
Pseudorandomness against Depth-2 Circuits and

Analysis of Goldreich's Candidate One-Way Function

Seyed Omid Etesami

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-180

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-180.html

December 30, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Pseudorandomness against Depth-2 Circuits and Analysis of Goldreich’s Candidate
One-Way Function

by

Seyed Omid Etesami

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Luca Trevisan, Chair
Professor David Aldous

Professor Christos Papadimitriou

Fall 2010

Pseudorandomness against Depth-2 Circuits and Analysis of Goldreich’s Candidate
One-Way Function

Copyright 2010
by

Seyed Omid Etesami

1

Abstract

Pseudorandomness against Depth-2 Circuits and Analysis of Goldreich’s Candidate
One-Way Function

by

Seyed Omid Etesami

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Luca Trevisan, Chair

In the first part of this thesis, we consider the construction of unconditional pseudorandom
generators whose outputs look random to depth-2 boolean circuits. We prove the existence
of a poly(n,m)-time computable pseudorandom generator which “1/poly(n,m)-fools” DNFs
with n variables and m terms, and has seed length O(log2 nm · log log nm). Previously, the
best pseudorandom generator for depth-2 circuits had seed length O(log3 nm), and was due
to Bazzi (FOCS 2007).

It follows from our proof that a 1/mÕ(logmn)-biased distribution 1/poly(nm)-fools DNFs
with m terms and n variables. For inverse polynomial distinguishing probability this is
nearly tight because we show that for every m, δ there is a 1/mΩ(log 1/δ)-biased distribution
X and a DNF φ with m terms such that φ is not δ-fooled by X.

For the case of read-once DNFs, we show that seed length O(logmn · log 1/δ) suffices,
which is an improvement for large δ.

It also follows from our proof that a 1/mO(log 1/δ)-biased distribution δ-fools all read-
once DNFs with m terms. We show that this result too is nearly tight, by constructing a
1/mΩ̃(log 1/δ)-biased distribution that does not δ-fool a certain m-term read-once DNF.

In the second part of this thesis, we consider Goldreich’s (ECCC 2000) proposed candi-
date one-way function construction which is parameterized by the choice of a small predicate
(over d variables) and of a bipartite expanding graph of right-degree d. The function is com-
puted by labeling the n vertices on the left with the bits of the input, labeling each of the n
vertices on the right with the value of the predicate applied to the neighbors, and outputting
the n-bit string of labels of the vertices on the right.

Inverting Goldreich’s one-way function is equivalent to finding a solution for a certain
constraint satisfaction problem with a “planted solution.” Such a problem easily reduces to
SAT, and so the use of SAT solvers constitutes a natural class of attacks.

We initiate a rigorous study of the limitations of backtracking attacks against Goldreich’s
function. Results by Alekhnovich, Hirsch and Itsykson imply that Goldreich’s function is
secure against “myopic” backtracking algorithms (an interesting subclass) if the 3-ary parity
predicate P (x1, x2, x3) = x1⊕x2⊕x3 is used. However, the construction must use non-linear
predicates; otherwise inversion succumbs to a trivial attack via Gaussian elimination.

2

We generalize the work of Alekhnovich et al. to handle more general classes of predicates,
and we present a lower bound for the construction that uses random predicates or predicates
of the form P (x1, . . . , xd) = x1 ⊕ x2 ⊕ · · · ⊕ xd−h ⊕Q(xd−h+1, . . . , xd), and a random graph.

We also study how far Goldreich’s function is from an injective function. We give upper
bounds of the form 22−Ω(d)n on the average size of preimages of Goldreich’s function when
the graph G is random, and the predicate P is random or P = x1 ⊕ x2 ⊕ · · · ⊕ xd−h ⊕
Q(xd−h+1, . . . , xd) for d− h = Ω(d).

i

To my parents.

ii

Contents

List of Figures iv

1 Introduction 1
1.1 One-Way Functions and Applications . 1

1.1.1 Goldreich’s Candidate One-Way Function 3
1.2 Lower Bounds for Satisfiability Algorithms and Proof Complexity 3
1.3 Pseudorandom Generators . 5

1.3.1 Conditional constructions . 6
1.3.2 Unconditional constructions . 6

1.4 Our Results . 7
1.4.1 Pseudorandomness against Depth-2 Circuits 7
1.4.2 Analysis of Goldreich’s Candidate One-Way Function 8

I Pseudorandomness against Depth-2 Circuits 10

2 Preliminaries 11
2.1 Boolean Fourier Analysis . 11
2.2 Small-bias Distributions . 12
2.3 DNF Formula . 12
2.4 Sandwiching . 13

3 Fooling DNF Formulas using Small-Bias Distributions 15
3.1 Fooling Read-Once DNF Formulas . 15
3.2 Fooling General DNF Formulas . 16

4 Limitations of Small-Bias Distributions 21
4.1 Lower Bounds for Read-Once DNF for Constant Error Probability 21
4.2 Lower Bounds for Read-Once DNF for Sub-constant Error Probability 23
4.3 Lower Bounds for General DNF . 27

5 Related Work and Possible Further Work 29

iii

II Analysis of Goldreich’s Candidate One-Way Function 30

6 Preliminaries 31
6.1 Goldreich’s Function . 31
6.2 Backtracking Algorithms . 31

6.2.1 Myopic Backtracking Algorithms . 33
6.2.2 Drunken Backtracking Algorithms . 34

6.3 The Predicate Used . 35
6.4 Expansion Properties of the Graph Used . 36

6.4.1 Closure Operation . 39
6.5 Experimental Study of Inverting Goldreich’s Function 40

7 Lower Bounds on Myopic and Drunken Backtracking Algorithms 42
7.0.1 Applications of Theorem 7.1 . 43

7.1 Proof Overview . 45
7.2 Clever Backtracking Algorithms . 46
7.3 The Probability of a Correct Guess is Small 50

7.3.1 Main Myopic Lemma . 50
7.3.2 Main Drunken Lemma . 51

7.4 Refutation of Locally Consistent but Globally Inconsistent Partial Assignments 52
7.5 Inverting Goldreich’s Function Exactly . 54
7.6 Accounting for the Size of Pre-Images . 55
7.7 Proof of Theorem 7.1 . 55
7.8 Coping With Imperfect Expansion . 56

8 The Size of Pre-images of Goldreich’s Function 60
8.0.1 A Technical Lemma . 62

8.1 Proof of Lemma 8.5 for the predicate Ph,Q 64
8.1.1 Proof of Lemma 8.5 for Random Predicates 64

9 Related and Possible Future Work 68

Bibliography 70

iv

List of Figures

1.1 Pseudorandom generators to δ-fool DNFs with m terms and n variables . . . 8

6.1 Number of seconds taken by MiniSat to invert Goldreich’s function for differ-
ent values of n. We use the degree-five predicate P5(x) = x1⊕x2⊕x3⊕(x4∧x5)
and a random bipartite graph of right-degree five. 41

7.1 The probability that a random graph G ∈ [n]n×d is not good is given. If
the graph is good, the probability that a (s, n/Θ(d))-myopic or drunken bac-
tracking algorithm can invert fP,G, for any suitable choice of P , in time better
than 2Θ(n) is given. For the myopic algorithm, we should have s ≥ 2−Θ(d)n. . 43

v

Acknowledgments

I have greatly benefited from Mohammad Ghodsi and Ruzbeh Tusserkani who introduced
me to computer science and mathematics while I was in high school, as well as Saeed
Akbari and Amin Shokrollahi who helped me later during my undergraduate studies at
Sharif University of Technology. I am indebted to them for inspiring my interests and for
wishing me well ever since.

I am greatly indebted to Luca Trevisan, my advisor for my great years at UC Berkeley.
Thanks for helping me in all the different stages of my study, guiding me through my
journey, suggesting to me directions to look at, while at the same time giving me the space
and freedom to be independent.

I also want to thank all my other teachers at Berkeley, especially the members of the
friendly theory group. I am greatly thankful to my qualifying exam and dissertation com-
mittee members Christos Papadimitriou, Alistair Sinclair, and David Aldous who patiently
listened to my ideas and offered helpful feedback. I am grateful to Elchanan Mossel for
being a great advisor and collaborator, and for the many courses he taught me. Thanks to
Satish Rao for guiding me through my teaching experience at Berkeley.

I would like to thank Jennifer Chayes, Christian Borgs, Mohammad Mahdian, Nicole
Immorlica, and other members of the theory group at Microsoft Research for hosting me for
the two valuable summers of 2005 and 2007.

I am indebted to James Cook, Rachel Miller, Anindya De, and Madhur Tulsiani for the
collaborations and conversations that led to several of the results discussed in this thesis.

Thanks to each of the students in Berkeley’s Electrical Engineering and Computer Sci-
ence department who shared this experience with me, especially Amin Aminzadeh, Arashali
Amini, James Cook, Nima Noorshams, Brighten Godfrey, Anindya De, Madhur Tulsiani,
Grant Schoenebeck, Siu Man Chan, Siu On Chan, Thomas Watson, Andrej Bogdanov,
Henry Lin, Alex Dimakis, Slav Petrov, Daniel Preda, Gregory Valiant, Kamalika Chaud-
huri, Bonnie Kirkpatrick, Mani Narayanan, Alexandre Stauffer, Thomas Vidick, Lorenzo
Orrechia, Sam Riesenfeld, Alexandra Kolla, Boriska Toth, Kunal Talwar, and James Lee.
Thanks also to Aria Rafaat, Brenna Moloney, Ali Ghazizadeh, and Nazanin Shahrokni for
being great friends for me during my time at Berkeley.

Last but most importantly, I am grateful to my family. I have no way to thank them for
their invaluable presence in my life and their constant love and support.

1

Chapter 1

Introduction

This thesis considers two fundamental notions of theoretical computer science, namely
pseudorandom generators and one-way functions. Pseudorandom generators are algorithms
that generate a long string of bits that look random from a short string of bits that are truly
random. One-way functions are functions that can be computed efficiently, but cannot be
inverted efficiently.

Do there exist simple constructions of pseduorandom generators and one-way functions?
We analyze a fairly simple class of pseudorandom generators, and show that they can, using
fewer random bits compared to previous constructions, generate bits that look random
to depth-2 boolean circuits. We also analyze a fairly simple candidate one-way function,
and show that certain classes of backtracking algorithms cannot invert it. Both of these
constructions existed before, and it is the analysis that is new.

1.1 One-Way Functions and Applications

A one-way function is a function f that is easy to compute, but hard to invert on average.

• The function f is often considered “easy to compute” if f can be computed in
polynomial-time.

• The function f is often considered “hard to invert on average” if the probability
that any polynomial-time algorithm, given the image f(x) of a random x, can find a
preimage of f(x) is negligible; i.e. the probability diminishes faster than the inverse
of any polynomial in the size of x.

One-way functions are the basic building block for many cryptographic protocols. The
security of these protocols rests on the computational difficulty of inverting the function
actually used for the one-way function building block. This is in accord with the general
paradigm in modern cryptography of basing security on the computational limits of the
adversary.

The existence of one-way functions implies the existence of many other cryptographic
primitives including

2

• pseudorandom generators [28];

• pseudorandom function families [26];

• private-key encryption schemes secure against adaptive chosen-ciphertext attack (see
for example [25, Section 5.4.4.3]);

• message authentication codes [26];

• digital signature schemes [53, 47, 35];

• bit commitment schemes [46].

The existence of one-way functions implies P 6= NP. However, it is not known whether
P 6= NP implies existence of one-way functions. Yet, it is widely conjectured that one-way
functions exist. In fact, there are various candidate functions that are proposed to be used
as one-way functions. Here is a classification of some of the major candidates:

Based on number-theoretic problems : There are candidate functions whose security
depends on the hardness of computational number theory problems such as factoring
composite integers and finding the discrete logarithm modulo a prime number.

Involving NP-complete problems : There are candidate functions involving such NP-
complete problems as the subset-sum problem or the decoding of a linear code.

Levin’s universal function : Levin has constructed a function which is one-way if any
one-way function exists [36].

Levin’s function is theoretically interesting, but is not as practical since its running time
has an exponential loss in the size of the smallest program that computes a one-way function.

The candidate functions involving NP-complete problems, though more practical, could
have been theoretically greater were they based on the worst-case hardness of these NP-
completeness problems, rather than based on the less certain average-case hardness of the
NP-complete problems.

Finally the candidate functions based on number-theoretic problems are likely to be
affected by possible breakthroughs in number theory. Indeed, the quantum algorithms for
factoring composite integers and finding the discrete logarithm show that surprises within
number theory are possible.

This last remark suggests that constructing one-way functions out of a simple combina-
torial problem, where there is not much algebraic underlying structure as in number theory,
has advantages. Oded Goldreich [24] has proposed one such simple candidate one-way func-
tion that because of simplicity is also very practical by being easy to compute.

3

1.1.1 Goldreich’s Candidate One-Way Function

Goldreich [24] suggested in 2000 a one-way function based on bipartite expander graphs.
Let G be a bipartite graph with n nodes on the left-hand side and n nodes on the right-hand
side. Assume that each node on the right-hand side has degree d; that is, it is connected to
d nodes on the left-hand side.

The candidate function is obtained from the graph G and a d-ary predicate P : {0, 1}d →
{0, 1}. We call the function f = fP,G. The function maps an n-bit string x ∈ {0, 1}n to
an n-bit string fG,P (x) ∈ {0, 1}n. Each node on the left-hand side corresponds to a bit of
x, and each node on the right-hand side corresponds to a bit of f(x). If a right-hand side
node v is connected to the left-hand side nodes u1, . . . , ud, then f(x)v = P (u1, . . . , ud); that
is, the output bit associated to each right-hand side node is the evaluation of the predicate
P to the input bits corresponding to the neighbors of that right-hand side node.

Each bit of Goldreich’s function depends on a constant number of input bits (when
d = O(1)). A function with this property is said to be in NC0. Functions in NC0 are more
general in that different predicates may be used for different output bits of the function.
Applebaum, Ishai and Kushilevtiz [9, 10] show that, under standard assumptions, one can
construct one-way functions and pseudorandom generators that can be computed in NC0.
However, Goldreich’s function is still interesting to study because of its simple construction.

It is obvious that for Goldreich’s function fG,P to be one-way, the predicate P should be
nonlinear. Goldreich suggests to choose P as some random predicate, where d is a constant,
or d grows moderately like logarithmic in n. Furthermore, Goldreich suggests that the graph
G be an expander; that is, any subset S of right-hand nodes has a large neighborhood, say
a neighborhood proportional to the size of S. There are known constructions of expander
graphs that can be used.

The natural question is:

Is Goldreich’s candidate function one-way?

The difficulty of inverting Goldreich’s function does not seem to follow from well-known
assumptions. In this thesis, we will consider the complexity of inverting Goldreich’s function
on its own, and show that certain classes of backtracking algorithms take exponential time
to invert the function.

1.2 Lower Bounds for Satisfiability Algorithms and

Proof Complexity

Inverting Goldreich’s one-way function can be seen as the task of finding a solution
to a constraint satisfaction problem with a planted solution. A plausible line of attack
against such a construction is to employ a general-purpose SAT solver to solve the constraint
satisfaction problem. We performed an experimental study using MiniSat, which is one of
the best publicly available SAT solvers, and has been used to solve instances with several
thousand variables. Using a random graph of right-degree 5, and the predicate (x1 ⊕ x2 ⊕

4

x3⊕ (x4∧x5)), we observed an exponential increase of the running time as a function of the
input length, and an attack with MiniSat appears infeasible already for very modest input
lengths (a few hundred bits). See Section 6.5.

One of our goals in this thesis is to provide a rigorous justification for these experi-
mental results, and to show that algorithms based on backtracking (such as most general
SAT solvers) cannot break Goldreich’s construction in sub-exponential time. We restrict
ourselves to algorithms that instantiate variables one at a time, in an order chosen adap-
tively by a “scheduler” procedure, and then recurse on the instance obtained by fixing the
variable to zero and then to the instance obtained by fixing the variable to one, or vice
versa (the scheduler decides which assignment to try first). A recursive branch stops if the
current partial assignment contradicts one of the constraints in the instance. The program
terminates when we find a satisfying assignment.

When such an algorithm runs on an unsatisfiable instance, a transcript of the algorithm’s
substitutions gives a “tree-like resolution proof ” of unsatisfiability. The resolution rule in
propositional logic says that the truth of the two clauses xi ∨ C and x̄i ∨ D implies that
C ∨D is also true. A resolution proof for the unsatisfiability of a SAT formula consists of
beginning with all the clauses in the SAT formula, applying the resolution rule iteratively
to obtain clauses that are implied from the original SAT formula, until finally the empty
false clause is implied. The resolution proof is considered tree-like if each clause that has
been implied using a resolution rule is later used in only one resolution rule.

A number of techniques are known to prove exponential lower bounds on the size of tree-
like resolution proofs of unsatisfiability. In particular, one technique is to use the expansion
properties of the constraint graph of the satisfiability formula to show that any resolution
proof for the unsatisfiability of the formula will have to apply the resolution rule to a clause
of large width (that is a clause with many variables). Next one applies a theorem of Ben-
Sasson and Wigderson [13] that says that necessity of a clause of large width indicates large
tree-like resolution proofs.

In this way, one can get lower bounds for the running time of any backtracking algo-
rithm on unsatisfiable instances, regardless of how the scheduler is designed. When dealing
with satisfiable instances, however, one cannot prove lower bounds without putting some
restriction on the scheduler. (If unrestricted in complexity, the scheduler could simply com-
pute a satisfying assignment and assign the variables accordingly, giving an algorithm that
converges in a linear number of steps.)

Alekhnovich, Hirsch and Itsykson [4] consider two such restrictions: they consider (i)
“myopic” algorithms in which the scheduler chooses which variable to assign based on only
a limited view of the current formula, and (ii) “drunken” algorithms in which the order of
variables is chosen arbitrarily by the scheduler, but the choice of whether to assign first zero
or one to the next chosen variable is made randomly with equal probability. They show
that after a myopic algorithm assigns a certain number of variables, with high probability it
is left with an instance that is unsatisfiable, but which has no sub-exponential size tree-like
resolution proof of unsatisfiability. Hence, with high probability the algorithm must take
an exponential amount of time to discover it has chosen a bad partial assignment.

The result of Alekhnovich et al. for myopic algorithms is only for linear constraint satis-

5

faction problems (and their result for drunken algorithms were proven for carefully designed
instances unrelated to Goldreich’s function). But as was mentioned, Goldreich’s function
could be a candidate one-way function only for non-linear predicates. Therefore in this thesis
we consider non-linear pedicates P , and study the performance of restricted classes of back-
tracking algorithms in solving constraint satisfaction problems corresponding to inverting
Goldreich’s function for predicate P .

1.3 Pseudorandom Generators

A pseudorandom generator is a function that takes a short string of truly random bits,
called the seed, and generates a longer string of bits that only “look random”. There are
five parameters related to a pseudorandom generator:

What is the seed length? One common goal is to reduce the seed length, the number of
truly random bits the generator uses as input.

What is the length of the generated output? The whole point of a pseudorandom
generator is to generate more output bits than the seed length.

To whom does the generated output look random? Since the generated output has
entropy less than the number of generated bits, one cannot hope that the gener-
ated output looks random to a computationally unbounded observer. Therefore, each
pseudorandom generator targets a specific complexity class of algorithms to which its
generated output is designed to look random.

How random does the generated output look? This is determined by the probabil-
ity with which an algorithm from the targeted complexity class can distinguish the
generated output from truly random bits.

How computationally efficient is the generator? One can often obtain inefficient pseu-
dorandom generators with very good seed-length using the probabilistic method. How-
ever, most applications of pseudorandom generators require that the generator be
efficient and explicit.

There are at least two major applications for pseudorandom generators:

Cryptography: Assume you want to send a message using a secret key. You can feed the
secret key as seed to a pseudorandom generator which outputs a pseudorandom string
of the same length as the message. You can then send your message by XOR-ing it
with the pseudorandom string, using the string as a one-time pad.

Derandomization and deterministic approximate counting: Consider an algorithm
from the complexity class to which the pseudorandom generator is targeted. If the
seed-length is very small, say logarithmic, one can iterate over all the possible seeds.
This way, one can deterministically learn the behavior of the algorithm on the outputs
of the generator. Since we know that the algorithm has almost the same behavior

6

on truly random inputs, we can deterministically learn the behavior of the algorithm
on random inputs. This means we can deterministically learn the behavior of a ran-
domized algorithm (the derandomization application) or the fraction of inputs towards
which the algorithm behaves in a specific way (the deterministic approximate counting
application).

There are two types of constructions of pseudorandom generators: those conditioned on
some complexity assumption, and those which are unconditional.

1.3.1 Conditional constructions

One important conditional construction is that of [28]: Assuming that one-way functions
exist, there exist polynomial time pseudorandom generators whose output size is polyno-
mially larger than the seed-length. The output can be distinguished from truly random
outputs by the class of polynomial time algorithms only with probability that dimnishes
faster than inverse polynomial in the output size. This type of pseudorandom generator is
useful for cryptographic applications.

There are other constructions that get smaller seed length, and are more useful for
derandomization. A series of work starting with the work of Nisan and Wigderson [51]
uses hard functions to construct pseudorandom generators of logarithmic seed-length. In
particular, assuming that there exist functions f : {0, 1}n → {0, 1}n computable (uniformly)
in exponential time 2O(n), but not computable by boolean circuits of size 2εn for some
constant ε > 0, then all probabilistic polynomial-time algorithms can be derandomized [29].

It turns out that this dependency on hard functions to construct pseudorandom gener-
ators is not a coincidence. By a result of Impagliazzo and Kabanets [33], one can prove
superpolynomial lower bounds on circuit size if one can derandomize the randomized poly-
nomial time algorithm for polynomial identity testing.

