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Abstract

Microarray expression studies suffer from the problem of batch effects and other unwanted variation.
Many methods have been proposed to adjust microarray data to mitigate the problems of unwanted
variation. Several of these methods rely on factor analysis to infer the unwanted variation from the data.
A central problem with this approach is the difficulty in discerning the unwanted variation from the
biological variation that is of interest to the researcher. We present a new method, intended for use in
differential expression studies, that attempts to overcome this problem by restricting the factor analysis to
negative control genes. Negative control genes are genes known a priori not to be differentially expressed
with respect to the biological factor of interest. Variation in the expression levels of these genes can
therefore be assumed to be unwanted variation. We name this method “Remove Unwanted Variation,
2-step” (RUV-2). We discuss various techniques for assessing the performance of an adjustment method,
and compare the performance of RUV-2 with that of other commonly used adjustment methods such
as Combat and SVA. We present several example studies, each concerning genes differentially expressed
with respect to gender in the brain, and find that RUV-2 performs as well or better than other methods.
Finally, we discuss the possibility of adapting RUV-2 for use in studies not concerned with differential
expression, and conclude that there may be promise, but substantial challenges remain.

1 Introduction

Microarray expression studies are plagued by the problem of unwanted variation. In addition to the biological
factor(s) that are of interest to the researcher, other factors, both technical and biological, influence observed
gene expression levels. A typical example is a batch effect, which can occur when some samples are processed
differently than others. For example, significant batch effects may arise when some samples are processed in
a different laboratory, by a different technician, or even just on a different day (Leek et al., 2010; Scherer,
2009). Though infamous, batch effects are not the only source of unwanted variation. Other sources of
unwanted technical variation can occur within batches and be just as problematic. Moreover, unwanted
biological variation can be a problem as well.

Several methods have been proposed to adjust microarray data to mitigate the problems of unwanted
variation. Despite substantial progress, there is still no “silver bullet” and perhaps never will be. As such,
there remains a need for both improved methods and ways to evaluate the relative strengths of existing
methods. Our primary goal in this paper is to contribute a new method based on control genes, and to
encourage the use of control genes more generally. A secondary goal is to present some techniques we
have found to be useful for comparing the performance of different adjustment methods. Finally, a less
explicit though still important theme of this paper is that we believe that the most appropriate way to deal
with unwanted variation depends critically on the final goal of the analysis — e.g. differential expression,
classification, or clustering.
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In what remains of the introduction, we present a brief summary of existing methods to adjust for
unwanted variation, followed by a brief summary of our own method. In Section 2 we present techniques to
compare the performance of these methods, and in Section 3 provide examples. Details of our method are
left for Section 4.

Methods to adjust for unwanted variation can be divided into two broad categories. In the first category
are methods that can be used quite generally, and provide a global adjustment. An example would be quantile
normalization, which is generally regarded as a self-contained step, and plays no role in the downstream
analysis of the data. In the second category are application specific methods that incorporate the batch
adjustment directly into the main analysis of interest. For example, in a differential expression study, batch
effects may be handled by explicitly adding batch terms to a linear model. The method we present in this
paper falls into this second category, where the application is differential expression.

Most of the progress that has been made with application-specific methods has been for differential
expression studies, and has made use of linear models. Some methods presume the batches to be known;
in this case the effects of the known batches can be directly modeled. Combat is one such successful and
well-known method; in particular Combat has been shown to work well with small datasets (Johnson, Li,
and Rabinovic, 2007). While Combat and other similar methods can be quite successful, they also have
limitations. One limitation is that the batches must be known; in many situations this is not the case.
Another limitation is that even when batch information is known, it may give only a partial hint of the
underlying unwanted variation. This is because it is not “batch” itself that causes “batch effects,” but
rather some other physical variable that is correlated with batch. As a simple example, suppose changes in
the operating temperature of the scanner leads to unwanted variation, and consider a study in which some
samples are processed at lab A and the rest at lab B. If the scanner at lab A generally runs cooler than the
scanner at lab B, this will lead to a “batch effect.” However, if the operating temperature at lab A is itself
quite variable, this will lead to additional within-batch unwanted variation that is not captured in the simple
batch model. Section A in the supplementary materiall (SM) provides a brief example from the MAQC
study (Shi et al., 2006) of substantial within-batch unwanted variation.

Other linear-model based methods presume the sources of the unwanted variation to be unknown. These
methods attempt to infer the unwanted variation from the data, and then adjust for it. Often this is
accomplished via some form of factor analysis; several factors believed to capture the unwanted variation are
computed and then incorporated into the model in just the same way known confounders are incorporated.
In the simplest approach, factors are computed directly from the observed expression matrix by means of a
singular value decomposition or some other factor analysis technique. This is often successful in practice, but
can be dangerous — if the biological effect of interest is large, it too will be picked up by the factor analysis,
and removed along with the unwanted variation. In other words, if one adjusts for unwanted variation by
removing the first several principal components (PCs) from the data, one may very well throw out the baby
with the bathwater. This problem has been acknowledged, and several attempts have been made to avoid
it. One of the most well-known methods that directly address this problem is SVA (Leek and Storey, 2007,
2008). Other methods of potential interest include Kang et al. (2010), Kang, Ye, and Eskin (2008a), Kang
et al. (2008b), Listgarten et al. (2010), Mecham, Nelson, and Storey (2010), Price et al. (2006), Stegle et al.
(2008), Yu et al. (2005). Some of the first uses of factor analysis to adjust for unwanted variation can be
found in Alter, Brown, and Botstein (2000) and Nielsen et al. (2002), although in these examples there is no
explicit linear model.

Our strategy is to use control genes. Negative control genes are genes whose expression levels are known
a priori to be truly unassociated with the biological factor of interest. Conversely, positive control genes
are genes whose expression levels are known a priori to be truly associated with the factor of interest. For
example, if the factor of interest is the presence or absence of ovarian cancer, CyclinE would be a positive
control. Negative control genes are in general harder to identify with certainty. So-called housekeeping genes
are often good candidates, but not always. Another example of negative controls are the spike-in controls
found on many microarray platforms.?

! The supplementary material can be found at the end of this document.
2Two notes on terminology: 1) When we refer generally to “negative control genes” or simply “control genes” we often



Our method is to perform factor analysis on just the negative control genes, and incorporate the resulting
factors into a linear regression model. The idea is that since the negative control genes are known to be
unassociated with the factor of interest, there is no danger in picking up any of the relevant biology in the
factor analysis step, and thus no danger of throwing out the baby with the bathwater. We name this method
RUV-2, for “Remove Unwanted Variation, 2-step” — the two steps are the factor analysis and the regression.

2 Criteria for a Good Adjustment

Techniques to evaluate the quality of an adjustment are in many ways as important as the adjustment
method itself. The statistical models on which adjustment methods are based are artificial. The models are
most useful as sources of inspiration for improved methods; they are substantially less useful in proving the
worth of a method. In the end, an adjustment method must prove its value by working in practice.

The question thus arises of how to know whether an adjustment is helping or hurting. This is not trivial.
In many cases, evidence that seems to suggest an adjustment method is helping (or hurting) is actually
ambiguous. As an example, consider a differential expression study, and consider assessing the quality of the
study by counting the number of genes “discovered” at a certain FDR, threshold. If the unwanted variation is
roughly orthogonal to the factor of interest, the unwanted variation will manifest itself as additional “noise”
that obscures any true association between the factor of interest and gene expression levels. An effective
adjustment method would therefore increase the number of discovered genes. On the other hand, if the
unwanted variation is correlated with the factor of interest, this will introduce spurious associations between
the factor of interest and gene expression levels. An effective adjustment method would therefore decrease
the number of discovered genes. As a second example, consider a classification study in which a researcher
wants to classify tumor samples into one of several tumor sub-types. Suppose the researcher wants to test
her classification algorithm on a set of tumor samples in which the sub-type is known, and she does her
test once in combination with a method that adjusts for unwanted variation, and once without. Suppose
the rate of misclassification is higher when the adjustment method is used. This would seem to suggest the
adjustment method is hurting. However, it is equally possible that the adjustment method is working — if
the tumor sub-types were processed in batches, the resulting batch effects could artificially help the classifier.

In the following few sections we present some techniques that we have found to be useful in evaluating
the quality of an adjustment.? Only the first technique provides a (nearly) unambiguous assessment of the
quality of an adjustment. However, its applicability is limited. The other two techniques are also very
informative, if not entirely definitive, and can be used in a wider variety of situations.

2.1 Control Genes / Gene Rankings

Positive control genes can be used for quality assessment in differential expression studies. After computing
p-values for each gene, we can rank the genes in order of increasing p-value. Positive controls should be
towards the top of this list. We can therefore use the number of positive controls ranked in (for example) the
top 50 genes as a quality metric. If an adjustment method substantially increases the number of top-ranked
positive controls, we have reason to believe the method is effective.*

use the term to include the spike-in control probesets as well, despite the fact they are not genes. 2) In other contexts (e.g.
Illumina) the term “negative controls” is used to denote probes that should never be expressed in any sample. This usage of
the term “negative controls” is different than ours, and should not be confused.

30ne fairly common technique that we do not discuss is clustering. In some circumstances, performing a cluster analysis
both before and after adjustment and observing whether the adjustment causes samples to cluster more strongly by biology
(or less strongly by batch) can be a highly effective way to assess the quality of the adjustment. Indeed, we use this technique
ourselves in Section 3.4. However, there are also many circumstances in which clustering can be deceptive (the classification
example we provide above applies just as well to clustering). We feel a full discussion is beyond the scope of this paper. In
general, we feel that clustering is more helpful as an exploratory tool, and less helpful as a test of the quality of an adjustment.

4Even here, however, the evidence, strictly speaking, is not entirely conclusive. For example, consider a simple hypothetical
adjustment method that simply shrinks gene-specific variances to a common average variance. This would have the effect
of systematically increasing the magnitude of the ¢ statistics for highly variable genes. If the positive controls all happened
to be highly variable, the end result would be that the rankings of the positive controls improve, despite the fact that the



Note that we use the ranks of the p-values and not the p-values themselves. This is for reasons discussed
above; a good adjustment may increase or decrease the positive controls’ p-values depending on the nature
of the unwanted variation. Ranking helps to resolve the ambiguity.

While ranking p-values is generally preferred, there remain some situations in which it may be better to
look at the p-values themselves. An example might be when only a very small number of positive controls
are available, and their rankings do not change substantially after the adjustment. In this case, one might
wish to examine the p-values of both positive and negative controls. If the p-values of the positive controls
substantially decrease — and the p-values of the negative controls do not — this would suggest the adjustment
helps. On the other hand, if the p-values of the negative controls decrease as well, this may simply suggest
an artifact of the adjustment method. Likewise, if the p-values of the positive and negative controls both
increase, the result is ambiguous, but the technique decribed in 2.2 might help clarify matters.

Some caution is required when using negative controls to assess the quality of an adjustment. After all,
if the method of adjustment is to fit and remove variation characteristic of a set of negative controls, then
observing that the adjustment diminishes the association between the factor of interest and the negative
controls is simply to be expected. A better strategy would be to use two different sets of negative controls —
one to make the adjustment, and one to use in assessing the quality of the adjustment. Preferably, the two
sets of negative controls will be different from each other in some important way. For example, we might use
spike-in controls to make an adjustment, and housekeeping genes to assess the quality of the adjustment, or
vice versa.

2.2 The p-value Distribution

Consider a differential expression study in which the factor of interest is assumed to be associated with the
expression level of only a fraction of genes. The distribution of the p-values for the genes that are unassociated
with the factor of interest would ideally be uniformly distributed over the unit interval, whereas the p-values
for the genes that are associated with the factor of the interest will ideally be nearly 0. Thus, a histogram of
the p-values will ideally be nearly uniform, with a spike near 0. In practice however, this is uncommon, as
unwanted variation tends to introduce dependence across measured gene expression levels. Since adjusting
for unwanted variation should remove this dependence, we might expect a good adjustment to result in
p-value histograms closer to the “ideal.”

