

d(ρ)

∥

∥

∥

∥

∥

∥

∑

g∈Gk

ρ(g)µm
k (g)

∥

∥

∥

∥

∥

∥

2

HS

,

and hence

1−







1

#Gk

∑

ρ∈Ĝk

d(ρ)

∥

∥

∥

∥

∥

∥

∑

g∈Gk

ρ(g)µm
k (g)

∥

∥

∥

∥

∥

∥

2

HS







≥ µm
k (Gk\{ck,m})

≥ 1−







1

#Gk

∑

ρ∈Ĝk

d(ρ)

∥

∥

∥

∥

∥

∥

∑

g∈Gk

ρ(g)µm
k (g)

∥

∥

∥

∥

∥

∥

2

HS







1/2

.

Note for a sequence of constant (an)n∈N ⊂ [0, 1] that
∑

n∈N
(1− an) < ∞ if and

only if
∑

n∈N
(1 − a2n) < ∞. Note also that

1 =
1

#Gk

∑

ρ∈Ĝk

d(ρ)2.

Thus,
∞
∑

m=k

µ(Gk\{c∗k,m}) < ∞

for all k ∈ N if and only if

∞
∑

m=k

1

#Gk

∑

ρ∈Ĝk

d(ρ)






d(ρ)−

∥

∥

∥

∥

∥

∥

∑

g∈Gk

ρ(g)µm
k (g)

∥

∥

∥

∥

∥

∥

2

HS






< ∞

for all k ∈ N, which is in turn equivalent to

∞
∑

m=k

∑

ρ∈Ĝk






d(ρ)−

∥

∥

∥

∥

∥

∥

∑

g∈Gk

ρ(g)µm
k (g)

∥

∥

∥

∥

∥

∥

2

HS






< ∞
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for all ρ ∈ Ĝk for all k ∈ N.
A decomposition of the representation ρ◦ιk of Gk for some ρ ∈ G into irreducibles

shows that the last condition is equivalent to the one in the statement. �

Proposition 4.3. If each probability measure µk, k ∈ N, is constant on conjugacy
classes, then Pstrong

µ 6= ∅ if and only if Hfreeze
µ = G.

Proof. From Corollary 3.11, Pstrong
µ 6= ∅ if and only if, in the notation of the proof

of Proposition 4.2,

lim
m→∞

lim
n→∞

n
∏

ℓ=m

∣

∣

∣

∣

∫

Gk

χ(z)µℓ
k(dz)

∣

∣

∣

∣

> 0

for each character χ of an irreducible representation of Gk for all k ∈ N. Equiva-
lently, Pstrong

µ 6= ∅ if and only if

∞
∑

m=k

[

1−
∣

∣

∣

∣

∫

Gk

χ(z)µℓ
k(dz)

∣

∣

∣

∣

2
]

< ∞

for each character χ of an irreducible representation of Gk for all k ∈ N.
Now, if ρ is the irreducible representation of Gk corresponding to such a χ, then

∥

∥

∥

∥

∫

Gk

ρ(z)µℓ
k(dz)

∥

∥

∥

∥

2

HS

=

∥

∥

∥

∥

∫

Gk

χ(z)µℓ
k(dz) I

∥

∥

∥

∥

2

HS

= d(ρ)

∣

∣

∣

∣

∫

Gk

χ(z)µℓ
k(dz)

∣

∣

∣

∣

2

,

and so Pstrong
µ 6= ∅ if and only if

∞
∑

m=k

[

d(ρ)−
∥

∥

∥

∥

∫

Gk

ρ µm
k (dz)

∥

∥

∥

∥

2

HS

]

< ∞

for each irreducible representation ρ of Gk for all k ∈ N.
It follows from a decomposition of an arbitrary representation of G into irre-

ducibles that the last condition is equivalent to Hfreeze
µ = G. �

5. Groups indexed by the lattice

Recall from the Introduction the example of our general set-up where Gk :=
G1,k ×G2,k−1 · · ·×Gk,1 with each group Gi,j a copy of some fixed compact abelian
group Γ and the homomorphism φk is given by

φk(g1,k+1, g2,k, . . . , gk+1,1) := (g1,k+1 + g2,k, g2,k + g3,k−1, . . . , gk,2 + gk+1,1).

We will consider the particular case where Γ is Zp, the group of integers modulo
some prime number p.

Because Zp is abelian, all its irreducible representations ofG are one-dimensional.
The irreducible representations are the trivial one and those of the form ρ(g) =
∏m

n=1 exp
(

2πizn
p gin,jn

)

for some m, pairs (i1, j1), . . . , (im, jm) ∈ N2, and 1 ≤ zn ≤
p− 1.