1.3.2 Unconditional constructions

There has been some success in constructing pseudorandom generators with relatively
small, for example polylogarithmic, seed-length whose outputs look random to the following
two restricted models of computation:

Space-bounded computation: The current best polynomial-time pseudorandom gener-
ator against O(log n)-spaced computation is due to Nisan [50], and has seed-length
O(log2 n).

Bounded-depth boolean circuits: Nisan, using hardness of parity for constant-depth
circuits [27], gave a polynomial-time pseudorandom generator with seed of length
O(log2d+6 n) against depth-d boolean circuits of size n [48]. The simplest case is that
of depth-2 circuits, which are conjunctive normal form (CNF) formulas and disjunctive
normal form (DNF) formulas. Luby, Velickovic, and Wigderson[38] improved the seed-
length to O(log4 n) for depth-2 circuits.

7

Next, Bazzi [12] showed that k-wise independent distributions, that is distributions
on binary strings where the projection on any k bits is uniform and independent,
look random to depth-2 circuits for k = O(log2 n). This improved the seed-length for
depth-2 circuits to O(log3 n).

In this thesis, instead of k-wise independent distributions, we consider small-bias dis-
tributions [44], i.e. distributions on binary strings where the XOR of any nonempty
subset of the bits has a small-bias (that is, is equal to 0 and 1 with almost equal
probability). We ask:

How random do small-bias distributions look to depth-2 circuits?

We will show that a pseudorandom generator can use a seed of length O(log2+o(1) n)
to create a small-bias distribution that looks random to depth-2 circuits. We will
also show that one can reduce the seed-length to logarithmic for “read-once” depth-2
circuits (i.e. depth-2 circuits where the graph of the dependencies of the wires of the
circuit is a tree) if one wants to only get arbitrary small but constant distinguishing
probability.

Our results are obtained by “sandwiching” the function computed by the circuit be-
tween two approximating low-weight polynomials. We use in particular results on the
concentration of Fourier weight in functions computed by depth-2 circuits.

Finally, we obtain some almost tight bounds showing the limits of pseudorandomness
of small-bias distributions against depth-2 circuits.

1.4 Our Results

1.4.1 Pseudorandomness against Depth-2 Circuits

An ε-biased distribution on n-bit strings is a distribution on n-bit strings where the
XOR of any subset of the bits is 1 with probability between 1/2 − ε and 1/2 + ε. In time
poly(n, 1/ε) and using a seed of length O(log n + log(1/ε)), one can generate an ε-biased
n-bit string [44].

We study the pseudorandomness of small-bias distributions against depth-2 circuits. We
assume without loss of generality that the depth-2 circuit is a DNF formula (instead of a
CNF formula). We say that a distribution on n-bit strings δ-fools a DNF formula if the
probability that the formula is satisfied on an n-bit string sampled from that distribution is
at most δ different from the probability that the formula is satisfied on a uniformly random
n-bit string.

We show that

• An ε-biased distribution δ-fools read-once DNF formulas with m terms
for ε = m−O(log(1/δ)).

8

DNF Family Seed length

[48] general DNFs O(log10(mn/δ))
[38] general DNFs O(log4(mn/δ))
[12] general DNFs O(log n · log2(m/δ))
This work general DNFs O(log n+ log2(m/δ) · log log(m/δ))
[37] width-w DNFs O(log n+ w2w · log(1/δ))
This work width-w DNFs O(log n+ w logw · log(m/δ))
[11] read-once DNFs O(log n · logm · log(1/δ))
This work read-once DNFs O(log n+ logm · log(1/δ))

Figure 1.1: Pseudorandom generators to δ-fool DNFs with m terms and n variables

• An ε-biased distribution δ-fools width-w DNF formulas with m terms
for ε = w−O(w log(m/δ)).

• An ε-biased distribution δ-fools general DNF formulas with m terms
for ε = (log(m/δ))−O(log2(m/δ)).

Figure 1.4.1 shows the improvements in the seed-length that we get from using, as in this
thesis, ε-bias distributions. We also prove some lower bounds on the pseudorandomness of
small-bias distributions against depth-2 circuits:

• There exists an ε-bias distribution with ε = m−O(log(1/δ)/ log log(1/δ)) that does not δ-fool
a read-once DNF formula with m terms and n = m logm variables. (This shows that
the upper bound above we had for read-once DNF formulas is almost tight.)

• There exists an ε-bias distribution with ε = m−O(log(1/δ)) that does not δ-fool a general
DNF formula with m terms and n = O(logm log(1/δ)) variables. (This shows that
the upper bound above we had for general DNF formulas is almost tight when m and
1/δ are polynomially related.)

1.4.2 Analysis of Goldreich’s Candidate One-Way Function

We study Goldreich’s function f = fG,P [24] derived from the bipartite graph G and
predicate P . Let the bipartite graph have n left nodes and n right nodes, and have right-
degree d, so that P : {0, 1}d → {0, 1} is a d-ary predicate and f : {0, 1}n → {0, 1}n maps n
bits to n bits.

First of all, we study the size of the preimages of Goldreich’s function f = fG,P for
random graphs G of right-degree d. We show that the function is not far from being
injective. More specifically, we show that with high probability we have

E
x∼Unif{0,1}n

[|f−1(f(x))|] ≤ 22−Ω(d)n,

9

for random predicates P and also for predicates of the form P (x1, . . . , xd) = x1⊕· · ·⊕xd−h⊕
Q(xd−h+1, . . . , xd) for d− h = Ω(d).

Next, we consider the following process. We begin with a random x ∈ {0, 1}n, we
compute b = fG,P (x), and ask a backtracking algorithm to find, given b, an x′ ∈ {0, 1}n such
that f(x′) = b. We prove a lower bound on the running time and success probability of the
backtracking algorithm if the algorithm is restricted to be (s, t)-myopic, which means the
algorithm should guess the value of more than s bits of x′ before it is allowed to read more
than t bits of b. In other words, a myopic backtracking algorithm has restricted access to b.
Our lower bound requires that

• The function fG,P has bounded average preimage size. (Notice that as mentioned
above, we can prove this for random graphs G.)

• The predicate P is balanced. More specifically, the value of the predicate is unde-
termined and unbiased even after all but h + 1 of the arguments of the predicate are
fixed. (This property is satisfied by random predicates P and predicates of the form
P (x1, . . . , xd) = x1 ⊕ · · · ⊕ xd−h ⊕Q(xd−h+1, . . . , xd)).

• The graph G is a very good expander, so that the graph is also a good “boundary”-
expander (in the sense of Definition 6.14). (A random graph is with high probability
a very good expander.)

In particular, we prove:

If s ≥ 2−Θ(d)n and t ≤ n/Θ(d), then an (s, t)-myopic algorithm will have the
chance of inverting Goldreich’s function in less than exponential time for random
graphs G and random predicate P only with probability at most 2−s/Θ(d).

10

Part I

Pseudorandomness against Depth-2
Circuits

11

Chapter 2

Preliminaries

2.1 Boolean Fourier Analysis

We start by reviewing some basic Fourier analysis.

Definition 2.1 (Characters of {0, 1}n) The characters of {0, 1}n are all functions from
{0, 1}n to {−1, 1} of the form

χS(x) =
∏
i∈S

(−1)xi where S ⊆ [n].

It is easy to see that the following identities are true.

• For any character χ, ||χ||2 = Ex∈Un [χ2(x)] = 1.

• For two distinct characters, χ and χ′, 〈χ, χ′〉 = Ex∈Un [χ(x)χ′(x)] = 0.

Note that there are 2n characters and hence they form an orthonormal basis for the functions
mapping {0, 1}n to R. Therefore, every function f can be expressed as a linear combination
of these characters, called the Fourier expansion.

Definition 2.2 (Fourier expansion) The Fourier expansion of f : {0, 1}n → R is de-
noted by

f(x) =
∑
S

f̂(S)χS(x).

In the above, f̂(S) is called the Fourier coefficient corresponding to the set S.

It is easy to check that the following identity (known as Parseval-Plancherel identity) is
true: ∑

S

f̂ 2(S) = E
x∈Un

[f 2(x)]

12

Definition 2.3 (`1 norm in the Fourier domain) We use the following notation for the
Fourier `1 norm of f and a minor variant of it:

‖f‖1 :=
∑
S

∣∣∣f̂(S)
∣∣∣ and ‖f‖ 6=∅1 :=

∑
S 6=∅

∣∣∣f̂(S)
∣∣∣

It is easy to observe the following properties of `1 norm of functions over the Fourier
domain.

Observation 2.4 If f, g : {0, 1}n → R, then ‖f+g‖1 ≤ ‖f‖1 +‖g‖1 and ‖fg‖1 ≤ ‖f‖1‖g‖1

Observation 2.5 If φ : {0, 1}n → {0, 1} is an AND of some subset of literals (i.e., variables
or their negations), then ‖φ‖1 = 1.

2.2 Small-bias Distributions

First, we make the pseudorandomness of a probability distribution to a function precise:

Definition 2.6 (Functions fooled by distributions) We say a probability distribution
X over {0, 1}n ε-fools a real function f : {0, 1}n → R if

|E[f(X)]− E[f(Un)]| ≤ ε.

We will now define our pseudorandom objects of study:

Definition 2.7 (ε-biased distributions) We say a probability distribution X over {0, 1}n
is ε-biased if it ε-fools the character functions χS.

It is important that we can generate ε-biased distributions efficiently:

Proposition 2.8 (Efficient construction of ε-biased sets [44, 6]) A subset B ⊆ {0, 1}n
is called an ε-biased set if the uniform distribution with support B is ε-biased. There exist
ε-biased sets of size O(n2/ε2) such that a random element from the set can be sampled using
a seed of length 2 log(n/ε) +O(1), in time poly(n, log(1/ε)).

We shall study the pseudorandomness of ε-biased distributions to functions, particularly
boolean functions computable by DNF formulas.

2.3 DNF Formula

Definition 2.9 (DNF and CNF formulas) A literal is a boolean variable or the nega-
tion of a boolean variable. A term is the AND of several literals. A DNF formula is the
OR of several terms. A clause is the OR of several literals. A CNF formula is the AND of
several clauses.

13

Any depth-2 boolean circuit is a DNF or CNF formula. Since a CNF formula is the
negation of a DNF formula, we assume without loss of generality, that we want to fool a
DNF formula.

We will be interested in two special types of DNF forumals:

Definition 2.10 A read-once DNF formula is a DNF formula where every variable appears
in at most one term.

A width-w DNF formula is a DNF formula where every term has at most w literals.

2.4 Sandwiching

In this section, we state a characterization of functions that can be fooled well by ε-biased
probability distributions. Bazzi [12] independently derived both this characterization and
the characterization of functions that can be fooled by k-wise independent distributions.

The first observation is that if f has a small Fourier `1 norm, then it is fooled by small
ε-biased sets:

Lemma 2.11 Every function f : {0, 1}n → R is ε‖f‖ 6=∅1 -fooled by any ε-biased probability
distribution.

Proof: Let X be sampled from an ε-biased distribution. We have

|E[f(X)]− E[f(Un)]| =

∣∣∣∣∣E
[∑

S

f̂(S)χS(X)

]
− f̂(∅)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
S 6=∅

f̂(S)E[χS(X)]

∣∣∣∣∣∣
≤ ε

∑
S 6=∅

|f̂(S)| = ε‖f‖ 6=∅1 .

We can strengthen Lemma 2.11 as follows.

Proposition 2.12 (Sandwich bound) Suppose f, f`, fu : {0, 1}n → R are three functions
such that for every x ∈ {0, 1}n we have f`(x) ≤ f(x) ≤ fu(x). Furthermore, assume

E[f(Un)]−E[f`(Un)] ≤ δ and E[fu(Un)]−E[f(Un)] ≤ δ. Let l = max(‖f`(x)‖ 6=∅1 , ‖fu(x)‖ 6=∅1).
Then any ε-biased probability distribution (δ + εl)-fools f .

Proof: Let X be an ε-biased random variable. We have

E[f(X)] ≤ E[fu(X)]

≤ E[fu(Un)] + ε‖fu‖ 6=∅1

≤ E[f(Un)] + δ + ε‖fu‖ 6=∅1 .

Similarly we have E[f(X)] ≥ E[f(Un)]− δ − ε‖f`‖6=∅1 . Thus the result follows.

14

The following result shows that the condition of Proposition 2.12 is not only a sufficient
condition for being fooled by ε-biased distributions but also a necessary condition.

Proposition 2.13 (Inverse of the sandwich bound) Suppose f : {0, 1}n → R is ε′-
fooled by any ε-biased set. Then there exist functions f`, fu : {0, 1}n → R and δ, l ∈ R ≥ 0
with the following properties:

• For every x ∈ {0, 1}n we have f`(x) ≤ f(x) ≤ fu(x).

• E[f(x)]− E[f`(x)] ≤ δ and E[fu(x)]− E[f(x)] ≤ δ,

• ‖f`(x)‖6=∅1 ≤ l, ‖fu(x)‖6=∅1 ≤ l, and δ + εl ≤ ε′.

Proof: Consider the following linear program in variables px:

min
∑

x f(x)px∑
x px = 1

∀S 6= ∅
∑

x pxχS(x) ≥ −ε
∀S 6= ∅

∑
x pxχS(x) ≤ ε

∀x px ≥ 0

where x ∈ {0, 1}n and S ⊆ {1, . . . , n}. The constraints specify that px is the probability
distribution of an ε-biased random variable. Since f is ε′-fooled by ε-biased sets, the optimum
value of the LP is ≥ E[f(Un)]− ε′.

We now write the dual of the above LP:

max z − ε
∑

S 6=∅(y
+
S + y−S)

∀x z +
∑

S 6=∅ χS(x)(y+
S − y

−
S) ≤ f(x)

∀S 6= ∅ y+
S , y

−
S ≥ 0

which is equivalent to
max z − ε

∑
S 6=∅ |yS|

∀x z +
∑

S 6=∅ χS(x)yS ≤ f(x)

Since the optimum value of the primal is ≥ E[f(Un)]− ε′, there exists a feasible set of values
z∗ and y∗S for the above optimization program such that z∗ − ε

∑
S 6=∅ |y∗S| ≥ E[f(Un)] − ε′.

Let f`(x) = z∗ +
∑

S 6=∅ y
∗
SχS(x). Clearly E[f`(Un)] = z∗ and

∑
S 6=∅ |y∗S| = ‖f`‖6=∅1 ; Set

δ = E[f(Un)] − z∗ and l =
∑

S 6=∅ |y∗S|. It is easy to check that f`, δ, l so defined satisfies
all the constraints. Similarly, one can consider a different primal where the objective is to
maximize

∑
x f(x)px and then use its dual to define fu which satisfies the aforementioned

conditions.

15

Chapter 3

Fooling DNF Formulas using
Small-Bias Distributions

3.1 Fooling Read-Once DNF Formulas

In this section, we show that ε-biased sets can fool read-once DNFs. In particular, we
show the following theorem.

Theorem 3.1 Let φ be a read-once DNF formula with m terms. For 1 ≤ k ≤ m, ε-
biased distributions O(2−Ω(k) + εmk)-fool φ. In particular, we can δ-fool φ by an ε-biased
distribution, for ε = m−O(log(1/δ)).

If we plug in the construction from Proposition 2.8, we get a pseudorandom generator which
δ-fools a read-once DNF with n variables and m terms and has seed length O(log n+ logm ·
log(1/δ)). Before going into the proof of Theorem 3.1, we recall the inclusion-exclusion
principle.

Let A1, . . . , Am be m arbitrary events in a probability space. The principle of inclusion
and exclusion asserts that

Pr[A1 ∪ · · · ∪ Am] =
m∑
j=1

(−1)j−1Tj,

where

Tj =
∑

S⊆[m],|S|=j

Pr

[⋂
i∈S

Ai

]
.

Moreover, the partial sum
∑r

j=1(−1)j−1Tj is an upper bound for Pr[A1 ∪ · · · ∪Am] for odd
values of r, and a lower bound for Pr[A1 ∪ · · · ∪ Am] for even values of r.

We now return to the proof of Theorem 3.1. The proof follows that of Theorem 2 in [23].

Proof: [of Theorem 3.1] Let φ = C1 ∨ · · · ∨ Cm be the read-once formula. For 1 ≤ i ≤ m,
let Ai denote the event that term Ci is satisfied. We divide the analysis into two cases
depending on whether

∑m
i=1 Pr[Ai] ≤ k/(2e) or not.

16

Case 1:
∑m

i=1 Pr[Ai] ≤ k/(2e).
Let Tk denote the kth term of the inclusion-exclusion formula. Since the terms are

disjoint, we have

Tk =
∑

S⊆[m],|S|=k

∏
i∈S

Pr[Ai].

We now observe that Tk ≤ 2−k. Indeed, subject to the restriction
∑m

i=1 Pr[Ai] = α and
Pr[Ai] ≥ 0, a convexity based argument implies that Tk is maximized when all the Pr[Ai]’s
are equal implying that Tk ≤

(
m
k

)
(2em/k)−k ≤ 2−k.

Consider the rth approximation to φ, obtained by inclusion-exclusion:

φr(x) =
r∑
j=1

(−1)j−1
∑

S⊆[m],|S|=j

∧
l∈S

Cl(x),

where
∧

is the AND function. The functions φk−1 and φk sandwich φ and we shall use them
in applying Proposition 2.12. To verify the conditions, we note that the function

∧
l∈S Cl(x)

is an AND of AND terms, therefore ‖
∧
l∈S Cl(x)‖6=∅1 = O(1), and hence ‖φr‖6=∅1 = O(mr).

We also have |E[fk(Un)] − E[fk−1(Un)]| = Tk ≤ 2−k. and hence, by Proposition 2.12, φ is
O(2−k + εmk)-fooled by ε-biased distributions.

Case 2:
∑m

i=1 Pr[Ai] > k/(2e).

Consider the first m′ where
∑m′

i=1 Pr[Ai] ≥ k/(2e). Define φ′ = C1 ∨ · · · ∨ Cm′ . Observe
that the DNF φ′ is satisfied with probability 1−2−Ω(k), for it is not satisfied with probability∏m′

i=1(1 − Pr[Ai]) ≤ (1 − k/(2em′))m
′ ≤ 2−Ω(k). (Again by a convexity argument,

∏
i(1 −

Pr[Ai]) is maximized when Pr[Ai]s are equal.)
Let φ′r(x) denote the rth approximation to φ′. Also, (without loss of generality) let k

be even so that φ′k ≤ φ′ ≤ φ. Note that while φ′k−1 is a an upper bound on φ′, it is not
an upper bound on φ. We shall use φ′k and identically 1 function respectively as lower and
upper bounds for applying Proposition 2.12 to φ.

From argument above, we know that E[1−φ] ≤ E[1−φ′] ≤ 2−Ω(k). To bound E[φ−φ′k],
we note that

E [φ− φ′k] = E [φ− φ′] + E [φ′ − φ′k] ≤ E [1− φ′] + E
[
φ′k−1 − φ′k

]
≤ 2−Ω(k)

where in the last inequality we used that E[φ′k−1 − φ′k] as in the previous case, since∑m′

i=1 Pr[Ai] < k/(2e) + 1. The bound on the ‖φ′k‖
6=∅
1 is as before. Applying Proposi-

tion 2.12, we then get that ε-biased sets O(2−Ω(k) + εm′k)-fool φ.

3.2 Fooling General DNF Formulas

In this section, we show that small-bias distributions fool general DNFs. While the seed
length will not be as good as in the previous section, the result will be more general. Also,
this section will involve use of more analytic tools. Our proof shall be along the lines of
Razborov’s simplified proof [52] of Bazzi’s theorem [12]. The following two theorems will be
the main theorems of this section.

17

Theorem 3.2 Let φ be a width w-DNF formula with m terms. Then, φ is δ-fooled by an
ε-biased distribution where ε = w−O(w log(m/δ)).

Theorem 3.3 Let φ be a DNF formula with m terms. Then, φ is δ-fooled by an ε-biased
distribution where ε = (log(m/δ))O(− log2(m/δ)).

Plugging in the pseudorandom generator construction from Proposition 2.8 in Theorem 3.2,
we get a pseudorandom generator which δ-fools width-w DNFs with m terms over n variables
and has a seed of length O(log n+ w logw log(m/δ)). Doing the same for Theorem 3.3, we
get a pseudorandom generator which δ-fools DNFs with m terms over n variables and has
a seed of length O(log n+ log2(m/δ) log log(m/δ)).

Theorem 3.3 follows by a reduction to Theorem 3.2, by deleting the terms with large
width, as we describe later. For most of this section, we will be concerned with DNFs
of a bounded width. To prove Theorem 3.2, we will be interested in finding sandwiching
functions fl and fu to apply Proposition 2.12.

Using an argument similar to [12], we reduce this to the problem of finding a function
g such that ‖φ− g‖2 and ‖g‖1 are small, and φ(x) = 0 =⇒ g(x) = 0. We then show how
to remove the last condition and then find an appropriate g using a Fourier concentration
result of Mansour [40]. More formally, we prove the following three lemmas.

Lemma 3.4 Let φ : {0, 1}n → {0, 1} be a DNF with m terms and g : {0, 1}n → R be
such that: ‖g‖1 ≤ l, ||φ − g||2 ≤ ε1 and g(x) = 0 whenever φ(x) = 0. Then, we can get
f`, fu : {0, 1}n → R such that

• ∀ x, f`(x) ≤ φ(x) ≤ fu(x)

• Ex∈Un [fu(x)− φ(x)] ≤ mε21 and Ex∈Un [φ(x)− f`(x)] ≤ mε21.