2.3 RLE Plots

RLE (relative log expression) plots are boxplots that can be used to determine the overall quality of a
dataset, and, in particular, identify bad chips. Consider a set of m chips, each with n genes, and denote the
log expression level of the j*® gene on the i*® chip by y;;. Denote the j*® column of the matrix (y;;) by ys;.
For each of the n genes we can calculate median(y,;), the median (over the m chips) log expression level.
For each gene on each chip, we can then calculate y;; — median(y,;), the deviation from the median gene
expression level. For each chip, we can then produce a box plot of its n deviations. In most cases, if the
chip is of good quality, this boxplot will be centered around zero and its width (IQR) will be around 0.2 or
less. Examples of RLE plots can be found in Figure 1 (to be discussed more fully later). More information
about RLE plots can be found in Bolstad et al. (2005) and Brettschneider et al. (2008).

3 Examples

We present four examples. In the first three we discover genes that are differentially expressed in the brain
with respect to gender. The fourth example involves clustering tumors of known types. We chose these
examples because “truth” is in some sense known.

We chose differential expression with respect to gender because it provides us with a clear set of potential
positive controls — in this case, genes that are located on the X and Y chromosomes. Treating X and Y

“adjustment” is not really correcting for unwanted variation at all.



genes as positive controls and using our technique of counting the number of top-ranked positive controls
(Section 2.1) allows us to compare the performance of various adjustment methods. We chose the brain
because of its comparatively complex biology — a very large fraction of genes are expressed in the brain
— and the availability of several interesting datasets. Indeed, our lead example is ideal, as the study was
originally intended to discover differentially expressed genes in the brain,® and the data exhibit profound
batch effects.

In all of our examples, a few practical issues must be considered. The first is what preprocessing should
be done. Microarray data routinely go through three stages of preprocessing — background correction,
normalization, and summarization. Several algorithms have been proposed for each of these steps. For
simplicity, we limit ourselves to the “standard” sequence of algorithms used in RMA (Bolstad et al., 2003;
Irizarry et al., 2003a,b). The preprocessing steps — particularly the quantile normalization — are nonlinear,
and it is not clear how they might interact with the adjustment methods. Thus, we repeat many of our
analyses omitting one or more stages of preprocessing in order to see what happens.

The second issue to consider is which negative controls to use. To effectively adjust for batch effects,
our negative controls must both 1) be uninfluenced by the factor(s) of interest and 2) be influenced by
the unwanted factors. In other words, they must actually be negative controls, and their expression levels
must accurately reflect the unwanted variation. We focus on two classes of possible negative controls —
housekeeping genes and spike-in controls. The housekeeping genes we use are those discovered in Eisenberg
and Levanon (2003).° A good discussion of both spike-in controls and housekeeping genes can be found in
Lippa et al. (2010).

3.1 Gender Study

Vawter et al. (2004) conducted a study to find genes differentially expressed in the brain with respect to
gender. Samples were taken post-mortem from the brains of 10 individuals. Three samples were taken from
each individual — one from the anterior cingulate cortex, one from the dorsolateral prefrontal cortex, and one
from cortex of the cerebellar hemisphere. One aliquot of each sample was sent to each of three laboratories
for analysis. The analyses were done using either Affymetrix HG-U95A or Affymetrix HG-U95Av2. We are
unaware of how the decision was made to use which platform for which analysis. One of the laboratories
used only HG-U95Av2. Note that there should have been 10 x 3 x 3 = 90 chips total. However, six of the
combinations were missing, leaving us with 84 chips.” Data are available on GEO (GSE2164).

The HG-U95A platform has 12626 probesets, and the HGu95Av2 platform has 12625 probesets. We
identified 12600 probesets that were shared between the two platforms. We did not, however, attempt
to map individual probes from one platform to the other. Since preprocessing (background correction,
quantile normalization, summarization) requires probe level data, we did these preprocessing steps for each
platform separately. As a result, large differences remained between the different platform types even after
the standard preprocessing.® The raw HG-U95Av2 expression values are generally larger than their HG-
U95A analogs by about a factor of 4, so the log, expression values for the HG-U95Av2 expression values are
generally greater than those of the HG-U95A by about 2. We therefore added an additional preprocessing
step after summarization; we performed a location / scale adjustment in which we linearly re-scaled the
data so that each chip had the same mean and standard deviation. See Figure 1 for RLE plots at different
stages of preprocessing — no preprocessing; background correction and quantile normalization only (BG +
QN); background correction, quantile normalization, and location / scale adjustment (BG + QN + LS). It

5In this paper we are primarily concerned with methodology, not biology, and we do not discuss the specific genes we find
to be differentially expressed. Readers interested in the particular genes that are differentially expressed can find tables in the
SM.

6Housekeeping genes are genes that are essential to basic cellular activities, such as metabolism. These genes are therefore
expressed in all cells. The strategy used in Eisenberg and Levanon (2003) to discover housekeeping genes was to examine gene
expression levels in many different tissues, and see which genes were expressed in all of the tissues.

7 Additionally, 3 of the combinations were replicated, so in fact there are 87 chips available on GEO. We omitted the replicates
in our analysis.

81n this respect, the situation is similar to the one found in Nielsen et al. (2002), one of the first uses of factor analysis to
remove unwanted variation, where the primary source of unwanted variation was chip type.



is important to note that the vertical scale of the RLE plots in Figure 1 is substantially different than that
of all other RLE plots in this paper.

None BG + QN BG + QN + LS

Figure 1: Gender study RLE plots at different stages of preprocessing. From left to right: No preprocessing;
background correction / quantile normalization done separately for each platform type; background correc-
tion / quantile normalization followed by a final location/scale adjustment across all chips. Coloring: red —
site A, HG-U95A; yellow — site A, HG-U95Av2; black — site B, HG-U95A; gray — site B, HG-U95Av2; cyan
— site C, HG-U95Av2. NOTE: The scale on the y-axis is different for these RLE plots than for all other
RLE plots in this paper.

The unwanted variation apparent in Figure 1 is striking. Even ignoring the differences between chip types,
observed expression levels differ by up to an order of magnitude between laboratories. There is substantial
within-laboratory unwanted variation as well. The average observed expression level varies from chip to
chip by roughly a factor of two within laboratories. As a result, discovering genes that are differentially
expressed with respect to gender is nearly impossible without adjusting for the unwanted variation. On
un-preprocessed, unadjusted data, every gene has an FDR-adjusted p-value of approximately 1, and only
7 of the top 60 genes come from the X or Y chromosome. The preprocessing helps; after preprocessing
(but no other adjustments), 15 of the top 60 genes are from the X or Y chromosome, and 8 of these have
FDR-adjusted p-values that are significant at the 0.05 level. Even after preprocessing, however, substantial
unwanted variation persists, as can be seen in RLE, p-value, and scree plots.

A critical step in RUV-2 is determining the number k of factors to remove. In general, this is difficult, and
there is no clear way to determine k. We recommend pursuing several approaches and exercising judgment.
We have found RLE plots and p-value histograms to be helpful.? In addition, if any positive controls are
known, these should be used as well. To make use of RLE plots and p-value plots it is necessary to complete
the analysis for several values of k& and then examine the plots to evaluate the quality of the results. Several
such plots can be found in the SM (Figures 11 and 12); based on these plots, we choose a k of 10 — see
Figure 2.

Several questions remain: Which factor analysis method is best? To what extent does performance
depend on k? Does RUV-2 work well in combination with Limma? Do we achieve a better adjustment using
housekeeping genes or spike-in controls? How does RUV-2 compare to other adjustment methods such as
standard linear regression, Combat, or SVA? How does preprocessing affect performance? We address each
of these questions in turn.

Given the central role of factor analysis in RUV-2, one might expect that the choice of factor analysis
method is quite important. In our examples this turns out not to be the case. We repeated our analysis with

9Many people find scree plots to be helpful as well (Venables and Ripley, 2002). In our examples, we found scree plots to
be of questionable value. However, we provide them in the SM.



Unadjusted RUV-2, k=10

Density
6
|
Density

0.4

0.2

0.0

Figure 2: Gender study p-value histograms and RLE plots before and after adjustment. Histogram break-
points are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data were fully preprocessed (BG+QN+LS). The
factors were computed by SVD on the housekeeping genes. P-values were computed using Limma.

three different factor analysis methods. The first is the singular value decomposition (SVD). The second
is an EM algorithm based on a relatively simple probabilistic model that allows for gene-specific variances
in the error term. The model and the algorithm are described in Section 12.2.4 of Bishop (2006). The
implementation of the algorithm is our own. The third method is a “robust” method described in Hubert,
Rousseeuw, and Vanden Branden (2005) and implemented in the PcaHubert fuction of the R package rrcov.
RLE plots after adjustment looked nearly identical for all three factor analysis methods. P-value histograms
were also remarkably similar. More convincingly, the number of top-ranked X/Y genes is roughly the same
for all three methods, as we discuss below.

The choice of k turns out to be critical to the performance of RUV-2. This can be seen in RLE plots
and p-value histograms (figures are in the SM), but can be seen most dramatically by counting the number
of top-ranked X/Y genes at different values of k. We repeated the analysis for all possible values of k. At
first, the number of top-ranked X/Y genes increases with increasing k, as additional unwanted variation
is removed. After a certain point, however, increasing k£ only degrades performance, as adding additional
factors to the model simply increases variance.!® See Figure 3. Note from Figure 3 that although the
performance of RUV-2 depends critically on the choice of k, the region over which RUV-2 performs well is
fairly large. This is important because it implies, in this example at least, that while RLE plots and p-value
histograms may not lead us to the single best choice of k, they can at least lead us to a good one. Finally,

10Note that as k — m, we keep adjusting away additional dimensions, until we finally remove everything. At this point the
OLS estimator becomes undefined. Thus, performance will certainly degrade for large k. The only question is when.



note also from Figure 3 that the choice of factor analysis method does not greatly impact the results.

SVD EM Robust

Figure 3: Comparison of performance of different factor analysis methods in the gender study. The number
of X /Y genes discovered is plotted as a function of k. Genes were ranked by p-value; results are shown
for the number of X / Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle). k = 0
corresponds to no adjustment. Data were preprocessed (BG + NM + LS). PCs were computed using the
housekeeping genes. P-values were computed using Limma.

It is common to analyze microarray data using the Limma package in Bioconductor (Smyth, 2004).
Limma uses empirical Bayes methods to improve the estimates of the variances of individual genes. Since
adjusting with RUV-2 or any other method can substantially affect the general structure of the residuals, we
checked to ensure that RUV-2 and Limma work well together. To accomplish this we completed our analysis
once using Limma and once using “ordinary” regression. We did not notice any substantial difference in
performance (as assessed using RLE plots, p-value histograms, and counts of top-ranked X/Y genes) between
the two methods. Details can be found in the SM.

The performance of RUV-2 depends greatly on the choice of negative controls. Adjustments based on both
the housekeeping genes and the Affymetrix spike-in controls improved performance relative to unadjusted
data, however the performance increase using housekeeping genes was substantially better. See Figure 4.
We believe housekeeping genes may outperform the spike-ins in this example for three reasons. Firstly,
housekeeping genes may be able to capture unwanted biological variation, whereas spike-in controls can
only capture unwanted technical variation. Secondly, even with regards to technical variation, housekeeping
genes may be more “representative” than spike-ins. For example, housekeeping genes may capture unwanted
variation introduced during sample collection, whereas spike-ins would not. Conversely, spike-ins may exhibit
some unique variation related to their own administration. Lastly, there are far more housekeeping genes
than there are spike-in controls. There are 799 probesets that correspond to one of the housekeeping genes
in Eisenberg and Levanon (2003). However, there are only 33 probesets corresponding to spike-in controls.

Finally, we wish to compare the performance of RUV-2 to that of other adjustment methods. Additionally
we would like to investigate the effects of preprocessing. We use the number of top-ranked X/Y genes as
our basis for comparison,'' and present the results in Table 1. Several observations merit mention. RUV-2
outperforms Combat and ordinary regression in all cases, and SVA outperforms them in several cases as well.
This is despite the fact that Combat and ordinary regression explicitly model known batches (lab / chip
type), whereas RUV-2 and SVA infer the unwanted variation from the data. Moreover, it seems that even
when we do explicitly model known batches with RUV-2 by including a “Z” term in the model (see Section 4)
there is no substantial increase in performance.'? Another observation is that the level of preprocessing does
not seem to matter for the SVD and EM (but not robust) variants of RUV-2, matters slightly for Combat,

I Additionally, RLE plots and p-value histograms for Combat and SVA are given in the SM.