The homomorphism φℓ
k maps (g1,ℓ, . . . , gℓ,1) ∈ Gℓ to (h1,k, . . . , hk,1) ∈ Gk where

hi,k+1−i =

ℓ−k
∑

j=0

(

ℓ− k

j

)

gi+j,ℓ+1−i−j ∈ Zp.
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Set f(m,n) :=
(

m
n

)

mod p. When we restrict to Gk, the representation ρ ◦ ιk

is of the form
∏k

i=1 exp
(

2πzi
p gi,k+1−i

)

with 0 ≤ zi ≤ p− 1. We therefore need to

evaluate

Rℓ
k =

∫

Gℓ

k
∏

i=1

ℓ−k
∏

j=0

exp

(

2πzi
p

f(ℓ− k, j)gi+j,ℓ+1−i−j

)

µℓ(dgℓ)

to determine whether or not Pstrong
µ = ∅. The following theorem of Lucas (see

[Gra97]) gives the value of f .

Theorem 5.1. Let m,n be non-negative integers and p a prime number. Suppose

m = mkp
k + . . .+m1p+m0

and
n = nkp

k + . . .+ n1p+ n0.

Then,
(

m

n

)

=

k
∏

i=0

(

mi

ni

)

mod p.

Equivalently, if m0 and n0 are the least non-negative residues of m and n mod p,

then
(

m
n

)

=
(⌊m/p⌋
⌊n/p⌋

)(

m0

n0

)

.

Rather than use Theorem 5.1 directly to construct interesting examples, we
consider a consequence of it for the case p = 2. Suppose that µk = µ1,k ⊗ · · ·⊗µk,1

where µi,k+1−i{1} = πk = 1− µi,k+1−i{0} for some 0 ≤ πk ≤ 1.
Define x = (xm,ℓ+1−m)ℓm=1 ∈ Gℓ = G1,ℓ × · · · ×Gℓ,1

∼= Zℓ
2 by

x :=
k
∑

i=1

ℓ−k
∑

j=0

zif(ℓ− k, j)e(i+j,ℓ+1−i−j),

where the arithmetic is performed modulo 2 and e(m,ℓ+1−m) ∈ Gℓ is the vector with

e
(m,ℓ+1−m)
m,ℓ+1−m = 1 and e

(m,ℓ+1−m)
n,ℓ+1−n = 0 for n 6= m. Then,

∫

Gℓ

k
∏

i=1

ℓ−k
∏

j=0

exp

(

2πzi
p

f(ℓ− k, j)gi+j,ℓ+1−i−j

)

µℓ(dgℓ) = (1 − 2πℓ)
M(k,ℓ,z),

where
M(k, ℓ, z) := #{1 ≤ m ≤ ℓ : xm,ℓ+1−m = 1}.

Observe that if xm,ℓ+1−m = 1, then

ℓ−k
∑

j=0

f(ℓ− k, j)e
(i+j,ℓ+1−i−j)
m,ℓ+1−m = 1

for some 1 ≤ i ≤ k with zi = 1. Now

#{1 ≤ m ≤ ℓ :

ℓ−k
∑

j=0

f(ℓ− k, j)e
(i+j,ℓ+1−i−j)
m,ℓ+1−m = 1}

= #{1 ≤ m ≤ ℓ : f(ℓ− k,m− i) = 1, i ≤ m ≤ i+ ℓ− k}
= #{i ≤ m ≤ i+ ℓ− k : f(ℓ− k,m− i) = 1}
= #{0 ≤ m ≤ ℓ− k : f(ℓ− k,m) = 1}.
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As remarked in [Gra97], a consequence of the following theorem of Kummer from
1852 that the number of the binomial coefficients

(

m
n

)

, 0 ≤ n ≤ m, which are odd

is 2N(m), where N(m) is the number of times that the digit 1 appears in the base
2 representation of m.

Theorem 5.2. Let m,n be non-negative integers and p a prime number. The
greatest power of p that divides

(

m
n

)

is given by the number of “carries” that are
necessary when we add m and n−m in base p.

Thus,

M(k, ℓ, z) ≤ k2N(ℓ−k)

and M(k, ℓ, z) = 2N(ℓ−k) when #{1 ≤ i ≤ k : zi = 1} = 1.
Therefore, if we assume πn → 0 as n → ∞, then we are interested in whether

lim
ℓ→∞

ℓ
∏

r=1

(1 − 2πh+r)
2N(r) 6= 0

for all h ∈ N or, equivalently, whether
∞
∑

r=1

2N(r)πh+r < ∞

for all h ∈ N.
For example, fix a positive integer a and an increasing function b : N → N

such that a ≤ b(m) < m and limm→∞ b(m) = ∞. Suppose that πn = 0 unless
2m + 2b(m) − 2a ≤ n ≤ 2m + 2b(m) for some m ∈ N. Note for any h ∈ N that

∞
∑

r=1

2N(r)πh+r =

∞
∑

s=k+1

2N(s−h)πs

and this sum is finite if and only if
∞
∑

n=1

2b(log2 n)πn

is finite.
Thus, Pstrong

µ 6= ∅ if and only if
∑∞

n=1 2
b(log2 n)πn < ∞ in this case. On the

other hand, P{Zk 6= 0 i.o.} > 0 (equivalently, P{Zk 6= 0 i.o.} = 1) if and only
if
∑∞

n=1 nπn < ∞. Therefore, when limm→∞ m − b(m) = ∞ it is possible to
construct (πn)n∈N such that almost surely infinitely many “bits” are “corrupted”
and yet strong solutions still exist.