• ‖f`‖1, ‖fu‖1 ≤ (m+ 1)(l + 1)2 + 1

Lemma 3.5 Let φ : {0, 1}n → {0, 1} be a width-w DNF with m terms. Suppose for every
width-w DNF φ1, there is a function g1 : {0, 1}n → R such that: ‖g1‖1 ≤ l1 and ||φ1−g1||2 ≤
ε2. Then, we can get g : {0, 1}n → R such that ‖g‖1 ≤ m(l1 + 1), ||φ − g||2 ≤ mε2 and
g(x) = 0 whenever φ(x) = 0.

Lemma 3.6 Let φ : {0, 1}n → {0, 1} be a width w DNF and ε2 > 0. Then there is a
function g1 : {0, 1}n → R such that ||φ− g1||2 ≤ ε2 and ‖g1‖1 = wO(w log(1/ε2))

Before, we prove these lemmas, we show how it implies Theorem 3.2.

Proof: [of Theorem 3.2] Set ε2 =
√
δ/2m3 and ε1 =

√
δ/2m. By applying Lemma 3.6, for

every width-w DNF φ1, we can get a function g1 : {0, 1}n → R such that

• ||φ1 − g1||2 ≤ ε2 =
√
δ/2m3

• ||g1||1 = wO(w log(1/ε2)) = wO(w log(m/δ))

18

Now, we apply Lemma 3.5 with l1 = wO(w log(m/δ)) and ε2 =
√
δ/2m3. Then, for the given

DNF φ, we get a function g such that ||g||1 = wO(w log(m/δ)) and ||g − φ||2 ≤ mε2 = ε1 =√
δ/2m. Finally, we apply Lemma 3.4 with g and ε1 as defined and l = wO(w log(m/δ)) to get

f` and fu such that φ is sandwiched by f` and fu, ||f`||1, ||fu||1 ≤ wO(w log(m/δ)) and

E
x∈Un

[fu(x)− φ(x)] ≤ δ

2
and E

x∈Un
[φ(x)− f`(x)] ≤ δ

2

By applying Proposition 2.12, we get that an ε = w−O(w log(m/δ)) (for an appropriately large
constant inside O(·)) biased set fools φ by δ/2 + εl ≤ δ.

We now get back to proofs of Lemma 3.4, Lemma 3.5 and Lemma 3.6. We start with
proof of Lemma 3.4.

Proof: [of Lemma 3.4] Let φ =
∨m
i=1Ai where Ai are the terms. We define f` and fu as

follows:

• f` = 1− (1− g)2

• fu = 1− (1−
∑m

i=1Ai)(1− g)2

We note that this is the same construction of functions as in Lemma 3.3 in [12]. In particular,
the following two things are already proven there.

• ∀ x, f`(x) ≤ φ ≤ fu(x)

• Ex∈Un [fu(x)− φ(x)] ≤ m||φ− g||22 and Ex∈Un [φ(x)− f`(x)] ≤ m||φ− g||22
Using this, we have the proof of the first two items in the lemma. Only the third item
i.e., bound on ‖f`‖1 and ‖fu‖1 remains to be proven. To get this, we use Observation 2.4
and Observation 2.5 along with the hypothesis ‖g‖1 ≤ l. Using this, we get that ‖f`‖1 ≤
1 + (1 + l)2 and ‖fu‖1 ≤ 1 + (m+ 1)(l + 1)2 which proves the lemma.

We now turn to the proof of Lemma 3.5. The proof follows the proof by Razborov [52] with
some changes.

Proof: [of Lemma 3.5] We first observe as in [52] (attributed to Avi Wigderson) that if φ =∨m
i=1Ai where Ai are the individual terms, then φ can be rewritten as

∑m
i=1Ai(1−

∨i−1
j=1Aj).

Let us write
∨i−1
j=1Aj = φi (φi = 0 if i = 1). Then, we can say that φ =

∑m
i=1Ai(1 − φi).

Note that each of the φi is a width w-DNF. Hence, we can apply our hypothesis to get
functions g1, . . . , gm : {0, 1}n → R such that for all i, ‖gi‖1 ≤ l1 and ‖gi − φi‖2 ≤ ε2. Let us
now consider the function g : {0, 1}n → R defined as

g =
m∑
i=1

Ai(1− gi)

We observe that if φ(x) = 0 for some x, then ∀ i, Ai(x) = 0 which implies that g(x) = 0.
Applying Observation 2.4 and using that Ai’s are terms and hence ||Ai||1 = 1, we also get

19

that ‖g‖1 ≤ m(l1 + 1). So, the only thing that remains to be proven is that ‖φ− g‖2 ≤ mε2.
Though this is done in [52], we do it here for the sake of completeness.

‖g − φ‖2
2 = E

x∈Un

(m∑
i=1

Ai(φi − gi)(x)

)2


≤ m E
x∈Un

[
m∑
i=1

(Ai(φi − gi)(x))2

]
(By Jensen’s inequality)

= m

m∑
i=1

E
x∈Un

[
(Ai(φi − gi)(x))2

]
≤ m

m∑
i=1

E
x∈Un

[
(φi − gi)(x)2

]
(Using Ai is bounded by 1)

= m
m∑
i=1

||φi − gi||22 ≤ m2ε22 (Using ||φi − gi||2 ≤ ε2)

This proves that ||φ− g||2 ≤ mε2 which finishes the proof.

We now come to the proof of Lemma 3.6. The proof is dependent upon the following
well-known concentration result by Mansour [40].

Theorem 3.7 [40] Let φ : {0, 1}n → {0, 1} be a width w-DNF with m terms and ε2 > 0.
Let

∑
S⊂[n] φ̂(S)χS be the Fourier expansion of φ. Then there is a subset Γ ⊂ 2[n] of size

wO(w log(1/ε2)) such that g defined as g1 =
∑

S∈Γ φ̂(S)χS is such that ||φ− g1||2 ≤ ε2.

Proof: [of Lemma 3.6] For the given φ and ε2, let g1 be the function given by Theorem 3.7.
Clearly, it satisfies ||φ − g1||2 ≤ ε2. To bound ‖g1‖1, note that ‖g1‖1 =

∑
S∈Γ |φ̂(S)| where

|Γ| = wO(w log(1/ε2)). Note that
∑

S∈Γ |φ̂(S)|2 = α for some α ∈ [0, 1] (by Parseval-Plancherel
identity and the fact that φ lies in [0, 1]). Now, we have(∑

S∈Γ

|φ̂(S)|

)2

≤ |Γ|

(∑
S∈Γ

|φ̂(S)|2
)
≤ |Γ| (By Jensen’s inequality)

Hence, this gives us
∑

S∈Γ |φ̂(S)| ≤
√
|Γ| = wO(w log(1/ε2)) which proves the lemma.

Theorem 3.3 now follows by reducing the case of arbitrary DNFs to that of bounded
width, by deleting the terms with width greater than log(m/2δ) and arguing that the change
in the distinguishing probability is small.

Proof: [of Theorem 3.3] Let φw be the DNF obtained by removing all the terms from
φ which have more than w literals, for a value of w to be specified later. Note that ∀ x,
φw(x) ≤ φ(x). Also, note that

E
x∈Un

[φ(x)− φw(x)] ≤ Pr
x∈Un

[∃ term present in φ but not in φw which is satisfied] ≤ m2−w

20

The last inequality uses that all the terms present in φ but not φw have more than w literals
and hence are satisfied with probability at most 2−w under the uniform distribution. Also,
let D be any ε-biased distribution. We can again say that

E
x∈D

[φ(x)−φw(x)] ≤ Pr
x∈D

[∃ term present in φ but not in φw which is satisfied] ≤ m(2−w + ε)

The last inequality uses that under a ε-biased distribution, a term of width-w is satisfied
with probability at most 2−w + ε. This is because a term has `1 norm 1 and hence is ε fooled
by a ε-biased distribution. Using the above two inequalities as well as φw ≤ φ, we can say

E
x∈D

φ(x)− E
x∈Un

φ(x) ≥ E
x∈D

φw(x)− E
x∈Un

φ(x) ≥ E
x∈D

φw(x)− E
x∈Un

φw(x)−m2−w

E
x∈D

φ(x)− E
x∈Un

φ(x) ≤ E
x∈D

φ(x)− E
x∈Un

φw(x) ≤ E
x∈D

φw(x)− E
x∈Un

φw(x) +m(ε+ 2−w)

which together imply that

| E
x∈D

φ(x)− E
x∈Un

φ(x)| ≤ | E
x∈D

φw(x)− E
x∈Un

φw(x)|+m(ε+ 2−w)

Let us put w = log(2m/δ). Then, Theorem 3.2 says that |Ex∈D φw(x)−Ex∈Un φw(x)| is δ/4
fooled by an ε biased distribution where ε = w−O(w log(m/δ)) = (log(m/δ))−O(log2(m/δ)). Then,

| E
x∈D

φ(x)− E
x∈Un

φ(x)| ≤ δ

4
+m(ε+ 2−w) ≤ δ

4
+
δ

2
+m(log(m/δ))−O(log2(m/δ)) ≤ δ

21

Chapter 4

Limitations of Small-Bias
Distributions

In this section we provide various lower bounds on fooling DNFs by ε-biased distributions.
Recall that in Section 3.1, we showed that a bias less than m−O(log(1/δ)) is sufficient to δ-fool
a read-once DNF with m terms. We first give a simple example which shows that this bound
is optimal when δ is a small constant.

For smaller values of δ, we give a somewhat more technical construction, which shows
that the bias needs to be less than m−Ω(log(1/δ)/ log log(1/δ)) to δ-fool a read-once DNF with
m terms. Note that this would also imply the optimality for constant δ but we choose to
retain the previous example due to its simplicity.

For the case of general DNFs, we give an instance showing that ε must be necessar-
ily less than m−Ω(log(1/δ)). This does match our bound for the case of read-once DNFs,
but is somewhat far from the upper bound we provide in Section 3.2 (which uses ε =
(log(m/δ))−O(log2(m/δ))).

4.1 Lower Bounds for Read-Once DNF for Constant

Error Probability

Our analysis gives that for δ = Θ(1) and m = nΘ(1), an ε-biased distribution with
ε = n−Θ(1) suffices to δ-fool a read-once DNF with m terms. The following theorem shows
this tradeoff is optimal.

Theorem 4.1 There is read-once DNF φ : {0, 1}n → {0, 1} with Θ(n/ log n) terms and an
ε-biased distribution D over {0, 1}n where ε = n−Θ(1) such that

| Pr
x∈Un

[φ(x) = 1]− Pr
x∈D

[φ(x) = 1]| = Ω(1)

22

Proof: Let t be an integer such that t ≡ 2(mod 4) and for x ∈ {0, 1}t, define the inner
product

IP (x) =

 t/2∑
i=1

xixt/2+i

 (mod 2)

Define distribution D over {0, 1}t+1 as follows. It is a uniform distribution on x ◦ IP (x) for
x ∈ {0, 1}t. The following fact is easy to verify.

Fact 4.2 For all subsets S ⊂ [t], χS : {0, 1}t → {−1, 1},∣∣∣∣ E
x∈Ut

[
χS(x)(−1)IP (x)

]∣∣∣∣ = 2−t/2

Claim 4.3 D is 2−Ω(t) biased distribution over {0, 1}t+1.

Proof: Consider any character χS : {0, 1}t+1 → {0, 1}. In case, (t + 1) 6∈ S, then clearly

Ex∈D[χS(x)] = 0. If (t+ 1) ∈ S, then let S ′ = S\{t+ 1}∣∣∣∣ E
x∈D

[χS(x)]

∣∣∣∣ =

∣∣∣∣ E
x′∈Ut

[χS′(x
′)(−1)IP (x′)]

∣∣∣∣ = 2−Ω(t)

This implies that D is 2−Ω(t) biased distribution over {0, 1}t+1.

Let n = (t + 1)2t for t ≡ 2(mod 4). Split {0, 1}n into 2t chunks. Let the variables in the
ith chunk be yi,1, . . . , yi,t+1. Let D1, . . . , D2t be 2t independent copies of D such that Di is
over yi,1, . . . , yi,t+1. Let D′ defined over {0, 1}n be the product distribution of D1, . . . , D2t .
Clearly, D′ is a 2−Ω(t) biased distribution. Now, consider the read-once DNF φ defined as

φ =
2t∨
i=1

(
t+1∧
j=1

yi,j

)

Under the uniform distribution, each term is satisfied with probability 1/2t+1 while note
that under D′, each term is satisfied with probability 1/2t. This is because once the first t
variables in a term are 1, the t + 1th variable is 1 in D as t ≡ 2(mod 4). As the terms are
over disjoint sets of variables, hence we can say that∣∣∣∣ Pr

y∈D
[φ(y) = 0]− Pr

y∈U
[φ(y) = 0]

∣∣∣∣ =

∣∣∣∣∣
(

1− 1

2t

)2t

−
(

1− 1

2t+1

)2t
∣∣∣∣∣ = Ω(1)

This proves the theorem.

23

4.2 Lower Bounds for Read-Once DNF for Sub-constant

Error Probability

The obvious scaling of the previous example would give ε = 2−Ω(logm+log log(1/δ)). Here we
give a construction of a specific ε-biased distribution which shows that to δ-fool the “tribes”
DNF (described below), one must have ε = m−Ω(log(1/δ)/ log log(1/δ)). We first state the more
general form of the theorem claiming the existence of such a DNF and a distribution and
as a subsequent corollary, we get the bias in terms of the distinguishing probability.

Theorem 4.4 For every sufficiently large integer n of the form n = m logm for m which
is power of 2 and for every integer d ≥ 1, there is an (m/2)−d-biased distribution D over
{0, 1}n and a read-once DNF φ with m terms such that φ distinguishes D from uniform by
at least 1/(2d+ 3)!.

Proof: We first describe the DNF. The DNF is defined by splitting the n variables into
m chunks of size logm. Let the variables in the ith chunk be xi,1, . . . , xi,logm. The DNF is

φ(x) =
m∨
i=1

Ci where Ci ≡
logm∧
j=1

xi,j

The following two claims, describe the required distribution D.

Claim 4.5 There is a distribution Y = Y1◦. . .◦Ym over {0, 1}m with the following properties

• for every 1 ≤ i ≤ m, Pr[Yi = 1] = 1/m.

• Y1, . . . , Ym are d-wise independent;

• For every y ∈ Supp(Y), y1 + . . .+ ym ≤ d.

We can now describe the distribution D in terms of the random variables Y1, . . . , Ym.
Given values y1, . . . , ym, we choose xi,1, . . . , xi,logm to be all 1, if yi = 1 and uniformly from

{0, 1}logm \ 1logm if yi = 0. In particular, this ensures that
∧logm
j=1 xi,j = yi and hence Ci is

satisfied if and only if yi = 1. We claim that the distribution has a small bias.

Claim 4.6 The distribution D defined above has bias at most (m/2)−d.

Before proving these two claims, lets see why they suffice to construct the counterexample.
First, observe that by Claim 4.6, term Ci being satisfied is equivalent to yi = 1. By

24

inclusion-exclusion principle, the probability that x ∈r D satisfies φ is

Pr
x∈D

[φ is satisfied] =
∑

S∈[m],|S|>0

(−1)|S|−1 Pr[∀i ∈ S, Ci is satisfied]

=
∑

S∈[m],|S|>0

(−1)|S|−1 Pr[∀i ∈ S, yi = 1]

=
∑

S∈[m],d≥|S|>0

(−1)|S| Pr[∀i ∈ S, yi = 1] (Using
m∑
i

yi ≤ d)

=
d∑
t=1

(−1)t−1

(
m

t

)
1

mt

The last equality uses that yi’s are d-wise independent and Pr[yi = 1] = 1/m. To estimate
the above probability for the uniform distribution, we can obtain upper and lower bounds
on it by truncating the inclusion-exclusion respectively at d + 1 and d + 2 when d is even
(the upper and lower bounds are switched when d is odd). Thus φ distinguishes D from
uniform with probability at least(

m

d+ 1

)
1

md+1
−
(

m

d+ 2

)
1

md+2
=

m!

md+1(d+ 1)!(m− d− 2)!

(
1

m− d− 1
− 1

m(d+ 2)

)
≥ m!

md+1(d+ 1)!(m− d− 2)!

1

2m

≥ 1

2(d+ 1)!

d+1∏
i=1

(
1− i

m

)

=
1

2(2d+ 2)!

d+1∏
i=1

(
(d+ 1 + i)

(
1− i

m

))
≥ 1

(2d+ 3)!

The last inequality uses that (d+ 1 + i)(1− i/m) ≥ 1. Hence, we need to prove Claims 4.5
and 4.6. We start with Claim 4.5.

Proof: [of Claim 4.5] Let p0, . . . , pd ≥ 0 such that
∑
pi = 1 (We will non-constructively

describe pi’s later). The distribution Y is chosen as following. Pick i, 0 ≤ i ≤ d with
probability pi. Choose a uniformly random subset S ⊂ [m] of size d and set yi = 1 if i ∈ S
and yi = 0 if i 6∈ S. By construction, trivially the third property is satisfied. We need
to set p0, . . . , pd such that the first and the second properties are satisfied. Note that to
ensure that Yi’s are d-wise independent, it suffices to show that for every 0 ≤ i ≤ d and
1 ≤ j1 < . . . < ji ≤ m, we have E[yj1 · . . . · yji] = E[yj1] · . . . · E[yji] = 1/mi (because each
variable yk takes only two possible values.) By symmetry of the construction, it suffices to
ensure these properties when {j1, . . . , ji} = {1, . . . , i} for every 0 ≤ i ≤ d. Thus we only
need to select p0, . . . , pd such that for every 0 ≤ i ≤ d,

E[y1 · . . . · yi] =
d∑
t=i

(
m−i
t−i

)(
m
t

) pt = 1/mi.

25

This is a triangular system of d+ 1 linear equations which has a unique solution p0, . . . , pd.
However, we must make sure that the values of the solution p0, . . . , pd are nonnegative. We
use descent on i to show pi ≥ 0. We have pd =

(
m
d

)
/md ≥ 0. For i < d, we have:

pi =

(
m

i

)[
1

mi
−

d∑
t=i+1

(
m−i
t−i

)(
m
t

) pt]

≥
(
m

i

)[
1

mi
−

d∑
t=i+1

(
m−i−1
t−i−1

)(
m
t

) mpt

]

= m

(
m

i

)[
1

mi+1
−

d∑
t=i+1

(
m−i−1
t−i−1

)(
m
t

) pt

]
= 0

We will also later give a constructive proof of the above claim. However, we choose to retain
this argument as the technique used to justify existence of the distribution is more general.

Proof: [of Claim 4.6] To compute the bias of the distribution D, consider any character χS
where S ⊂ [m logm] is non-empty. For any i ∈ [m], let us define Si = S ∩ {(i− 1) logm +
1, . . . , i logm}. Note that

E
x∈D

[χS(x)] = E
x∈D

[∏
i:Si 6=φ

χSi(x)

]

Our proof will only depend on the number of non-empty sets Si. Without loss of generality,
we can assume that the non-empty sets are S1, . . . , St for some t > 0. We denote the set of
variables xi,1, . . . , xi,logm by xi. To compute the bias, we then need to calculate

E
x∈D

[
t∏
i=1

χSi(xi)

]
= E

Y

[
t∏
i=1

E
xi

[χSi(xi)|yi]

]

as the variables x1, . . . xm are independent given Y . We now note that

E
xi

[χSi(xi)|yi = 1] = (−1)|Si| and E
xi

[χSi(xi)|yi = 0] = −(−1)|Si|

m− 1

If t ≤ d, then y1, . . . , yt are independent and the bias simply becomes 0 as below.

E
Y

[
t∏
i=1

E
xi

[χSi(xi)|yi]

]
=

t∏
i=1

E
xi,yi

[χSi(xi)]

=
t∏
i=1

(
1

m
· (−1)|Si| −

(
1− 1

m

)
· (−1)|Si|

m− 1

)
= 0

26

If t > d, we can bound the bias as

E
Y

[
t∏
i=1

E
xi

[χSi(xi)|yi]

]
≤ E

Y

[
t∏
i=1

∣∣∣∣E
xi

[χSi(xi)|yi]
∣∣∣∣
]

≤ E
Y

[
d∏
i=1

∣∣∣∣E
xi

[χSi(xi)|yi]
∣∣∣∣
]

=
d∏
i=1

(
1

m
+

(
1− 1

m

)
· 1

m− 1

)
=

(
2

m

)d
which proves the claim.

By plugging d = log(1/δ)/ log log(1/δ) in the above theorem, we get the following corollary.

Corollary 4.7 For m which is a power of 2 and δ > 0, there is a read-once DNF φ over
n = m logm variables and a distribution D over {0, 1}n which has bias m−O(log(1/δ)/ log log(1/δ))

and φ distinguishes D from uniform by δ.

We give below an alternate proof of Claim 4.5 which gives an explicit construction for
the d-wise independent distribution mentioned in the claim.

Claim 4.8 There is a distribution Y = Y1◦. . .◦Ym over {0, 1}m with the following properties

• for every 1 ≤ i ≤ m, Pr[Yi = 1] = 1/m.

• Y1, . . . , Ym are d-wise independent;

• For every y ∈ Supp(Y), y1 + . . .+ ym ≤ d.

Proof: Since m is taken to be a power of 2, there exists a field F with |F| = m, the elements
of which we identify with the numbers 0, . . . ,m−1. Choose d independent random elements
a0, . . . , ad−1 ∈ F and define the (random) degree-d polynomial

P (z) := zd + ad−1z
d + . . .+ a0.

We define the random variables Y1, . . . , Ym as

Yi :=

{
1 if P (i− 1) = 0
0 otherwise

Since P is a degree d-polynomial, for any y1, . . . , ym ∈ Supp(Y), at most d of y1, . . . , ym are
1 and hence y1 + . . . + ym ≤ d. Also, since P is equally likely to take any of the m values
at the point i− 1 (as a0 is uniform in F), Pr[Yi = 1] = Pr[P (i− 1) = 0] = 1/m.