121t is true that more X / Y genes are found when we include a Z term in the “Top 40” and “Top 60” cases, but this should
be interpreted with caution; including a Z term results in adjusting for three additional factors; similar increases in performance
can be seen by dropping the Z term and increasing k to 13 — see Figure 3.
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Figure 4: Comparison of results for housekeeping genes and Affymentrix spike-in controls in the gender
study. For the RLE plots and p-value histograms, £ = 10. Factors were computed by SVD. P-values were
computed using Limma. Note that there are only 33 spike-in controls, so adjustments with k > 33 are
undefined for the spike-in case. We truncate results in the housekeeping case as well for easy comparison.

and matters greatly for the other methods. This seems to suggest that, at least in some cases, RUV-2 can
obviate the preprocessing. While this is of little immediate value in the current example, it may be useful in
situations where there is concern that the nonlinearities introduced by preprocessing are problematic. For
example, if a very large number of genes are differentially expressed with respect to the factor of interest,
the nonlinearities in the quantile normalization may induce an artificial correlation between the negative
control genes and the factor of interest. This would violate the assumptions of RUV-2, and create problems.
In such a situation it may be best to skip the quantile normalization. In any case, we regard the fact that
RUV-2 performs well even without preprocessing as quite encouraging; after all, the un-preprocessed data
are extremely noisy. Finally, we observe that in general, the best performing methods are the SVD and EM
variants of RUV-2.

3.2 Alzheimer’s Study

Blalock et al. (2004) conducted a microarray study to investigate patterns of gene expression in Alzheimer’s
patients. We learned of this dataset from a colleague soon after we completed our initial analysis of the
gender study, and decided to see if we could use it to replicate our findings. We continued to use gender
as the factor of interest (instead of Alzheimer’s disease state) so that we had clear positive controls. Note
that our choice of this dataset was thus rather arbitrary — many other brain studies would have been just
as suitable — but this one had our attention, was publicly available, and seemed to exhibit a fair degree of
unwanted variation. Data are available on GEO (GSE1297).

Samples were taken post-mortem from the hippocampus of 35 individuals suffering from various stages
of Alzheimer’s disease. Four samples were discarded by the authors of the study because the severity of
the patients’ disease was not clear, leaving 31 samples available for analysis. These samples were assayed
using Affymetrix HG-U133A microarrays. We were unable to obtain clinical gender data for the samples,



Top 20 Top 40 Top 60

No Prepr. BG,QN BG,QN,LS No Prepr. BG,QN BG,QN,LS No Prepr. BG,QN BG,QN,LS

Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim
No Adjustment 7 6 9 9 11 11 7 7 12 12 13 13 7 7 14 13 15 15
Regression (Z) 5 5 14 13 12 12 6 6 15 15 16 15 7 7 16 16 16 17
SVA (IRW) 5 6 12 11 14 14 6 7 13 14 17 16 7 8 15 14 19 19
SVA (Two-Step) NA NA NA NA 16 16 NA NA NA NA 21 20 NA NA NA NA 23 22
Combat 11 11 13 13 12 13 14 12 17 17 17 17 16 15 18 18 19 19
RUV-2 — SVD (k = 10) 15 15 15 15 15 15 22 22 21 19 20 19 24 23 22 21 22 22
RUV-2 — SVD (k =10), w/Z 14 14 15 15 16 15 23 23 22 22 22 22 25 25 24 24 24 25
RUV-2 — EM (k = 10) 7 17 17 17 17 17 22 22 23 22 22 20 24 24 25 25 25 24
RUV-2 — EM (k =10), w/Z 16 16 16 16 17 16 22 22 22 22 22 22 24 23 25 24 26 25
RUV-2 — Robust (k = 10) 8 717 16 17 16 11 10 21 21 22 21 12 11 25 25 24 24

Table 1: Summary of performance of different methods in the gender study. The number of X / Y genes
found in the top 20 / 40 / 60 is shown for different levels of preprocessing (None; BG,QN; BG,QN,LS),
different methods of computing p-values (standard and Limma), and different methods of adjustment (none,
standard regression, SVA, Combat, and RUV-2). In the case of RUV-2, results are given for different methods
of factor analysis (SVD, EM, robust). Additionally, we present results for models that include an explicit Z
term, where Z is a matrix of dummy variables corresponding to site (A, B, or C) and chip type (HGU-95A
or HGU-95Av2). For all RUV-2 methods, & = 10 and housekeeping genes were used as negative controls.
Results for the two-step variant of SVA are not available in some cases, because the function exited with an
error. The highest number in each column is shown in bold.

but found we could infer the gender using the expression levels of XIST and DDX3Y.!3

Our analysis — and conclusions — closely parallel those of the gender study. Most of the details are
provided in the SM; here we simply highlight key results. One important difference between this study and
the gender study is that in this study there are no known batch effects. Therefore standard regression and
Combat are inapplicable. Moreover, a final location / scale pre-processing step is unnecessary, since there is
only one chip type. A summary of the performance of SVA and RUV-2 is provided in Table 2.

Top 20 Top 40 Top 60

No Prepr. BG,QN No Prepr. BG,QN No Prepr. BG,QN

Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim
No Adjustment 8 9 15 16 9 9 19 21 9 9 23 24
SVA (IRW) 8 9 16 16 10 13 17 19 12 13 18 19
SVA (Two-Step) NA NA 16 16 NA NA 18 18 NA NA 19 19
RUV-2 — SVD (k = 10) 16 19 19 20 22 23 25 26 23 26 26 26
RUV-2 — EM (k = 10) 15 17 19 20 18 22 24 25 23 25 25 27
RUV-2 — Robust (k = 10) 11 13 19 20 15 17 25 26 19 20 27 27

Table 2: Summary of performance of different methods in the Alzheimer’s study. The number of X /Y
genes found in the top 20 / 40 / 60 is shown for different levels of preprocessing (None, BG,QN), different
methods of computing p-values (standard and Limma), and different methods of adjustment (none, SVA,
and RUV-2). In the case of RUV-2, results are given for different methods of factor analysis (SVD, EM,
robust). For all RUV-2 methods, k¥ = 10 and housekeeping genes were used as negative controls. Results for
the two-step variant of SVA are not available in some cases, because the function exited with an error. The
highest number in each column is shown in bold.

In contrast with the gender study, we find that preprocessing improves performance in all cases. In
addition, Limma provides a clear performance enhancement as well, particularly when preprocessing is
omitted. This is as we might expect, since Limma is most helpful when the sample size is small, and here
we have only 31 samples compared to the gender study’s 84. Again, the best performance is attained with
RUV-2. Note that in some cases, SVA actually decreases performance.

13Details are provided in the SM. Note in particular that we found 19 women and 12 men, and this contradicts the statement
in Blalock et al. (2004) that, of the original 35 subjects, 16 were female and 19 were male.
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Finally, we note that, unlike in the gender study example, RUV-2 does not perform well with spike-in
controls. A comparison between housekeeping genes and spike-in controls of RLE plots, p-value histograms,
and the number of top-ranked X / Y genes can be found in Figure 5. Note that on the HG-U133A platform
there are 45 probesets for the spike-in controls, and 1112 corresponding to the housekeeping genes in Eisen-
berg and Levanon (2003). We cannot say with confidence why the spike-in controls fail in this case, but we
note that two possible explanations would be that most of the unwanted variation is biological in nature, or
due to sample quality.
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Figure 5: Comparison of results for housekeeping genes and Affymentrix spike-in controls in the Alzheimer’s
study. HK genes clearly perform better. For the RLE plots and p-value histograms, k¥ = 10. Factors were
computed by SVD. P-values were computed using Limma.

3.3 TCGA

The Cancer Genome Atlas (TCGA) is a large collaborative project established by the National Institutes of
Health and managed by the National Cancer Institute and the National Human Genome Research Institute
with the aim of collecting many types of data (e.g. expression, sequence, methylation) on a large number
of samples from many different types of cancers. In particular, TCGA has already collected a few hundred
glioblastoma multiforme (brain tumor) samples, and measured gene expression levels in these samples using
(among others) the Affymetrix GeneChip Human Exon 1.0 ST array and the Affymetrix HT HG-U133A
array. Because of the importance and size of this dataset, we decided it would be a good choice with which
we could further replicate our findings from the gender study.

As with the Alzheimer’s study, our analysis and conclusions closely parallel those of the gender study,
and we limit our remarks here to highlight key results. Details can be found in the SM. We discuss the exon
array data first, followed by the HT HG-U133A data.

We downloaded exon array data for 386 samples from TCGA. Clinical gender data were available for
316 of the samples. We processed the data using aroma.affymetrix (Bengtsson et al., 2008) using a custom
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CDF™ provided by colleagues at Lawrence Livermore National Laboratory. The custom CDF has 18632
probesets, corresponding to genes (not exons). The custom CDF does not include any probesets for spike-in
controls, so we were only able to study adjustments using housekeeping genes. We identified 518 probesets
as housekeeping genes.

Substantial unwanted variation is evident. The RLE plot of the un-preprocessed data (Figure 29 in
the SM) suggests the presence of batch effects as well as additional within-batch variation. RLE plots and
p-value histograms using various values of & (Figures 30 and 31 in the SM) do not suggest a clear choice for
k. The RLE plots suggest that k should be at least 30. The p-value histograms suggest that the unwanted
variation skews p-values downwards, but a k of 100 is sufficient to solve this problem. Since a wide variety
of values of k may be appropriate, we include results for both k£ = 50 and k£ = 100 in Table 3. Indeed, it
turns out that results do not vary much over this wide range in k (see Figure 34, SM).

Top 20 Top 40 Top 60

No Prepr. BG,QN No Prepr. BG,QN No Prepr. BG,QN

Std Lim Std Lim Std Lim Std Lim Std Lim Std Lim
No Adjustment 20 20 20 20 25 25 30 30 28 28 33 33
SVA (IRW) 20 20 20 20 28 29 30 30 30 30 32 32
SVA (Two-Step) NA NA 20 20 NA NA 34 34 NA NA 36 36
RUV2 — SVD (k = 50) 20 20 20 20 34 34 35 35 36 36 36 36
RUV2 — EM (k = 50) 20 20 20 20 35 35 36 36 37 37 37 37
RUV2 — Robust (k = 50) 20 20 20 20 33 33 35 35 37 36 36 36
RUV2 — SVD (k = 100) 20 20 20 20 36 36 35 35 39 39 37 37
RUV2 — EM (k = 100) 20 20 20 20 36 36 36 36 39 39 37 37
RUV2 — Robust (k =100) 20 20 20 20 36 36 36 36 37 37 37 37

Table 3: Summary of performance of different methods for TCGA exon array data. The number of X / Y
genes found in the top 20 / 40 / 60 is shown for different levels of preprocessing (None, BG,QN), different
methods of computing p-values (standard and Limma), and different methods of adjustment (none, SVA,
and RUV-2). In the case of RUV-2, results are given for different methods of factor analysis (SVD, EM,
robust), and different values of k (50 and 100). Housekeeping genes were used as negative controls. Results
for the two-step variant of SVA are not available in some cases, because the function exited with an error.
The highest number in each column is shown in bold.

One of the more striking features of Table 3 is the relatively small gain achieved by adjustment. Only
an additional 5 or so genes are discovered, despite the substantial unwanted variation. This may be because
the large sample size compensates for the unwanted variation, allowing most of the differentially expressed
genes to be found even without adjustment. Nonetheless, adjustment does help. RUV-2 and the two-step
variant of SVA perform the best. A final interesting observation is that in this example, unlike in the gender
study and Alzheimer’s study examples, the robust variant of RUV-2 performs well even on un-preprocessed
data.

We now turn to the HT HG-U133A data. We downloaded data for 414 samples from TCGA. Clinical
gender data were available for 319 of these. Unlike with the exon array data, spike-in control data are
available, but the HT HG-U133A only has 9 spike-in probesets. We identified 1045 probesets as housekeeping
genes.

As with the exon array data, substantial unwanted variation is evident. Indeed, the RLE plot of the
un-preprocessed data (Figure 38 in the SM) suggests the presence of very substantial batch effects. RLE
plots and p-value histograms (Figures 39 and 40 in the SM) suggest using a k of 30 is appropriate. Table 4
summarizes the results. Once again, RUV-2 and the two-step variant of SVA perform the best. Unlike with
the exon array data, the robust variant of RUV-2 does not perform well on un-preprocessed data.

A comparison of the performance of spike-in controls and housekeeping genes is provided in Figure 6. As
one might expect, considering there are only 9 spike-in controls, the housekeeping genes perform better.

1A CDF is a file that maps probes to probesets. A custom CDF is necessary because Affymetrix does not provide a CDF
with their exon arrays. They provide a different file format, which is incompatible with aroma.affymetrix.

