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Abstract

A Scalable and Cost Effective Architecture for High Gain Beamforming Antennas

by

Omar Mohammed Bakr

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ali M. Niknejad, Chair

Many state-of-the-art wireless systems, such as long distance networks (point-to-point,
point-to-multipoint, and mesh) and high bandwidth networks using mm-wave frequencies,
require high gain antennas to overcome adverse channel conditions. These networks could
be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify
the installation and maintenance costs (e.g., by enabling automatic beam alignment), and
improve the capacity of these networks. Such networks typically require gains ranging from
20-30dBi with wide scanning range in both dimensions. To achieve this, arrays with hundreds
or even thousands of antennas are required, which cannot be done with existing techniques
that do not scale very well beyond 10-20 antennas.

In this dissertation, we examine and address the main challenges presented by large ar-
rays, starting from electromagnetic/antenna and radio circuit design and proceeding to the
signal processing and algorithms domain. We propose 3-dimensional antenna array structures
that realize large gains and scan angles at a much reduced size and form factor compared with
conventional planar antennas. At the circuit level, we propose a hybrid RF/digital beam-
forming radio architecture that takes advantage of low cost silicon integration to reduce the
overall component count and power consumption levels of the system without limiting the
capacity. We consider different techniques for implementing compact beamformers reliably
at high radio frequencies, and present signal processing techniques based on adaptive filtering
methods for optimizing those beamformers. The performance implications of low precision
analog beamformers and implementation errors are also analyzed and quantified, and com-
putationally efficient vector quantization techniques that take advantage of the size and scale
of the arrays to compensate for low precision are proposed. We validate our approach with
mathematical proofs and computer simulations.



i

To my mentor and friend.



ii

Contents

List of Figures v

List of Tables ix

1 Introduction 1
1.1 The wireless revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Rural connectivity and the digital divide . . . . . . . . . . . . . . . . . . . . 1
1.3 Challenges for growing and expanding the reach of wireless networks . . . . . 2
1.4 Wireless networks today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Adaptive beamforming systems . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 High gain beamforming systems . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Research goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11
2.1 Antenna basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Antenna radiation patterns . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Antenna effciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Antenna bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6 Free space propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Static versus steerable antennas . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Other types of antenna arrays . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Scanning versus adaptive arrays . . . . . . . . . . . . . . . . . . . . . 25

2.3 The wireless channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Channel fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Channel diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Frequency selective channels . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Spatial multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Radio architectures 36
3.1 Comparison of Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Hybrid arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 RF beamformer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



iii

3.2.1 A multi-input/multi-output RF beamforming module . . . . . . . . . 41
3.2.2 Signal combining/splitting . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 RF phase shifting and complex multiplication techniques . . . . . . . 47
3.2.4 Vector combining complex multiplier implementation . . . . . . . . . 55

3.3 Conslusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Antenna designs 62
4.1 Array factor and radiation pattern calculations . . . . . . . . . . . . . . . . . 63

4.1.1 Impact of antenna spacing . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Impact of array geometry . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Planar arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.4 Side lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.5 Antenna coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 3-dimensional arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1 Lobe cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Adaptive beamforming and channel estimation 82
5.1 Adaptive filter techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Other adaptive filtering techniques . . . . . . . . . . . . . . . . . . . 87

5.2 Channel Estimation via Adaptive Filtering . . . . . . . . . . . . . . . . . . . 87
5.2.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Null-steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Adaptive filtering with interference cancellation . . . . . . . . . . . . . . . . 99
5.5 Frequency synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Multi-beam (multi-receiver) arrays . . . . . . . . . . . . . . . . . . . . . . . 105
5.7 Transmit beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Beamforming performance with weight errors 110
6.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1 Analysis of Imperfect Phase Shifts . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.3 Worst case performance analysis . . . . . . . . . . . . . . . . . . . . . 116

6.2 Beam-nulling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.1 Analysis of Errors in Weights . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Error mitigation with vector quantization 132
7.1 Quantization problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Scalar quantization of beamforming weights . . . . . . . . . . . . . . . . . . 134

7.2.1 Spatial matched filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.2 Zero-Forcing beamformer . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Vector quantization of antenna weights . . . . . . . . . . . . . . . . . . . . . 156



iv

7.3.1 An approximate lower bound on achievable SIR . . . . . . . . . . . . 156
7.3.2 Constructive algorithms for improving interference suppression . . . . 175
7.3.3 Improving the beamforming gain using vector quantization . . . . . . 201

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8 Conclusion and future work 209

Bibliography 211



v

List of Figures

1.1 Long distance wireless networks for rural connectivity . . . . . . . . . . . . . 3
1.2 Mobile data traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Antenna pattern options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Network sectorization and cell splitting . . . . . . . . . . . . . . . . . . . . 7
1.5 Adaptive beamforming antennas . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 3D antenna radiation pattern plots . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 2D antenna radiation pattern plots . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Basic antennas patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Free space path loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Phase response of a uniform linear array . . . . . . . . . . . . . . . . . . . . 21
2.6 Linear array pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Switched antenna array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 2x2 MIMO scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Radio architectures for beamforming . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Hybrid beamforming architectures . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Multi-input/multi-output RF frontend . . . . . . . . . . . . . . . . . . . . . 43
3.4 Hybrid RF beamforming chip on a PCB . . . . . . . . . . . . . . . . . . . . 43
3.5 Transmit/Receive building blocks . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Multi-input/Multi-output RF complex multiplier block . . . . . . . . . . . . 45
3.7 Power combining structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Wilkinson power combiner measurements (Part 1) . . . . . . . . . . . . . . . 49
3.9 Wilkinson power combiner measurements . . . . . . . . . . . . . . . . . . . . 50
3.10 Reflective-type phase shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.11 Switched transmission line phase shifter . . . . . . . . . . . . . . . . . . . . . 53
3.12 Vector combining based phase rotator . . . . . . . . . . . . . . . . . . . . . . 54
3.13 Polyphase filter networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.14 Wideband 4-stage polyphase network . . . . . . . . . . . . . . . . . . . . . . 58
3.15 Gain control (digital implementation) . . . . . . . . . . . . . . . . . . . . . . 59
3.16 Programable gain block (unit cell architecture) . . . . . . . . . . . . . . . . . 60

4.1 Impact of number of antennas/antenna spacing on the array pattern . . . . . 65
4.2 Broadside/endfire configurations of a linear array . . . . . . . . . . . . . . . 66
4.3 Impact of array geometry on beamwidth and pattern shape . . . . . . . . . . 67



vi

4.4 Broadside versus endfire azimuth beamwidth . . . . . . . . . . . . . . . . . . 68
4.5 Beam pattern of a linear array for different steering vectors . . . . . . . . . . 69
4.6 Array response versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Azimuth endfire pattern of rectangular arrays . . . . . . . . . . . . . . . . . 72
4.8 Side lobe level versus array geometry . . . . . . . . . . . . . . . . . . . . . . 73
4.9 Dipole radiation pattern (polar plot) . . . . . . . . . . . . . . . . . . . . . . 74
4.10 3-dimensional rectangular array of monopoles . . . . . . . . . . . . . . . . . 78
4.11 3-dimensional cylindrical array of monopoles . . . . . . . . . . . . . . . . . . 79
4.12 Patch arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.13 3D array layout with λ/4 shifting . . . . . . . . . . . . . . . . . . . . . . . . 80
4.14 Lobe cancellation using λ/4 spacing . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Block diagram for a generic adaptive filter . . . . . . . . . . . . . . . . . . . 86
5.2 System identification via adaptive filtering . . . . . . . . . . . . . . . . . . . 88
5.3 Channel estimation through adaptive filtering (receive beamforming) . . . . 90
5.4 Adaptive filter beamforming performance without noise . . . . . . . . . . . . 92
5.5 Adaptive filter beamforming performance with noise (NLMS) . . . . . . . . . 94
5.6 Adaptive filter beamforming performance with noise (sign-LMS) . . . . . . . 95
5.7 Adaptive filter beamforming performance with channel variation . . . . . . . 96
5.8 Interference cancellation scenario . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9 Beam-nulling using the LMS algorithm . . . . . . . . . . . . . . . . . . . . . 100
5.10 Beam-nulling using the LMS algorithm with time-varying channels . . . . . . 101
5.11 Channel estimation through adaptive filtering with known interferers . . . . 103
5.12 Iterative beam-nulling using the LMS algorithm . . . . . . . . . . . . . . . . 104
5.13 DMMSE vs LMS in the presence of frequency offsets . . . . . . . . . . . . . 106
5.14 Computation of digital beamforming weights . . . . . . . . . . . . . . . . . . 108
5.15 Channel estimation through adaptive filtering (transmit beamforming) . . . 109

6.1 LOS beamforming scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Beamforming gain as a function of phase errors . . . . . . . . . . . . . . . . 114
6.3 Simulated beamforming gain for different phase errors distributions . . . . . 115
6.4 Array patterns with quantization (Part 1) . . . . . . . . . . . . . . . . . . . 117
6.5 Array patterns with quantization (Part 2) . . . . . . . . . . . . . . . . . . . 118
6.6 Array patterns with quantization (Part 3) . . . . . . . . . . . . . . . . . . . 119
6.7 Spatial domain wireless channel representation . . . . . . . . . . . . . . . . . 123
6.8 Mean square error angle σ2

θ versus weight errors . . . . . . . . . . . . . . . . 126
6.9 Average interferer power in the presence of errors . . . . . . . . . . . . . . . 127
6.10 Average desired power (beamforming gain) in the presence of errors . . . . . 128
6.11 Cosine angle approximation for the beamforming gain . . . . . . . . . . . . . 129
6.12 Cosine angle approximation for the beamforming gain . . . . . . . . . . . . . 130