6. Automorphisms of the Torus

Consider the torus group T2 = R2/Z2. We write an element x ∈ T2 as a column
vector x = (x1, x2)

⊤ ∈ [0, 1)2, where ⊤ denotes the transpose of a vector.
Any 2×2 Z-valued matrix S defines a homomorphism x 7→ Sx from T2 to itself if

we do ordinary matrix multiplication modulo Z2. If the matrix S has determinant
1, then this homomorphism is invertible. Such a transformation is called a linear
toral automorphism.

Note that if

S =

(

a b
c d

)

,
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then the eigenvalues of S are

1

2
(a+ d±

√

a2 + 4bc− 2ad+ d2) =
1

2
(a+ d±

√

(a+ d)2 − 4),

Thus, the eigenvalues are real and distinct unless a + d is 0, ±1 or ±2, in which
case the pairs of eigenvalues are, respectively {±i}, { 1

2 (1± i
√
3)}, { 1

2 (−1± i
√
3)},

{1, 1}, and {−1,−1}. Note that in each of the latter cases the eigenvalues lie on
the unit circle.

Definition 6.1. A ergodic toral automorphism is a linear toral automorphism given
by a matrix S with no eigenvalues on the unit circle.

For some of the more probabilistic properties of ergodic toral automorphisms,
see [Kat71]. Such mappings are the prototypical examples of Anosov systems that
have been the subject of intensive study dynamical systems world (see [Fra69]).

A hyperbolic linear toral automorphism has two real eigenvalues λ1 > 1 > λ−1
1 =

λ2. These eigenvalues are irrational and the corresponding (right) eigenvectors v1

and v2 have irrational slope (see, for example Section 5.6 of [LT93]).

Theorem 6.2. Suppose for every i ∈ N that the group Gi is a copy of T2 and
that the homomorphism φi is a fixed ergodic toral automorphism given by a matrix
S. Suppose the noise distribution µk is a fixed measure µ∗ that satisfies µ∗(A) ≥
ǫλ(A ∩ B) for every Borel set A, where ǫ > 0, λ is normalized Haar measure, and
B is a fixed Borel set B with λ(B) > 0. Then, Pstrong

µ = ∅.

Proof. We need to evaluate Rℓ
k =

∫

T2 ρ · ιk · φℓ
k(z)µℓ(dz). Let ν be the measure

defined by ν(A) = ǫλ(A ∩ B) a Borel set A, where ǫ, λ and B are as in the
statement. Observe that

|Rℓ
k| ≤

∫

T2Gℓ

|ρ · ιk · φℓ
k(z)| (µℓ − ν)(dz) +

∫

T2

|ρ · ιk · φℓ
k(z)| ν(dz)|

≤
∫

T2

(µℓ − ν)(dz) +

∣

∣

∣

∣

∫

T2

ρ · ιk · φℓ
k(z) ν(dz)

∣

∣

∣

∣

,

and note that the last term on the right-hand side is
∣

∣

∫

T2 ρ · ιk(z) (ν · φℓ
k)

−1)(dz)
∣

∣.
As noted in Section 5.6 of [LT93], any ergodic toral automorphism S ex-

hibits topological mixing: for any Borel sets A,B ⊆ R2, limn→∞
λ(SnB)∩A

λ(B) =

λ(A). Because φℓ
k is a ergodic toral automorphism, so is (φℓ

k)
−1. Therefore,

limℓ→∞

∣

∣

∫

T2 ρ · ιk(z)(ν · φℓ
k)

−1(dz)
∣

∣ =
∣

∣

∫

T2 ρ · ιk(z)ǫλ(dz)
∣

∣ = 0. Consequently,

|Rℓ
k| ≤

∫

T2(µℓ − ν)(dz) = 1 − ǫλ(B) for every non-trivial representation ρ, and
hence

lim
m→∞

lim
n→∞

|Rn
kR

n−1
k · · ·Rm

k | = 0 ∀k ∈ N,

showing that Pstrong
µ = ∅. �

Every finite-dimensional unitary representation of Gi is of the form,

x 7→ e2πi(z·x),

where z is a vector (z1, z2) ∈ Z2 and z · x is the usual inner product. Hence, if we
lift this representation to a representation of G we have

Rℓ
k =

∫

T2

e2πi(z·S
ℓ−kx) µℓ(dx).
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Suppose that the probability measure µℓ is concentrated on the set of multiples
of the eigenvector v2 associated with the eigenvalue λ2 ∈ (0, 1). Then,

Rℓ
k =

∫

R

e2πi(tλ
ℓ−k
2 z·v2) νℓ(dt)

for some probability measure νℓ on R. It is clear that under appropriate hypotheses

lim
m→∞

lim
n→∞

|Rn
kR

n−1
k · · ·Rm

k | > 0 ∀k ∈ N

and hence, by Corollary 3.8, Pstrong
µ 6= ∅. For example, if νℓ = ν for all ℓ ∈ N for

some fixed probability measure ν on R, then it suffices that
∫

R
|t| ν(dt) < ∞. In

particular, it is possible to construct examples where µ1 = µ2 = . . . is a measure
that has all of T2 as its closed support and yet Pstrong

µ 6= ∅.
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