12



Top 20 Top 40 Top 60

No Prepr. BG,QN No Prepr. BG,QN No Prepr. BG,QN

Std  Lim Std Lim Std Lim Std Lim Std Lim Std Lim
No Adjustment 14 14 20 20 21 22 35 35 27 27 39 39
SVA (IRW) 20 20 20 20 36 36 37 37 38 38 44 44
SVA (Two-Step) NA NA 20 20 NA NA 39 39 NA NA 53 53
RUV-2 — SVD (k = 30) 20 20 20 20 38 38 38 38 47 47 50 50
RUV-2 — EM (k = 30) 20 20 20 20 38 38 39 39 46 46 51 50
RUV-2 — Robust (k=30) 20 20 20 20 31 30 39 39 37 35 51 51

Table 4: Summary of performance of different methods for the TCGA HT HG-U133A data. The number
of X /'Y genes found in the top 20 / 40 / 60 is shown for different levels of preprocessing (None, BG,QN),
different methods of computing p-values (standard and Limma), and different methods of adjustment (none,
SVA, and RUV-2). In the case of RUV-2, results are given for different methods of factor analysis (SVD, EM,
robust). For all RUV-2 methods, k¥ = 30 and housekeeping genes were used as negative controls. Results for
the two-step variant of SVA are not available in some cases, because the function exited with an error. The
highest number in each column is shown in bold.

HK Genes Spike In Controls

04 I 08 10

Figure 6: Comparison of results for housekeeping genes and Affymentrix spike-in controls in the TCGA HT
HG-U133A data. Housekeeping genes clearly perform better. For the RLE plots and p-value histograms,
k = 30. Factors were computed by SVD. P-values were computed using Limma. Note that there are only 9
spike-in controls, so adjustments with k& > 9 are undefined for the spike-in case. We truncate results in the
housekeeping case as well for easy comparison.
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3.4 NCI-60

As discussed in Section 1, RUV-2 is an application specific adjustment method intended for use in differential
expression studies. A natural question is whether the method can be adapted to provide a global adjustment,
in which the entire dataset is adjusted to provide a modified dataset that can then be used just like the
original dataset in any subsequent analysis. The advantages of such a method are obvious — not only would
it allow one to use the method for applications other than differential expression (e.g. for classification or
clustering), but the self-contained nature of the method would allow one to easily insert the algorithm into
pre-existing code, and thus easily re-visit past analyses. Unfortunately, adapting RUV-2 to provide a global
adjustment is not trivial. In this section we consider a naive adaptation of RUV-2 that provides a global
adjustment and demonstrate that there may be some promise in the approach, but that there are many
potential pitfalls.

Our naive method is simple — perform factor analysis on the control genes as before, regress the original
dataset onto the factors, and use the residuals of the regression as the new dataset. In other words, subtract
off (from the entire dataset) the components of variation that are seen to exist in the control genes. This
method is “naive” because it implicitly assumes that all of the factors corresponding to the biology of
interest are orthogonal to the unwanted factors. For applications such as clustering, in which the goal is to
discover the biology of interest from the data, the assumption that the biology of interest is orthogonal to
the unwanted variation is at best unverifiable. If the assumption is false, the problem of throwing out the
baby with the bathwater returns, and the “adjustment” may very well hurt more than it helps.

Our example is the NCI-60 dataset. The National Cancer Institute maintains 60 cell lines derived
from the tissues of 9 different types of human cancers (brain, blood, breast, colon, kidney, lung, ovary,
prostate, skin). These cell lines have been well studied, and a great deal of public data are available. More
information (including data) can be found at http://discover.nci.nih.gov/. We obtained expression
data from a study that analyzed the NCI-60 cell lines using using both the Affymetrix HG-U95A and HG-
U133A platforms (Shankavaram et al., 2007). We wanted to see whether the naive adjustment described
above would result in a better clustering of the data into the 9 tissue types. To perform the clustering, we
used the R functions dist and hclust with their default settings (“euclidian” and “complete linkage”).

Figure 7 provides the clustering results for the HG-U95A data before and after an adjustment using
the spike-in controls and k = 1. The adjustment helps. Before adjustment, the colorectal cancers were
grouped into one clade of size 4 and another clade of size 3. After adjustment, they were all grouped into a
single clade. This clade also included one lung cancer, however. Other clusterings improved as well. Before
adjustment, 5 of the Leukemias grouped into a single clade, and 1 grouped by itself. After adjustment, all 6
Leukemias grouped into a single clade. Ovarian went from four clades of sizes 3, 2, 1 and 1 to three clades
of size 4, 2, and 1. Renal went from 3 clades of size 5, 2 and 1 to two clades of size 7 and 1. Lung went from
nine clades of size 1 to 6 clades — one of size 4 and five of size 1. The prostate cancers moved closer together,
but still did not form their own clade. There was no substantial change in the quality of the clusterings of
the other cancers (brain, breast, skin).

Despite the success in Figure 7, the naive global adjustment cannot be relied upon in general. Increasing
k from 1 to 2 does not further improve the performance (some cancers cluster slightly better while others
cluster slightly worse), and increasing k past 2 quickly leads to a decrease in the quality of the clustering. See
Figures 46, 47, and 48 in the SM for dendrograms at various values of k. In this particular example, we only
knew to set k = 1 because we knew the “correct answer.” RLE plots provide poor guidance in choosing k,
and p-value plots / positive controls are not even applicable since this is not a differential expression study.
In a more realistic example, choosing an appropriate k& would be very difficult.

Moreover, the method does not work with the HG-U133A data for any value of k. This may be because
the unwanted variation is correlated with the biology of interest. We discuss this possibility in more detail in
Section B in the SM. It is also possible that the spike-in controls are simply too noisy, or that the variation
characteristic of the spike-in controls is not sufficiently representative of the unwanted variation affecting the
majority of the probesets.'® Indeed, recall from previous examples that spike-in controls generally did not

15 A final logical possibility is that there is simply no unwanted variation to remove. In that case, we would see no improvement
after adjustment. However, we do not believe this is the case, as we have evidence there is unwanted variation (although not
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Figure 7: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The data were prepro-
cessed (BG 4+ QN). The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 —
Melanoma; 5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.

perform as well as housekeeping genes.

Lastly, the method does not work if we use housekeeping genes instead of the spike-in controls. The
housekeeping genes are highly correlated with cancer type. (Again, see Section B for a more complete
discussion of this topic.) This is presumably due to the fact that the tissue types are sufficiently different
that even the expression levels of the housekeeping genes actually do vary from one tissue type to the next,
violating of the control gene assumption. See Figure 8 for a dendrogram of the HG-U133A data after an
adjustment using housekeeping genes.

necessarily batch effects). Indeed, as we discuss in Section B in the SM, it seems there is unwanted variation that is correlated
with biology.
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Figure 8: Dendrograms of NCI-60 HG-U95A dataset after adjustment using housekeeping genes. The data
were preprocessed (BG + QN). The factors were computed by SVD. Key: 1 —Blood; 2 — Breast; 3 — Ovarian;
4 — Melanoma; 5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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4 Methods

Assume we have m arrays each with n genes (or probes or probesets). Let y;; denote the observed log
expression level of the j'" gene on the i*® array, and let Y denote the m x n matrix (y;;). We model Y as:

Yixn :mepﬂpxn+Zm><q'7q><n+Wm><kak><n+6m><n (1)

Here, X is a matrix whose columns are the factors of interest (e.g. disease state, treatment / control), Z is
a matrix whose columns are observed covariates (e.g. batch, ethnicity), and W is a matrix whose columns
are unobserved covariates (e.g. sample quality). Note that k is unobserved. The matrices 8, v, and « are
all unobserved coefficients that determine the influence of a particular factor on a particular gene. The Z~vy
term is optional; a researcher may not be aware of any observed covariates, or may wish to treat observed
covariates as if they were unobserved. To complete our specification of the model, we make the following
assumptions:

Rank [(X | Z |W)|=p+qg+k<m @)
Ele| X,Z,W]=0 (3)

Var [e;; | X, Z,W] = o7 @

e Levy if (i) # (@5 5)

In a differential expression study the goal is to estimate 8. This is almost a standard linear regression
problem. The important difference is that W is unobserved. To address this difficulty, we propose to estimate
W from the data using negative control genes.'® As stated previously, negative control genes are those genes
whose expression levels are known a priori not to be “truly associated” with X. More formally, the j* gene
is a negative control if we can assume that 8,; = 0, where 3,; denotes the 4 column of 3.

Let Y, ag, Be, e and €. be reduced versions of Y, «, £, v and € that only contain the columns of control
genes. Then by (1)

Y. =XpB.+ Zv. + Wag + €. (6)

The “control gene assumption” however is that 8. = 0, so (6) becomes
Y.=2Zv.+Wa. + €. (7)
For simplicity, first consider the case that there is no Z~ term in the model. Then (7) becomes
Y. =Wa, +e.. (8)

This is a typical model in factor analysis, and many methods exist to estimate W (e.g. SVD). Note that,
no matter what factor analysis method is used, W can only be estimated if rank(a.) > k. In practice, this
means that the control genes must not only be unassociated with the factor of interest, but must indeed be
associated with the unwanted factors — the negative controls must exhibit the unwanted variation so that
the factor analysis can detect it!

If there is a Z+ term in the model, we can multiply both sides of (7) by the residual operator

Ry=1-2(2'2)"7
to obtain
RzY. = Rz;Wa, + €. (9)

We can then use factor analysis to estimate RzW. Now, in general we cannot assume that R;W = W,
but in practice we can safely treat our estimate of RzW as if it were in fact an estimate of W. This is
because the standard OLS estimator for 8 depends only on the column space of (Z|W) — not on Z and
W themselves — and the column space of (Z|W) is equal to the column space of (Z|RzW). Thus we see

16Recall that we use the term “negative control genes” loosely, and allow it to refer to spike-in controls as well.
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that whether or not a Z~ term is included in the model, a de-facto estimate W of W can be easily produced
using factor analysis. We can then calculate B by OLS, substituting W for W. Note that in a trivial sense
we include a Z term in all of our analyses, since we include a constant (intercept) term in our models.

We now consider the adaptation of this method introduced in Section 3.4. Now the goal is not an estimate
B of 3, but rather an adjusted expression matrix Y*. Additionally, we now regard X as unknown. Regarding
X as unknown makes any effort to adapt RUV-2 highly non-trivial. For simplicity, consider the case in which
there is no Z+v term; extending to the case in which there is a Zv term is trivial. An ideal globally adjusted
expression matrix would simply equal the original expression matrix ¥ minus the unwanted variation Wa;
i.e. Y* would equal X3 + €. In the method of Section 3.4, we fall short of this ideal. We define:

Y* = [I W (W’W)fl W’} Y (10)

where W is found by factor analysis as in RUV-2. In words, we project onto the orthogonal complement of
the column space of W. This should effectively remove the unwanted variation. The problem is that it may
remove some of the signal as well. Note that

Y* =Ry, (XB+Wa+e) (11)
where Ry;, is the projector onto the orthogonal complement of the column space of W. Thus if W ~ w,
Y* = Ry X3+ Ryje. (12)

If W is orthogonal to X, then Ry;; X = X and Y™ is nearly our ideal globally adjusted expression matrix. If
the unwanted factors are primarily technical factors (not biological), and samples are processed randomly, X
and W may very well be nearly orthogonal. On the other hand, if W and X are not orthogonal, Y* may be
far from the ideal, and if X is regarded as unknown, it is not even possible to check whether W and X are
orthogonal — let alone correct for the bias non-orthogonality would introduce. Thus, this naive adaptation
of RUV-2 should be used with extreme caution, if at all.

5 Discussion

Methodologically, RUV-2 is extremely simple. Its two steps — factor analysis and regression — are well
studied and well understood. Despite this simplicity, RUV-2 is highly effective. RUV-2 derives its strength
not from any deep new statistical theory but from some powerful biological assumptions. RUV-2 is only as
good as these assumptions on which it is based, and it is therefore worthwhile to reiterate these assumptions.
The control genes must satisfy two key conditions — they must be 1) uninfluenced by the factor of interest,
and they must be 2) influenced by the unwanted factors. Different situations will call for different sets of
control genes. The choice of an appropriate set of control genes is central to RUV-2.