7.1 SIR under QMF (Rayleigh channel, Part 1) . . . . . . . . . . . . . . . . . . 138
7.2 SIR under QMF (Rayleigh channel, Part 2) . . . . . . . . . . . . . . . . . . 139
7.3 Desired signal under QMF (Rayleigh channel, Part 1) . . . . . . . . . . . . . 140
7.4 Desired signal under QMF (Rayleigh channel, Part 2) . . . . . . . . . . . . . 141



vii

7.5 Interferer power under QMF (Rayleigh channel, Part 1) . . . . . . . . . . . . 142
7.6 Interferer power under QMF (Rayleigh channel, Part 2) . . . . . . . . . . . . 143
7.7 SIR under QMF (LOS channel/uniform linear array, Part 1) . . . . . . . . . 144
7.8 SIR under QMF (LOS channel/uniform linear array, Part 2) . . . . . . . . . 145
7.9 Desired signal under QMF (LOS channel/uniform linear array, Part 1) . . . 146
7.10 Desired signal under QMF (LOS channel/uniform linear array, Part 2) . . . 147
7.11 Interferer power under QMF (LOS channel/uniform linear array, Part 1) . . 148
7.12 Interferer power under QMF (LOS channel/uniform linear array, Part 2) . . 149
7.13 SIR under QMF (LOS channel/uniform square array, Part 1) . . . . . . . . . 150
7.14 SIR under QMF (LOS channel/uniform square array, Part 2) . . . . . . . . . 151
7.15 Desired signal under QMF (LOS channel/uniform square array, Part 1) . . . 152
7.16 Desired signal under QMF (LOS channel/uniform square array, Part 2) . . . 153
7.17 Interferer power under QMF (LOS channel/uniform square array, Part 1) . . 154
7.18 Interferer power under QMF (LOS channel/uniform square array, Part 2) . . 155
7.19 SIR under QZF (Rayleigh channel, Part 1) . . . . . . . . . . . . . . . . . . . 157
7.20 SIR under QZF (Rayleigh channel, Part 2) . . . . . . . . . . . . . . . . . . . 158
7.21 Desired signal under QZF (Rayleigh channel, Part 1) . . . . . . . . . . . . . 159
7.22 Desired signal under QZF (Rayleigh channel, Part 2) . . . . . . . . . . . . . 160
7.23 Interferer power under QZF (Rayleigh channel, Part 1) . . . . . . . . . . . . 161
7.24 Interferer power under QZF (Rayleigh channel, Part 2) . . . . . . . . . . . . 162
7.25 SIR under QZF (LOS channel/uniform linear array, Part 1) . . . . . . . . . 163
7.26 SIR under QZF (LOS channel/uniform linear array, Part 2) . . . . . . . . . 164
7.27 Desired signal under QZF (LOS channel/uniform linear array, Part 1) . . . . 165
7.28 Desired signal under QZF (LOS channel/uniform linear array, Part 2) . . . . 166
7.29 Interferer power under QZF (LOS channel/uniform linear array, Part 1) . . . 167
7.30 Interferer power under QZF (LOS channel/uniform linear array, Part 2) . . . 168
7.31 SIR under QZF (LOS channel/uniform square array, Part 1) . . . . . . . . . 169
7.32 SIR under QZF (LOS channel/uniform square array, Part 2) . . . . . . . . . 170
7.33 Desired signal under QZF (LOS channel/uniform square array, Part 1) . . . 171
7.34 Desired signal under QZF (LOS channel/uniform square array, Part 2) . . . 172
7.35 Interferer power under QZF (LOS channel/square linear array, Part 1) . . . 173
7.36 Interferer power under QZF (LOS channel/square linear array, Part 2) . . . 174
7.37 Average SIR under the GCD algorithm (Rayleigh, Part 1) . . . . . . . . . . 177
7.38 Average SIR under the GCD algorithm (Rayleigh, Part 2) . . . . . . . . . . 178
7.39 Average desired signal under the GCD algorithm (Rayleigh, Part 1) . . . . . 179
7.40 Average desired signal under the GCD algorithm (Rayleigh, Part 2) . . . . . 180
7.41 Average interferer power under the GCD algorithm (Rayleigh, Part 1) . . . . 181
7.42 Average interferer power under the GCD algorithm (Rayleigh, Part 2) . . . . 182
7.43 Average SIR under the iGCD algorithm (Rayleigh, Part 1) . . . . . . . . . . 184
7.44 Average SIR under the iGCD algorithm (Rayleigh, Part 2) . . . . . . . . . . 185
7.45 Average desired signal under the iGCD algorithm (Rayleigh, Part 1) . . . . . 186
7.46 Average desired signal under the iGCD algorithm (Rayleigh, Part 2) . . . . . 187
7.47 Average interferer power under the iGCD algorithm (Rayleigh, Part 1) . . . 188
7.48 Average interferer power under the iGCD algorithm (Rayleigh, Part 2) . . . 189
7.49 Average SIR under the LSB-GCD algorithm (Rayleigh, Part 1) . . . . . . . . 191



viii

7.50 Average SIR under the LSB-GCD algorithm (Rayleigh, Part 2) . . . . . . . . 192
7.51 Average desired signal under the LSB-GCD algorithm (Rayleigh, Part 1) . . 193
7.52 Average desired signal under the LSB-GCD algorithm (Rayleigh, Part 2) . . 194
7.53 Average interferer power under the LSB-GCD algorithm (Rayleigh, Part 1) . 195
7.54 Average interferer power under the LSB-GCD algorithm (Rayleigh, Part 2) . 196
7.55 Comparison of vector quantization algorithms . . . . . . . . . . . . . . . . . 197
7.56 iGCD under different channel models . . . . . . . . . . . . . . . . . . . . . . 198
7.57 GCD performance with different initializations . . . . . . . . . . . . . . . . . 199
7.58 SIR under exhaustive search . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.59 SIR under GCD for switched antenna arrays . . . . . . . . . . . . . . . . . . 202
7.60 Interference power under GCD for switched antenna arrays . . . . . . . . . . 203
7.61 Desired signal power under GCD algorithm for switched antenna arrays . . . 204
7.62 Beamforming gain (GCD versus scalar quantization) . . . . . . . . . . . . . 206
7.63 Beamforming gain (GCD versus exhaustive search) . . . . . . . . . . . . . . 207
7.64 Beamforming gain under the GCD algorithm with different initializations . . 208



ix

List of Tables

4.1 Simulated azimuth beamwidths of broadside and endfire linear arrays . . . . 69
4.2 Simulated array gain versus the spacing between antennas . . . . . . . . . . 75



x

Acknowledgments

“Dear Rich,
It has been over four years since we last spoke. I still remember that conversation as if it

had happened yesterday. There was a lot more I wanted to say, but did not realize that this
conversation was going to be our last. So I will try to do my best to express my thoughts in
a few words.

The last seven years are by far the most special. Meeting you and working with you
was THE highlight of it all. I learned a lot from you in a very short period of time. Most
importantly, you taught me how to think big, how science and engineering can be a great
instrument for changing the world to the better, and how I can do it all while having the
time of my life. Thank you for giving me this opportunity. Thank you for your patience
and confidence in me. It helped a lot every time I faced a new challenge knowing that you
believed I can take it on.

I cannot express enough my feelings of gratitude. However, there is another reason why
I am writing this to you. I have no doubt that you remember (you never forget) that when
we last talked, I asked you “Rich, what can I do?” Your answer was “You can finish your
dissertation!”. That was your last request. Well here it is. It took a little longer than you
would have liked, but we finally made it, and I say “we” because your advice and guidance
were key in making it this far.

Although Rich I feel relieved that this is over, the real journey has only begun. It’s a
journey to give back, a journey to make a difference in the lives of others like you made a
difference in mine, a journey that I had never thought I would embark on without you, but
life is a full of surprises. I have seen you accomplish a lot in so little time. I would have been
more than content with a fraction of that, but now I know that you expect nothing less.

Rest in peace my friend, and Go Bears!”

Well, it was a great journey, probably the most exciting and stimulating of my life. I am
very fortunate that I did not have to travel alone. By the grace of God, I was always blessed
with great companions throughout the journey, and would like to express my gratitude to
each and every one of them.

I cannot imagine making it this far in life without the unconditional love and support I
received from my parents. Every morning I wake up, I feel very confident knowing I could
always count on their prayers and knowing that they are always behind me. They always put
my happiness and well being before everything. From the moment I opened my eyes, their
lives revolved around mine (that may have changed a little bit after their first grandchild
was born). Most importantly, they gave me a great brother and two great sisters. Together,
we make a great team.

I was very fortunate to have the Blue & Gold blood run in my family before coming to
Berkeley. When you have relatives like Khalid Alireza and his son Raaid, it’s only a matter
of time before you start drinking the Berkeley Cool-Aid, and I am so glad I did. Lucky for
me, they’re not the kind of people who would convince you to do something and leave you
on your own. They were there for me from the beginning till the end. For that I will be ever
grateful. I also won’t forget the memorable summers I spent with my uncles Hisham and
Yousuf Alireza.



xi

UC Berkeley was a great research and learning environment. Being in that environment
for so many years gave me the opportunity to interact and work with many great minds,
both faculty and students and staff. It would be very difficult for me to single out every
person who has had a positive impact on my experience in all these years (that would be a
dissertation topic of its own). Therefore, I apologize to those whom I forgot to mention.

I would like to first thank my dissertation advisors, Professors Ali Niknejad and Eric
Brewer and Paul Wright, for their strong support especially following Rich Newton’s passing.
The moral support they provided during that period meant a lot more to me than anything
else.

With my research spanning multiple areas, I was very fortunate to be a member of
several multidisciplinary research groups. Most importantly, the Technology Infrastructure
for Emerging Regions (TIER) group founded by Professor Eric Brewer, and the Berkeley
Wireless Research Center (BWRC) started by Professors Bob Brodersen and Jan Rabaey.
Without exception, every member in these groups was always generous with their assistance
whenever I needed them. The discussions I had with folks like RJ Honicky, Rabin Patra,
Sergiu Nedevschi, Sonesh Surana, Michael Rosenblum, and Melissa Ho (TIER), and Sayf
Alalusi, Ben Wild, Amin Arbabian, Ehsan Adabi, and Vinayak Nagpal from the BWRC
helped enrich my PhD years. Folks like Wei-hung Chen, Debo Chowdhury, Michael Mark
and David Sobel were happy and patient to share their research ideas and technical expertise.