Note that for any d distinct points i1, . . . , id and the polynomial P as above, the vector
(P (i1), . . . , P (id)) can be computed as

(P (i1), . . . , P (id)) = (a0, . . . , ad−1) · A+ (id1, . . . , i
d
d)

27

where A ∈ Fd×d is a matrix with the jth column as (1, ij, . . . , i
d−1
j)T . Since all the columns of

A are linearly independent, and (a0, . . . , ad−1) is a random element of Fd, (P (i1), . . . , P (id))
is also uniformly distributed in Fd. This gives that the values of P at any d points are
independent and hence Y1, . . . , Ym form the required d-wise independent distribution.

4.3 Lower Bounds for General DNF

Below we show that to δ-fool general DNFs with m terms, one requires a m−Ω(log 1/δ)

biased set. Before, we state the theorem, we state the following technical lemma.

Lemma 4.9 For x ∈ {0, 1}n, let MOD3(x) =
∑n

i=1 xi (mod 3). Consider the distribution
D over {0, 1}n which is the uniform distribution on the set D0 defined as

D0 = {x|MOD3(x) 6= 0}

Then D is 2−Ω(n) biased distribution.

Proof: Consider any linear function χ : {0, 1}n → {−1, 1}. Lemma 2.9 in [54] says that

| Pr
x:MOD3(x)=0

[χ(x) = 1]− Pr
x:MOD3(x)6=0

[χ(x) = 1]| = 2−Ω(n)

Also, |x : χ(x) = 1| =
(

Pr
x:MOD3(x)6=0

[χ(x) = 1]

)
|D0|+

(
Pr

x:MOD3(x)=0
[χ(x) = 1]

)
(2n − |D0|)

=⇒

|x : χ(x) = 1| ≥ Pr
x:MOD3(x)6=0

[χ(x) = 1]|D0|+
(

Pr
x:MOD3(x)6=0

[χ(x) = 1]− 2−Ω(n)

)
(2n − |D0|)

=⇒ |x : χ(x) = 1|
2n

+
2−Ω(n)(2n − |D0|)

2n
≥
(

Pr
x:MOD3(x) 6=0

[χ(x) = 1]

)
=⇒ 1

2
+ 2−Ω(n) ≥

(
Pr

x:MOD3(x) 6=0
[χ(x) = 1]

)
Similarly, we can prove that

1

2
− 2−Ω(n) ≤

(
Pr

x:MOD3(x)6=0
[χ(x) = 1]

)
This implies that |Ex∈D[χ(x)]| = 2−Ω(n) which implies that D is a 2−Ω(n) biased set.

We now prove the existence of small biased sets which are distinguished by DNFs. The
bound on the bias in terms of number of terms and distinguishing probability is in the
subsequent corollary.

Theorem 4.10 For any t ≥ 3, `, there exists a DNF φ over `t variables with O(t2`) terms
and an ε = 2−Ω(`t)-biased distribution D such that φ distinguishes D from uniform with
probability 2−O(t).

28

Proof: The distribution D will be the uniform distribution over D0 ⊂ {0, 1}`t which is
defined as

D0 =
{
x ∈ {0, 1}`t|MOD3(x) 6= 0

}
By Lemma 4.9, the bias of D0 is 2−Ω(`t). To define the DNF φ, we partition the variables
into t blocks, each block having ` variables. The jth variable in the ith block is denoted by
xij. The DNF φ is defined as φ1 ∨ . . .∨ φt where φi is a DNF over the ith block of variables
which is 1 if and only if the sum of the variables in the ith block is non-zero modulo 3. Note
that φ is only a function of variables in the ith block. Thus, we can always write φi using 2`

terms. Hence, φ can be written using t2` terms. We first observe that

Pr
x∈D

[φ(x) = 1] = 1

This is because if the sum of the variables in all the blocks is non-zero mod 3, then there
must be at least one block i in which the sum is non-zero mod 3 which ensures that φi = 1
implying φ = 1. Now, note that under the uniform distribution, each φi = 0 with probability
at least 1/3 − 2−` ≥ 1/4. This is because φi = 1 iff

∑`
j=1 xij 6= 0(mod 3). As all φi’s are

over disjoint sets of variables, this implies

Pr
x∈U

[φ(x) = 1] = 1− Pr
x∈U

[φ(x) = 0] = 1− (∧ti=1 Pr
x∈U

[φi(x) = 0]) ≤ 1− 1

4t

This implies that φ distinguishes D from uniform by 1/4t = 2−O(t).

Corollary 4.11 For arbitrarily large m and arbitrary small δ such that 2−m/2 < δ, there
exists a DNF φ over O(logm log(1/δ)) variables and a distribution D such that φ has m
terms, D has bias m−Ω(log(1/δ)) and φ distinguishes D from uniform with probability δ.

Proof: From the above theorem, we can say that for every t, ` there is a DNF φ and a
distribution D such that φ has t2` terms, D is 2−Ω(t`) biased and φ can distinguish D from
uniform by 2−O(t). By setting t = Θ(log(1/δ)), we can get the distinguishing probability to
be equal to δ. Similarly, we set ` = logm − log log(1/δ) − Θ(1), we can get the number
of terms to be m. Then the bias of the distribution D guaranteed by the theorem is
2−Ω(t`) = 2−Ω((logm−log log(1/δ)−Θ(1)) log(1/δ) = m−Ω(log(1/δ)) as long as δ > 2−m/2.

29

Chapter 5

Related Work and Possible Further
Work

There has been several recent results showing that k-wise independent distributions fool
various classes of functions:

• Bazzi [12] shows that O(log2(m/δ))-wise independent distributions δ-fool DNF formu-
las with m terms.

• Braverman [15] shows that O(logO(d2)(m/δ))-wise independent distributions δ-fool
depth-d circuits of size m.

• Diakonikolas et. al. [19] show that O(δ−2 log(1/δ))-wise independent distributions δ-
fool linear threshold functions (half-spaces).

• Diakonikolas, Kane, and Nelson [20] show that poly(1/δ)-wise independent distribu-
tions δ-fool degree-2 threshold functions.

By a result of Alon, Goldreich, and Mansour [7], every ε-biased distribution over n bits is
εnk-close to a k-wise independent distribution. Furthermore, an ε-biased distribution can
be generated using O(log(n/ε)) bits. Therefore, when it is possible to δ-fool by k-wise in-
dependent distributions using O(k log n) random bits, it is possible to 2δ-fool by ε-biased
distributions using O(k log n+log(1/δ)) random bits. This shows that ε-biased distributions
can fool at least as good as k-wise independent distributions using the same seed-length.
Therefore, a natural question is whether ε-biased distributions give pseudorandom genera-
tors with better seed-lengths for the above mentioned classes of functions.

Klivans, Lee, and Wan extend our proof that logarithmic seed small-bias distributions
fool read-once DNFs to read-k DNFs for constant k. Read-k DNFs are those where every
variable appears in at most k terms.

One interesting problem that has been left open in our work is whether ε-biased sets
with seed-length O(logm) can δ-fool general DNF formulas with m terms when δ is a const

30

Part II

Analysis of Goldreich’s Candidate
One-Way Function

31

Chapter 6

Preliminaries

6.1 Goldreich’s Function

Goldreich [24] constructs a function f = fP,G : {0, 1}n → {0, 1}m parameterized by a
d-ary predicate P : {0, 1}d → {0, 1} and G ∈ [n]m×d, where [n] = {1, . . . , n}. The function
is defined by

(f(x))i = P (xGi,1 , . . . , xGi,d) for i ∈ [m].

G may be thought of as the adjacency list of a bipartite graph, with n nodes on the
left-hand side and m nodes on the right-hand side. Each node on the left represents a bit
of input to f , and each node on the right represents a bit of output of f . We name the
vertices on the left by 1, . . . , n, and we name the vertices on the right by 1, . . . ,m. We use
L = [n] to denote the set of all vertices on the left, and call these vertices input nodes. We
use R = [m] to denote the set of all vertices on the right, and call these vertices output
nodes. Each vertex i ∈ R is connected to vertices Gi,1, . . . , Gi,d ∈ L, so an output node is
connected to the input bits it depends on.

Goldreich suggests using a random predicate P , and a graph G with expansion properties
and m = n.

6.2 Backtracking Algorithms

Definition 6.1 (Partial Assignment) A partial truth assignment is a function ρ : [n]→
{0, 1, ∗}. Its set of fixed variables is Vars(ρ) = ρ−1({0, 1}). Its size is defined to be |ρ| =
|Vars(ρ)|. Given f : {0, 1}n → {0, 1}m, the restriction of f by ρ, denoted f |ρ, is the function
obtained by fixing the variables in Vars(ρ) and allowing the rest of the variables of f to vary.

For a partial truth assignment ρ, an index i ∈ [n] \ Vars(ρ), and a value a ∈ {0, 1}, we
define the partial truth assignment ρ[i← a] by

ρ[i← a](j) =

{
a, j = i;

ρ(j), j 6= i.

32

Definition 6.2 (Backtracking Algorithm) Assume f = fP,G is an instance of Gol-
dreich’s function and let b ∈ {0, 1}m. A backtracking algorithm for finding a solution
x ∈ {0, 1}n to the equation f(x) = b, is defined by a scheduler S. S is a mapping which is
given as input the string b and the current partial assignment ρ, and returns a pair (i, a)
where i ∈ [n] \Vars(ρ) is the index of an input variable to assign, and a is the first value to
try assigning to xi. We denote by BTS the backtracking algorithm with scheduler S. When
given b ∈ {0, 1}m and the current partial assignment ρ, BTS(b, ρ) behaves as follows.

• If there exists an output node i ∈ R such that Gi,k is fixed by ρ for every k ∈ [d], and
f(ρ)i 6= bi, then BTS(b, ρ) = FAIL.

• Otherwise, if ρ is a complete assignment, BTS(b, ρ) = ρ.

• Otherwise, let (i, a) = S(b, ρ) and compute x = BTS(b, ρ[i ← a]). If x is a truth
assignment, then BTS(b, ρ) = x.

• Otherwise, BTS(b, ρ) = BTS(b, ρ[i← 1− a]).

To solve f(x) = b, we call BTS(b, ∗n), so that ρ is initialized to the empty assignment.

Definition 6.3 (Backtracking Tree) Given a scheduler S, a value b ∈ {0, 1}m, and a
partial assignment ρ, the backtracking tree Tree(BTS(b, ρ)) is a binary tree which records
all the decisions made by S when evaluating BTS(b, ρ). Every node of the tree is labeled by
a partial assignment.

The root of the tree is labelled by ρ. If BTS(b, ρ) returns immediately, i.e. without recur-
sion, either of FAIL or ρ, then the root has no children. Otherwise, the left child of the root is
the subtree Tree(BTS(b, ρ[i← a])), where (i, a) = S(b, ρ). If BTS(b, ρ[i← a]) = FAIL, then
the root has no right child, and otherwise the root’s right child is Tree(BTS(b, ρ[i← 1−a])).
We consider the number of nodes in a subtree of the backtracking tree to be the time required
to explore that subtree.

Definition 6.4 (Path String) Given a string σ ∈ {left, right}`, we can think of σ as a
path of length ` from the root of a binary tree downward. We call a string σ viewed in this
way a path string. We also let BTσ

S(b) denote the partial assignment which is found by
starting at the root of Tree(BTS(b, ∗n)) and following ` edges down, at the i-th step taking
either the left or right child depending on σi.

For example, here is a backtracking tree Tree(BTS(b, ∗n)), with the partial assignment
BTleft,right,left

S (b) boxed.

33

∗n

ttiiiiiiiiiiiiiiiiiiiii

[x5 = 0]

wwn n n n n n n n

**UUUUUUUUUUUUUUUUU

[x5 = 0, x7 = 1]

ttjjjjjjjjjjjjjjjj

%%K
KKKKKK

[x5 = 0, x7 = 1, x8 = 0]

vvl l l l l l l

**VVVVVVVVVV

Since the procedure S is not restricted in any way, it is free to guide the algorithm
immediately toward a correct solution (perhaps by doing an exhaustive search of potential
preimages). Thus, to hope for non-linear lower bounds on inversion time, some sort of
restriction must be placed on the scheduler. We study backtracking algorithms that are
myopic and backtracking algorithms that are drunken.

6.2.1 Myopic Backtracking Algorithms

The first restricted class of algorithms we consider is that of myopic backtracking algo-
rithms, whose decisions must be based on a limited view of the problem instance.

The adjective “myopic,” in the context of search algorithms for the satisfiability of CNF
formulas, was first introduced by Achlioptas and Sorkin [1]. Later, Alekhnovich et al. [4]
defined a more general class of myopic backtracking algorithms, which we will now discuss
in the context of finding a solution to the equation f(x) = b: The myopic backtracking
algorithm has full access to the function f , but limited access to b. In fact, the algorithm
does not have access to any of b when it starts. But at every node of the backtracking tree,
the myopic scheduler is allowed to read up to K bits of b. Then the algorithm must decide
which assignment to make next. The scheduler has access to the bits it read at any ancestor
node in the backtracking tree, but not to the bits from other branches: so the algorithm is
allowed to remember information when making recursive calls, but must forget whenever it
backtracks.

We have found that our approach for proving lower bounds on myopic backtracking
algorithms, as well as the approach of [4] on which we build, works for a notion of myopicness
which is in some ways more general than that considered in [4]. It is more general in the
following two specific ways:

• The algorithm is allowed to amortize its dependency on b. Rather than restricting
the scheduler’s decisions to depend on K bits of b at each step, we only require that
the algorithm’s behavior in the first s steps depends on some t bits of b, where s is a
parameter and t = Ks.

34

• The algorithm is allowed a more powerful dependence on the bits of b. As an example,
assume that the algorithm begins by setting x1 = g(b1, . . . , b4), where

g = (b̄1 ∧ b̄2 ∧ b̄3) ∨ (b̄1 ∧ b2 ∧ b̄4) ∨ (b1 ∧ b̄3 ∧ b̄4) ∨ (b̄2 ∧ b3 ∧ b4).

It is possible to see that the value of the function g depends on b1, . . . , b4 in such a
way that g cannot be calculated using any decision tree of depth ≤ 3; therefore any
algorithm that begins by setting x1 = g(b1, . . . , b4) needs to begin by reading at least
4 bits of b in the worst case. However, since g and

ḡ = (b1 ∧ b3 ∧ b2) ∨ (b1 ∧ b̄3 ∧ b4) ∨ (b̄1 ∧ b2 ∧ b4) ∨ (b̄2 ∧ b3 ∧ b̄4)

are both 3-DNF formulas, there always exist 3 bits out of b1, . . . , b4 who can act as
a “certificate” to the value of g: i.e. by knowing the value of only these 3 bits, we
can be sure about the value of g. (For example, when b1 = 1, b2 = 0, b3 = 1, b4 = 1,
we are sure that g = 0 based solely on the values of b1, b2, and b4, irrespective
of the value of b3.) It is also possible to see that for each assignment of values to
b1, . . . , b4, the 3-bit certificate to the value of g in our example is unique. Since g
satisfies all these properties, our more general notion of myopicness considers setting
x1 = g(b1, . . . , b4) to be possible by “looking at” only 3 bits. (The indices of the 3
bits that act as “certificate” correspond to the set T in Definition 6.5 below. The
existence and uniqueness of “certificates” correspond respectively to Properties 1 and
2 in Definition 6.5.)

Definition 6.5 (Myopic Backtracking Algorithm) A backtracking algorithm for solv-
ing the equation f(x) = b is said to be (s, t)-myopic if for every b ∈ {0, 1}n and every
length-s path string σ ∈ {left, right}s there exists T ⊆ R with |T | ≤ t such that the decisions
made by the algorithm along the path σ depend only on the bits bT , and T also depends only
on bT . (Here bT denotes the bits bi that are indexed by i ∈ T .) More precisely, there exists
a function Tσ which assigns to every b ∈ {0, 1}m a set Tσ(b) ⊆ R, satisfying the following
two properties for every b, b′ ∈ {0, 1}m such that b′Tσ(b) = bTσ(b).

1. If τ v σ is any prefix of σ, then the partial assignments BTτ
S(b) and BTτ

S(b′) are equal.

2. Tσ(b′) = Tσ(b).

Notice that the first property is equivalent to saying that for every strict prefix τ @ σ, we
have S(b′,BTτ

S(b′)) = S(b,BTτ
S(b)).

Note that a myopic scheduler S has full access to P and G at all times: only the access
to b is restricted.

6.2.2 Drunken Backtracking Algorithms

The second class of restricted backtracking algorithms that we consider are drunken
backtracking algorithms. In these algorithms, the scheduler can use any complicated pro-
cedure to choose the variable to assign next, but the value first assigned to that variable

35

should be random. A lower bound for finding satisfying assignments to CNF formulas using
drunken backtracking algorithms were first proved in [4]. We will describe such a lower
bound for inverting Goldreich’s function. Similar bounds were given by [41] and indepen-
dently by [30]. We choose to describe the lower bound since it fits well in the framework
that we have developed for myopic backtracking algorithms.

In order to define drunken backtracking algorithms, we first need to define randomized
backtracking algorithms.

Definition 6.6 (Randomized Backtracking Algorithm) A randomized scheduler S is
a random variable whose possible values are deterministic schedulers as defined in Defini-
tion 6.2.

A randomized scheduler S leads to a randomized backtracking algorithm BTS.

Besides myopic backtracking algorithms, we consider backtracking algorithms where ev-
ery time the scheduler assigns a new variable, the value assigned to that variable is chosen
uniformly at random. The following definition captures this property.

Definition 6.7 (Drunken Backtracking Algorithm) A randomized backtracking algo-
rithm BTS is said to be drunken if for every b ∈ {0, 1}m and partial assignment ρ, the
following conditions are satisfied by the random pair (i, a) = S(b, ρ). First, Pr[a = 0] =
Pr[a = 1] = 1

2
. Second, a is independent of i, and is also independent of S(b, ρ′) for every

ρ′ 6= ρ.

Notice that our definition of randomized schedulers allows the bit assignments returned
by the scheduler on two inputs (b, ρ) and (b′, ρ′) to be correlated, but Definition 6.7 stipulates,
in the case of drunken schedulers, an independence condition on the bit assignments returned
by the scheduler.

6.3 The Predicate Used

Goldreich’s function is paramaterized by a predicate P : {0, 1}d → {0, 1}. Goldreich [24]
suggests choosing P uniformly at random. In this paper, we consider random predicates.

We also consider predicates of the form Ph,Q(x1, . . . , xd) = x1⊕· · ·⊕xd−h⊕Q(xd−h+1, . . . , xd)
for any predicate Q : {0, 1}h → {0, 1}. Predicates of this type, specifically P (x1, . . . , x5) =
x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5), have been shown in [42] to yield outputs, through Goldreich’s
function, that have the pseudorandom property of small-bias [45]. So it is natural to con-
sider predicates of the form Ph,Q as the building block for Goldreich’s candidate one-way
function.

Here we discuss two useful properties predicates can have, and show that they are sat-
isfied by the predicates we consider.

Definition 6.8 (robust predicate) P : {0, 1}d → {0, 1} is h-robust iff every restriction
ρ such that P |ρ is constant satisfies d−|ρ| ≤ h [3, Definition 2.2]. For example, the predicate
that sums all its inputs modulo 2 is 0-robust.

36

Definition 6.9 (balanced predicate) For predicate P : {0, 1}d → {0, 1}, real number
εbal ∈ [0, 1/2), and integer h ∈ [0, d − 1], we say predicate P is (h, εbal)-balanced if, after
fixing all variables but h+ 1 of them,

|Pr[P (x1, . . . , xd) = 0| fixed variables]− 1
2
| ≤ εbal.

For example, the predicate P2,∧(x) = x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) is (2, 0)-balanced and
(1, 1

4
)-balanced. The predicate that sums all its inputs modulo 2 is (0, 0)-balanced.

Remark 6.10 A predicate is (h, 0)-balanced iff all its Fourier weight is concentrated on the
last h+1 levels. That is, every nonzero fourier coefficient corresponds to an XOR of at least
d− h variables.

Lemma 6.11 A random predicate on d variables is (Θ(log d
εbal

), εbal)-balanced with proba-

bility 1− exp[−poly(d/εbal)]. The predicate Ph,Q is (h, 0)-balanced.

Proof: Let ρ be any partial assignment which fixes all but h+ 1 variables. There are 2h+1

inputs consistent with ρ: call them xρ1, . . . , x
ρ
2h+1 . Define the event Eρ = {|#{i : P (xρi) =

1}− 2h| > 2h+1εbal}: Eρ is the event that P is not balanced under the partial assignment ρ.

By a Chernoff bound, Pr[Eρ] ≤ 2e−ε
2
bal2

h+2
. P is balanced if all events Eρ hold. There

are 2d−h−1
(

d
h+1

)
partial assignments ρ to consider. Taking a union bound,

Pr[P is not (h, εbal)-balanced] ≤ 2d−h−1

(
d

h+ 1

)
2e−ε

2
bal2

h+2

≤ 2d−hdh+1e−ε
2
bal2

h+2

= exp[(h+ 1) ln d+ (d− h) ln 2− ε2bal2
h+2].

Finally, take h = Θ(log d
εbal

).

To see that the predicate Ph,Q(x1, . . . , xd) = x1⊕· · ·⊕xd−h⊕Q(xd−h+1, . . . , xd) is (h, 0)-
balanced, notice that any subset of h + 1 variables includes at least one of the variables
x1, . . . , xd−h.

Corollary 6.12 A random predicate on d variables is Θ(log d)-robust with probability 1 −
exp[−poly(d)]. Any predicate of the form Ph,Q is h-robust.

6.4 Expansion Properties of the Graph Used

Let G ∈ [n]m×d be the bipartite graph from Section 6.1. The following definitions and
lemmas are generalized from [4].