We have discussed two possible sets of control genes — housekeeping genes and spike-in controls. In the
differential expression examples (gender, Alzheimer’s, and TCGA) the housekeeping genes are the better
choice, presumably because they are more “representative,” and because there are more of them. In the
NCI-60 example the spike-in controls are the better choice because the housekeeping genes are not negative
controls with respect to tissue type. The NCI-60 example highlights the important fact that housekeeping
genes are influenced by biology and cannot be casually assumed to be negative controls in every situation.
Housekeeping genes are effective negative controls in the first several examples because they are unaffected
by gender, not because they are unaffected by biology in general. In short, housekeeping genes are a good
place to begin a search for negative controls, but cannot be relied upon in all cases — the factor of interest
matters.

We need not restrict our search for control genes to housekeeping genes and spike-in controls. In other
studies, still other sets of genes might be the best choice. For example, a researcher might wish to use
genes known to be stably expressed within a particular tissue type (Stamova et al., 2009), or under certain
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experimental conditions; choosing genes specially suited to the study at hand may improve performance.
In other situations, a researcher might wish to include additional control genes with the intent of adjusting
for specific types of unwanted variation. For example, if a researcher suspects that the cause of death is
an important source of unwanted variation, it might be wise to include control genes that could possibly
capture this information — e.g. genes associated with cellular stress, apoptosis, etc.

There may be a temptation to “discover” negative control genes. For example, a researcher may wish
to find genes whose expression levels are not highly correlated with the factor of interest, label these genes
as negative controls, and then adjust via RUV-2. The allure of this approach is clear — finding a set of
negative controls would be much easier, and could in fact be automated. However, we feel this approach is
misguided. If there are unwanted factors that are correlated with the factor of interest, then the expression
levels of the true negative controls should in fact be correlated with the factor of interest. Excluding genes
correlated with the factor of interest would bias our estimate of the unwanted factors.

Just as the researcher must exercise judgment when choosing a set of control genes, the researcher must
also exercise judgment when choosing k. This can be difficult. We have seen that RLE plots and p-value
histograms can be quite helpful. Positive controls, when available,!” can be even more helpful. Some readers
may question why we encourage choosing k based on these quality assessments when more “objective” and
automated methods exist. For example, it is possible to choose k via a series of hypothesis tests, in which
one keeps increasing k£ until no more “statistically significant” factors can be found. This is the approach
taken in SVA. However, we feel there are problems with this approach. One reason is that including an
additional term in a linear regression model may lead to a decrease in bias, but it can also lead to an increase
in variance. Thus, it is possible that we might get a better estimate of 8 by leaving some of the unwanted
factors out of the model. Using hypothesis testing to find k does not account for this bias-variance trade-off;
instead the goal is simply to include all factors. A second reason is a bit more philosophical. Whenever a
researcher calculates a small p-value, three logical possibilities are on the table — the null hypothesis is true
and we have observed an unlikely event; the null hypothesis is false; the model is wrong. We know already
the model is wrong. We don’t know “how wrong,” or in precisely which way. Nor do we know exactly how
the model misspecification affects the results of any particular hypothesis test. Thus, we feel it is unwise
to rely too heavily on a hypothesis test to give us a “good” answer, especially when the choice of k is so
important.'® We feel there is a role here for human judgment, and that quality assessments based on positive
controls, p-value histograms, etc., are useful tools in guiding this judgment.

The simplicity of RUV-2 makes it relatively flexible, and an excellent starting point for new, more
advanced methods. In addition, some of the basic ideas of RUV-2 can be useful in exploratory data analysis.
For example, we have used methods similar to RUV-2 to identify the age of a formalin fixed, paraffin-
embedded tissue sample as an important source of unwanted variation (data not shown). The extended
NCI-60 discussion in the SM is another good example. In these final paragraphs, we discuss some ways in
which RUV-2 might be improved, and suggest possibilities for future development.

One possible direction for improvement is in the regression step. While we considered three different
methods of factor analysis (and found that a simple SVD seems to work as well as anything else), with the

17Some readers may question the availability of positive controls. Positive controls are genes known to be associated with the
factor of interest. The goal of differential expression studies is to find genes associated with the factor of interest. Thus it may
seem that if we have positive controls, we already have “the answer.” To be sure, positive controls will not always be available,
but the situation is not hopeless. In some cases, we might have a set of genes known to be highly enriched with differentially
expressed genes, although we don’t know exactly which of the genes are the differentially expressed ones. In this case, it might
be possible to treat the entire set of genes as if they were all positive controls. For example, the method of ranking genes
and counting the number of top-ranked positive controls can still be used. This is exactly the approach taken in our gender
examples. Not all X and Y-linked genes are differentially expressed, but many of them are. Alternatively, we may begin with
only a handful of known positive controls, when in fact many genes are differentially expressed. An example would have been if
we had found any differentially expressed autosomal genes in our gender examples. (In actuality, we did not find any autosomal
genes that appeared to be consistently differentially expressed with respect to gender across multiple datasets.)

I80ur objections here are not “purely philosophical.” We experimented with various “objective” methods for determining k,
and found that many worked very well on simulated data, but very poorly on real data. Presumably, this was due to model
misspecification. Some methods worked well on real data as well — but of course, we could only verify this on the relatively
small number of datasets that we had available. Other datasets may suffer other forms of model misspecification, and the
methods may no longer work.
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exception of Limma, we did not consider any elaborations to the regression step of RUV-2. There may be
room for improvement. Combat, for example, is essentially an advanced form of regression, and, as we saw
in the gender example, it does in fact perform better than standard regression. Incorporating some of the
techniques from Combat into RUV-2 may lead to a still better method.

A second avenue for future development concerns combining multiple datasets. It is an open question
whether RUV-2 is effective enough to allow a researcher to combine multiple datasets from completely
separate studies without introducing excessive unwanted variation. It is also an open question as to whether
RUV-2 can be used when combining data from different platforms. We saw in the gender study example that
we were able to effectively combine data from the HG-U95A and HG-U95Av2 platforms, but these platforms
are relatively similar. It is not clear that such a procedure would also work when combining data from, for
example, the HG-U95A and HG-U133A platforms, or when combining Affymetrix and Agilent chips.

Yet another open question is whether RUV-2 can be adapted to entirely different technologies. While
microarrays are still used, high throughput sequencing technologies are becoming increasingly popular for
use in gene expression studies. Adapting RUV-2 for use with these sequencing technologies could be very
helpful. Other technologies, such as qrt-PCR, may benefit from an adaptation of RUV-2 as well.

Finally, we feel it may be possible to apply some of the ideas of RUV-2 to applications other than
differential expression. As we have stated, we feel that unwanted variation is most effectively dealt with when
it is considered in the context of the goal of the analysis at hand. RUV-2 deals effectively with unwanted
variation in the context of differential expression studies. However, microarrays are also commonly used for
classification and for clustering. We do not yet know how best to handle unwanted variation in these types
of studies, but we believe control genes will play an important role.
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Supplementary Material to Using Control Genes to Correct
for Unwanted Variation in Microarray Data

Johann A. Gagnon-Bartsch* Terence P. Speed*f

A MAQC Example

The Microarray Quality Control (MAQC) project (Shi et al., 2006) sought to investigate the replicability of
microarray results by processing multiple technical replicates of a few biological samples at multiple labo-
ratories on multiple microarray platforms. In particular, they processed 5 technical replicates of Stratagene
Universal Human Reference RNA (“Sample A”) and 5 technical replicates of Ambion Human Brain Refer-
ence RNA (“Sample B”) at each of 6 laboratories (for a total of 60 chips) using Affymetrix HG-U133 Plus 2
arrays. To investigate unwanted variation in this dataset, we first subtracted off sample means gene by gene
(to remove the biological signal), and then computed the SVD of the resulting matrix. Substantial variation
between laboratories is evident, but so is substantial within-laboratory variation.
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Figure 9: The first PC of the MAQC HG-U133 Plus 2 data after removal of the biological signal. Different
colors represent different laboratories. Circles represent Sample A; pluses represent Sample B. Unwanted
variation occurs both between and within batches. The data was not preprocessed.

We contacted MAQC to enquire if there was any known explanation for the relatively large (though
still minor in absolute terms) unwanted variation at the fourth laboratory (the E.P.A., shown in red). We
were informed that at this laboratory, the person who ran the experiment did not get enough training and
hands-on experience.

*Department of Statistics, University of California at Berkeley, Berkeley, CA 94720
T Bioinformatics Division, Walter and Eliza Hall Institute, Victoria 3050, Australia
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B Extended NCI-60 Discussion

In our discussion of the NCI-60 data in Section 3.4 we raise the possibility that, in the case of the HG-
U133A data, unwanted variation is correlated with biology. As discussed in Section 4, the “naive” global
adjustment method can fail when the unwanted variation is correlated with biology. Thus, this correlation
may explain why the adjustment fails in the case of the HG-U133A data. We also asserted that the (true,
wanted) biological variation in the housekeeping genes is highly correlated with biology, and therefore the
housekeeping genes cannot be regarded as negative controls in this example. In this Section, we present the
methods and results by which we arrived at these (tentative) conclusions.

In Section 4 we observe that the “naive” global adjustment method will fail if X and W are substantially
correlated. Recall that this is because the method will only work when Rj; X = X, and Rj;; X = X only
when X and W are orthogonal. Now, since W is calculated from data, X and W will never be perfectly
orthogonal in practice. We would therefore like some measure of just how correlated X and 1474 actually
are. We choose to use canonical correlations as a measure. Since canonical correlations may be unfamiliar
to some readers, we present here a brief review, beginning with some motivation. More information can be
found in Venables and Ripley (2002).

Consider two full-rank matrices Upxp and Vi,xq. Assume that each column of U and each column of V
has a mean of 0. Note that U and V have the same number of rows. If we choose one column of U and
one column of V' it is possible to compute the correlation coefficient between these two columns. We could
do this for all pg pairs of columns, and this would, in some sense, tell us about the correlation between U
and V. This is called the “cross correlation” of U and V. For our purposes, however, the cross correlation
presents some difficulties. Firstly, it consists of pq individual numbers, and it is not clear how to interpret
all of these numbers simultaneously to get a clear sense of the extent to which U and V are correlated.
Perhaps more importantly, if we reparameterize either U or V', so that its individual columns are changed
but its column space is not, the cross correlation of U and V will, in general, change. This makes the cross
correlation undesriable as a metric for the “correlation” of X and W, since the quantity R;, X is unaffected
by reparameterizations of W; we would like our metric of “correlation” between X and W to be likewise
unaffected by reparameterizations of W. Canonical correlations achieve this.

Let u be an element of the column space of U, and let v be an element of the column space of V. Let
r(u,v) be the correlation of u and v. We can define the first canonical correlation as

r1 = maxr(u,v).
u,v
Note that this number is unaffected by reparameterizations of U and V. It also has the advantage of being
a single number. We consider it to be a good metric by which to measure the extent to which X and W are
correlated, and the extent to which Ry, X # X.

(Note that we could also define the second canonical correlation — and the third, fourth, etc., up to
min(p, ¢) — but these are not needed for our purposes. For sake of completeness, however, we remark that
the second canonical correlation can be defined similarly to how we defined the first canonical correlation,
but constraining the maximization over v and v to include only u and v that are orthogonal to u; and vy,
where 1 = r(uy,v1).)

It can be shown that the first canonical correlation is equal to the square root of the largest eigenvalue of

V'V) V' UUU) UV VIV e (13)
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Note that in the case that ¢ = 1 (i.e. the case that V is a single column),

V'U(U'U)UY
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where V = U(U'U)~IU'V and R? is the coefficient of determination in a regression of V on U. Thus, in the
case that ¢ = 1, the first canonical correlation between U and V is equal to the familiar quantity vR? in a
regression of V on U. This completes our review of canonical correlations.

We now return to the NCI-60 example. The biology of interest in our example is the cancer tissue type
(blood, brain, etc.). Since tissue type is known (despite the fact we treat it as unknown in the example),
we can construct X as a 9-column matrix of dummy variables. We can then calculate the first canonical
correlation between X and W.

If we are interested in whether or not the variation characteristic of the control genes is “systematically”
correlated with biology, we might want to know whether the observed canonical correlation is “statistically
significant.” Strictly speaking, this question does not make sense unless the samples were processed at
random. Nonetheless, we can generate an interesting “null distribution” by randomly permuting tissue type
labels (i.e. randomly permuting the rows of X) and recalculating the canonical correlation each time. We
can then calculate the fraction of these re-calculated canonical correlations that are greater than the observed
canonical correlation to get an approximate “p-value.” If this p-value is small, we might conclude that the
unwanted variation is systematically correlated with biology (tissue type). Alternatively, we might conclude
that the “control genes” are not control genes after all, and their expression levels are in fact influenced by
the tissue type.