RJ Honicky deserves a special mention since we worked closely together in the earlier
years of my PhD. He was very helpful in many class projects and with my qualifying exam
preparation. I will never forget our trip to Ghana, which was made possible by the efforts
of Dr. Kristi Raube and Professor Anrew Issacs (the entertainment during that trip was
courtesy of Samir Mehta and Ronnie Chatterji).

One of my lucky coincidences in the past several years was meeting Kevin Jones. Prior to
meeting Kevin, I was looking for someone to collaborate with me on the project by building
the array hardware. I could not have found anyone better than Kevin, whose hard work
and dedication helped me focus on other aspects in the project and finish my dissertation
in time. In the last couple of years, I received extra support from him and Rabin Patra and
Sergiu Nedevschi in building and testing the equipment we built.

Another luxury students enjoy at UC Berkeley is the ability to walk into the office of any
professor during their office hours. I took full advantage of this and paid several professors
in the department multiple visits. These visits helped shape and refine some of the research
ideas I developed during these years. If I remember correctly, the professors that I bugged
most were Kannan Ramchandran, David Tse, and Ken Gustafson. I thank them for their
patience and the insights they provided.

I also recently co-authored several papers with Mark Johnson, Raghu Mudumbai, and
Professor Upamanyu Madhow of Santa Barbara. It was a great pleasure working with them.
I would also like to thank Raghu for reviewing my dissertation and providing feedback.

I cannot forget the support I received from members of the staff at UC Berkeley, especially
Tom Boot, Brian Richards, Kevin Zimmerman (BWRC), Ruth Gjerde, La Shana Porlaris
(EECS), and Bill Oman (College of Engineering). I have never seen a staff member so
dedicated to a lab like Tom Boot was to the BWRC.

Living near Silicon Valley for all these years, I could not resist the urge of starting a
company. So a little over two years ago, along with Kevin Jones, Rabin Patra, and Sergiu



xii

Nedevschi, I started Tarana Wireless, to take the ideas we developed at Berkeley and venture
into the real world. We were later joined by Dale Branlund, who brought a vast amount
of industrial knowledge and experience to the team. It has been a great adventure and
learning experience working with these folks. However, starting a company while writing a
dissertation was no piece of cake (take it from me) , but I was very fortunate to be working
with these guys who did most of the heavy lifting and took a huge burden off my shoulder,
which allowed me to focus on finishing my research. For that, I am ever grateful.

Throughout my life, I have been to many places, and in most cases, I was not only blessed
with new friends, but with new family as well. Berkeley was no exception.

My old friend from the MIT days, and now my brother Lik Mui was there for me the
moment I stepped into SFO Airport. He waited patiently for 5 hours as I got through
Immigration and Customs. He and his parents would never let go until they made sure I
was fully settled and my apartment was fully furnished. Their home was my home, and they
treated me as one of their own. You can never meet a better person or a better family. I
was so honored that he chose me to be one of the groomsmen at his wedding.

Judy Olson welcomed a complete stranger to her home and treated him like her own son.
He was always welcome to drop in any time he desired, and she and her husband Mamade
would cook for him and take care of him.

One of the many beautiful outcomes of my friendship with Rich was meeting Steve Beck
and Candice Eggerss. These two are among the kindest individuals I have met. Steve is a
very unique individual that approaches science with an artistic mind, and art with a scientific
mind. Over the past four years, I have enjoyed I lot of stimulating discussions with Steve.
We would discuss a variety of topics, including art, science, religion and world affairs. I wish
him all the best with his beautiful NOOR project, and of course I will not forget the special
BBQ chicken dinners I had with him and his beautiful wife Candice.

Throughout my stay in Berkeley, I did not develop a friendship that is closer than the
one I developed with Mohamed Muqtar (or the mayor of Berkeley as some like to call him).
He took care of me when I was still a stranger in Berkeley. Almost half the people I know in
Berkeley, I got to know through him. He got me interested in Cal athletics, and thanks to
him I now know half of the athletic department. I have always appreciated his support and
candid advice.

Of course I cannot forget my old friends Mamdouh Salama, Bob Randolph, and Tom
Greene, who continue to keep an eye on me from very far away.

Also, during most of my stay at Berkeley, I almost made my home at Raza’s Kitchen
and EZ Deli, where I dined almost every day, and where the staff always gave me a special
treatment.

Finally, I would like to acknowledge King Abdullah University for Science and Technology
(KAUST) and the Saudi Ministry of Higher Education for funding my research in the last 7
years.



1

Chapter 1

Introduction

1.1 The wireless revolution

In the past decades, we have seen a constant penetration of wireless technology in ev-
eryday life. Today, wireless is replacing wires as the dominant medium for communication,
and is rapidly changing the way people interact and do business. Earlier this decade, the
number of landline phone subscriptions started to decline rapidly. Instead, people are relying
more heavily on cell phones and the Internet for voice calls. With the rapid proliferation of
wireless local area network (WLAN) technology (e.g. 802.11/WiFi), people can access the In-
ternet anywhere at home and in the office without necessarily needing to be close to a wired
connection. In fact, even the connectivity between computers and devices (e.g. printers,
scanners, mice, keyboards, digital cameras) in close proximity is increasingly becoming wire-
less through technologies like WiFi, Bluetooth and ultrawideband (UWB). These networks
are sometimes referred to as wireless personal area networks or WPANs. More recently, with
the introduction of the third and fourth generation cellular networks that have been designed
and optimized for fast data delivery, many people have started replacing their wired Internet
services (e.g. cable and DSL) with wireless [48]. Therefore, it is becoming increasingly com-
mon for people to maintain full Internet connectivity most of the time, continuously moving
from one network to another to maintain coverage1.

In addition to traditional web surfing, the main applications that are driving innovations
(e.g. latency, bandwidth and coverage) in wireless technology today include gaming, voice
of IP or VoIP, and video. These applications usually have very tight latency requirements
or high bandwidth requirements or both.

1.2 Rural connectivity and the digital divide

Despite the proliferation of wireless technologies in the last several decades, its impact
has been mostly limited to urban and suburban areas especially in developed regions. Rural

1For example, at home or in the office, the Internet connection will usually be through a WLAN, then
probably switch to the cellular network when the device moves out of the range of the home network. In
rare situations when the cellular coverage is spotty, the device might switch to a satellite connection, and
thus maintaining connectivity all the time.
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areas on the other hand are still left behind in the Internet revolution and digital divide is
widening [35]. Solving the rural problem is essential for the geopolitical future of any country
because if it persists, pressure will continue to mount on urban areas. The main challenge in
rural areas is a combination of low population densities and limited purchasing power which
often make wired infrastructure solutions economically unsustainable. Most these areas are
usually scattered and separated by large empty spaces, and any wired infrastructure will have
to be maintained over these empty areas. Wireless on the other hand, can skip over these
empty areas and only serve the area(s) of interest, which dramatically changes the economics
of these areas. This has been recently demonstrated with long distance point-to-point and
point-to-multipoint links that connect rural areas with nearby urban centers [44, 39, 55].
Figure 1.1 shows a fixed wireless point-to-point and point-to-multipoint network connecting
rural villages to urban centers with long distance links.

This dissertation presents a study of one of the key components in enabling wireless
systems to meet future capacity demands and expanding their reach beyond the traditional
urban/suburban domain, namely the design of the antenna subsystem. We propose a solution
based on adaptive beamforming technology. We present an architecture that combines both
RF and digital techniques to achieve high gain and capacity at much lower the cost and
complexity compared with existing techniques. In this architecture we consider the challenges
in building the antennas and radio circuits as well as implementing the adaptive signal
processing algorithms.

In the rest of the chapter, we discuss the main challenges for deploying present and
future wireless networks. We also discuss the limitations of existing techniques used in
today’s networks which rely on static antennas. We then propose adaptive beamforming
systems as a potential solution for addressing those challenges. Finally, we conclude the
chapter with main goals and contributions of this research and the organization of the rest
of the dissertation.

1.3 Challenges for growing and expanding the reach of

wireless networks

In spite of recent advances in wireless technology, today’s wireless networks face many
challenges in both urban and rural areas. In urban areas, the growing demand for data
traffic is putting a lot of strain on existing infrastructure. This growth is spurred by the
increased use of small data hungry devices such as smart phones and netbooks. Both the
number of devices as well as the demands from each individual device are growing. Figure
1.2 shows the expected data traffic increasing by almost a factor of 40 in the next 5 years.
With spectrum being a finite and scarce resource, the options for coping with this growth in
data demand are limited to increasing the network density through better spatial reuse or
moving to less crowded frequency bands with usually poor propagation characteristics (e.g.
mm-wave frequencies). Therefore, a technology that enables more efficient spatial reuse and
overcomes poor propagation at high frequencies would takes us a long way in solving the
capacity problem.

In rural areas, the main challenges for deploying wireless networks are the distance,
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Figure 1.1: Long distance wireless point-to-point and point-to-multipoint links for connecting
rural villages to urban centers.

Figure 1.2: Projected mobile traffic. Source: CISCO VNI Project [2].
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shortage of skilled labor, and shortage of reliable energy sources and frequent power outages.
The long distance makes it very hard to achieve a line of sight (LOS) without big towers.
Even when LOS is available (e.g. a building or a hill), very high gain antennas are required
to cover the distance, which can be as high as 50-100 miles. These high gain antennas have
very narrow beams that are difficult to align at both ends of the link at long distances [44]2.
To make things worse, the alignment has to take place near the top of the tower. Therefore,
these tower have to be very stable and climbable, which makes them significantly more
expensive. In fact, the towers usually represent the bulk of the capital cost of these networks
[35]. Also, the antenna alignment is not a one-time process, but needs to be repeated when
the antennas get misaligned, which can happen for a variety of reasons including wind,
temperature and air density variations. The shortage of skilled labor in these areas makes
it harder to maintain the network without frequent truck-rolls. These truck-rolls are slow
and increase the downtime and make up the bulk of the operating cost. The lack of reliable
energy sources and access to the power grid means that unless the network equipment can
operate off of portable energy sources (e.g. solar cells) and backup batteries, the network will
experience a lot of downtime. Finally, the current architecture of these networks makes it
difficult to expand the network by adding new and redundant links to increase the reliability
and reduce the downtime. Therefore, to address these problems, we need a technology that
is power efficient and can self-align and thus eliminate the need for heavy and expensive
towers and significantly reduce the required maintenance.