Definition 6.13 (Boundary and Neighborhood) [4, Definition 2.1].
Let I ⊆ R. Its neighborhood Γ(I) ⊆ L is the set of all nodes adjacent to nodes in I. For
i ∈ I, the boundary of i in I, denoted ∂Ii, is the set of nodes with one edge to i but no other
edges to I. The boundary of I, denoted ∂I, is the set of all nodes j ∈ L such that there is
exactly one edge from j to I. Equivalently, ∂I =

⋃
i∈I ∂Ii.

37

Definition 6.14 (Expansion) [4, Definition 2.1].
G is an (r, c)-expander if for all I ⊆ R such that |I| ≤ r, we have |Γ(I)| ≥ c|I|. G is an
(r, c)-boundary expander if for all I ⊆ R such that |I| ≤ r, we have |∂I| ≥ c|I|.

Lemma 6.15 Analogous to [4, Lemma 2.1].
Every (r, c)-expander is an (r, 2c− d)-boundary expander.

Proof: It suffices to show that whenever |Γ(I)| ≥ c|I|, we have |∂I| ≥ (2c−d)|I|. Indeed,
every node in Γ(I) \ ∂I is connected to at least two nodes in I. Since each node in I has
degree d, then |Γ(I)|+ |Γ(I) \ ∂I| ≤ d|I|. It follows that |∂I| ≥ 2|Γ(I)| − d|I|.

Lemma 6.16 A random bipartite graph G ∈ [n]n×d with n left nodes and n right nodes,
and of right-degree d

• has with probability ≥ 1 − 2−nbad at most nbad left nodes of degree > dleft, provided
dleft ≥ 2de and nbad ≥ 2ne2−d;

• is with probability ≥ 1− 1/n an (r, c′)-expander for any d = o(n/ lg n), c′ = d−Ω(d),
provided r ≤ rmax(n, d, c′) where rmax = Ω(n/d).

Proof: The probability that there are > nbad left vertices of degree > dleft is at most the
probability that there exists a set S of nbad left vertices such that at least nbaddleft of the
edges of the graph have an endpoint in S. For each set S of nbad left vertices, this happens
with probability at most(

nd

nbaddleft

)
(
nbad

n
)nbaddleft ≤ (

nde

nbaddleft

)nbaddleft(
nbad

n
)nbaddleft ≤ 2−dnbad ,

where the last inequality is true provided dleft ≥ 2de. Now by a union bound, the probability
that such an S exists is at most(

n

nbad

)
2−dnbad ≤ (

ne

nbad

)nbad2−dnbad ≤ 2−nbad

provided nbad ≥ 2ne2−d. This proves the first part of the lemma. To prove the second part
of the lemma, we note that the probability that the expansion of a specific set of i right
nodes be < c′ is at most (

n

bc′ic

)
(
bc′ic
n

)di ≤ (
ne

bc′ic
)bc
′ic(
bc′ic
n

)di.

Thus the probability that the graph is not an (r, c′)-expander is at most

r∑
i=1

(
n

i

)
(
ne

bc′ic
)bc
′ic(
bc′ic
n

)di ≤
r∑
i=1

(
ne

i
)i(
ne

c′i
)c
′i(
c′i

n
)di =

r∑
i=1

((
i

n
)d−c

′−1c′d−c
′
e1+c′)i.

38

Let ai = (i
n
)d−c

′−1c′d−c
′
e1+c′ . By the above, to prove the second part of the lemma, it is

enough to show that aii ≤ n−2 for every 1 ≤ i ≤ r. Define

rmax =
n

c′
(4c′e1+c′)

−1
d−c′−1 = Ω(n/d).

For i ≤ rmax, we have ai ≤ 1/4. Thus, if i ≥ lg n, we have aii ≤ n−2. And if i < lg n, it can
be seen that ai = o(n−2) for d bigger than a large enough constant but at the same time
d = o(n/ lg n).

Lemma 6.17 Assume G is an (r, c)-boundary expander of right-degree d, with at most nbad

left-nodes of degree bigger than dleft. Assume ĉ = dc− h− 1e is positive. Let W be a subset
of the input nodes L. Then there exists U ⊆ W such that

|U | ≥ ĉ(|W | − nbad)

ĉ+ dleft(d− 1)

and for every A ⊆ R with |A| ≤ r, there is some i ∈ A such that |∂Ai \ U | > h.

Proof: Construct U using the following algorithm:

• U ← ∅.

• For every i ∈ L, set ni ←

{
ĉ if i ∈ W and i has degree at most dleft;

0 otherwise.

• The following invariant holds every time the following while loop checks its loop
condition: every output node connected to an input node j has at most ĉ−nj adjacent
input nodes in U .

• while ∃i, ni > 0,

– U ← U ∪ {i}.
– ni ← 0.

– For every j ∈ L distinct from i, if i and j have a common neighbor, then nj ←
max{0, nj − 1}.

In the beginning,
∑

i ni ≥ ĉ(|W | − nbad), and in the end,
∑

i ni = 0. At each step,
∑

i ni
decreases by at most ĉ+ dleft(d− 1). Therefore the number of steps we took is

|U | ≥ ĉ(|W | − nbad)

ĉ+ dleft(d− 1)
.

By the loop invariant, every output node has at most ĉ adjacent input nodes in U . Let
A ⊆ R have size |A| ≤ r. Then by the expansion of G, there is some i ∈ A such that
|∂Ai| ≥ c. It follows that |∂Ai \ U | ≥ c− ĉ > h.

39

6.4.1 Closure Operation

We will make use of the notion of the closure of a set of input nodes. Our definition is
based on the one given in [4, Section 3.2], which is in turn based on [5].

Definition 6.18 (Closure) Fix a bipartite graph G with vertex parts L and R, and num-
bers r, c > 0 such that G is an (r, c)-boundary expander. Fix a subset of input nodes J ⊆ L.
We say a subset of output nodes I ⊆ R is closed with respect to J if the subgraph of G
obtained by deleting nodes in J ∪ Γ(I) and nodes in I is an (r/2, c/2)-boundary expander.
The closure of J , denoted Cl(J), is the collection of all sets which are closed with respect to
J and have size at most r/2.

Note that an element of the closure of a set of left-nodes is a set of right-nodes: so, for
example, it does not make sense to say for C ∈ Cl(I) that C ⊇ I.

Lemma 6.19 Analogous to [4, Lemma 3.5].
If G is an (r, c)-boundary expander and |J | ≤ cr/4, then Cl(J) is non-empty and contains
some C such that |C| < 2c−1|J |.

Proof: Call I ⊆ R nonexpanding if |∂I \ J | < c|I|/2. For a nonexpanding I we have
|∂I| < c|I|/2 + |J |. If, furthermore, |I| ≤ r, by the boundary-expansion of G we have
|∂I| ≥ c|I|, so |I| < 2c−1|J | ≤ r/2. Therefore a nonexpanding I ⊆ R has either > r vertices
or ≤ r/2 vertices.

If the empty set is closed, we are done. Otherwise, let I0 be a largest nonexpanding set
with ≤ r/2 vertices. We claim that I0 is closed. Indeed, let S be any subset of R \ I0 with
≤ r/2 vertices. It suffices to show that |∂S \ (J ∪Γ(I0))| ≥ c|S|/2. Suppose otherwise: then
S is nonempty, and also |∂(I0∪S)\J | ≤ |∂I0 \J |+ |∂S \ (J ∪Γ(I0))| < c|I0∪S|/2. I0∪S is
then a nonexpanding set with ≤ r vertices, and therefore ≤ r/2 vertices. This contradicts
our assumption that I0 was a largest nonexpanding set with ≤ r/2 vertices.

I0 is closed, and we showed at the start of the proof that |I0| < 2c−1|J |.

Lemma 6.20 For any set J ⊆ L, Cl(J) = Cl(J ∪
⋂
I∈Cl(J) Γ(I)).

Proof: Any set I ⊆ R which is closed with respect to J ∪
⋂
I′∈Cl(J) Γ(I ′) is also closed with

respect to the smaller set J , so Cl(J) ⊇ Cl(J ∪
⋂
I′∈Cl(J) Γ(I ′)). Conversely, let I ∈ Cl(J).

We must show that I is closed with respect to J ∪
⋂
I′∈Cl(J) Γ(I ′): that is, that the subgraph

Ĝ of G obtained by deleting nodes in I and in J ′ = J ∪
(⋂

I′∈Cl(J) Γ(I ′)
)
∪ Γ(I) is an

(r/2, c/2)-boundary expander. J ′ is equal to J ∪ Γ(I), and I ∈ Cl(J), so Ĝ is indeed an
(r/2, c/2)-boundary expander.

We now relate Goldreich’s function to our notions of expansion, robust predicates, and
closure. The following definition of local consistency is equivalent with [4, Definition 3.4].

40

Definition 6.21 (Locally Consistent) Let f be Goldreich’s function for graph G and
predicate P . Let b ∈ {0, 1}m and let ρ be a partial truth assignment. For a set of output
nodes I ⊆ R, we say ρ is consistent with I if ρ can be extended to some x′ ∈ {0, 1}n such
that f(x′)I = bI . We say ρ is locally consistent if for all I ⊆ R such that |I| ≤ r/2, ρ is
consistent with I.

Lemma 6.22 Analogous to [4, Lemma 3.6].
Let P be a c/2-robust predicate. Let b ∈ {0, 1}m. Let ρ be a partial truth assignment, and
let C ∈ Cl(Vars(ρ)). Then ρ is locally consistent iff ρ is consistent with C.

Proof: By Definition 6.18 we have |C| ≤ r/2. Thus if ρ is locally consistent then it is
consistent with C.

Conversely, assume ρ is consistent with C. If ρ is not locally consistent, let I be a
smallest set such that ρ is not consistent with I. Let I ′ = I \ C. Since ρ is consistent with
C, we have I ′ 6= ∅.

Let L− = Vars(ρ)∪Γ(C). Since C is closed with respect to Vars(ρ), |∂I ′ \L−| ≥ c|I ′|/2.
In particular, there must be some i ∈ I ′ with |∂I′i \ L−| ≥ c/2.

Since I is a smallest set with which ρ is not consistent, ρ is consistent with I \ {i}: so
extend ρ to a partial assignment x′ which satisfies (f(x′))I\{i} = bI\{i}. Since P is a c/2-
robust predicate, we can modify input bits in the set |∂I′i \ L−| and leave all other input
bits the same to produce an input x′′ such that (f(x′′))i = bi. Since x′′ is equal to x′ on
every input bit in Γ(I \ {i}), we have (f(x′′))I = bI , which contradicts the assumption that
ρ was not consistent with I.

Lemma 6.23 If P is a c/2-robust predicate, the partial assignment ρ is locally consistent,
and the closure Cl(T) is nonempty for some set of input nodes T ⊇ Vars(ρ), then ρ can be
extended to a locally consistent partial assignment ρ′ such that Vars(ρ′) = T .

Proof: Pick any C ∈ Cl(T). Since ρ is locally consistent, ρ is consistent with C. That is,
ρ can be extended to a complete assignment x′ ∈ {0, 1}n such that f(x′)C = bC . Let ρ′ be
the restriction of x′ to T : then by Lemma 6.22, ρ′ is locally consistent.

6.5 Experimental Study of Inverting Goldreich’s Func-

tion

Inverting Goldreich’s function can be seen as the task of solving a constraint satisfaction
problem with a planted solution. This suggests the use of a general-purpose SAT solver
to solve the constraint satisfaction problem. We performed an experiment using MiniSat
version 2.0 beta [22, 21], which is one of the best publicly available SAT solvers. We always
use the degree-five predicate P5(x) = x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5). For each trial, we choose
a new random graph of right-degree 5. MiniSat requires a boolean formula in conjuctive
normal form as input, so we represent each constraint P (xj1 , xj2 , xj3 , xj4 , xj5) = vi by 16
clauses: one for each truth assignment to xj1 , · · · , xj5 that would violate the constraint.

41

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

ti
m

e
 i

n
 s

e
c
o
n
d
s

n

Figure 6.1: Number of seconds taken by MiniSat to invert Goldreich’s function for different
values of n. We use the degree-five predicate P5(x) = x1⊕x2⊕x3⊕ (x4∧x5) and a random
bipartite graph of right-degree five.

We ran MiniSat on a Lenovo T61 laptop with 2GB of RAM and a 2.00GHz Intel T7300
Core Duo CPU. Fig. 6.1 plots the number of seconds taken to find a solution versus the input
size n. The graph is plotted on a logarithmic scale. The time appears to grow exponentially
in n.

42

Chapter 7

Lower Bounds on Myopic and
Drunken Backtracking Algorithms

Here we state and prove Theorem 7.1, our main result about the complexity of inverting
Goldreich’s function with myopic and drunken backtracking algorithms. We note that for
drunken algorithms, similar results were given by [41] and independently by [30].

Our result has a large number of parameters and assumptions which we list after the
statement of the theorem, in Setups 7.2, 7.3 and 7.4 below. We then list some example
settings of the parameters in Section 7.0.1. We will first give an overview of the proof of
Theorem 7.1 in Section 7.1. Following that, we give the actual proof, completing the proof
in Section 7.7.

Theorem 7.1 • Assume BTS is an (s, t)-myopic backtracking algorithm, where s ≤
cr/4 and t ≤ r/2. Import all the parameters and assumptions from the myopic setup
(Setups 7.2 and 7.3 below). Then the probability that BTS on input b finds some
x′ ∈ f−1(b) in time ≤ 2(c/2−h)r/4−d is at most

M1/221−u/2
(

1 + 2εbal

1− 2εbal

)r/2
.

• Assume BTS is a drunken backtracking algorithm, and import all the parameters and
assumptions from the drunken setup (Setups 7.2 and 7.4 below). Then the probability
that BTS on input b finds some x′ ∈ f−1(b) in time ≤ 2(c/2−h)r/4−d is at most

M1/221−b cr
4
c/2.

Setup 7.2 (common setup) These parameters and assumptions are common to the my-
opic and drunken analyses.

• Let f = fP,G : {0, 1}n → {0, 1}m be Goldreich’s function for graph G ∈ [n]m×d and
predicate P : {0, 1}d → {0, 1}, where n, m, and d are positive integers.

• Let M = Ex∈{0,1}n [|f−1(f(x))|]. We say that f is M -to-one on average and discuss
this property more in Section 8.

43

Figure 7.1: The probability that a random graph G ∈ [n]n×d is not good is given. If the
graph is good, the probability that a (s, n/Θ(d))-myopic or drunken bactracking algorithm
can invert fP,G, for any suitable choice of P , in time better than 2Θ(n) is given. For the
myopic algorithm, we should have s ≥ 2−Θ(d)n.

Backtracking Algorithm: (s, n/Θ(d))-myopic drunken

Running time: 2Θ(n) 2Θ(n)

Probability algorithm can invert: 2−s/Θ(d) 2−Θ(n)

Probability random graph not good: 2−s/Θ(d2) + nO(1)2−s/Θ(d) 2−n/Θ(d)

• Assume G is an (r, c)-boundary expander of right-degree d (Definition 6.14) where r
is a positive integer and c > 0.

• Assume P is h-robust (Definition 6.8), where h ∈ (0, c/2).

Setup 7.3 (setup for myopic algorithms) Import everything from Setup 7.2, and add:

• Assume P is an (h, εbal)-balanced predicate (Definition 6.9), for some εbal ∈ [0, 1/2).

• Assume G has at most nbad left vertices in G with degree > dleft, for some positive
integers nbad and dleft.

• Let u = ĉ(s− nbad)/(ĉ+ dleft(d− 1)) where ĉ = dc− h− 1e.

• Choose x ∈ {0, 1}n uniformly at random and set b = f(x).

Setup 7.4 (setup for drunken algorithms) Import everything from Setup 7.2, and add:

• Choose x ∈ {0, 1}n uniformly at random and set b = f(x).

7.0.1 Applications of Theorem 7.1

Random graphs: Theorem 7.1, applied in the setting where G is a random graph, yields
concrete lower bounds on the expected running time of myopic and drunken backtracking
algorithms to invert Goldreich’s function: Indeed, let G ∈ [n]n×d be a random bipartite
graph of right-degree d with n left nodes and n right nodes. Throughout we assume that
d = O(log n), so d = Θ(1) or d = Θ(log n) or anything in between. (For a quick look at the
final lower bounds that we can achieve, see Figure 7.1).

By Lemma 6.16, with probability at least 1−1/n, the graph G is an (r, c′)-expander with
c′ = d/2 + Θ(d) and r = Θ(n/d). Hence by Lemma 6.15, G is an (r, c)-boundary expander
for c = Θ(d).

In order to be able to get a good final lower bound on the running time, we assume the
predicate P satisfies the following two properties:

44

1. P is h-robust for h ≤ c/2(1−Ω(1)). For lower bounds on myopic algorithms, we also
need the stronger condition that P be (h, 2−Ω(d))-balanced.

2. P is such that Equation 8.1 of Theorem 8.1 holds.

Two types of predicates satisfy the above two properties:

1. Predicates P = Ph,Q(x1, . . . , xd) = x1⊕· · ·⊕xd−h⊕Q(xd−h+1, . . . , xd): By Lemma 6.11,
not only does P satisfy Property 1 above, but in fact P is (h, 0)-balanced. Also, by
Theorem 8.1 it satisfies Property 2 above.

2. Random predicates P on d variables: By Lemma 6.11, with high probability, P is
(O(lg d), 2−Θ(d))-balanced, and hence Property 1 above is satisfied (since O(log d) ≤
c/2(1 − Ω(1)) = Θ(d)). Also, by Theorem 8.1, with high probability, P satisfies
Property 2 above. Furthermore, by Remark 8.2 we can with high probability verify
this in time 2O(d) to be sure that predicate P satisfies Property 2 above. Verifying
whether P satisfies Property 1 can also clearly be done in time 2O(d). Hence we can
keep repeating the generation of the random predicate P until we are sure P satisfies
both Properties 1 and 2.

Now Theorem 7.1 can be applied to the function fP,G as follows:

1. Assume that the backtracking algorithm is (s, t)-myopic where t ≤ r/2.

Let nbad = s/2 and dleft = d2dee. Then by Lemma 6.16 with probability at least
1 − 2−Θ(s) there are at most nbad nodes of degree > dleft, provided s ≥ 4ne2−d. In
Setup 7.3, we have

u =
dc− h− 1e(s− nbad)

dc− h− 1e+ dleft(d− 1)
=

s

Θ(d)
.

Now by Theorem 8.1, with probability 1 − nO(1)q over the randomness of G, the
function fP,G satisfies many-to-oneness M ≤ 22−Θ(d)n/q. (As we will see, we will
choose q = 2−s/Θ(d), so the probability that a random G is not good is at most
nO(1)2−s/Θ(d).) Now by Theorem 7.1 the probability that the algorithm does not take
time ≥ 2(c/2−h)r/4−d = 2Θ(n) is at most

M1/221−u/2
(

1 + 2εbal

1− 2εbal

)r
≤
(

22−Θ(d)nq−1/2
)

2−s/Θ(d)22−Θ(d)n,

which is at most probability 2−s/Θ(d) when s = Ω(2−Θ(d)n) and q = 2−s/Θ(d).

2. Assume that the backtracking algorithm is drunken.

With probability 1 − qnO(1) over the randomness of G, we know that the average
many-to-oneness of fP,G is M ≤ 22−Θ(d)n/q. (As we will see, we will choose q =
2−Θ(n).) Now by Theorem 7.1, the probability that the algorithm does not take time
≥ 2(c/2−h)r/4−d = 2Θ(n) is at most

M1/221−b cr
4
c/2 =

(
22−Θ(d)nq−1/2

)
2−Θ(n),

which is probability 2−Θ(n) for a suitable choice of q = 2−Θ(n).

45

Reducing the effect of random non-expanding graphs: As was just mentioned, our
upper bound on the probability that a random graph G is not an expander (Lemma 6.16)
is only inverse polynomial (more specifically 1/n). This means that the function fP,G is
secure against myopic and drunken backtracking algorithms only with inverse polynomial
probability. In order to improve (i.e. decrease) this probability to something which is inverse
superpolynomial, we suggest two ways:

1. Use the function f⊗k : {0, 1}n×k → {0, 1}n×k defined as the concatenation of k Gol-
dreich functions:

f⊗k(x1, . . . , xk) = fP,G1(x1) . . . fP,Gk(x
k),

where G1, . . . , Gk ∈ [n]n×d are chosen independently and uniformly at random. f⊗k is
as secure as each of the individual functions fP,G1 , . . . , fP,Gk . Thus, the probability
that f⊗k is not secure is ≤ n−k. To get exponentially small probability, let for example
k = n.

2. In Section 7.8, we show how we can relax the expansion condition and still get lower
bounds on the running time of myopic and drunken backtracking algorithms. Specifi-
cally, Theorem 7.22 could give for rbad-imperfect expanders G (see Definition 7.20) the
same lower bounds as we got above from Theorem 7.1 for perfect expanders G, if in the
myopic case rbad ≤ u/4d = s/Θ(d2) and in the drunken case rbad ≤ cr/(8d) = n/Θ(d).
Thus by Lemma 7.21, we have the following: (See Figure 7.1)

• With probability 1 − 2−s/Θ(d2) − nO(1)2−s/Θ(d) over the randomness of graph G,
an (s, n/Θ(d))-myopic algorithm cannot invert fP,G with probability better than
2−s/Θ(d) in time better than 2Θ(n), provided s ≥ 2−Θ(d)n.

• With probability 1 − 2−n/Θ(d) over the randomness of graph G, a drunken algo-
rithm cannot invert fP,G with probability better than 2−Θ(n) in time better than
2Θ(n).

7.1 Proof Overview

Our proof is similar to the proof of Alekhnovich et al. [4] that myopic backtracking
algorithms take an exponentially long time to solve systems of linear equations.