We calculated the canonical correlation between X and W and an associated p-value for both the HG-
U95A and HG-U133A datasets, both with preprocessing and without preprocessing, for both the spike-in
controls and the housekeeping genes, with a k of 1 and a k of 5. We present the results in Table 5.

Spike-in Controls Housekeeping Genes
No Prepr. BG,QN No Prepr. BG,QN
k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5
HG- 1%t Can. Corr. 0.33 0.55 0.29 0.56 0.37 0.93 0.82 092
U95A  p-value 0.6 0.4 0.8 0.4 0.5 0 0 0
HG- 15 Can. Corr. 0.55 0.65 0.44 0.56 0.56 0.93 0.83 0.93
U133A p-value 0.02 0.06 0.2 0.4 0.009 O 0 0

Table 5: First canonical correlation between X and W (and an associated p-value) in various cases of the
NCI-60 data. Statistically significant entries are shown in bold.

Table 5 is a bit complicated, and difficult to interpret. We begin with the HG-U95A dataset; it is a bit
simpler. The spike-in controls are not significantly correlated with the biology in any of the cases shown.
This is as we might expect. The housekeeping genes, however, are significantly correlated with biology in
some cases. This seems to suggest either that unwanted variation is correlated with biology, or that the
housekeeping genes are not actually negative controls. Given that the source of the biological signal is
quite strong (completely different tissue types) and that the spike-in data suggest that unwanted variation
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is not correlated with biology, we conclude that the housekeeping genes are not actually negative controls.
This mostly explains the HG-U95A results, but one puzzle remains — why are the housekeeping genes not
significantly correlated with biology in the case of no preprocessing and £ = 17 Our interpretation of this
result is that without preprocessing, the unwanted variation dominates the biological signal, and thus the
first PC is unwanted variation, not biology. This is supported by the fact that the correlation of the first PC
of the housekeeping genes (without preprocessing) and the first PC of the spike-in controls (again, without
preprocessing) is 0.77. (By contrast, after preprocessing, this correlation is -0.01.)

We now turn to the HG-U133A results. Here we see some confirmation that the housekeeping genes
are not negative controls. Indeed, it is interesting to note that the canonical correlations in the last three
columns of Table 5 are nearly identical between the HG-U95A case and the HG-U133A case. However,
the spike-in controls, without preprocessing, are also significantly correlated with biology. This seems to
suggest that the unwanted variation in this example is in fact significantly correlated with biology. The
puzzle is now why the spike-in controls are not significantly correlated with biology after preprocessing. Our
interpretation is that the preprocessing — in particular, the quantile normalization — removes much of the
component of the unwanted variation that is correlated with biology. As an aside, we note that once again
the correlation between the first PC of the housekeeping genes (without preprocessing) and the first PC
of the spike-in controls (without preprocessing) is quite strong — 0.88. Thus it seems that the significant
correlation between the housekeeping genes and biology in the case of no preprocessing and k = 1 is actually
driven by unwanted variation, not the biological signal. In other words, it seems that in this particular case,
we get the “right answer for the wrong reason.”

To summarize, Table 5 suggests that housekeeping genes are not negative controls, that the HG-U133A
samples were processed in such a manner as to partially confound tissue type with technical artifacts, and
that preprocessing at least partially removes these artifacts.

An Unsolved Mystery

We were interested to learn the source of the unwanted variation that is partially confounded with tissue
type in the HG-U133A data. The CEL files indicated that all samples were scanned on a single day. We
arranged the samples in order of scan time and made box plots of the log perfect-match probe intensities.
No temporal patterns were evident. There were no obvious batch effects / clusters. We therefore contacted
Gene Logic, where the samples were assayed. Gene Logic was able to provide us with data on the scanner,
hybridization station / position, chip lot, and fluidics station used for each of the samples.! There were
12 scanners, 8 hybridization stations, 4 fluidics stations, and 2 chip lots employed in the processing of the
arrays. Each of the 8 hybridization stations had 4 positions, for a total of 32 station / position combinations.
Only 27 of these combinations were actually used. For each of the four main factors (scanner, hybridization
station, fluidics station, chip lot), we created a matrix of dummy variables for the factor. In other words,
we created a 12-column matrix of dummy variables for the scanners, a 2-column matrix of dummy variables
for the chip lots, etc. We also created a 27-column matrix of dummy variables for each of the hybridization
station / position combinations. We then took each of these five matrices and calculated the first canonical
correlation between it and a matrix of dummy variables representing tissue types. We also computed a
p-value for this canonical correlation using a permutation test. Results are presented in Table 6.

Chip lot stands out; its correlation with tumor type is highly significant. Forty-six chips came from the
first chip lot and 11 came from the second. Of the 11 chips from the second chip lot, 8 were used to assay
melanoma samples, 2 were used to assay prostate samples, and one was used to assay an ovarian sample.

IThere was missing / mislabeled / mismatched data for two of the samples. All of the CEL files we downloaded from
http://discover.nci.nih.gov/ were timestamped on April 30, 2002. In the data provided by Gene Logic, all samples were
reported as having been processed on April 30, 2002, with the exception of two that were reported to have been processed on
May 16. These two samples did not stand out in any obvious way. For example, their log perfect-match box plots seemed
normal when compared to the rest of the samples. We re-calculated the canonical correlation between the first PC of the spike-in
controls and a dummy matrix representing tumor tissue type, this time omitting the two suspicious samples. The results were
essentially unchanged. We therefore determined that it was not these two samples that were driving the correlation between
tissue type and the first PC of the spike-in controls. In the discussion / analysis that follows, we omit these two samples.
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Scanner Hyb. Station Hyb. Stat. / Pos. Fluidics Stat. Chip Lot
Correlation w/ Tissue Type 0.69 0.66 0.86 0.48 0.85
p-value 0.5 0.2 0.7 0.5 0

Table 6: First canonical correlation between known potential confounders (scanner, hybridization station,
hybridization station / position combination, fluidics station, chip lot) and tumor tissue type. P-values are
approximated using a permuation test (10,000 iterations).

Conversely, only 2 of the melanoma samples were assayed on chips from the first lot, none of the prostate
samples, five of the ovarian samples, and all of the other remaining samples.

Despite the very strong confounding of chip lot and tissue type, it does not seem that this confounding
explains the correlation between the first PC of the spike-in controls and tissue type. We calculated the
canonical correlation between chip lot and the first PC of the spike in controls (un-preprocessed data). It is
only 0.03 (p ~ 0.8). Chip lot is not a major source of unwanted variation.

Interestingly, it seems that in fact none of these factors are major sources of unwanted variation. In
Table 7 we present canonical correlations (and p-values) between each of the factors and the first PC of the
spike-in controls.

Scanner Hyb. Station Hyb. Stat. / Pos. Fluidics Stat. Chip Lot
Correlation w/ first PC 0.47 0.40 0.69 0.33 0.03
p-value 0.3 0.2 0.4 0.1 0.8

Table 7: First canonical correlation between known potential confounders (scanner, hybridization station,
hybridization station / position combination, fluidics station, chip lot) and the first PC of the spike-in
controls (unpreprocessed data). P-values are approximated using a permuation test (10,000 iterations).

We also regressed the first PC of the spike-in controls onto scanner, hybridization station, fluidics station
and chip lot simultaneously. The design matrix included a column of 1s for the intercept, 11 columns for
the scanners, 7 columns for the hybridization stations, 3 columns for the fluidics stations, and one for chip
lot. The value of R? is only 0.44, with a permutation test p-value of 0.31. (Equivalently, the canonical
correlation between the design matrix and the first PC is 0.66.) Again, the conclusion seems to be that these
four factors are not major sources of unwanted variation.

Finally, we computed the residuals of this regression. The canonical correlation between the residuals
and tissue type is 0.5, with a p-value of 0.06. This seems to support the assertion that there is some source
of unwanted variation partially confounded with tissue type, but the source of this unwanted variation is
associated neither with scanner, hybrid station, fluidics station, nor chip lot. Since this unwanted variation
is evident in the spike-in controls, it seems it must be technical variation that enters somewhere in the final
stages of the assay. What it is, however, remains a mystery.
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C Example Code

RUV-2 is very simple to implement and does not warrant an R pacakge. Instead, we include here some
sample code implementing RUV-2 using SVD and Limma. Note that the expression matrix in this example
is n X m instead of m X n, since this is how expression data is often stored in practice. The variable ctl
must index the genes to be used as control genes.

RUV2 = function(Y, X, ctl, k, Z=matrix(rep(l, ncol(Y¥))))
{

library(limma)

# Project onto the orthogonal complement of Z
RZY = Y - Y)x4Z)*%hsolve (£ (Z) %*%Z) fxht (Z)

# Perform SVD
W = svd(RZY[ctl,])$v

# Keep the first k factors
W=W[1:k]

# Fit using Limma and return

fit = ImFit(Y,cbind(X,Z,W))
fit = eBayes(fit)
return(fit)
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D Additional Gender Study Figures and Tables

None BG + QN BG + QN + LS

Log Eigenvalue
Log Eigenvalue

Log Eigenvalue

Figure 10: Gender study scree plots on a log scale at different stages of preprocessing. From left to right:
No preprocessing; background correction / quantile normalization done separately for each platform type;
background correction / quantile normalization followed by a final location/scale adjustment across all chips.
All genes were included in the eigenanalysis.
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Figure 11: Gender study RLE plots after adjustment, using various values of k. Quality improves with
increasing k£ at first, then decreases as too many factors are removed. Data was fully preprocessed
(BGH+QN+LS). The factors were computed by SVD on the housekeeping genes.
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Figure 12: Gender study p-value histograms after adjustment, using various values of k. Histogram break-
points are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was fully preprocessed (BG+QN+LS). The factors
were computed by SVD on the housekeeping genes. P-values were computed using Limma.
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SVD EM Robust

Figure 13: Gender study RLE plots after adjustment (k = 10), using different methods of factor analysis.
The results are remarkably similar. The data was preprocessed (BG + QN + LS). The factors were computed
using the housekeeping genes.

SVD EM Robust

Standard 7 7 7

Limma

Figure 14: Gender study p-value histograms after adjustment (k = 10), using different methods of factor
analysis, and different methods of computing p-values. The data was preprocessed (BG + QN + LS). The
factors were computed using the housekeeping genes.
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Figure 15: Comparison of the performance of variants of RUV-2 in the gender study. The number of X /
Y genes discovered is plotted as a function of k. Genes were ranked by p-value; results are shown for the
number of X /Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle). k = 0 corresponds
to no adjustment. Data was preprocessed (BG + NM + LS). PCs were computed using the housekeeping
genes.
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Figure 16: Comparison of the performance of different factor analysis methods with and without prepro-
cessing in the gender study. The number of X /Y genes discovered is plotted as a function of k. Genes
were ranked by p-value; results are shown for the number of X / Y genes ranked in the top 20 (plus), top
40 (triangle), and top 60 (circle). k& = 0 corresponds to no adjustment. PCs were computed using the
housekeeping genes. P-values were computed using Limma.