1.4 Wireless networks today

Traditionally, most wireless systems, both fixed and mobile, have been deployed us-
ing either omni-directional antennas or fixed-beam directional antennas. Such architecture
presents several challenges to achieving high capacity and good coverage at low cost. Omni-
directional antennas transmit and receive equally in every direction, which results in very
good coverage. However, this coverage comes at the expense of the range and capacity. Since
the antenna radiates equally in all directions, a lot of the energy gets wasted in directions
that do not contain any desired receivers. This will significantly degrade the range of the
system. Furthermore, since the energy propagates equally in all directions, it might cause
unnecessary interference to neighboring networks and thus reduce the achievable capacity of
the overall system. The same thing happens on the receive side where the antenna will have
a difficult time distinguishing desired signals from interferers since it receives equally from
all directions.

Directional antennas on the other hand, have very narrow and focused beams. Therefore,
they have a much better range and are more energy efficient the omni-directional anten-
nas. The improved energy efficiency comes at the expense of a larger aperture and narrow
coverage area, thus, rendering these antennas unsuitable for mobile and dynamic systems.
Furthermore, even for fixed systems, directional antennas require very accurate alignment.

There have been several approaches to address the capacity/coverage problem. Cellular
networks have taken a two step approach. In the first step, each cell, which used to be

2Studies have shown that antennas typically need to be aligned within 30% of their half-power-beamwidth
(HPBW) in order to be effectively used [62].
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covered by a single base station with omni-directional antennas is sectorized (typically 3
sectors are used as shown in Figure 1.4a)3. This process effectively scales the capacity of the
system by the number of sectors since each sector now handles only a small fraction of the
users handled by the original base station. However, this increase in capacity is no where
near what is required to meet future data demands4. In the second step towards achieving
the target capacity, cells are split into smaller cells as shown in Figure 1.4b. Each of the
smaller cells (sometimes refered to as micro or pico cells) have the same capacity as the
larger cells (also known as macro cells). The resulting capacity increase is proportional to
the increase in the total number of cells (base stations). However, this migration is still very
expensive. Although, micro and pico are much cheaper than macro cells since they have
smaller footprint and much lower transmit powers, the overhead of adding new cells is very
high, even higher than the cells themselves5. Therefore, a solution that increases capacity
with the minimal number of cells can significantly reduce cost6.

Signal propagation in dense urban environments also presents a challenge to antennas
with static patterns, both directional and omni-directional. In these environments, both
shadowing and fading are difficult to overcome and reduce the quality of the signal.

1.5 Adaptive beamforming systems

It is clear from the discussion above that the solution to the capacity and range challenges
of today and tomorrow’s networks would have to combine the key features of omni-directional
(wide coverage) and directional systems (high range, energy and spectral efficiency through
spatial reuse). A solution that satisfies these requirements can be implemented with adaptive
or dynamic beamforming (beam-steering). Beamforming refers to the technique that, unlike
static antennas, can dynamically shape the beam pattern and focus the beam at wide range
of directions. Shaping and reshaping the beam can be accomplished without any moving
parts using an array of antennas. With this capability, beamforming can achieve the required
coverage area since the beam can be steered in any direction. At the same time, it can ex-
tend the range of the system since the beam is focused at a very narrow angle at any given
time (Figure 1.3 compares the beam pattern of a beam-steering system with directional and
omni-directional antennas). Using these features, beamforming technology can address the
rural and urban deployments as follows. For rural networks, since the beams can by electri-
cally steered in any direction without any moving parts, no antennas need to be manually
aligned and no towers need to be climbed. Therefore, both the capital and operating costs
are significantly reduced. Also, since the beamforming antennas can cover wide angles, the
network can now easily support point-to-multipoint and mesh links and achieve better redun-

3Sectorization is the process of dividing a cell into multiple sectors with narrower coverage. Each sector
is effectively a separate base station and uses a directional antenna. Collectively, the sectors achieve full
coverage.

4In practice, different neighboring sectors still interfere with one another, which degrades the capacity.
Also, a sectorized cell has a much higher footprint than a non-sectorized cell, which increases the overall
deployment costs.

5These cost include site rental and backhaul costs.
6Another disadvantage of a static cell layout is that the user density is usually dynamic, and thus, the

load will in general not be balanced.
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Figure 1.3: Beam patterns for the three different antenna types: omni-directional, direc-
tional, and beamforming (beam-steering).

dancy. For urban networks, beamforming can increase the capacity in different ways. First,
nodes equipped with beamforming capability can communicate by pointing beams towards
one another instead of simply broadcasting. That means that interference with nodes in the
network is reduced, and another pair of nodes in the network can also be communicating at
the same time without causing interference, and thus, the capacity of the overall network
increases by increasing the number of pairs that can communicate simultaneously in a given
geographic area7. Second, in addition to pointing the beam, adaptive beamforming systems
have the capability to shape the radiation pattern such that radiation is minimized in the
direction of interferers (also known as null-steering and beam-nulling) as shown in Figure
1.5. While studies have shown that simple beam pointing can significantly increase the sys-
tem capacity [30], directing beam nulls or zeros in the direction(s) of interferers can increase
the capacity even further. The ability to null-steer enables beamforming systems equipped
with multiple baseband radios to form multiple simultaneous beams (each beam carrying an
independent data stream) to multiple users as long as each beam has nulls in the direction of
other beams as demonstrated in Figure 1.5. This technique for increasing capacity is called
spatial multiplexing8. Using this approach, a cellular base station can increase its capac-
ity by the number of simultaneous beams. That means a single base station can achieve
the capacity of multiple base stations, and thus reducing the network cost and overhead

7This technique is sometimes referred to as spatial reuse.
8The multiple simultaneous beams can also be directed at the same radio provided that it is also equipped

with a multi-baseband beamforming system. This technique is called multi-input/multi-output or MIMO
and usually requires an environment with a lot of reflections and scattering [59].



7

(a)

(b)

Figure 1.4: (a) Improving system capacity with sectoring (3 sectors per cell)(b) Improving
system capacity by increasing network density using smaller cells.
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by reducing the total number of base stations. Compared with a sectorized base station,
a multi-beam beamforming system can do a better job at reducing the cross-talk between
different beams and thus ensuring more reliable performance. Furthermore, a beamforming
system has a much smaller footprint than a sectorized system since all the beams share the
same antenna frontend.

Another advantage of beamforming is in applications and systems that operate in high
frequency bands (e.g. mm-wave). Since most of the frequency spectrum that is suitable for
dense urban cellular communication (e.g. below 5GHz) is mostly licensed. The only oppor-
tunity to expand the data rate in the frequency domain is to leverage the unused frequency
bands near the mm-wave range (e.g. 60GHz and above). The main advantage of these fre-
quency bands is the high bandwidth availability. However, the propagation characteristics
of these bands is very poor even for short distances9. To overcome these conditions, it is
necessary to use highly directive antennas. Fortunately, high antenna gain can be achieved
at a considerably smaller antenna size due to the high carrier frequency. That means these
directional antennas can be used with mobile units as well. However, a fixed narrow beam
system is not suitable for mobile applications as mentioned above. That makes beamforming
the only viable solution for these applications.

Beamforming antennas also perform much better than static beam antennas in presence
of heavy shadowing and fading. When the line of sight is obstructed, the beamforming system
can explore alternative paths through reflections and focus the radiation in those directions.
Also, in the presence of fading, since the beamforming system has a wide variety of beam
patterns to choose from, the probability of being in deep fade is reduced significantly10.

Figure 1.5: An adaptive antenna system with multiple basebands forming multiple simulta-
neous (spatially orthogonal) beams and canceling interference from other sources by steering
nulls in their directions.

9Several factors contribute to poor propagation in addition to the free space path loss. These include
oxygen absorption and low antenna efficiency [4]. These will be discussed in more detail in Chapter 2.

10This property is also known as antenna or spatial diversity [59].
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1.6 High gain beamforming systems

As pointed out in Section 1.3, the data demand in dense urban areas is expected to
increase by a factor of 40 over the next 5 years (Figure 1.2). In order to keep up with this
demand, the spatial reuse or capacity density of the networks will have to increase by similar
factor, which means that the size and complexity of beamforming systems must increase
by a similar amount. Similarly, for rural networks, beamforming systems have to provide
the same gain as the directional antennas they replace (usually of the order of 20-30dBi).
Beamforming systems delivering these orders of magnitude of gain are very expensive to
build and have traditionally been reserved for high budget military and defense applications,
and unfortunately, beamforming systems that are used commercially today in WiFi and
cellular networks do not scale very well to meet future demands. Developing techniques for
building inexpensive high gain beamforming systems is the focus of this dissertation.

1.7 Research goals and contributions

The goal of this dissertation is to investigate the challenges for building beamforming
systems with high gain (20-30dB) and wide scanning range (180 − 360◦). Such a study
requires a close examination of the system at different levels starting from the antenna
and circuit design levels, and proceeding all the way to the signal processing level. There
are several key observations. First, design choices made at one level usually have a lot
implications on other levels as well. For example, the choice of adaptive signal processing
algorithms is highly dependent on the design of the beamforming circuit. Therefore, these
design choices are not separable, but must be jointly made. Second, the optimal design
needs to combine both analog and digital techniques. The scope of this research covers the
interdependence between the different components of the system (e.g. antenna, circuit, signal
processing) as well as the optimal partitioning of functionality between these components.
In particular, the research contributions include:

1) A hybrid RF/digital radio architecture for beamforming, including the design of a
multi-input/multi-output beamforming module in RF, to combine the scalability and
power efficiency of RF beamforming with flexibility and speed of digital beamforming.

2) 3-dimensional antenna array structures with wide scanning range to reduce the size of
the antenna and improve beam-shaping.

3) Signal processing techniques based on adaptive filtering for dynamically estimating
and optimizing both RF and digital beamforming weights. The proposed framework
provides resiliency against noise, interference, synchronization errors and channel vari-
ation.