Let BTS be a myopic or drunken backtracking algorithm. We pick a random x ∈ {0, 1}n,
and run BTS on input b = f(x). Our goal is to show that BTS will run for a long time
before returning any x′ ∈ f−1(b), but we begin with an easier goal: to show that BTS will
either run for a long time or return a value that is not exactly equal to x. In the case that f
is an injective function, these goals are one and the same. In the general case, Lemma 7.18
allows us to reduce the first goal, Theorem 7.1, to the second goal, Lemma 7.17.

Our strategy to prove Lemma 7.17 is to show first that with high probability BTS will
choose an incorrect value for a variable, and second, that it will take a long time to notice
its mistake. We are only able to prove the second part when the mistake the algorithm
made is locally consistent (Definition 6.21).

46

At every point during the execution of BTS, its partial truth assignment ρ can be in one
of three states:

1. ρ is consistent with x.

2. ρ is not consistent with x, but is locally consistent.

3. ρ is not locally consistent.

We show (in Lemma 7.13 when BTS is myopic and in Lemma 7.14 when BTS is drunken)
that with high probability, the algorithm reaches state 2 at some point when all but at
most cr/4 bits of ρ are either unspecified (ρi = ∗) or are “locally forced”, meaning if ρi
were flipped then ρ would not be locally consistent (Definition 7.5). At this point, we can
apply the proof in Section 7.4: the algorithm will either return a value x′ 6= x which is
consistent with ρ, or, in the case that ρ can’t be extended to any x′ ∈ f−1(b), BTS will take
exponentially long to backtrack and undo its mistake

In order to make our task simpler, we start in Section 7.2 by modifying BTS so that it
becomes a clever algorithm that never enters state 3 before it has made more than cr/4
locally unforced assignments. Then our task is reduced to showing that after the clever
version of BTS has made cr/4 locally unforced assignments, it is much more likely to be in
state 2 than state 1. We show this in Section 7.3.

7.2 Clever Backtracking Algorithms

As in the proof of Alekhnovitch et al, [4] we find it convenient to assume the algorithm
BTS’s first cr/4 variable substitutions are locally consistent. We use their notion of a clever
myopic algorithm, which we call a clever backtracking algorithm.

Definition 7.5 (Locally Forced Assignment) Let b ∈ {0, 1}m, let ρ be a partial truth
assignment, and let i ∈ [n] \ Vars(ρ). We say an assignment i ← a is locally forced by b
and ρ if ρ[i← a] is locally consistent but ρ[i← 1− a] is not. (Definition 6.21 defines local
consistency.)

Definition 7.6 (Clever Backtracking Algorithm) We call a scheduler S clever if it
avoids making assignments which are not locally consistent. More precisely, it is never
the case that i← a is locally forced by b and ρ but S(b, ρ) = (i, 1− a). If the scheduler S is
clever, we also call the associated backtracking algorithm BTS clever.

We show that we may assume without loss of generality that a backtracking algorithm is
clever. We begin by defining the clever version of a backtracking algorithm, and then show
that the clever version is at least as good as the original, and does not lose the property of
being myopic.

47

Definition 7.7 (The Clever Version of a Backtracking Algorithm) Let S be a sched-
uler. The clever version of S, denoted C(S), is defined as follows. If S(b, ρ) = (i, a), then

C(S)(b, ρ) =

{
(i, 1− a) if i← 1− a is locally forced by b and ρ

(i, a) otherwise.

The clever version of a backtracking algorithm BTS is BTC(S).

As the name indicates, the clever version of a backtracking algorithm is also clever.

Lemma 7.8 BTC(S)(b, ρ) produces the same output as BTS(b, ρ), and does not take any
more steps.

Proof: Observe that whenever BTC(S) behaves differently from BTC(S), it is because
ρ[i ← a] is locally inconsistent, where (i, a) = S(b, ρ). Any locally inconsistent assignment
is also globally inconsistent, so BTS must backtrack after trying ρ[i← a]. Therefore BTC(S)

does not waste any time or change its output by trying ρ[i← 1− a] before ρ[i← a].

The following notion of a “clever unwinding” is only used in the proof of Lemma 7.10.

Lemma and Definition 7.9 (Clever Unwinding) Let S be a scheduler. Let b ∈ {0, 1}m
and let σ ∈ {left, right}` be a path string. Then there exists a unique path string σCS(b) such

that BTσ
C(S)(b) = BT

σCS(b)

S (b): that is to say, if BTS follows the path σCS, then it arrives at the
same partial assignment that C(S) reaches after following the path σ. (The notation BTσ

S is
introduced in Definition 6.3.) We call σCS(b) the clever unwinding of σ under b.

The clever unwinding of any prefix of σ is a prefix of the clever unwinding of σ.
Now, let b′ ∈ {0, 1}m be such that for every prefix υ v σCS(b), BTυ

S(b′) = BTυ
S(b). Let

C ∈ Cl(Vars(BTσ
C(S)(b))) and assume further that b′C = bC. Then if P is a c/2-robust

predicate, σCS(b′) = σCS(b).

Proof: The general idea is that the backtracking tree of the clever algorithm BTC(S)

is the same as the backtracking tree of the original algorithm BTS, except some left- and
right- children have been switched. This gives a natural correspondence between paths in
Tree(BTS(b, ∗n)) and paths in Tree(BTC(S)(b, ∗n)).

More precisely, pick i ∈ {1, . . . , `}. We specify explicitly the value of σCS(b)i, the ith
character of the path string σCS(b). Consider the node in the clever backtracking tree
Tree(BTC(S)(b, ∗n)) reached from the root of the tree by following the branches σ1, . . . ,
σi−1. We set σCS(b)i = σi except when the clever scheduler C(S) makes a “clever” choice
different from the original scheduler S at this node, in which case we assign to σCS(b)i the
opposite of σi.

Now, let b′ ∈ {0, 1}m and C ∈ Cl(Vars(BTσ
C(S)(b))) as in the statement of the lemma.

To show σCS(b) = σCS(b′), it suffices to show that along the path σ, the clever scheduler C(S)
makes a different choice from the original scheduler S at exactly the same places on input
b as on input b′.

48

Let υ @ σCS(b) be a strict prefix, let ρυ = BTυ
S(b) = BTυ

S(b′), and let (j, a) = S(b, ρυ) =

S(b′, ρυ). Since Vars(ρυ) ∪ {j} ⊆ Vars(BT
σCS(b)

S (b)) = Vars(BTσ
C(S)(b)), we know that C ∈

Cl(Vars(ρυ) ∪ {j}). Because bC = b′C , by Lemma 6.22 and the definition of local forcing
(Definition 7.5), j ← 1− a is locally forced by b iff it is locally forced by b′, so C(S) makes
a different choice from S at (b, ρυ) iff it does for (b′, ρυ).

Lemma 7.10 If S is an (s, t)-myopic scheduler, P is a c/2-robust predicate, and s ≤ cr/4,
then C(S) is (s, t+ 2c−1s)-myopic.

Proof: Let b ∈ {0, 1}m and let σ ∈ {left, right}s be a path string. Our task is to find a set
T ⊆ L of size ≤ t+ 2c−1s such that for every prefix τ v σ, the partial assignment BTτ

C(S)(b)
depends only on bT (b), and T itself also depends only on bT (b).

Apply the myopic property of S with b and the clever unwinding path string σCS(b), to
get a set T0 ⊆ L such that |T0| ≤ t and whenever b′T0

= bT0 , BTS makes the same decisions
along the path σCS(b) on inputs b and b′:

∀υ v σCS(b), BTυ
S(b′) = BTυ

S(b). (7.1)

Next, let C ∈ Cl(Vars(BTσ
C(S)(b))) be such that |C| < 2c−1s (Lemma 6.19). Finally, set

T = T0 ∪ C.
Notice that |T | ≤ t + 2c−1s. To prove C(S) is (s, t + 2c−1s)-myopic, we consider b′ ∈

{0, 1}m such that b′T = bT . By Lemma 7.9 we have σCS(b′) = σCS(b). Therefore by the myopic
property of S, the set T0 for b′ is the same set T0 as we get for b. Moreover, for any τ v σ,

since τCS(b) is a prefix of σCS(b), by (7.1) we have BT
τCS (b)

S (b) = BT
τCS (b)

S (b′). Therefore, by the
definition of clever unwinding, we have

BTτ
C(S)(b) = BT

τCS (b)

S (b) = BT
τCS (b)

S (b′) = BT
τCS (b′)
S (b′) = BTτ

C(S)(b
′).

In particular, BTσ
C(S)(b) = BTσ

C(S)(b
′); hence the same C ∈ Cl(Vars(BTσ

C(S)(b
′))) is chosen

for b′ as is chosen for b (provided that the choice of C only depends on Vars(BTσ
C(S)(b))).

Given that T0 and C are the same for b′ and b, we have shown that T = T0 ∪ C is also the
same for b′ and b. The proof is complete.

The following is a technical lemma that will be used in the proof of the lemma after.
It concerns the distinction between assignments a bactracking algorithm makes that are
locally forced and those which are not locally forced. Loosely speaking, the lemma says that
closure of the set of locally unforced variables is large enough that its neighborhood includes
all the variables which were locally forced. Combined with Lemma 6.20, this allows us to
ignore locally forced variables when taking closures.

Lemma 7.11 Let S be any scheduler and σ ∈ {left, right}∗ be any path string. Assume P
is a c/2-robust predicate. Let ρ = BTσ

S(b) (Definition 6.3). Let T ⊆ Vars(ρ) be any set of
variables whose assignments were locally forced along the path σ: that is, for all i ∈ T , if ρ′

was the partial assignment just before variable i was assigned, then i← ρ(i) is locally forced
by b and ρ′.

Then for any C ∈ Cl(Vars(ρ) \ T) we have T ⊆ Γ(C).

49

Proof: Let ρs denote the partial assignment reached after taking s steps along the path
σ, and let T s = T ∩ Vars(ρs). We will prove by induction on s that

∀C ∈ Cl(Vars(ρs) \ T s), T s ⊆ Γ(C). (∗)

The base case is trivial: T 0 = ∅.
Now, assume (∗) holds for s − 1. Let (i, a) = S(b, ρs−1), the index and value of the

next assignment made by BTS. Let C ∈ Cl(Vars(ρs) \ T s). Since Cl is monotone, C ∈
Cl(Vars(ρs−1) \ T s−1), so T s−1 ⊆ Γ(C) by (∗). If T s = T s−1, then we are done. Otherwise
T s = T s−1 ∪ {i}, and i ← a is locally forced by b and ρs−1. Define the partial assignment
ρ∗ ∈ {0, 1}n be the same as ρs−1 except that ρ∗i = ∗ for every i ∈ T . Notice that Vars(ρ∗) =
Vars(ρs−1) \ T s. We know that ρ∗[i ← a] is locally consistent, but ρ∗[i ← 1 − a] is not.
Lemma 6.22 says that local consistency is entirely determined by variables in Γ(C), because
C ∈ Cl(Vars(ρ∗) ∪ {i}). Therefore i ∈ Γ(C), so T s = T s−1 ∪ {i} ⊆ Γ(C).

Finally, we come to the reason for replacing our algorithm with a clever algorithm. The
following lemma will be used in the next section.

Lemma 7.12 Assume P is a c/2-robust predicate. Any clever backtracking algorithm BTS

will make at least bcr/4c locally unforced assignments on its leftmost branch. Let ρ be
the partial assgnment reached after making bcr/4c locally unforced assignments. Then ρ is
locally consistent, and Cl(Vars(ρ)) is nonempty.

Proof: Suppose BTS runs for at least s steps on its leftmost branch, resulting in partial
assignment ρ, and that s′ ≤ s of the assignments were not locally forced. It suffices to prove
the following two facts:

1. If s′ < bcr/4c and ρ is locally consistent then the next assignment BTS makes will be
locally consistent.

2. If s′ ≤ bcr/4c, then Cl(Vars(ρ)) is nonempty (and therefore s < n).

We will prove the second fact first. Let T ⊆ Vars(ρ) be the set of variables that were
locally forced. Then by Lemma 7.11,

T ⊆
⋂

C∈Cl(Vars(ρ)\T)

Γ(C).

By Lemma 6.20 and since Cl is monotone, Cl(Vars(ρ)) = Cl(Vars(ρ) \ T). Now, |Vars(ρ) \
T | = s′ ≤ cr/4, so Lemma 6.19 completes our proof of the second fact.

Having proved the second fact, we now prove the first. Let (i, a) = S(b, ρ) be the next
assignment chosen by the scheduler S. Assume for a contradiction that ρ[i ← a] is not
locally consistent. Since S is clever, then, ρ[i ← 1 − a] is not locally consistent either. By
Lemma 6.23 (using the fact just proved), ρ is not locally consistent, which contradicts our
assumption.

50

7.3 The Probability of a Correct Guess is Small

In this section, we assume S is a clever scheduler which is either myopic or drunken.
Sample x ∈ {0, 1}n uniformly at random and let b = fP,G(x). Run BTS for s steps, and call
the resulting partial assignment ρ. Since S is clever, ρ is locally consistent. In what follows,
we show that with high probability ρ will disagree with x.

7.3.1 Main Myopic Lemma

Lemma 7.13 (Main Myopic Lemma) Let BTS be any clever (s, t)-myopic backtracking
algorithm for s ≤ cr/4 and t ≤ r, and import the parameters and assumptions from Setups
7.2 and 7.3. Run BTS on input b. Let ρ be the partial assignment consisting of the first s
choices made by BTS; in other words, ρ = BTlefts

S (b). (By Lemma 7.12, ρ is well-defined.)
Then the probability that ρ can be extended to x is at most

p = 2−u
(

1 + 2εbal

1− 2εbal

)t
.

(u is defined in Setup 7.3.)

Proof: (Within this proof we will always have σ = lefts, so we shorten the notation Tσ to
T .)

For any b̂ ∈ {0, 1}m, define the event

Eb̂ = {x ∈ {0, 1}n : f(x)T (b̂) = b̂T (b̂)}.

We begin by showing that the events {Eb̂ : b̂ ∈ {0, 1}n} form a partition of the sample space
{x : x ∈ {0, 1}n}. These events cover the whole sample space because x ∈ Ef(x) for every

x ∈ {0, 1}n. Now assume, for b̂, b̂′ ∈ {0, 1}m, the events Eb̂ and Eb̂′ share a sample point

x. Then f(x)T (b̂) = b̂T (b̂), hence, by the second property of myopic backtracking algorithms

in Definition 6.5, we have T (f(x)) = T (b̂). Similarly, we have T (f(x)) = T (b̂′). Thus,
T (b̂) = T (b̂′), and b̂T (b̂) = f(x)T (b̂) = b̂′T (b̂′). This means that any two intersecting events Eb̂
and Eb̂′ are actually equal.

Since the events Eb̂ form a partition, we can prove the Lemma by showing that for

every b̂, the probability that ρ can be extended to x, conditioned on event Eb̂, is at most p.

Therefore from now on we fix b̂. By the first property of myopic backtracking algorithms in
Definition 6.5, conditioning on event Eb̂ fixes ρ. By applying Lemma 6.17 with W = Vars(ρ),
there exists a set of input nodes U ⊆ Vars(ρ) of size ≤ u such that every subset of T (b) has
boundary expansion > h outside U . We know that

Pr[ρ can be extended to x|Eb̂] ≤ Pr[xU = ρU |Eb̂],

so it suffices to show
Pr[xU = y|Eb̂] ≤ p, (7.2)

51

for y = ρU .
Here is an overview of the proof of (7.2) for any y ∈ {0, 1}|U |. We first show that xU has

little influence on the distribution of bT (b̂). Then by Bayes’ rule, we conclude that the bits
bT (b̂) do not contain much information about xU .

Order the nodes in T (b̂) as v1, v2, . . . , v|T (b̂)| such that for every 1 ≤ i ≤ |T (b̂)|, we have

|Γ(Ti) \ (Γ(Ti−1)∪U)| ≥ h+ 1 for Ti = {v1, . . . , vi}. This ordering is possible because every
subset of T (b̂) has boundary > h outside U . For any y ∈ {0, 1}|U |, we have

Pr[Eb̂|xU = y] =

|T (b̂)|∏
i=1

Pr[bvi = b̂vi |bTi−1
= b̂Ti−1

, xU = y]

∈[(1
2
− εbal)

|T (b̂)|, (1
2

+ εbal)
|T (b̂)|],

since P is (h, εbal)-balanced and for every 1 ≤ i ≤ |T (b̂)|, vi has at least h + 1 neighbors
outside Γ(Ti−1) and U . Using Bayes’ rule, for any y, y′ ∈ {0, 1}|U |,

Pr[xU = y′|Eb̂]
Pr[xU = y|Eb̂]

=
Pr[Eb̂|xU = y′] Pr[xU = y′]

Pr[Eb̂|xU = y] Pr[xU = y]

=
Pr[Eb̂|xU = y′]

Pr[Eb̂|xU = y]

≥
(

1− 2ε

1 + 2ε

)|T (b̂)|

.

Fixing y and summing the above inequality over all y′ ∈ {0, 1}|U |, we get

1

Pr[xU = y|Eb̂]
≥ 2|U |

(
1− 2ε

1 + 2ε

)|T (b̂)|

.

Equation (7.2) follows immediately.

7.3.2 Main Drunken Lemma

Next, we will present the main lemma for drunken backtracking algorithms.

Lemma 7.14 (Main Drunken Lemma) Let S be any drunken scheduler, and consider
the backtracking algorithm BTC(S) which uses the clever version of S. Let s′ ≤ cr/4, and
import all the parameters and assumptions from Setups 7.2 and 7.4. Run BTC(S) on input
b. Let ρs

′
be the partial assignment consisting of the choices made by BTC(S) on its left-most

branch up to the point where it has made s′ non-forced assignments. (By Lemma 7.12, ρs
′

is well-defined.) Then the probability that ρ can be extended to x is exactly 2−s
′
.

Proof: We shall prove by induction on s′ that the probability that ρs
′

can be extended
to x is 2−s

′
, even after conditioning on the value of x ∈ {0, 1}n. The statement for the base

case s′ = 0 is clear: ∗n can always be extended to x.

52

For s′ ≥ 1, let ρs
′

bef be the partial assignment just before the s′th non-forced assignment
is made. Since ρs

′

bef is obtained from ρs
′−1 by adding some forced assignments, we know that

ρs
′

bef can be extended to x if and only if ρs
′−1 can be.

Furthermore, to get from ρs
′

bef to ρs
′
, the drunken scheduler S makes a choice (i, a) where

Pr[a = 0] = Pr[a = 1] = 1/2 given i and all the events that have happened so far in
the algorithm. Since this step is not locally forced, the clever version of S allows that
the backtracking algorithm BTC(S) first try the choice of a for the ith variable, which is
inconsistent with xi with probability 1/2. Therefore,

Pr[ρs
′

can be extended to x] = Pr[ρs
′

bef can be extended to x]·
Pr[a = xi|ρs

′

bef can be extended to x]

= Pr[ρs
′−1 can be extended to x] · 1/2

=2−s
′+1 · 1/2 = 2−s

′
.

Let us compare the lemma above with the similar result [30, Lemma 6]. In our argument
above, we only need to show that at least one of the drunken choices made by the algo-
rithm is unlucky, whereas [30] uses a concentration result (Chernoff’s bound) to show that
approximately half of the drunken choices is unlucky. On the other hand, the argument of
[30] deals with the many-to-oneness of Goldreich’s function directly, whereas we deal with
this issue of many-to-oneness separately in Section 7.6.

7.4 Refutation of Locally Consistent but Globally In-

consistent Partial Assignments

Lemma 7.15 Consider running a backtracking algorithm BTS for solving fP,G(x) = b.
Import the parameters and assumptions from Setup 7.2. Assume that BTS reaches a partial
assignment ρ, where Cl(Vars(ρ)) is nonempty and ρ is locally consistent, but ρ cannot be
extended to any solution of fP,G(x) = b. Then Tree(BTS(b, ρ)), the backtracking subtree
rooted at ρ, has size at least 2(c/2−h)r/4−d.

In order to prove the above, we will make use of the well-known connection between the
size of backtracking trees and the size of “tree-like resolution proofs.”

We will make use of the following theorem from [13]. The width of a resolution proof is
the greatest width of any clause that occurs in it, and the width of a clause is the number
of variables in it.

Theorem 7.16 [13, Theorem 3.3]
The size of any tree-like resolution refutation of a CNF formula Ψ is at least 2w−wΨ, where
w is the minimal width of a resolution refutation of Ψ, and wΨ is the maximal width of a
clause in Ψ.

53

Proof: [Lemma 7.15] (Our proof follows the proof of [4, Lemma 9], which in turn uses the
Ben-Sasson-Wigderson measure of [13].)

We define a CNF formula Ψ(x) with width d which is logically equivalent to the statement
f(x) = b. The i-th bit of b translates to a set of at most 2d clauses that enforce the constraint
P (xGi,1 , xGi,2 , . . . , xGi,d) = bi. For any S ⊆ L and y ∈ {0, 1}S, we denote by Ψ[xS = y] the
CNF formula of width ≤ d, whose variables are xL\S, and which is obtained from Ψ by
replacing the variables xS with y.

The bactracking subtree Tree(BTS(b, ρ)) can be converted to a tree-like resolution proof
(of the same size as the subtree) that the formula Ψ[xVars(ρ) = ρVars(ρ)] is unsatisfiable (See
for example [32, Proposition 1]). Thus, by Theorem 7.16, it suffices to show:

Every resolution refutation of Ψ[xVars(ρ) = ρVars(ρ)] has width at least w
def
= (c/2− h)r/4.

(∗)
By assumption, Cl(Vars(ρ)) contains some set I of size at most r/2 which is closed with

respect to Vars(ρ). Since ρ is locally consistent, ρ can be extended to some x′ ∈ {0, 1}n such
that f(x′)I = bI . Let J = Vars(ρ)∪ Γ(I). Instead of proving (*), we will prove the stronger
statement that every resolution refutation of Ψ[xJ = x′J] has width at least w.