34



SVA

(IRW)

SVA

(Two i
Step)

Combat :

<
~ o
S I N
r T T T T 1
0.0 0.2 0.4 06 08 1.0

Figure 17: Gender study RLE plots and p-value histograms after adjustments by SVA / Combat. The
“two-step” variant of SVA appears to do fairly well. P-values were computed using Limma.
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Unadjusted

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P

1 RPS4Y1 Y 6x10°3%9 11 IL2RA 10 04 21 PTPN20B 10 1

2 KDM5D Y 2x1071 12 ASMTL XY 05 22 SLC25A6 XYy 1

3 DDX3Y Y 3x1071 13 IFITM1 1 0.7 23 CDC42 11

4 XIST X 2x10718 14 USP9X X 09 24 COASY 17 1

5 USP9Y Y 4x1074 15 CD24 6 1 25 VWF 12 1

6 TTTY15 Y 2x1079% 16 PECAM1 17 1 26 DBC1 9 1

7 UTY Y 2x10797 17 HBA1 16 1 27 CD59 1 1

8 EIF1AY Y 3x107% 18 PCDH11X X 1 28 IL10RB 21 1

9 HBB 11 5x 10792 19 HBG1 1 1 29 DNAJB1 19 1

10 CIRBP 19 0.3 20 HBB 1 1 30 ANKRD26 10 1

RUV-2 (SVD), k = 10, housekeeping genes

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1x107% 11 DDX3X X 5x10706 21 NOMO1 16 3x10703
2 KDM5D Y 2x1072% 12 LITAF 16 4x107% 22 TF 3 3x10708
3 DDX3Y Y 6x107% 13 PCDH11X X 6x107% 23 HBA1 16 4x1079
4 XIST X 1x1071 14 HBG1 11 3x107% 24 GTPBP6 XY 4x1079
5 USP9Y Y 2x10°16 15 USP9X X 6x107% 25 ENPP2 8 4x107%
6 UTY Y 7x107" 16 SLC25A6 XY 6x107% 26 TUBA1B 12 5x 1079
7 CD99 XY 7x10712 17 FAMI153A 5 1x1079 27 KLK6 19 5x10798
8 CYorf15B Y 5x10710 18 RPS4X X 1x1079 28 IFITM1 11 5x1079
9 TTTY15 Y 2x1079 19 PPP2CB 8 2x1079 29 HBB 11 5x10798
10 EIF1AY Y 4x107% 20 H2AFY 5 2x1079 30 PRKY Y 7x1079

Table 8: Comparison of gender study gene rankings before and after adjustment. The data has been fully
preprocessed (BG + NM + LS). The p-values were calculated using Limma.
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Unadjusted

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1 11 CRYM 16 1 21 GAP43 3 1
2 DDX3Y Y 1 12 XIST X 1 22 GNAS 20 1
3 HBB 1 1 13 CALM1 14 1 23 SPP1 4 1
4 HBA1 16 1 14 ACTB 7 1 24 SNAP25 20 1
5 HBB 11 1 15 PFN2 3 1 25 UTY Y 1
6 CIRBP 19 1 16 PRKARIA 17 1 26 SLC17A7 19 1
7 KDM5D Y 1 17 ACTB 71 27 RPS23 5 1
8 GAPDH 12 1 18 SLC25A6 XY 1 28 RPS21 20 1
9 GAD1 2 1 19 GAPDH 12 1 29 HSP90AB1 6 1
10 USP9Y Y 1 20 GNAS 20 1 30 ATP5A1 18 1

RUV-2 (SVD), k = 10, housekeeping genes

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P

1 RPS4Y1 Y 8x107%0 11 HBB 11 2x107% 21 PDE4DIP 1 1x107%3
2 KDM5D Y 4x10% 12 HBA1 16 4 x 1079 22 DDX3X X 1x1079
3 DDX3Y Y 4x107 13 SLC25A6 XY 1x10~% 23 EIF1AY Y 3x1079
4 XIST X 1x10~1 14 PCDH11X X 1x107% 24 NCL 2 3x107%
5 CD99 XY 4x1071t 15 HBB 11 2x107% 25 HDHD1A X 3x1079
6 UTY Y 5x10710 16 SLC25A6 XY 5x107% 26 GTPBP6 XY 3x1079
7 USP9Y Y 3x107% 17 USP9X X 6x107% 27 ASMTL XY 3x1079
8 RPS4X X 5x10707 18 FDPS 1 6x107% 28 IFITM1 11 4x1079
9 TTTY15 Y 7x107°7 19 HBG1 11 6x107% 29 PIN1 19 5x 10793
10 CYorfl5B Y 1x107% 20 NLGN4Y Y 6x107% 30 POLD2 7 6x1070

Table 9: Comparison of gender gene rankings before and after adjustment. The data has not been prepro-
cessed. The p-values were calculated using Limma.
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E Additional Alzheimer’s Study Figures and Tables
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Figure 18: Plots of XIST and DDX3Y expression levels in the Alzheimer’s study. The horizontal axis is just
sample index. It is clear which samples are male and which are female. Data was preprocessed.

None BG + QN

Figure 19: Alzheimer’s study scree plots with and without preprocessing. Left: No preprocessing; Right:
Background correction / quantile normalization. All genes were included in the eigenanalysis.
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None BG + QN

Figure 20: Alzheimer’s study RLE plots with and without preprocessing. Left: No preprocessing; Right:
Background correction / quantile normalization.
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Figure 21: Alzheimer’s study RLE plots after adjustment, using various values of k. Data was preprocessed
(BGH+QN). The factors were computed by SVD on the housekeeping genes.
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Figure 22: Alzheimer’s study P-value histograms after adjustment, using various values of k. Histogram
breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was preprocessed (BG+QN). The factors
were computed by SVD on the housekeeping genes. P-values were computed using Limma.
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Figure 23: Alzheimer’s study RLE plots after adjustment (k = 10), using different methods of factor analysis.
The data was preprocessed (BG + QN). Factors were computed using the housekeeping genes.
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Figure 24: Alzheimer’s study p-value histograms after adjustment (k = 10), using different methods of factor
analysis, and different methods of computing p-values. The data was preprocessed (BG 4+ QN). Factors were
computed using the housekeeping genes.
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Figure 25: Comparison of the performance of variants of RUV-2 in the Alzheimer’s study. The number of X
/ Y genes discovered is plotted as a function of k. Genes were ranked by p-value; results are shown for the
number of X /Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle). k = 0 corresponds
to no adjustment. Data was preprocessed (BG + QN). PCs were computed using the housekeeping genes.

42



SVD

EM

Robust

Figure 26: Comparison of the performance of different factor analysis methods with and without preprocess-
ing in the Alzheimer’s study. The number of X / Y genes discovered is plotted as a function of k. Genes
were ranked by p-value; results are shown for the number of X / Y genes ranked in the top 20 (plus), top
40 (triangle), and top 60 (circle). k& = 0 corresponds to no adjustment. PCs were computed using the
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housekeeping genes. P-values were computed using Limma.
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Figure 27: Alzheimer’s study RLE plots and p-value histograms after adjustments by SVA. P-values were
computed using Limma. Data was preprocessed (BG + QN).
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Unadjusted

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 XIST X 3x10°%8 11 TTTY15 Y 1x10°9 21 KLHL22 2 1
2 XIST X 8x10°%7 12 UTY Y 1x1079 22 TAPBPL 12 1
3 DDX3Y Y 2x107%0 13 CYorfl5B Y 2x1079 23 LPARG6 13 1
4 RPS4Y1 Y 3x1071® 14 DDX3Y Y 8x10702 24 PRKAB1 12 1
5 KDM5D Y 2x10°1! 15 ZBED1 XY 1 25 GPX3 5 1
6 EIF1AY Y 1x10797 16 PLCXD1 XY 1 26 HDHDIA X 1
7 USP9Y Y 8x107%7 17 CDK10 6 1 27 KDMG6A X 1
8 EIF1AY Y 1x107% 18 GPX3 5 1 28 CD99 XY 1
9 NLGN4Y Y 5x107% 19 NCKAP1 2 1 29 PRKARIB 71
10 NCRNA00185 Y 1x107% 20 UBAP2L 11 30 MARCH1 4 1

RUV-2 (SVD), k = 10, housekeeping genes

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P

1 XIST X 1x1077 11 TTTY15 Y 1x107% 21 COL4A5 X 7x10702
2 XIST X 1x1072t 12 CYorfl5B Y 1x107% 22 FBX09 6 7x10702
3 DDX3Y Y 4x10°16 13 CDY9 XY 5x107% 23 PLCL1 2 7x10702
4 RPS4Y1 Y 1x10718 14 NA X 3x1079 24 DDX3X X 0.1

5 KDM5D Y 1x10°% 15 CD99 XY 3x107% 25 KDM6A X 0.1

6 USP9Y Y 8x107% 16 UTY Y 1x10792 26 DOPEY1 6 0.1

7 EIF1AY Y 4x10798 17 DDX3Y Y 3x10792 27 DDX3X X 0.1

8 EIF1AY Y 2x10797 18 RPS4X X 3x10792 28 ZBED1 XY 01

9 NLGN4Y Y 4x10797 19 KDM6A X 4x10792 29 RARS 5 0.2

10 NCRNA00185 Y 1x1079 20 PLCXD1 XY 6x10792 30 WNTSB 10 0.2

Table 10: Comparison of gene rankings before and after adjustment (SVD, k = 10) in the Alzheimer’s study.
The data has been preprocessed (BG + NM). The p-values were computed using Limma.
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F Additional TCGA Figures and Tables
F.1 Exon Array Data
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Figure 28: TCGA exon array scree plots with and without preprocessing. Left: No preprocessing; Right:
Background correction / quantile normalization. All genes were included in the eigenanalysis.

None BG + QN

Figure 29: TCGA exon array RLE plots with and without preprocessing. Left: No preprocessing; Right:
Background correction / quantile normalization.
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k =100 k =200

Figure 30: TCGA exon array RLE plots after adjustment, using various values of k. Data was preprocessed
(BGH+QN). The factors were computed by SVD on the housekeeping genes.
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Figure 31: TCGA exon array p-value histograms after adjustment, using various values of k. Histogram
breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was preprocessed (BG+QN). The factors
were computed by SVD on the housekeeping genes. P-values were computed using Limma.
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Figure 32: TCGA exon array RLE plots after adjustment (k = 100), using different methods of factor
analysis. The data was preprocessed (BG + QN). The factors were computed using housekeeping genes.
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Figure 33: TCGA exon array p-value histograms after adjustment (kK = 100), using different methods of
factor analysis, and different methods of computing p-values. The data was preprocessed (BG + QN). The
factors were computed using housekeeping genes.
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Figure 34: Comparison of the performance of variants of RUV-2 in the TCGA exon array data. The number
of X /'Y genes discovered is plotted as a function of k. Genes were ranked by p-value; results are shown for the
number of X /Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle). k = 0 corresponds
to no adjustment. Data was preprocessed (BG + NM). PCs were computed using the housekeeping genes.
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Figure 35: Comparison of the performance of different factor analysis methods with and without prepro-
cessing in the TCGA exon array data. The number of X / Y genes discovered is plotted as a function of k.
Genes were ranked by p-value; results are shown for the number of X / Y genes ranked in the top 20 (plus),
top 40 (triangle), and top 60 (circle). k = 0 corresponds to no adjustment. PCs were computed using the
housekeeping genes. P-values were computed using Limma.
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Figure 36: TCGA exon array RLE plots and p-value histograms after adjustments by SVA. The data was
preprocessed. The p-values were computed using Limma.
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Unadjusted

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1x1071%9 16 JARID1C X 7x1077 31 LRRC47 1 3x1072
2 DDX3Y Y 6x1071%7 17 7ZFX X 3x107'8 32 SYAP1 X 3x1072
3 EIF1AY Y 2x107131 18 UTX X 1x10713 33 MYLK 3 3x1072
4 UTY Y 3x1071% 19 LOC554203 X 1x10712 34 IHPK1 3 5x1072
5 USP9Y Y 3x10°120 20 HDHD1A X 1x10712 35 HTATIP2 11 5x1072
6 CYorfl5A Y 3x1017 21 CXorfls X 5x10°8 36 NLGN4X X 6x1072
7 ZFY Y 4x107118 22 DDX3X X 9x1077 37 ZRSR2 X 6x1072
8 JARID1D Y 2x107112 23 EIF1AX X 2x10°6 38 PRKCH 14 6x1072
9 RPS4Y2 Y 3x107% 24 RPS4X X 1x107° 39 EDG3 na 7x1072
10 NLGN4Y Y 1x10792 25 SRY Y 2x107* 40 NUPL2 7 7Tx107?
11 CYorfl5B Y 4x10°8 26 STIM2 4 4x10°3 41 SH3PXD2A 10 7x10°2
12 TMSB4Y Y 7x1078 27 EIF2S3 X 5x1072 42 STS X 7x1072
13 TTTY10 Y 1x107%7 28 ZFP2 5 5x1073 43 PAPSS2 10 7x1072
14 PRKY Y 5x1073 29 GEMINS X 7x1073 44 ABCA11 4 7x1072
15 TTTY14 Y 3x10°2 30 MICAL2 11 1x1072 45 GGTLA1 22 7x 1072
RUV-2 (SVD), k = 100, housekeeping genes
Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P
1 RPS4Y1 Y 1x10°104 16 TTTY14 Y 3x10730 31 CASB X 4x107°
2 DDX3Y Y 2x10°88 17 ZFX X 3x10728 32 GEMINS X 4x107°
3 UTY Y 2x107% 18 PRKY Y 9x1072 33 ORCA4L 2 2x1073
4 EIF1AY Y 5x1078 19 HDHDI1A X 1x1071 34 CHM X 3x1073
5 USP9Y Y 5x1078 20 DDX3X X 4x1071 35 GPRS88 1 4x1073
6 CYorfl5A Y 2x1077 21 RPS4X X 4x107Y7 36 FUNDC1 X 5x1073
7 ZFY Y 3x1077 22 EIF2S3 X 9x107Y7 37 SRY Y 1x1072
8 JARID1D Y 5x10°7 23 EIF1AX X 1x10716 38 CENPA 2 2x1072
9 RPS4Y2 Y 8x10°7 24 SYAP1 X 6x10716 39 INSR 19 3x1072
10 NLGN4Y Y 3x10790 25 LOC554203 X 1x1071 40 MYL3 3 8x1072
11 CYorf15B Y 2x10757 26 CXorfl5 X 3x1071® 41 FMNL2 2 8x1072
12 JARID1C X 2x10738 27 SMC1A X 4x1071® 42 RNF213 17 8x 1072
13 TMSB4Y Y 1x1073 28 STS X 6x10713 43 GIP 17 9x1072
14 UTX X 1x1073t 29 USP9X X 1x107° 44 UBE1 X 9x1072
15 TTTY10 Y 3x107%0 30 ZRSR2 X 2x107° 45 TRIM23 5 0.1

Table 11: Comparison of gene rankings before and after adjustment (SVD, k = 100) using the TCGA exon
array data. The data has been preprocessed (BG + NM). The p-values were computed using Limma.
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Figure 37: TCGA HT HG-133A scree plots with and without preprocessing. Left: No preprocessing; Right:
Background correction / quantile normalization. All genes were included in the eigenanalysis.