4) A comprehensive analysis and simulation of the impact of errors in the beamforming
weights on the performance of adaptive array systems.

5) Vector quantization techniques for improving interference suppression capabilities of
large arrays in the presence of quantization errors.
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1.8 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents an overview
of beamforming and adaptive antenna technology and reviews some wireless communication
concepts related to the topic. A survey of some of the prior work in this area is also presented.
Chapter 3 discusses the implications of the radio architecture on various aspects related
to system cost and performance including power consumption and gain and capacity. A
hybrid architecture that combines RF and digital techniques is proposed that can meet the
system gain and capacity requirements with the lowest cost and power requirements. The
implementation of the RF frontend of the system that contains the beamforming functionality
is also discussed in detail. Chapter 4 discusses the antenna design constraints, and presents
design techniques for building compact antenna structures that meet the gain and coverage
requirements of the system. In Chapter 5, we address the signal processing component
of the system that makes it adaptive, and present computationally efficient techniques for
optimizing the RF and digital beamforming weights of the system that are resilient to noise,
interference, and channel variations. Chapter 6 discusses the errors in a beamforming system
and analyzes their impact on the overall performance. Chapter 7 presents techniques for
mitigating quantization errors. Finally, the dissertation concludes with a summary of the
key results and a discussion of future research in Chapter 8.
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Chapter 2

Background

The concept of electronic beam-steering or beamforming has been used since World War II
for a variety of applications that extend beyond communications, both military and civilian.
These applications include radar, radio astronomy, oil exploration, and medical imaging.
This chapter provides an overview of beamforming techniques and covers some basic concepts
related to beamforming. It starts with a brief overview of antenna technology and theory,
then introduces the concept of electrical beam-steering and describes some of the common
implementation techniques. The chapter concludes with a discussion on modeling the wireless
channel. Although most of the concepts described in this chapter are very general, there
is a little more emphasis on terrestrial wireless communication since it is the focus of the
dissertation.

2.1 Antenna basics

The antenna is the component of the radio system that converts a guided wave on a
transmission line to an electromagnetic wave propagating in an unbounded medium (usually
air or free space) and vice versa in the receive case1. An antenna is usually characterized by
its radiation patterns, directivity, radiation efficiency, bandwidth, and polarization. These
properties depend on the size and shape and the material of the antenna, as well as it’s
surrounding. Since antennas are passive elements, they exhibit the same behavior in both
transmit and receive modes (also known as reciprocity). In this section, we provide an
overview of each these basic antenna properties2.

2.1.1 Antenna radiation patterns

The radiation pattern of an antenna describes the relative field intensity (or power den-
sity) at different points on a sphere in the far-field. The radius of the sphere is irrelevant

1A more comprehensive discussion and analysis of antennas and antenna related topics can be found in
[12] and [54] and [60]

2In this chapter and the rest of the dissertation, we shall focus on the far-field properties of the antenna.
Far-field refers to points in space at a distance from the antenna that is much larger than the dimensions of
the antenna.
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since we are only concerned with the relative values (usually relative to the point (direc-
tion) of maximum intensity). The radiation pattern is usually described in terms of the
normalized radiation intensity F (θ, φ), which is defined as the ratio of power density in the
direction (θ, φ) to the maximum power density3. Therefore, F (θ, φ) is dimensionless and
has a maximum value 1 or 0dB [60]. The radiation pattern is usually plotted in polar (2D)
or spherical (3D) coordinates in both linear and dB scales. In polar plots, either θ or φ is
constant. Rectangular plots are also used, but they are less common. Figures 2.1/2.2 show
examples of these plots, both polar and rectangular.

There are many types of radiation patterns, three of them are of practical interest. The
first is the isotropic beam pattern. An isotropic pattern has equal power density at all points
on the sphere (i.e. the 3D plot is a perfect sphere and the polar plots are perfect circles).
Therefore, the antenna pattern is unbiased. Although an antenna with isotropic radiation
is not realizable in practice4, it is used as the standard or yard-stick against which all other
antennas are measured as described in Section 2.1.2. The second basic pattern of interest
is the omni-directional pattern, which is the closest that can be achieved in practice to an
isotropic pattern. An omni-directional pattern radiates equally in a plane and is directional
in the planes perpendicular to it. For example, a half-wave dipole (shown in Figure 4.9)
radiates equally in the plane that perpendicular to its axis. The 3D radiation pattern of the
dipole is donut shaped (Figure 2.1)5. Finally, there is directional pattern which is usually
biased towards certain direction(s) in both the azimuth and elevation planes. Plots of the
three basic patterns are shown in Figure 2.3.

2.1.2 Directivity

Directivity D of an antenna is defined as the inverse of the average normalized radiation
intensity Fav [12]:

D =
1

Fav

, Fav =
1

4π

∫ 2π

0

∫ π

0

F (θ, φ) sin θdθdφ (2.1)

The average normalized radiation intensity is the integral of F (θ, φ) over a unit sphere. The
directivity is a measure of how “focused” the beam is. Antennas with low directivity will
spread the radiated energy in many directions (a wide angle), whereas antennas with high
directivities focus the beam in very narrow angles. By definition, the directivity cannot
be less that 1. The isotropic antenna has the minimum directitvity Diso = 1 = 0dBi.
The directivity of any other antenna is specified relative to the isotropic antenna in the
dimensionless unit dBi6. The directivity of an antenna is porportional to its effective area

3θ is the angle with respect to the positive z-axis (0 < θ < π), and φ is the angle on the xy plane with
respect to the positive x-axis (counter clockwise). Sometimes, φ is referred to as the azimuth (horizontal)
angle, and θ as the elevation angle. Together, they specify a unique direction in the 3-dimensional space.

4The only antenna that can achieve an isotropic pattern is a point source, which is not possible in practice
since a real antenna must have physical dimensions. In fact, the smallest realizable antennas like the short
dipole or the half-wave dipole are biased towards some directions compared to others [60].

5In practice, the radiation pattern of a short dipole will not be perfectly omni-directional since the feed
network breaks some of the symmetry.

6The directivity is assumed to be in the direction of maximum intensity. However, to compute the
directivity in an arbitrary direction (θd, φd), we simply multiply D by F (θd, φd).
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(a) (b)

(c) (d)

Figure 2.1: Different representations of an antenna pattern in three dimensions: (a) 3D plot
in spherical coordinates (dB scale). (b) 3D plot in spherical coordinates (linear scale). (c)
3D plot in rectangular coordinates (dB scale). (d) 3D plot in rectangular coordinates (linear
scale).
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Figure 2.2: Different representations of an antenna pattern in two dimensions: (a) 2D plot
in polar coordinates (dB scale) with either θ or φ fixed. (b) 2D plot in polar coordinates
(linear scale) with either θ or φ fixed. (c) 2D plot in Cartesian coordinates (dB scale) with
either θ or φ fixed. (d) 2D plot in Cartesian coordinates (linear scale) with either θ or φ
fixed.
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Figure 2.3: Three basic patterns (isotropic, omni-directional, directional) in polar coordi-
nates (linear scale). (a) Isotropic pattern (azimuth). (b) Isotropic pattern (elevation). (c)
Omni-directional pattern (azimuth). (d) Omni-directional pattern (elevation). (e) Direc-
tional pattern (azimuth). (f) Directional pattern (elevation). Note that the patterns of the
omni-directional and directional antennas depend on the antenna orientation. Here, we as-
sume that the omni-directional antenna is oriented such that the radiation is uniform in the
xy-plane, and the directional antenna is oriented such that the beam is focused along the
x-axis.
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[54]. In fact, we can write the relationship between the directivity D and the effective area
Ae as [60]:

Ae =
λ2D

4π
(2.2)

where λ is the carrier wavelength. Therefore, for a fixed area, the directivity increases with
frequency.

Beamwidth

Another measure of the directivity is the beamwidth measured near the point(s) on the
sphere of peak radiation intensity. There is no fixed definition of the beamwidth. However,
the most popular is the half power beamwidth (HPBW), which is the measure of the angle
over which the radiation intensity of the antenna is at least one-half the value of its maximum
value. The directivity is inversely proportional to the beamwidth:

D ∝
1

HPBW
(2.3)

The constant of proportionality depends on many factors including the size and number
of lobes in the pattern. Also, depending on the context, the HPBW may sometimes refer
to the solid angle that covers the contiguous area on the unit circle around the peak in
which the intensity is at least one-half the value of its maximum value. Solid HPBW is
propotional to the product of the azimuth and elevation HPBWs [60]. Other measures of
the beamwidth include the null to null beamwidth (Bnn) which is a measure of the smallest
angle between the peak and the first null (or between two nulls), and the 10dB beamwidth,
which measures the angle from the peak up to the point where the intensity drops by more
than 10dB. Equation 2.3 exemplifies the tradeoff of high directivity antennas. Whereas, the
energy efficiency improves with directivity, the coverage area get smaller as well.

2.1.3 Antenna effciency

In all practical cases, antennas are not perfect lossless radiators. In fact, not all the power
accepted by antenna is actually radiated. The ratio of the radiated power Prad to the power
accepted or transmitted Pt is radiation efficiency ξ of the antenna. From a transmission
line’s prespective, an antenna is mereley an impedance. The real part of this impedance can
be divided into two components: a radiation resistance Rrad and a loss resistance Rloss. ξ
can be expressed in terms of Rrad and Rloss [60]:

ξ =
Rrad

Rrad + Rloss

(2.4)

The gain G of the antenna is defined as product of the directivity D and the efficiency
ξ. Like the directivity, the gain of an antenna is specified in dBi, which is the ratio of the
gain of the antenna to the gain of a lossless isotropic antenna (in dB). Note that the gain
of the antenna can be less than 1 even though the directivity is always greater than 1 if
the efficiency of the antenna bad. The efficiency usually drops at very high frequencies (e.g.
mm-wave) where the material loss is high.
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2.1.4 Antenna bandwidth

From a transmission line’s prospective, an antenna is just an impedance. If not well
matched, a significant fraction of the transmit/receive power will not be transferred to/from
the antenna. The bandwidth of the antenna is defined as the size of the frequency band
over which the square magnitude of the reflection coefficient |Γ|2 is smalled than a given
threshold7. Therefore, in order to ensure maximum power radiation, we need antennas with
high radiation efficiency and are well matched8.