For any clause C on the variables xL\J and a set I ′ ⊆ R \ I, we say I ′ implies C if for
every x such that (f(x)I′ = bI′ ∧ xJ = x′J), the clause C is satisfied by x. We define the
measure of C to be

µ(C) = min{|I ′| : I ′ ⊆ R \ I, and I ′ implies C}.

Assume µ(C) ≤ r/2, and let I ′ be a smallest subset of R \ I which implies C. No vertex
i ∈ I ′ contains more than h neighbors in L \ J that do not appear in C or Γ(I ′ \ {i}), since
otherwise, by the h-robustness of the predicate P , I ′ \ {i} would also imply C. Since C is
closed with respect to Vars(ρ) and |I ′| ≤ r/2, we know |∂I ′ \ J | ≥ c|I ′|/2, so C consists of
at least (c/2− h)µ(C) variables. Thus we have proved:

For any clause C, µ(C) is either ≤ width(C)

c/2− h
or > r/2. (#)

We have:

1. µ(C) = 1 for any clause C in the CNF formula Ψ[xJ = x′J].

2. µ(C) > r/2 for the empty clause C = False, because of (#) and because µ(False) > 0.

3. µ is subadditive: If C2 is the resolution of C0 and C1, then µ(C2) ≤ µ(C0) + µ(C1),
because whenever I ′0 implies C0 and I ′1 implies C1, it follows that I ′0 ∪ I ′1 implies C2.

Putting 1, 2 and 3 together, we find that every resolution refutation of Ψ[xJ = x′J] contains
a clause C whose measure is in the range (r/4, r/2]. By (#), the width of C is at least
w = (c/2− h)r/4, which completes the proof.

54

7.5 Inverting Goldreich’s Function Exactly

We are now ready to prove that myopic and drunken backtracking algorithms cannot
efficiently determine the exact value of x given f(x). Here we stop for a moment to state
and prove this partial result before we go on to complete the proof of Theorem 7.1.

Lemma 7.17 • Assume BTS is an (s, t)-myopic backtracking algorithm, where s ≤ cr/4
and t ≤ r/2. Import all the parameters and assumptions from Setups 7.2 and 7.3.
Then the probability that BTS on input b runs in time ≤ 2(c/2−h)r/4−d and returns the
exact solution x is at most

2−u
(

1 + 2εbal

1− 2εbal

)r
.

• Assume BTS is a drunken backtracking algorithm, and import all the parameters and
assumptions from Setups 7.2 and 7.4. Then the probability that BTS on input b rens
in time ≤ 2(c/2−h)r/4−d and returns the exact solution x is at most

2−b
cr
4
c.

Proof: By Lemma 7.8, it suffices to complete the proof for the clever version of the
algorithm BTC(S).

• Myopic Case.

By Lemma 7.10, BTC(S) is (s, r)-myopic. Let ρ be the partial assignment consisting
of the first s choices made by BTS. Then by Lemma 7.13, applied to BTC(S), the

probability that ρ can be extended to x is at most 2−u
(

1+2εbal

1−2εbal

)r
.

• Drunken Case.

Let ρ be the partial assignment consisting of the first bcr/4c choices made by BTC(S).
Then by Lemma 7.14, the probability that ρ can be extended to x is at most 2−bcr/4c.

Henceforth, assume ρ cannot be extended to x. Our goal is to prove that in this case,
BTC(S) will either return some x′ 6= x, or that its running time will be at least 2(c/2−h)r/4−d

Since BTC(S) will explore the entire backtracking subtree rooted at ρ before backtracking,
it cannot return x before finishing that exploration. We consider two cases: either ρ can be
extended to some x′ ∈ f−1(f(x)), or it can be extended to no such x′

In the first case, BTC(S) must return some x′ ∈ f−1(f(x)) before it finishes exploring the
subtree, so x′ 6= x.

In the second case, BTC(S) will not return anything before exploring every node of
the backtracking subtree rooted at ρ. Lemma 7.12 guarantees all the preconditions for
Lemma 7.15, so the number of nodes in that subtree is at least 2(c/2−h)r/4−d.

55

7.6 Accounting for the Size of Pre-Images

So far, we have shown that given f(x), certain backtracking algorithms cannot efficiently
guess x. We now show that such algorithms also cannot efficiently find any x′ ∈ f−1(f(x)),
assuming the pre-images f−1(f(x)) are small enough on average.

Lemma 7.18 Let BTS be a backtracking algorithm, choose x ∈ {0, 1}n uniformly at random
and let b = f(x). Let E be the event that when solving f(x′) = b, BTS runs in time ≤ t and
returns the exact solution x. Let F be the event that BTS runs in time ≤ t and returns any
x′ ∈ f−1(b).

Then Pr[F] ≤ 2
√
M Pr[E], where M = Ex∈{0,1}n [|f−1(f(x))|].

Proof: Consider the event

H = {x ∈ {0, 1}n : |f−1(f(x))| ≤M ′},

where M ′ will be chosen shortly. We have Pr[F] ≤ Pr[F,H] + Pr[Hc]. We can upper-bound
Pr[F,H] in terms of Pr[E]:

Pr[E] ≥Pr[E|F,H] · Pr[F,H]

≥ 1

M ′ · Pr[F,H],

and we get Pr[F,H] ≤ M ′ Pr[E]. To upper-bound Pr[Hc], we use Markov’s inequality on
the size of the preimage of f(x), and we get Pr[Hc] ≤ M/M ′. We complete the proof by
taking M ′ =

√
M/Pr[E], so that

Pr[F] ≤ Pr[F,H] + Pr[Hc] ≤M ′ Pr[E] +M/M ′ = 2
√
M Pr[E].

7.7 Proof of Theorem 7.1

Proof: We prove the myopic and drunken cases at the same time. Consider the events
E and F from the statement of Lemma 7.18. Theorem 7.1 can be restated in terms of the
event F as follows:

• In the myopic case, Pr[F] ≤M1/221−u/2
(

1+2εbal

1−2εbal

)r/2
.

• In the drunken case, Pr[F] ≤M1/221−b cr
4
c/2.

By Lemma 7.18, it suffices to bound the probability of E as follows:

• In the myopic case, Pr[E] ≤ 2−u
(

1+2εbal

1−2εbal

)r
.

• In the drunken case, Pr[E] ≤ 2−b
cr
4
c.

These two bounds are proved in Lemma 7.17.

56

7.8 Coping With Imperfect Expansion

One way to choose the graph G ∈ [n]n×d is uniformly at random. Such a graph will fail
the expansion condition of Theorem 7.1 with probability ≥ 1/nd. On the other hand, the
probability that the graph will fail any of the other conditions of the theorem is exponentially
small, for a suitable choice of predicate P . In this section, we show that the expansion
condition of Theorem 7.1 can be weakened, so that a random graph fails with exponentially
small probability.

Definition 7.19 (Removing Nodes) Let G ∈ [n]m×d be a bipartite graph with nodes L =
[n] on the left and R = [m] on the right. Let I ⊆ R. Then we define G \ I ∈ [n](m−|I|)×d to
be the graph G without the nodes in I or the edges connected to them.

Definition 7.20 (Imperfect Expansion) A graph G ∈ [n]n×d is an rbad-imperfect (r, c)-
boundary expander if there exists a subset Ibad ⊆ R of size |Ibad| ≤ rbad such that G \ Ibad

is an (r, c)-boundary expander (Definition 6.14). We call Ibad an extraneous set of G.

Lemma 7.21 A random bipartite graph G ∈ [n]n×d with n left nodes and n right nodes, and
of right-degree d, is with probability 1− (1/4)rbad an rbad-imperfect (r, c)-boundary expander
for any c = d− Ω(d), provided r + rbad ≤ rmax(n, d, c), where rmax = Ω(n/d).

Proof: Let c′ = (c + d)/2. Let Ibad be a largest set of right-nodes I ⊆ R of size at most
r + rbad such that |Γ(I)| ≤ c′|I|. Then G \ Ibad is an (r + rbad − |Ibad|, c′)-expander, and
hence by Lemma 6.15, an (r + rbad − |Ibad|, c)-boundary expander. All that remains is to
show |Ibad| ≤ rbad.

Note that c′ = d − Ω(d), so from the proof of Lemma 6.16, the probability that there
exists a set of size i ∈ [rbad + 1, r + rbad] with expansion ≤ c′ is at most σi∈[rbad+1,r+rbad]a

i
i,

where ai is defined in the same proof and is shown to be at most 1/4. Thus the sum is at
most (1/4)rbad

Now here we state the theorem corresponding to Theorem 7.1 adjusted to imperfect
expanders. For applications of this theorem, we refer the reader to Section 7.0.1.

Theorem 7.22 • Assume BTS is an (s, t)-myopic backtracking algorithm, where s ≤
cr/4 and t ≤ r/2. Import all the parameters and assumptions from Setup 7.23. Then
the probability that BTS on input b finds some x′ ∈ f−1(b) in time ≤ 2(c/2−h)r/4−d−drbad

is at most

M1/221+drbad−u/2
(

1 + 2εbal

1− 2εbal

)r/2
.

• Assume BTS is a drunken backtracking algorithm, and import all the parameters and
assumptions from Setup 7.24. Then the probability that BTS on input b finds some
x′ ∈ f−1(b) in time ≤ 2(c/2−h)r/4−d − drbad is at most

M1/221+drbad−b cr4 c/2.

57

Setup 7.23 (Imperfect-expansion setup for myopic algorithms) The same as Setup 7.3,
except that we do not assume G to be an (r, c)-boundary expander, but instead assume G is
an rbad-imperfect (r, c)-boundary expander, where rbad is a positive integer.

Setup 7.24 (Imperfect-expansion setup for drunken algorithms) The same as Setup 7.4,
except that we do not assume G to be an (r, c)-boundary expander, but instead assume G is
an rbad-imperfect (r, c)-boundary expander, where rbad is a positive integer.

Lemma 7.25 Let f = fG,P : {0, 1}n → {0, 1}m be an instance of Goldreich’s function for

graph G and predicate P . Let I ⊆ R be a set of right-nodes in G and define f̂ = f(G\I),P :
{0, 1}n → {0, 1}m−|I|.

Let BTS be (a) an (s, t)-myopic backtracking algorithm, or (b) a drunken backtracking
algorithm, for inverting f . Then there exists (a) an (s, t)-myopic backtracking algorithm or
(b) a drunken backtracking algorithm, called BTŜ, for inverting f̂ , which has the following

relation to BTS. Sample x ∈ {0, 1}n uniformly at random and let b = f(x) and b̂ = f̂(x).
If p is the probability that BTS on input b runs in time ≤ maxtime and returns the exact
solution x, then the probability that BTŜ on input b̂ runs in time ≤maxtime + |Γ(I)| and
returns the exact solution x is at least p2−|Γ(I)|, where Γ(I) is the set of nodes connected to
I.

A first attempt to prove Lemma 7.25 is to have BTŜ convert the output b̂ ∈ {0, 1}m−|Γ(I)|

into a complete output b ∈ {0, 1}m by guessssing the output values bI randomly. This guess
would be correct with probability 2−|I|, and BTŜ could then try to emulate the original
algorithm BTS on the complete input b, by making the same decision that BTS would make
at each node of the backtracking tree. The trouble with this approach is that when BTS

reaches a node whose partial assignment is inconsistent with a bit in bI , it will backtrack.
BTŜ is only allowed to backtrack from nodes which are inconsistent with bits in b̂, and so
BTŜ may be forced to explore backtracking subtrees that BTS is allowed to skip. To fix this
problem, we guess the input bits xΓ(I) instead of guessing the output bits bI .

Proof: BTŜ will begin by guessing the bits xΓ(I) uniformly at random. Call the resulting
partial assignment ρguess. We are not interested in the behavior of BTŜ after it undoes any
of these initial assignments, so it is enough to describe the backtracking subtree below the
node ρguess, which is denoted Tree(BTŜ(b̂, ρguess)) in Definition 6.3. Extend b̂ to b̄ ∈ {0, 1}m
using the rule

b̄i =

{
b̂i if i 6∈ I
f(ρguess)i if i ∈ I

Note that if ρguess is a correct guess, i.e. ρguess = xΓ(I), then b̄ = f(x) = b. To make

Tree(BTŜ(b̂, ρguess)), start with Tree(BTS(b̄, ∗n)) of the original algorithm and make the
following changes:

• First, delete any nodes whose partial assignments disagree with ρguess.

58

• Next, add ρguess to the partial assignment at every node: if the node originally had
partial assignment ρ, then the new version of the node will have partial assignment
ρ ∪ ρguess, defined as follows:

(ρ ∪ ρguess)j =


∗, j 6∈ Vars(ρ) ∪ Γ(I)

ρj, j ∈ Vars(ρ)

(ρguess)j, j ∈ Γ(I).

• Finally, sometimes a node will have the same label as its child, because the scheduler
S decided to assign a variable which is in ρguess. Replace each such node with its child.
(There will only be one child, because we deleted the child which was inconsistent
with ρguess).

The effect of our three changes is to ignore all branches where BTS makes an assignment
inconsistent with the assignments ρguess which BTŜ already made. In particular, if BTS

returns x as solution, then the leaf labeled x is not removed from the tree. Thus we have

Pr
x,ρguess

[BTŜ(b̂, ∗n) returns x in time maxtime + |Γ(I)|]

≥ Pr
x,ρguess

[ρguess = xΓ(I) and BTŜ(b̂, ρguess) returns x in time maxtime]

≥ Pr
x,ρguess

[ρguess = xΓ(I) and BTS(b̄, ∗n) returns x in time maxtime]

= Pr
x,ρguess

[ρguess = xΓ(I) and BTS(b = f(x), ∗n) returns x in time maxtime]

= Pr
x,ρguess

[ρguess = xΓ(I)] · Pr
x

[BTS(b = f(x), ∗n) returns x in time maxtime]

≥ 2−|Γ(I)|p.

It remains only to show that BTŜ is (a) an (s, t)-myopic backtracking algorithm (Defini-
tion 6.5) or (b) a drunken backtracking algorithm (Definition 6.7).

• For the drunken case (b), the first |Γ(I)| assignments are random values by design.
Every other assignment BTŜ makes copies a decision made by BTS, so BTŜ is at least
as drunk as BTS.

• For the myopic case (a), BTŜ is actually not myopic, since a myopic algorithm is
by definition deterministic. However, as we will see, BTŜ is a distribution over (s, t)-
myopic algorithms. For every ρguess ∈ {0, 1}|Γ(I)|, define the deterministic backtracking
algorithm BTŜ |ρguess as BTŜ conditioned that the value first guessed for xΓ(I) is ρguess.
Consider any path string σ̂ ∈ {left, right}s. Assuming s > |Γ(I)|, the backtracking
tree node BTŜ |ρσ̂guess(b̂) corresponds to some equivalent node BTσ

S(b̄) in the original

backtracking tree, for some path string σ ∈ {left, right}s′ where s′ ≤ s. Since BTS

is (s, t)-myopic, there exists a set T ⊆ R with |T | ≤ t such that the decisions made
by BTS along the path σ depend only on b̄T , and the choice of T also depends only
on b̄T . Then for every fixed ρguess, the decisions made by BTŜ |ρguess depend only on

59

the bits b̂T\I , and the set T only depends on b̂T\I . (Also if s ≤ |Γ(I)|, one can choose
the set T to be the empty set.) Therefore BTŜ |ρguess is (s, t)-myopic for every ρguess.
Choose the ρguess that maximizes the probability of returning x in time maxtime.
Then BTŜ |ρguess returns x in time maxtime with probability at least p2−|Γ(I)|.

We are now ready to prove the main theorem of this section.

Proof: [Theorem 7.22] Let Ibad be an extraneous set of G and let f̂ = f(G\Ibad),P . Let p
be the probability that BTS on input b runs in time ≤ 2(c/2−h)r/4−d − drbad and returns the
exact solution x.

By Lemma 7.25, there is an algorithm BTŜ which with probability at least p2−drbad , on

input f̂(x), runs in time ≤ 2(c/2−h)r/4−d and returns the exact solution x.
Since f̂ uses an (r, c)-boundary expander, we can apply Lemma 7.17 and conclude that

in the myopic case, p2−drbad ≤ 2−u
(

1+2εbal

1−2εbal

)r
, and in the drunken case, p2−drbad ≤ 2−b

cr
4
c.

Lemma 7.18 completes the proof.

60

Chapter 8

The Size of Pre-images of Goldreich’s
Function

In this chapter we prove that Goldreich’s function has pre-images sufficiently small for
Theorem 7.1 to work.

Theorem 8.1 There exist positive constants c1 and c2 such that, for sufficiently large d, if
we choose P : {0, 1}d → {0, 1} uniformly at random, then with probability 1 − 2−2c1d over
the choice of P ,

E
G∼Unif([n]n×d)
x∼Unif({0,1}n)

[#y : fP,G(x) = fP,G(y)] ≤ nO(1)22−c2dn. (8.1)

Also, for any constant c3 ∈ (0, 1), there exists a positive constant c2 such that the predicate
Ph,Q(x1, . . . , xd) = x1 ⊕ · · · ⊕ xd−h ⊕Q(xd−h+1, . . . , xd) satisfies Equation (8.1), for h ≤ c3d
and any h-ary predicate Q.

Furthermore, by Markov’s Inequality, for any P which satisfies Equation (8.1) and any
q > 0, with probability ≥ 1− nO(1)q over the choice of graph G ∈ [n]n×d,

E
x∼Unif({0,1}n)

[#y : fP,G(x) = fP,G(y)] ≤ 22−c2dn/q.

This theorem was shown for h = 2 and Q(x, y) = x ∧ y in [16]. Itsykson [30] pointed out
that the same proof works for general predicates Q for h+ 1 < d/4. The proof for random
predicates is original to this work.

Remark 8.2 Looking at the proof of Theorem 8.1 for random predicates, the following can
be observed: Not only does a random predicate P satisfy Equation 8.1 of Theorem 8.1 with
probability ≥ 1− 2−2c1d, but also a random predicate P with probability ≥ 1− 2−2c1d can be
verified to satisfy Equation 8.1 of Theorem 8.1 in time 2O(d). More precisely, for the suitable
choice of δ > 0:

• A random predicate is δ-good (see Definition 8.10) with probability ≥ 1 − 2−2c1d by
Lemma 8.11.

61

• A δ-good predicate satisfies Equation 8.1 of Theorem 8.1 by Lemma 8.13 and the proof
of Theorem 8.1.

• It is possible to verify in time 2O(d) whether a given predicate P is δ-good or not.

Definition 8.3
Let ∆2 = {p : {0, 1}2 → R

≥0|
∑
p = 1} be the set of probability distributions over {0, 1}2.

For α ∈ ∆2,

• We define αd to be the distribution over ({0, 1}d)2 where (x, y) ∼ αd means each
(xi, yi) ∼ α independently. For example, if α is the uniform distribution, αd is also
the uniform distribution, and if α assigns a probability of one to the string 01, then
αd assigns a probability of 1 to the pair (0 · · · 0, 1 · · · 1).

• H(α) denotes the base-2 entropy of the distribution: H(α) = −
∑

i,j∈{0,1} αi,j lgαi,j.

Similarly, let ∆2(d) = {β : {0, 1}2 → N|
∑
β = d}.

• For a pair (x, y) ∈ ({0, 1}d)2, and for (a, b) ∈ {0, 1}2, let #ab(x, y) be the number of
indices i such that xi = a and yi = b. For example, if x = 0110 and y = 1000, then
#00(x, y) = 1 and #10(x, y) = 2.

• Define NA (for Number of Appearances) by
NA(x, y) = (#00(x, y),#01(x, y),#10(x, y),#11(x, y)) ∈ ∆2(d).

• For β ∈ ∆2(d), NA−1(β) is a set of pairs (x, y) ∈ ({0, 1}d)2. We shall sometimes use
NA−1(β) to denote the uniform probability distribution over that set.

Definition 8.4 For a predicate P : {0, 1}d → {0, 1} and α ∈ ∆2, the probability of equality
of P over α is

PE(P, α) = Pr
(x,y)∼αd

[P (x) = P (y)].

Lemma 8.5 There exist positive constants c1 and c2 such that, for sufficiently large d, the
following holds. Choose P : {0, 1}d → {0, 1} uniformly at random. Then with probability
1− 2−2c1d over the choice of P ,

∀α ∈ ∆2, H(α) + lg PE(P, α) ≤ 1 + 2−c2d. (8.2)

Also, for any constant c3 ∈ (0, 1), there exists a constant c2 > 0 such that Ph,Q defined in
Theorem 8.1 satisfies Equation (8.2), for h ≤ c3d and any h-ary predicate Q.

We defer the proof of Lemma 8.5 until after the proof of Theorem 8.1.

62

Proof: [Theorem 8.1] Let P be any predicate satisfying Equation (8.2) in Lemma 8.5.
Then

E
G∼Unif([n]n×d)

[#(x, y) : fP,G(x) = fP,G(y)]

=
∑

x,y∈{0,1}n
Pr

G∼Unif([n]n×d)
[fP,G(x) = fP,G(y)]

=
∑

x,y∈{0,1}n

n∏
i=1

Pr
Gi,1,...,Gi,d∼Unif([n])

[P (xGi,1 , . . . , xGi,d) = P (yGi,1 , . . . , yGi,d)]

=
∑

x,y∈{0,1}n

n∏
i=1

PE(P,NA(x, y)/n)

=
∑

β∈∆2(n)

(
n

β00, β01, β10, β11

)
PE(P, β/n)n

(using Stirling’s approximation)

≤
∑

β∈∆2(n)

O(2nH(β/n)) PE(P, β/n)n

≤|∆2(n)|max
α∈∆2

O(2nH(α)) PE(P, α)n

=O(n3) max
α∈∆2

[2H(α) PE(P, α)]n.