None BG + QN

Figure 38: TCGA HT HG-133A RLE plots with and without preprocessing. Left: No preprocessing; Right:
Background correction / quantile normalization.
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Unadjusted k=1

k =100 k =200

Figure 39: TCGA HT HG-133A RLE plots after adjustment, using various values of k. Data was preprocessed
(BG+QN). The factors were computed by SVD on the housekeeping genes.
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Figure 40: TCGA HT HG-133A p-value histograms after adjustment, using various values of k. Histogram
breakpoints are at 0.001, 0.01, 0.05, and 0.1, 0.2, 0.3, etc. Data was preprocessed (BG+QN). The factors
were computed by SVD on the housekeeping genes. P-values were computed using Limma.
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Figure 41: TCGA HT HG-133A RLE plots after adjustment (k = 30), using different methods of factor
analysis. The data was preprocessed (BG 4+ QN). The factors were computed using housekeeping genes.

58



SVD EM Robust

Standard ° -

Limma

Figure 42: TCGA HT HG-133A p-value histograms after adjustment (k = 30), using different methods of
factor analysis, and different methods of computing p-values. The data was preprocessed (BG + QN). The
factors were computed using housekeeping genes.

59



SVD EM Robust

T

Standard e,

Limma

Figure 43: Comparison of the performance of variants of RUV-2 in the TCGA HT HG-U133A data. The
number of X / Y genes discovered is plotted as a function of k. Genes were ranked by p-value; results are
shown for the number of X / Y genes ranked in the top 20 (plus), top 40 (triangle), and top 60 (circle).
k = 0 corresponds to no adjustment. Data was preprocessed (BG + NM). PCs were computed using the
housekeeping genes.
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Figure 44: Comparison of the performance of different factor analysis methods with and without preprocess-
ing in the TCGA HT HG-U133A data. The number of X /Y genes discovered is plotted as a function of k.
Genes were ranked by p-value; results are shown for the number of X / Y genes ranked in the top 20 (plus),

top 40 (triangle), and top 60 (circle). k = 0 corresponds to no adjustment. PCs were computed using the
housekeeping genes. P-values were computed using Limma.
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Figure 45: TCGA HT HG-U133A RLE plots and p-value histograms after adjustments by SVA. The data
was preprocessed (BG + QN). P-values were computed using Limma.
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Unadjusted

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P

1 RPS4Y1 Y 2x10° 17 21 KDMG6A X 4x107 2 41 MICAL2 11 3x1077
2 DDX3Y Y 5x107199 22 TMSB4Y Y 2x1071 42 GPRSS8 1 4x10793
3 XIST X 3x10°113 23 KDMG6A X 2x107% 43 ZRSR2 X 4x1079
4 EIF1AY Y 5x10711 24 KDM5C X 9x107% 44 CCDCT1 3 5x107%
5 XIST X 1x107109 25 RPS4X X 1x10708 45 FILIP1L 3 6x1079
6 KDM5D Y 5x107% 26 CD99 XY 5x107% 46 GEMINS X 7x107%
7 EIF1AY Y 7x107% 27 KDM6A X 1x107%7 47 CADM4 19 1x10792
8 DDX3Y Y 6x107% 28 CD99 XY 2x10797 48 LASS4 19 2x10792
9 UTY Y 1x10°77 29 SRY Y 2x107%7 49 CA5BP X 2x10702
10 TTTY15 Y 4x10°7 30 RPS4X X 1x107% 50 NA NA 2x10702
11 NLGN4Y Y 1x10764 31 PRKY Y 3x107% 51 TMEM147 19 3x1072
12 NCRNA00185 Y 4x10°%4 32 NA NA 4 x107% 52 DDX3X X 3x10702
13 CYorfl15B Y 3x107% 33 EIF1AX X 4x1070 53 ZFYVE9 1 4x10792
14 USP9Y Y 2x107% 34 TRIM31 6 1x107% 54 HTATIP2 11 4x 10792
15 HDHD1A X 2x107% 35 RPS4X X 2x107% 55 NA NA 4 x10702
16 UTY Y 1x107%2 36 ZRSR2 X 4x107% 56 RTCD1 1 5x10792
17 ZFY Y 5x107% 37 USP19 3 1x107% 57 THY1 11 5x 107
18 UTY Y 9x10°18 38 USF2 19 1x107% 58 HTATIP2 11 5x 1072
19 DDX3X X 1x10~ 39 USF2 19 2x1079 59 DYRKI1B 19 5x 10792
20 ZFX X 2x10713 40 EIF1AX X 2x1079 60 TUSC2 3 5x107°?

RUV-2 (SVD), k = 30, housekeeping genes

Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P Rank Gene Chrom Adj. P

1 RPS4Y1 Y 2x107 M 21 TMSB4Y Y 5x10°D0 41 ZRSR2 X 5x10706
2 DDX3Y Y 8x107126 22 ZFX X 3x10°Y7 42 EIF1AX X 7x1079
3 XIST X 8x10719 23 KDMG6A X 3x10°16 43 USP9X X 3x107%
4 XIST X 1x107101 24 DDX3X X 2x10° 44 EIF1AX X 5x107%
5 EIF1AY Y 7x107% 25 KDM6A X 2x1071 45 TMEM147 19 3x107%
6 EIF1AY Y 4x107% 26 RPS4X X 2x10713 46 EIF2S3 X 3x107%
7 KDM5D Y 5x1079 27 KDM5C X 5x10°12 47 DDX3X X 3x107%
8 DDX3Y Y 1x107% 28 NA NA 1x1071! 48 ATP10A 15 3x107%
9 TTTY15 Y 9x10°8 29 RPS4X X 5x1071" 49 STIM1 11 5x107%
10 UTY Y 6x1077 30 STS X 7x1071 50 USP9X X 7x107%
11 NLGN4Y Y 4x1077 31 CD99 XY 1x10719 51 TMEM204 16 8x 107
12 NCRNA00185 Y 6x10767 32 CDY9 XY 4x1071° 52 NA NA 1x1079
13 USP9Y Y 6x107% 33 PRKY Y 1x107% 53 ZFX X 2x1079
14 CYorf15B Y 3x10746 34 RPS4X X 1x107% 54 GPRS8 1 2x107%
15 UTY Y 2x1073 35 EIF1AX X 5x107% 55 DOCK9 13 3x1079
16 KDMG6A X 2x10°%8 36 ZRSR2 X 3x10797 56 UBA1 X 3x107%
17 HDHD1A X 6x10726 37 DDX3X X 4x107%7 57 CA5BP X 5x107%
18 DDX3X X 2x10°% 38 TRIM31 6 7x10707 58 STS X 6x1079
19 UTY Y 4x107% 39 SRY Y 8x107%7 59 GEMINS X 6x107%
20 ZFY Y 6x107% 40 STS X 2x107% 60 PDE4DIP 1 7x1079

Table 12: Comparison of gene rankings before and after adjustment (SVD, k = 30) using the TCGA HT
HG-U133A data. The data has been preprocessed (BG + NM). P-values were calculated using Limma.
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G Additional NCI-60 Figures

The following figures are dendrograms of the NCI-60 datasets (HG-U95A and HG-U133A) before and after
preprocessing, before and after adjustment using various values of k£, and using different sets of negative
controls (housekeeping genes and spike-in controls). There are a lot of dendrograms, and it would take
a long time to examine all of them. We therefore verbally summarize the dendrograms below. For most
readers, the summary should suffice; the dendrograms themselves are included only for the especially curious.

Figures 46, 47 and 48: HG-U95A dataset, preprocessed, adjusted by spike-in controls, £ = 0 to 8.
The quality improves going from unadjusted to k£ = 1. Increasing k does not lead to further improvement,
and the quality soon decreases.

Figure 49: HG-U95A dataset, preprocessed, adjusted by housekeeping genes, k = 0 to 2.
Quality decreases going from unadjusted to & = 1, and decreases further when k is increased to 2.

Figure 50: HG-U95A dataset, not preprocessed, adjusted by spike-in controls, k& = 0 to 2.
Quality increases somewhat going from unadjusted to k = 1, then decreases somewhat going from k = 1
to k= 2.

Figure 51: HG-U95A dataset, not preprocessed, adjusted by housekeeping genes, k = 0 to 2.
Quality increases going from unadjusted to k = 1, and does not change much going from k =1 to k = 2.

Figure 52: HG-U133A dataset, preprocessed, adjusted by spike-in controls, £ = 0 to 2.
Quality stays about the same going from unadjusted to k = 1, and decreases somewhat going from k = 1

to k= 2.

Figure 53: HG-U133A dataset, preprocessed, adjusted by housekeeping genes, k = 0 to 2.
Quality decreases going from unadjusted to & = 1, and decreases further going from k =1 to k = 2.

Figure 54: HG-U133A dataset, not preprocessed, adjusted by spike-in controls, & = 0 to 2.
Quality increases going from unadjusted to & = 1, and increases slightly more going from k =1 to k = 2.

Figure 55: HG-U133A dataset, not preprocessed, adjusted by housekeeping genes, k = 0 to 2.
Quality increases going from unadjusted to k = 1, and stays about the same going from k& =1 to k = 2.
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Figure 46: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The data was prepro-
cessed (BG 4+ QN). The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 —
Melanoma; 5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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Figure 47: This is a continuation of Figure 46
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Figure 48: This is a continuation of Figure 46
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Figure 49: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The data was prepro-
cessed (BG 4+ QN). The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 —
Melanoma; 5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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Figure 50: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The data was not
preprocessed. The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 — Melanoma;
5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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Figure 51: Dendrograms of NCI-60 HG-U95A dataset before and after adjustment. The data was not
preprocessed. The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 — Melanoma;
5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.

70



Unadjusted

160
I

140
I

120
I

Height
100
|

80
I

60
I

40
L

k =1, Affy Spike-in Controls

160
I

140
I

120
I

Height
100
|

80

k = 2, Affy Spike-in Controls

160
|

140
I

120
I

Height
100
|

80
I

60
I

Figure 52: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The data was prepro-
cessed (BG 4+ QN). The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 —
Melanoma; 5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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Figure 53: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The data was prepro-
cessed (BG 4+ QN). The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 —
Melanoma; 5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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Figure 54: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The data was not
preprocessed. The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 — Melanoma;
5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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Figure 55: Dendrograms of NCI-60 HG-U133A dataset before and after adjustment. The data was not
preprocessed. The factors were computed by SVD. Key: 1 — Blood; 2 — Breast; 3 — Ovarian; 4 — Melanoma;
5 — Brain; 6 — Colorectal; 7 — Renal; 8 — Lung; 9 — Prostate.
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