We note, however, that a lot of the antenna properties like the impedance and radiation
pattern can change depending on the medium and the surroundings (especially nearby metal
objects). An antenna that is measured in isolation will usually exhibit slightly different
behavior when used with an entire system.

2.1.5 Polarization

An electromagnetic (EM) wave cannot be fully described by frequency, phase, and am-
plitude since these are scalar quantities. To complete the picture, we also include the polar-
ization of the wave, which fully captures its vector nature. In general, radiated EM waves
propagate in spheres. As these spheres become larger, they can be approximated by plane
waves over small observation regions. If we fix one of these planes in space, then the figure
that is traced by the electric field vector on this plane with time define the polarization of
the wave [54]. In general, this figure will be an ellipse, which means that the polarization
can be fully specified by the orientation of the ellipse and the ratio of the major axis to the
minor axis (that ratio is sometimes referred to as the axial ratio or AR). There are, however,
some special cases that often occur in practice. When |AR| = ∞, the ellipse becomes a line,
and results in linear polarization. On the other hand, when |AR| = 1, the ellipse becomes
a circle, and results in either right-hand circular polarization (RHCP) or left-hand circular
polarization (LHCP) depending on the direction of the rotation.

The polarization of an antenna is defined as the polarization of the wave it radiates9. For
example, dipole and monopole antennas produce linearly polarized waves10. Helix antennas
produce circularly polarized waves (the direction of rotation follows the windings of the
helix). Patch antennas are interesting since their polarization can be controlled by changing
the feed network, so they can be designed to produce any type of polarization [12].

The polarization of an antenna is important in the context of wireless communication for
two reasons. First, antennas only accept (receive) waves (or components of waves) that have
the same polarization. For example, if an antenna is linearly polarized with a polarization
vector along the x-axis (horizontally polarized), then it will only receive the component(s) of
incoming waves that are polarized along the x-axis. If the incoming wave is linearly polarized

7The threshold is application dependent, but for many applications, an impedance match of -10dB or
better is considered sufficient.

8For some applications, a narrow band impedance match is desirable to minimize out of band radiation.
9The definition is a bit ambiguous since the radiated waves may have different polarizations in different

directions. However, the polarization of the antenna usually refers to the polarization along the main beam
[54].

10If the dipole is oriented vertically, then the waves are vertically polarized, and if it is oriented horizontally,
then the waves will be horizontally polarized, and so on.
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with the polarization vector pointing at a direction that is 45◦ from the x-axis, then only
half the power will be received. Similarly, if the polarization vector is 90◦ from the x-axis
(vertically polarized), then the entire wave will not be received. Using this property, two
wireless systems can operate simultaneously on the same frequency band if they each use
antennas with orthogonal polarization vectors, which means that in theory we can double
the capacity by doubling the spectral efficiency by using different polarizations. Therefore,
antenna polarization adds an additional degree of freedom to the system. A vertically po-
larized antenna is orthogonal to a horizontally polarized antenna, and RHCP antenna is
orthogonal to LHCP antenna. Second, in many practical scenarios, the polarization of the
wave will impact its propagation through the atmosphere and the reflection coefficients of
different materials. The exact relationship will also be frequency dependent.

In addition to the properties discussed in this section, antenna design is also affected by
other factors such as cost and packaging. Some antennas are easier to manufacture that
others. For example, dipoles and microstrip antennas are easier to print on circuit boards
than helix or horn antennas.

2.1.6 Free space propagation

Figure 2.4: A transmit antenna Tx and a receive antenna Rx separated by a distance r meters
in free space.

Consider a simple example of a transmit antenna Tx and a receive antenna Rx that are
separated by a distance r meters in free space11 as shown in Figure 2.4. If we assume that
the main beams of both antennas are along the line connecting both antennas, then PRx ,
the power received by Rx, is related to PTx , the power radiated by Tx, by the Friis equation
[60]:

PRx

PTx

=
GTxGRxλ

2

(4πr)2
(2.5)

The ratio L = PRx/PTx is called the path loss (the free space path loss in this case). By
definition, L ≤ 1. GTx and GRx are the antenna gains of Tx and Rx respectively, and λ is
the carrier wavelength.

11We assume that r is much larger than the dimensions of both antennas.
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The inverse relationship between the path loss L and the distance r in Equation 2.5 can
be intuitively derived as follows. Since the radiated waves propagate in spheres, at a distance
r, the transmit power will be spread over an area that is proportional to a sphere of radius
r. Since the receive antenna has a fixed capture area, the fraction of power captured by the
receive antenna is inversely proportional to the area of the radius r sphere or 1/r2. Equation
2.5 can also be written in terms of antenna directivity:

L =
PRx

PTx

=
ξTxξRxDTxDRxλ

2

(4πr)2
(2.6)

The relationship in Equations 2.5 and 2.6 seem to suggest that the free space path loss gets
worse as the carrier frequency increases. However, in both equations, we assumed that the
directivities of both antennas are fixed. If instead, we fix the effective area of each antenna,
and rewrite Equation 2.6 in terms of the effective area:

L =
PRx

PTx

=
ξTxξRxATxARx

(λr)2
(2.7)

then the path loss seems to improve as we increase the frequency. There is no contradiction
since we now assume a fixed area instead of a fixed directivity. When the effective area is
constant, then we can get more directivity by increasing the frequency12.

In Equation 2.5, we assumed that the main beams of both Tx and Rx are along the line
connecting the two antennas, which is not always the case in practice. In order to account for
the misalignment, we multiply the radiation intensities of both Tx and Rx at their respective
pointing angles:

L =
GTxGRxFTx(θTx , φTx)FRx(θRx , φRx)λ

2

(4πr)2
(2.8)

where (θTx , φTx) represents the direction of the receive antenna with respect to the transmit
antenna, and (θRx , φRx) represents the direction of the transmit antenna with respect to the
receive antenna.

Note that the figure of interest is the signal to noise ratio at the receiver or SNR. The
signal component of SNR (the numerator) is computed from the Friis equation. The noise
component (the denomenator) is usually dominated by the thermal noise, which is propor-
tional to the absolute temperature T (usually measured in Kelvin) and the signal bandwidth
B (usually measured in Hertz). The expression for the noise power (variance) N0 at the
receiver [47]13:

N0 ∼ kTB (2.9)

12In practice, the propagation medium will not be free space, and the loss from medium is usually higher
at high frequencies although the relationship is neither linear nor strictly increasing [45]. For example, some
bands like 60GHz are very sensitive to oxygen absorption. Thus, the medium loss at 60GHz is going be
larger than 80-100GHz even though the frequency is lower. The loss is also affected by other parameters like
polarization.

13Noise is a random process that is modeled as a complex white stationary Gaussian process[47]. The
constant of proportionality in Equation 2.9 depends on many factors, but most importantly on the receiver
noise figure [28]. The constant k in Equation 2.9 is the Boltzmann constant (k = 1.3806503× 10−23m2 · kg ·
s−2 · K−1).
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⇒ SNR ∼ PRx

N0

The capacity C of a link refers to maximum theoretical data rate that can be achieved over
that link, and is bounded by the Shannon limit which is a function of the SNR [47]:

C = B log(1 + SNR) (2.10)

The units for C is bits/sec. C increases linearly with the bandwidth and logarithmically
with the SNR14. The quantity C/B is known as the spectral efficiency and has units of
bits/sec/Hz.

Equation 2.10 holds for both wired and wireless channels alike as long as the noise is
white, additive and Gaussian. Channels that have this property are called additive white
Gaussian noise or AWGN channels. For wireless channels however, there is another factor
that needs to be accounted for, which is interference from other sources. In high interference
environments, the quantity of interest is the signal to interference plus noise ratio (SINR).
Even though the statistics of interference are usually different from noise, they are often
assumed to be white and are treated like noise for simplicity15.

2.2 Static versus steerable antennas

The antennas we have discussed so far in this chapter are passive antennas, whose radi-
ation characteristics are determined solely by their mechanical structure. Examples include
helix antennas, reflector antennas, and waveguide antennas. The only way to redirect the
beam pattern is by physically moving or rotating the antenna. However, there exists an-
other class of active antennas whose properties depend on their electrical characteristics (e.g.
impedance, signal excitations) which can be changed to produce different properties without
altering the mechanical structure. This class of antennas is sometimes referred to as electri-
cally steerable antennas or beamforming antennas or adaptive antennas and is the focus of
this dissertation.

Electrical beam-steering can be accmplished by means of an antenna array. The simplest
example is a uniform N-element linear array shown in Figure 2.5. The array is uniform in
the sense that all the antennas have the same radiation pattern (typically omni-directional),
and the inter-element spacing is the same throughout the array. Suppose for simplicity that
the array elements lie on the x-axis, and the spacing between two consecutive antennas in
meters is d. Therefore, the total length of the array is Nd. Furthermore, assume that there
is an incoming signal s(t) from an angle θ off the x-axis and a distance r from the first
antenna in the array or (Ant0) as shown is Figure 2.5. We assume for simplicity that s(t)
is a very narrow band or single tone signal at frequency f0 corresponding to wavelength λ0

(i.e. s(t) = ej2πf0t = ej2πvst/λ0)16. We also assume that the source of this signal is in the
far field of the antenna array (i.e. r ≫ Nd), so that the received signal at each antenna in

14Note that the SNR itself is a function of the signal bandwidth.
15For wireless channels, there is also another statistical factor that impacts the capacity. This factor is

a result of the multipath nature of the channel, and is called fading. Fading is discussed in more detail in
Section 2.3.