Lemma 8.5 completes the proof.

8.0.1 A Technical Lemma

Lemma 8.6 ∀τ ∈ (0, 1], ∃ε > 0, ∀p ∈ [0, 1] ∀d ≥ 1, H(p) + lg(1 + (1− p)τd) ≤ 1 + 2−εd.

Proof: Assume τ ∈ (0, 1] is given. First we show that we can choose positive D and ε′

such that
∀p ∈ [0, 1], ∀d > D, H(p) + lg(1 + (1− p)τd) ≤ 1 + 2−ε

′d. (8.3)

We prove this by considering four possible cases for the value of p, namely, p ∈ (ε1, 1],
p ∈ (ε2/d, ε1], p ∈ (2−ε3d, ε2/d], p ∈ [0, 2−ε3d], where ε1, ε2, ε3 are positive constants to be
chosen. We will choose the numbers D and ε′, ε1, ε2, ε3 as we go along, but according to the
following dependency graph:

ε2 // ε1

�� A
AA

AA
AA

ε′ D

ε3

OO >>}}}}}}}

63

• Case 1: p > ε1. Then

H(p) + lg(1 + (1− p)τd) ≤ 1 + (1− ε1)τd lg e ≤ 1 + 2−ε
′d,

for ε1 < 1, ε′ ≤ −1
2
τ lg(1− ε1), d > D ≥ −2 lg lg e/(τ lg(1− ε1)).

For the remaining three cases, p is small. Using the Taylor expansion of lg around 2, we get

lg(1 + (1− p)τd) ≤ 1 +
(1− p)τd − 1

2 ln 2
≤ 1 +

e−τpd − 1

2 ln 2
.

• Case 2: p ∈ (ε2/d, ε1]. Then

H(p) + lg(1 + (1− p)τd) ≤ H(ε1) + 1 +
e−τε2 − 1

2 ln 2
≤ 1,

if we choose ε1 small enough that ε1 ≤ 1/2 and H(ε1) ≤ (1− e−τε2)/(2 ln 2).

For the remaining two cases we fix ε2 = (2τ)−1. Now, τpd ≤ 1
2
, and we have the approxi-

mation

H(p) + 1 +
e−τpd − 1

2 ln 2
≤ (p lg(1/p) + 2p) + 1− τpd

4 ln 2
= 1 + p

(
lg(1/p)− τ

4 ln 2
d+ 2)

)
.

• Case 3: p ∈ (2−ε3d, ε2/d].

For ε3 <
τ

4 ln 2
and d > D for sufficiently largeD (depending on ε3): lg(1/p)− τ

4 ln 2
d+2 <

0.

• Case 4: p ≤ 2−ε3d.

For ε′ ≤ 1
2
ε3 and d > D for sufficiently large D (depending on ε3): p lg(1/p) ≤

ε3d2−ε3d ≤ 2−ε
′d.

We have proved (8.3). It remains to prove the lemma for d ∈ [1, D]. Let f(p, d) = H(p) +
lg(1 + (1 − p)τd). Since f is a continuous function on the compact set [0, 1] × [1, D], it
achieves a finite maximum M = f(p∗, d∗) on this set. It is easy to see that M ∈ (1, 2).
Let ε = min{ε′,−D−1 lg(M − 1)}. Then for d ∈ [1, D], f(p, d) ≤ M ≤ 1 + 2−εd, and for
d ∈ (D,∞), f(p, d) ≤ 1 + 2−ε

′d ≤ 1 + 2−εd.

64

8.1 Proof of Lemma 8.5 for the predicate Ph,Q

For predicates of the form Ph,Q(x1, . . . , xd) = x1 ⊕ · · · ⊕ xd−h ⊕ Q(xd−h+1, . . . , xd), we
have

PE(Ph,Q, α) =
1 + E[(−1)P (x)+P (y)]

2

=
1 +

(∏d−h
i=1 E[(−1)xi+yi]

)
E[(−1)Q(xd−h+1,...,xd)+Q(yd−h+1,...,yd)]

2

≤
1 +

∣∣∣∏d−h
i=1 E[(−1)xi+yi]

∣∣∣
2

=
1 + |α00 + α11 − α10 − α01|d−h

2
.

Take p = min{α00 + α11, α01 + α10}. Given p, the maximum values of H(α) is acheived
when α00 = α11 and α01 = α10; thus H(α) ≤ 1 + H(p). By the above, PE(Ph,Q, α) ≤
(1+(1−2p)d−h)/2 ≤ (1+(1−p)d−h)/2. Therefore it suffices to showH(p)+lg(1+(1−p)d−h) ≤
1 + 2−εd. Lemma 8.6 completes the proof with τ = (d− h)/d.

8.1.1 Proof of Lemma 8.5 for Random Predicates

It remains to prove Lemma 8.5 for predicates chosen uniformly at random.

Definition 8.7 For β ∈ ∆2(d), the probability of equality of P over β is

PE(P, β) = Pr
(x,y)∼NA−1(β)

[P (x) = P (y)].

PE(P, β) is similar to PE(P, α), but there are finitely many possible values for β ∈ ∆2(d).
as opposed to ∆2 where there are infinitely many possible values for α ∈ ∆2. The fact that
β has finite range helps: Once you show that given a β, the number PE(P, β) is upper-
bounded with high probability over the randomness of P , you can take a union bound to
get with high probability over the randomness of P an upper bound on PE(P, β) for all β
(see Lemma 8.11 below).

Lemma 8.8
PE(P, α) = E

β∼Mult(α,d)
[PE(P, β)].

Proof: We use the partition ({0, 1}d)2 =
⋃
β∈∆2(d) NA−1(β).

PE(P, α)

= Pr
(x,y)∼αd

[P (x) = P (y)]

=
∑

β∈∆2(d)

Pr
(x,y)∼αd

[P (x) = P (y)|(x, y) ∈ NA−1(β)] Pr
(x,y)∼αd

[(x, y) ∈ NA−1(β)]

= E
β∼Mult(α,d)

[
Pr

(x,y)∼αd
[P (x) = P (y)|(x, y) ∈ NA−1(β)]

]
.

65

For any fixed β ∈ ∆2(d), αd restricted to NA−1(β) is simply the uniform distribution on
NA−1(β). Therefore the quantity inside the expectation is equal to PE(P, β).

Definition 8.9 (One-Bit Entropy, αa∗, α∗a, H∗(α)) Let α ∈ ∆2.

• For a ∈ {0, 1}, αa∗
def
= α(a, 0) + α(a, 1) and α∗a

def
= α(0, a) + α(1, a).

• We define the one-bit entropy of α to be H∗(α)
def
= max{H(α0∗, α1∗),H(α∗0, α∗1)}.

Definition 8.10 (Good Predicate) Let E(d) (for Equal) be the set of β ∈ ∆2(d) such
that β(0, 1) = β(1, 0) = 0. Notice that if (x, y) ∈ NA−1(β), then x = y iff β ∈ E(d).

For any δ > 0, we call P to be a δ-good predicate if for every β ∈ ∆2(d) \E(d), we have

PE(P, β) ≤ 1
2

+ 2−d(H∗(β/d)−δ)/2.

Lemma 8.11 Fix any δ > 0 and β ∈ ∆2(d) \ E(d). Choose P : {0, 1}d → {0, 1} uniformly
at random. Then

Pr[PE(P, β) > 1
2

+ 2−d(H∗(β/d)−δ)/2] ≤ exp(−1
2
2δd/poly(d)).

Taking a union bound,

Pr[P is not a δ-good predicate] ≤ exp(−2δd−O(log d)).

Proof: Without loss of generality, assume H∗(β/d) = H(β0∗/d, β1∗/d). Let S ⊆ {0, 1}d
be the support of the marginal distribution on x when (x, y) ∼ NA−1(β): that is, S is the
set of strings with β0∗ zeroes and β1∗ ones.

Pick any x ∈ S. If P, P ′ : {0, 1}d → {0, 1} are predicates which differ only at x, then
PE(P ′, β)− PE(P, β) ≤ cx, where

cx = Pr
(x′,y′)∼NA−1(β)

[x′ = x ∨ y′ = x] ≤ 2

|S|
=

2(
d
β0∗

) .
Fix P arbitrarily on all x 6∈ S, but choose the value of P independently at random for all
x ∈ S: then E[PE(P, β)] = 1

2
, since β 6∈ E(d). By McDiarmid’s inequality, for any ε,

Pr[PE(P, β) > 1
2

+ ε] ≤ exp

(
− 2ε2∑

x∈S c
2
x

)
≤ exp

(
−1

2
ε2
(
d

β0∗

))
≤ exp

(
−1

2
ε22dH(β0∗/d,β1∗/d)/poly(d)

)
.

To complete the proof, take ε = 2−d(H(β0∗/d,β1∗/d)−δ)/2.

66

Lemma 8.12 For every p0 ∈ (0, 1
2
], there exist c2, δ, µ > 0, such that c2 <

ε
2

where ε is
taken from Lemma 8.6 (with τ = 1), and for all sufficiently large d ∈ N,

∀p ∈ [p0, 1− p0], Pr
k∼Binom(p,d)

[H(k/d) < c2 + δ + µ] + 2−(c2+µ)d/2 ≤ 1
6
2−c2d.

Proof: Let DKL denote the Kullback-Leibler divergence

DKL(q‖p) = q lg
q

p
+ (1− q) lg

1− q
1− p

.

Fix λ > 0 to be small enough that λ < 1/2, H(λ) < 3ε, and for any p ∈ [p0, 1− p0],

DKL(λ‖p) > H(λ).

Now, choose any p ∈ [p0, 1− p0].

Pr
k∼Binom(p,d)

[H(k/d) < H(λ)] = Pr[k/d < λ] + Pr[k/d > 1− λ]

(Without loss of generality, assume p ≤ 1
2
.) ≤2 Pr[k/d < λ]

(Apply Chernoff’s bound.) ≤2 exp(−DKL(λ‖p)d)

<2 exp(−H(λ)d).

Complete the proof by taking c2 = H(λ)/6 < ε
2
, δ = H(λ)/3 and µ = H(λ)/2, and taking d

to be sufficiently large that 2 exp(−H(λ)d) < 1
6
2−c2d − 2 · 2−(c2+µ)d/2.

Lemma 8.13 Let p0 <
1
2

be the unique number satisfying H(p0) = 1
2
. Choose c2, δ, and µ

according to Lemma 8.12. Let P be any δ-good predicate. Then for every α ∈ ∆2, we have
H(α) + lg PE(P, α) ≤ 1 + 2−c2d.

Proof: Let α ∈ ∆2. Let E(d) be defined as in Definition 8.10. Let γ = Prβ∼Mult(α,d)[β ∈
E(d)]. Since P is a δ-good predicate, we have

E
β∼Mult(α,d)

[PE(P, β)]

≤(1− γ) E
β∼Mult(α,d)

[min{1, 1
2

+ 2−d(H∗(β/d)−δ)/2}|β 6∈ E(d)] + γ

=(1− γ) E
β∼Mult(α,d)

[min{1
2
, 2−d(H∗(β/d)−δ)/2}|β 6∈ E(d)] + 1+γ

2
.

≤ E
β∼Mult(α,d)

[min{1
2
, 2−d(H∗(β/d)−δ)/2}] + 1+γ

2
.

Therefore, by the concavity of the logarithm function and taking a linear approximation at
1+γ

2
, we have

lg PE(P, α) ≤ lg 1+γ
2

+ 2
(1+γ) ln 2

(PE(P, α)− 1+γ
2

)

(Apply Lemma 8.8.) = lg 1+γ
2

+ 2
(1+γ) ln 2

(E
β∼Mult(α,d)

PE(P, β)− 1+γ
2

)

≤ lg 1+γ
2

+ 3 E
β∼Mult(α,d)

[min{1
2
, 2−d(H∗(β/d)−δ)/2}].

67

Since lg PE(P, α) ≤ 0, the claim of the lemma follows when H(α) ≤ 1; so henceforth we
assumeH(α) ≥ 1, and henceH∗(α) ≥ 1/2. We may further assume without loss of generality
that H(α0∗, α1∗) ≥ 1/2, or in other words, α0∗ ∈ [p0, 1 − p0]. Applying Lemma 8.12 (recall
that c2, δ and µ were chosen according to that lemma), we have

Pr
β∼Mult(α,d)

[H(β0∗/d, β1∗/d) < c2 + δ + µ] + 2−(c2+µ)d/2 ≤ 1
6
2−c2d.

Thus, by Markov’s inequality and since H∗(β/d) ≥ H(β0∗/d, β1∗/d), we have

E
β∼Mult(α,d)

[min{1
2
, 2−d(H∗(β/d)−δ)/2}] ≤ 1

6
2−c2d.

Therefore, we have

H(α) + lg PE(P, α) ≤ H(α) + (lg 1+γ
2

+ 1
2
2−c2d),

and our goal reduces to showing H(α) + lg(1 + γ) ≤ 2 + 1
2
2−c2d. Let ε be chosen to satisfy

Lemma 8.6 with τ = 1. Note that c2 in Lemma 8.12 is < ε/2, therefore we can make sure d
is large enough that 1

2
2−c2d ≥ 2−εd. We have γ = (α00 + α11)d, H(α) ≤ 1 +H(α00 + α11), so

Lemma 8.6 completes our proof with p = α00 + α11 and τ = 1.

Now we are ready to complete the proof of Lemma 8.5

Proof: [of Lemma 8.5 for Random Predicates] Choose δ and c2 according to Lemma 8.13.
By Lemma 8.11, a predicate P chosen uniformly at random is δ-good with probability
≥ 1 − exp(−2δd−O(log d)) ≥ 1 − 2−2c1d for c1 < δ and large enough d. By Lemma 8.13, for
every α ∈ ∆2 and such a predicate P , we have H(α) + lg PE(P, α) ≤ 1 + 2−c2d.

68

Chapter 9

Related and Possible Future Work

Cryan and Miltersen [17] first raised the question of whether cryptographic primitives
(their work focused on pseudorandom generators) can be computed in NC0, where every
output bit depends on a constant number of input bits. Mossel, Shpilka and Trevisan [42]
construct, for arbitrarily large constant c, a function f : {0, 1}n → {0, 1}cn based on a
bipartite graph of right-degree 5 and the fixed predicate P (x1, · · · , x5) := x1 ⊕ x2 ⊕ x3 ⊕
(x4 ∧ x5), and show that the function computes a small-bias generator. Applebaum, Ishai
and Kushilevtiz [9, 10] show that, under standard assumptions, one can construct one-way
functions and pseudorandom generators that can be computed in NC0. Goldreich’s function
is in NC0 when d = O(1).

There has been a number of other works about the security of Goldreich’s candidate
one-way function:

• Bogdanov and Qiao [14] show that when the number of output bits of the function is a
large enough constant factor larger than the number of input bits, if the used predicate
has correlation with either one or two of its variables, then Goldreich’s function can
be inverted. (Note that this does not break Goldreich’s original proposal where the
number of input and output bits are equal.)

• As was mentioned, Miller [41] and Itsykson [30] show lower bounds on the running
time of drunken backtracking algorithms for inverting Goldreich’s function.

• Itsykson and Sokolov [31] gave a lower bound on the running time of myopic back-
tracking algorithms which can read more than a constant number of output nodes at
each round. Their lower bound is for an explicit function, as opposed to Goldreich’s
function for random graphs.

Applebaum, Barak, and Wigderson [8] use an assumption about Goldreich’s function
together with other assumptions to create public key cryptography. The assumption is that
a variant of Goldreich’s function with more output bits than input bits is a pseudorandom
generator. The assumption is stronger than Goldreich’s conjecture that the function is
one-way.

The main limitation of the present work are the somewhat artificial setups of both myopic
algorithms and drunk algorithms. It would also be interesting to show that no “variation of

69

Gaussian elimination” can invert Goldreich’s function when non-linear predicates are used.
The first step is to formalize such a statement.

70

Bibliography

[1] Dimitris Achlioptas and Gregory B. Sorkin. Optimal myopic algorithms for random
3-SAT. In FOCS, pages 590–600, 2000.

[2] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constand-
depth circuits. Advances in Computing Research - Randomness and Computation,
5:199–223, 1989. Preliminary version in Proc. of FOCS’85.

[3] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Pseudorandom generators in propositional proof complexity. SIAM Journal on Com-
puting, 34(1):67–88, 2004.

[4] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential lower
bounds for the running time of DPLL algorithms on satisfiable formulas. J. Autom.
Reasoning, 35:51–72, 2005.

[5] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calcu-
lus: Non-binomial case. In FOCS, pages 190–199, 2001.

[6] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions
of almost k-wise independent random variables. Random Structures and Algorithms,
3(3):289–304, 1992.

[7] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus
k-wise independence. Information Processing Letters, 88(3):107–110, 2003.

[8] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Symposium on Theory of Computing, pages 171–180, 2010.

[9] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
J. on Computing, 36(4):845–888, 2006.

[10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators
with linear stretch in NC0. In APPROX-RANDOM, pages 260–271, 2006.

[11] Louay Bazzi. Minimum Distance of Error Correcting Codes versus Encoding Complex-
ity, Symmetry, and Pseudorandomness. PhD thesis, MIT, 2003.

71

[12] Louay M. J. Bazzi. Polylogarithmic independence can fool dnf formulas. SIAM J.
Comput., 38(6):2220–2272, 2009.

[13] Ben-Sasson and Wigderson. Short proofs are narrow–resolution made simple. JACM:
Journal of the ACM, 48, 2001.

[14] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way function.
In APPROX-RANDOM, pages 392–405, 2009.

[15] Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of ACM,
57(5), 2010.

[16] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way
function candidate and myopic backtracking algorithms. In Omer Reingold, editor,
Theory of Cryptography, 6th Theory of Cryptography Conference, TCC, San Francisco,
CA, USA. Proceedings, volume 5444 of Lecture Notes in Computer Science, pages 521–
538. Springer, 2009.

[17] Mary Cryan and Peter B. Miltersen. On pseudorandom generators in NC0. In Proceed-
ings of MFCS’01, 2001.

[18] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[19] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and
Emanuele Viola. Bounded independence fools halfspaces. In Foundations of Computer
Science, pages 171–180, 2009.

[20] Ilias Diakonikolas, Daniel Kane, and Jelani Nelson. Bounded independence fools degree-
2 threshold functions. In focs, 2010.

[21] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Theory and Applications of Satisfiability Testing, 8th International
Conference, SAT, St. Andrews, UK, Proceedings, pages 61–75, 2005.

[22] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT. Santa Margherita Ligure,
Italy, Selected Revised Papers, pages 502–518, 2003.

[23] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic. Ap-
proximations of general independent distributions. In Proceedings of the 24th ACM
Symposium on Theory of Computing, pages 10–16, 1992.

[24] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[25] Oded Goldreich. Foundations of Cryptography - Basic Applications. Cambridge Uni-
versity Press, 2004.

72

[26] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[27] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the 18th ACM Symposium on Theory of Computing, pages 6–20, 1986.

[28] Johan H̊astad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,
1999.

[29] Russell Impagliazzo and Avi Wigderson. = BPP if requires exponential circuits: De-
randomizing the xor lemma. In STOC, pages 220–229, 1997.

[30] Dmitry Itsykson. Lower bound on average-case complexity of inversion of goldreich’s
function by drunken backtracking algorithms. In Computer Science - Theory and Ap-
plications, 5th International Computer Science Symposium in Russia, CSR, pages 204–
215, 2010.

[31] Dmitry Itsykson and Dmitry Sokolov. The complexity of inversion of explicit goldreich’s
function by dpll algorithms. Preprint, 2010.

[32] Kazuo Iwama and Shuichi Miyazaki. Tree-like resolution is superpolynomially slower
than dag-like resolution for the pigeonhole principle. In Proceedings of ISAAC, volume
1741 of Lecture Notes in Computer Science, pages 133–142, 1999.

[33] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. In STOC, pages 355–364, 2003.

[34] Adam Klivans, Homin Lee, and Andrew Wan. Mansour’s conjecture is true for random
dnf formulas. In Proceedings of the 23rd Conference on Learning Theory (COLT), 2010.

[35] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[36] Leonid Levin. The tale of one-way functions. Problems of Information Transmission,
39(1):92–103, 2003.

[37] Michael Luby and Boban Velickovic. On deterministic approximation of DNF. In
Proceedings of the 23rd ACM Symposium on Theory of Computing, pages 430–438,
1991.

[38] Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate count-
ing of depth-2 circuits. In Israel Symposium on Theory of Computing and Systems,
pages 18–24, 1993.

[39] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201–215, 1960.

73

[40] Yishay Mansour. An o(nlog logn) learning algorithm for DNF under the uniform distri-
bution. Journal of Computer and System Sciences, 50(3):543–550, 1995.

[41] Rachel Miller. Goldreich’s one-way function candidate and drunken backtracking algo-
rithms. Master’s thesis, University of Virginia, 2009. Distinguished Majors Thesis.

[42] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On ε-biased generators in NC0.
Random Structures and Algorithms, 29(1):56–81, 2006.

[43] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. In Proceedings of the 22nd ACM Symposium on Theory of Computing,
pages 213–223, 1990.

[44] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[45] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput, 22:838–856, 1993.

[46] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[47] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In STOC, pages 33–43, 1989.

[48] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991.

[49] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 12(4):63–
70, 1991.

[50] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

[51] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[52] Alexander Razborov. A Simple Proof of Bazzi’s Theorem. ACM Trans. Comput.
Theory, 1(1):1–5, 2009.

[53] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387–394, 1990.

[54] Emanuele Viola and Avi Wigderson. Norms, XOR lemmas, and lower bounds for
polynomials and protocols. Theory of Computing, 4(1):137–168, 2008.