16vs is the velocity of light in the medium.
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Figure 2.5: N-element linear antenna array.

the array will have roughly the same amplitude, which we normalize to 1. The same signal
arrives at different elements of the array with different delays. Those delays can easily be
computed from the geometry of the array and the angle of arrival and the speed of light in
the medium. Figure 2.5 shows those delays for a uniform linear array as a function of the
angle of arrival θ. At a given frequency, these delays translate into phase shifts. If we rotate
the phase of the incoming signal at each antenna Anti by iϑ ∀0≤i<N , then we can derive the
expression of the gain of the array (the aggregated signal from all antennas) as a function of
the angle of arrival θ and the progressive phase shift ϑ as follows:

relative delay at Antenna i: τi =
id cos θ

vs

= iτ ∀0≤i<N

relative phase shift at Antenna i: ϕi = 2πf0τi = 2πi(cos θ)
d

λ0

= iϕ ∀0≤i<N

E-field at Antenna i: Ei(t) = ej2πf0(t−τi)+iϑ = ej2πf0teji(ϑ−ϕ)

where τ = d cos(θ)/vs and ϕ = 2πf0τ . We also normalized the delays and the phases such
that τ0 = ϕ0 = 0. From these expressions, we can calculate the E-field at the output of the
array:

Earray(t) =
N−1∑

i=0

Ei(t) = ej2πf0t

N−1∑

i=0

eji(ϑ−ϕ)

∆ , ϑ − ϕ

⇒ Earray(t) = ej2πf0t

N−1∑

i=0

eji∆ = ej2πf0t sin(N ∆
2
)

sin(∆
2
)
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⇒ |Earray(t)|2 =

∣∣∣∣∣
sin(N ∆

2
)

sin(∆
2
)

∣∣∣∣∣

2

The term |Earray(t)|2 denotes the increase in the power of the received signal at the output of
the array relative to power of the received signal at an individual antenna element. However,
we also have to account for the noise the output array as well. Since we are adding noise
from N independent sources17, the noise power at the output of the array scales by a factor
of N relative to the noise at a single antenna. Therefore, the boost in SNR at the output of
the array relative to a single antenna:

SNRout

SNRin

=
SNRarray

SNRantenna

=
1

N

∣∣∣∣∣
sin(N ∆

2
)

sin(∆
2
)

∣∣∣∣∣

2

(2.11)

The ratio of the SNR at the output of the array to SNR at the input of the array (output
of a single antenna) is called the array gain or array factor (AF), which describes how the
power of the radiation pattern varies based on the angle of arrival θ (or angle of departure
in the transmit case). The same derivation also applies to a transmit array18. We can see
from Equation 2.11, the AF is maxmized when ∆ = 0, and the maximum value AFmax = N .
That means that the maximum array gain is proportional to the number of antenna elements
and occurs when the signals from each antenna element are all added in-phase19. Figure 2.6
shows the normalized array factor of a 20-element uniform linear array with λ/2 inter-element
spacing, with an angle of observation θ = π/6 = 30◦ from the axis of the array, and ∆ = 0.

Several aspects of the array factor plot, shown in Figure 2.6b, are of interest in a wireless
communication system. First and the most obvious is the direction where the beam peaks,
usually referred to as the main lobe. The direction of the main lobe is steered towards the
desired target by controlling the phase excitation ϑ. The width of the main lobe is inversely
proportional to the array gain and can be decreased by increasing the effective area of array
(by adding more elements without changing the spacing). Second, the other mini-peaks or
local maximas are called sidelobes. While they may not impact the beam towards the desired
signal, they can contribute to the overall interference in the system. The level of these side
lobes can be lowered by controlling the relative amplitudes of the signals at the antennas.
While the phase is used to steer the direction, the amplitude adds more leverage in shaping
the pattern. In Figure 2.6b, the amplitude is uniform, which results in highest size lobe
levels [46]. This is equivalent to multiplying the antenna weights with a rectangular window.
However, by “tapering” the window (e.g. using a triangular window), the side lobe levels
can be reduced significantly20. Many techniques used for time-domain filter design apply in

17we assume that the noise is independent across both time and space.
18In the receive case, the factor 1/N in AF is a result of adding N independent noise sources. In the

transmit case, the 1/N factor comes from the fact that the transmit power from each antenna is scaled down
by N such that the total power transmitted from all antennas is normalized to 1, which is equal to a single
antenna case.

19Since ∆ = 0 is only true for a single frequency, the maximum value of the array factor AFmax = N is
only attained at that frequency. In order to get a wideband response, using a true programmable time delay
is necessary.

20Tapering has the effect of reducing the effective area of the array, since using weights that less than the
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Figure 2.6: Beam pattern of a 20-element linear array with θ = π/6 = 30◦ and ∆ = 0 (a)
2D linear polar plot. (b) 2D rectangular plot. For both plots the elevation angle is fixed at
π/2 (i.e. xy-plane).
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this context as well [42]21. A more comprehensive discussion on window design, tapering,
and side lobe suppression can be found in [12, 46]. Third, the location of minimas or zeros,
also called beam nulls, also impact the interference in the system. Beam nulls are usually
steered towards big jammers. Like the side lobes, null-steering requires controlling both the
relative phase and amplitude of the signal at each antenna. Null-steering is discussed in
more detail in Chapters 5, 6, and 7. Finally, notice that the signal also peaks in a direction
other than the desired direction θ = 30◦. This other peak occurs at θ′ = −30◦, and is called
a grating lobe. The presence of a grating lobe means that signals coming from the direction
of the grating lobe have the same relative phase responses at the antennas as the desired
signal, and are thus indistinguishable. As a result, these grating lobes, which result from the
symmetry in the array geometry, are not desirable22. The grating lobes can be reduced by
designing the array geometry to break the symmetry. This will be discussed in Chapter 4.

If the antenna elements of the array were all isotropic, then the radiation pattern will
be exactly the array factor. However, the individual antenna elements are not going to be
isotropic since such antennas are not realizable in practice. In this case, the overall radiation
pattern is the product of the array factor with the pattern of the individual antenna (also
known as the element factor or EF) [54]:

F (θ, φ) = AF (θ, φ)EF (θ, φ) (2.12)

where F (θ, φ) is normalized radiation pattern of the array. In practice, mutual coupling
between neighboring antennas and edge effects make it difficult to have a uniform pattern
for all the antenna elements even if those elements were identical. In this case, Equation
2.12 will not yield accurate results. However, for large arrays, the edge effects and pattern
distortions can be smoothed, in which case, the overall radiation pattern can be approximated
by the product of the array factor with the “average” element factor [54]:

F (θ, φ) = AF (θ, φ)EFav(θ, φ) (2.13)

Although we used a simple example of a uniform linear array to illustrate the basic
properties of phased array antennas, the same concepts and techniques can be used to derive
the properties and radiation patterns of arrays with arbitrary geometries. Some of these
geometries will be explored in more depth in Chapter 4.

Another advantage of phased array antennas is spatial power combining. On the transmit
side, in addition to the increased directivity, the power transmitted by the individual power
amplifiers attached to each antenna are also combined in space. Thus, the signal power at
the receiver is enhanced by a factor of N2 (a factor of N comes from the array gain and

peak weight means that some of the antennas are only partially on. That means that the price of lower side
lobe levels will be a wider main lobe and reduced gain [46]. The shape and level of the side lobes can also
be changed by changing the geometry of the array.

21The set of complex weights the multiply the signals at each antenna can be viewed as a filter in the
spatial domain (similar to the time domain). The corresponding beam pattern can be viewed as the angular
domain representation of the filter (similar to the frequency domain). The relationship between the spatial
domain and angular domain is very similar to the relationship between time domain and the frequency
domain.

22The number of grating lobes also increases when we increase the spacing between the antenna elements,
especially when the spacing exceeds λ.
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another factor of N comes from the spatial power combining). This also means that a single
large power amplifier can be replaced by an array of smaller amplifiers that can potentially
be implemented more efficiently using a low cost silicon technology like CMOS.

The implementation of signal amplitude change and phase rotation as well as signal
combining and splitting is covered in more depth in Chapter 3.

2.2.1 Other types of antenna arrays

Phased array antennas are by far the most popular method for producing a electrically
steerable beam. However, there are other ways of utilizing antenna arrays to steer the beam
without changing the phase of the signal. These methods include switched array antennas
and switched parasitic antennas. Here is a brief overview of each of these methods.

• Switched array antennas

This implementation of beam-steering uses an array of directional antennas (e.g. parabolic
dishes) [12]. These antennas can be arranged in a circle for example, with each of them
pointing in in a different angle or covering a different sector (the main lobes of the dif-
ferent antennas usually have some overlap to ensure continuity of coverage as shown
in Figure 2.7). The beam-steering is implemented by turning on the antenna or group
of antennas pointing in the desired direction and turning off the rest of the antennas.
The main advantage of switched arrays is simplicity. However, they do not provide
the same level/granularity of control over the shape of the beam pattern as do phased
arrays. Furthermore, whereas all antennas in a phased array simultaneously work to-
gether to form a beam, only one or a few of the antennas in a switched array effectively
capture a signal from a given direction. Therefore, in order to provide the same level
of directivity, each antenna in the switched array will have to be as large as the entire
phased array. Also, since only a few antennas are used at any given time, the array
does not take advantage of spatial power combining to increase the transmit power.

• Switched parasitic antennas

In a switched parasitic antenna, only one of the antennas in the array is excited by
a signal; the rest of the antennas around that driven element are parasitic elements
[57, 32]. These parasitic elements act like scatterers. The radiation pattern is shaped
by changing the electrical characteristics of these scatterers.

Most of the discussion in this dissertation is focused on adaptive antennas based on phased
arrays for the clear advantages they provide. However, many of the ideas and techniques
that are discussed apply to other beam-steering implementations as well.

2.2.2 Scanning versus adaptive arrays

Beamforming systems can be classified based on their beam shaping capability. For ex-
ample, one class of beamforming systems is scanning arrays. As the name suggests, scanning
arrays can scan the direction of the beam across a wide range of angles, but do not have the
ability to create more sophisticated beam patterns with different lobe sizes. However, this ca-
pability is sufficient for many applications including radar and line of sight communications.
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Figure 2.7: A switched array of directional antennas with overlapping beams arranged in a
circle.

Popular techniques for implementing scanning arrays include the Butler and Blass matrices
[15, 14]. Another popular class of beamforming systems is adaptive arrays. Adaptive an-
tenna arrays can dynamically compute the beam pattern that optimizes certain aspect of
the desired signal. The beam may not necessarily peak in any particular direction. In fact,
in multipath scattering environments (described in Section 2.3), the signal comes from many
directions, and the optimum beam pattern gathers the energy from all these directions. Also,
the optimum beam pattern may not result in the maximum strength. Instead, it tries to
maximize the another aspect of the signal, usually the signal to interference and noise ratio
or SINR. To maximize the SINR, the adaptive array tries to maximize the desired signal
while placing nulls in the direction(s) or interferers. Also, as the name suggests, the process
is dynamic and adapts to changes in the environment and does not require prior knowledge
of the channel statistics. Adaptive array systems add a lot of advantages to wireless systems
in urban and suburban environments compared with other types of antenna arrays, and thus,
are the focus of this dissertation.

2.3 The wireless channel

Communication over a wireless channel is inherently different from traditional wired com-
munication due to the limitless nature of the medium. Because waves are free to travel in any
direction, they can bounce, reflect, and scatter off of any object. The scattering, bouncing,
and reflections affect the characteristics (amplitude, phase, polarization) of the waves in very
arbitrary ways. Furthermore, the movement of these objects make the channel dynamic in
nature. These effects can be detrimental to a wireless system if not well understood and
accounted for. In this section, we present a brief overview of the basic properties of wireless
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channels and their implications for system design, especially adaptive array systems23.

2.3.1 Channel fading

One of the main consequences of waves bouncing and scattering off of objects is that the
signal usually arrives at the destination from multiple paths. These paths usually have dif-
ferent lengths (delays), arrive from different directions (angles), and have different strengths.
The statistics of these quantities depend on the environment (e.g. the number and location of
scatterers). In the absence of multipath, the variation in the wireless channel occurs mainly
due to the change in distance between the transmitter and the receiver as these radios move
around. The signal “fades” as the distance between the two radios grows. However, the time
scale required for a significant change in the signal amplitude is usually large, and this change
will be largely frequency independent24. On the other hand, when there are multiple paths,
the signal can still fade even when the transmitter and receiver are close to each other. In
this case, fading occurs when the signals from different paths are out of phase at the receiver,
which creates a destructive interference. This type of fading has several characteristics that
distinguish it from the traditional “slow” fading25:

• While the delay from each path is only a function of the length of that path and is
independent of frequency, the phase of the signal is frequency dependent. Therefore,
when the signals from different paths are added at the receiver, the magnitude of the
sum will also be frequency dependent. Therefore, the fading will be a function of
frequency.

• Since any change in the path length that is of the order of the carrier wavelength can
rapidly change the phase, any change in the position of the radios or the scatterers that
is of the order of the carrier wavelength can lead to rapid variations in the amplitude of
the received signal. This is why this type fading is referred to as “small-scale fading”
[59].

Therefore, small-scale fading is a function of both frequency and space26. For the rest of
the dissertation, we shall use the term fading to refer to small-scale fading. A multipath
environment is usually referred to as a fading environment. Using ray tracing, we can
represent a wireless channel between two radios in a multipath fading environment in the
time domain with a linear time varying system[59]:

h(τ, t) =
∑

i

ai(t)δ(τ − τi(t)) (2.14)

where ai(t) is the amplitude response of path i as a function of time, and τi(t) is the delay
of path i (also a function of time). Equation 2.14 describes the wireless channel from the

23The material presented in this section is covered in more detail in [59].
24With the exception of the fact that atmospheric attenuation is frequency dependent [45].
25In addition to distance, slow or large-scale fading also occurs due to shadowing by large objects like

buildings and hills in non-line of sight environments [59].
26Fading can also be a function of time when the some of the radios and/or reflectors are mobile. However,

the temporal variation is a consequence of the spatial variation.
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transmit antenna to the receive antenna or the wireless channel in RF (passband) domain.
However, since most of the processing happens in the baseband, a transfer function that
describes the channel from the transmit baseband to the receive baseband would provide a
lot more insight into the channel characteristics. Recall that the passband signal is an “up-
converted” version of the baseband signal (i.e. the passband is obtained by multiplying the
baseband signal by a complex exponential ej2πf0t) [47]. Therefore, in order to convert back
to the baseband, we multiply by the complex conjugate (e−j2πf0t), where f0 is the carrier
frequency:

hb(τ, t) =
∑

i

ai(t)e
j2πf0τi(t)δ(τ − τi(t)) =

∑

i

abi
(t)δ(τ − τi(t)) (2.15)

Therefore, the carrier frequency gets canceled. What remains is a phase term ej2πf0τi(t) that
results from the delay of path i. Equation 2.15 is called the baseband equivalent model [59],
and hb(τ, t) is the channel response at the baseband (abi

(t) is the complex response of each
path at the baseband). Notice that when a path length changes by a quarter wavelength,
the phase response rotates by π/2. At 1GHz, a quarter wavelength is a little bit less than
8cm. Therefore, the phase response of each path can change rapidly for mobile nodes (on
the order of a few milliseconds).

Most of the wireless systems of interest are digital and have finite resolution limited by
the signal bandwidth Bs (symbol interval Ts ≈ 1/Bs). The relationship between the digital
(discrete-time) and analog (continuous-time) signal is:

xb(t) =
∑

n

x[n]p(t − nTs) (2.16)

where p(t) is a pulse signal that is band-limited to Bs (e.g. a square pulse or a sinc pulse).
When x[n] is replaced by the unit sample δ[n], the discrete-time channel response is obtained
by convolving hb(τ, t) with p(t) and sampling the output at multiples of Ts:

hb(τ, t) ∗ p(t) =
∑

i

abi
p(τ − τi(t))

If we sample at t = mTs, then the lth tap (delay) of the discrete-time channel response is
(l = m − n is the discrete-time equivalent of τ):

hl[m] =
∑

i

abi
(mTs)p(lTs − τ(mTs)) (2.17)

Based on Equation 2.17, if p(t) = Π(t/Ts) (i.e. a square pulse with width Ts), then the first
channel tap is the sum of paths that arrive in the interval [0, Ts], and the second tap is the
sum of paths that arrive in the interval [Ts, 2Ts], and so on (i.e. the lth tap is the sum of
paths that arrive in the interval [(l − 1)Ts, lTs]).

There are several key parameters (quantities) that are used to capture the basic charac-
teristics of a fading environment27. These quantities are statistical in nature, and are usually
specified by their root mean square (rms) values. These key parameters are [59]:

27These parameters come in pairs. With each pair describing a certain aspect of the environment in
complementary domains (e.g. time/frequency and spatial/angular domains).
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• Delay spread: the delay spread Td is the difference in the time of arrival between the
shortest path and the longest path [59]28:

Td , max
i,j

|τi(t) − τj(t)| (2.18)

Two factors contribute to high delay spreads: long distance and rich scattering. If the
environment has a lot of the scattering but short distances (e.g. an indoor environ-
ment), then the delay spread will be low (e.g. of the order of tens of nanoseconds).
Similarly, if the transmitter and the receiver are far apart, but without any scattering
(e.g. line of sight), then the delay spread will also be very low (almost zero). On the
other hand, urban and suburban outdoor environments are both long distance and rich
scattering. In these environments, the delay spread can be of the order of microseconds
(sometimes tens of microseconds).

• Coherence bandwidth: the coherence bandwidth Wc is the frequency domain comple-
ment to the delay spread and is defined as the size of the frequency band over which
the channel statistics remain relatively consistent. That means that when part of the
band is in deep fade, then with high probability the entire band will also be in deep
fade. Two frequencies that are more than a coherence bandwidth apart are assumed
to have independent statistics. The coherence bandwidth is the inverse of the delay
spread:

Wc ∼
1

Td

(2.19)

When the signal bandwidth Bs is smaller than the coherence bandwidth, the channel
response will be almost flat over the entire signal bandwidth, a situation usually referred
to as flat fading [59]. In the time domain, the delay spread will be smaller than the
symbol time Ts, and thus, most significant paths will fall into a single tap (the Fourier
transform of a single tap channel is constant over all frequencies.). On the other hand,
when Bs ≫ Wc, the fading will be frequency-selective. In the time domain, Ts ≪ Td,
and the channel response will be represented by multiple taps. In our analysis, we
focus on flat fading without loss of generality, since a frequency selective channel can
be transformed into a set of parallel narrow sub-channels, each of them is flat fading
and can be processed independently (see Section 2.3.3).

• Coherence distance: the coherence distance rc is defined as the minimum distance be-
tween a constructive interference (channel peak) and destructive interference (channel
minimum) [59]. In other words, rc is the minimum distance between two points in space
where the channel statistic are independent. The coherence distance not only depends
on the environment, but also on the carrier wavelength λ0. This dependence is a result
of the phase (and its rate of change) of each path being a function of the wavelength.
Also, depending on the environment, the coherence distance is different in different
directions. The coherence distance is independent of the delay spread. However, it
depends on another quantity “the angular spread”, which is described next.

28Paths with very low energies are generally neglected.
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• Angular spread: The angular spread θd is defined as the maximum angle between
two paths with significant energy29. Unlike the delay spread, the angular spread does
not depend on the relative lengths of the different paths, but instead on their angles of
arrival. The angular spread depends on the location of the scatterers/reflectors relative
to the radio. If the radio is located near the scatterers, then the angular spread will be
large, and it will be low when the radio is far away from the scatterers. For example,
in an indoor environment, the angular spread is usually high. In an urban outdoor
environment (a cellular network for example), the angular spread will be high at the
mobile stations (located near the ground), and low for the base stations (usually at
a higher elevation). The angular spread is inversely proportional to the coherence
distance:

rc ∼
1

θd

(2.20)

These parameters, together with mobility related parameters, discussed in Section 2.3.1,
capture the key features of the propagation environment that help the designers of wireless
systems improve the overall system design.

Channel variation

The channel variation at fast time scales is mainly due to mobility of the transmitter
and/or the receiver as well as, but to a lesser extent, the mobility of the reflectors30. The
combined effect of the velocity of the radios and the multipath nature of the environment
on the wireless channel can be captured with two complementary parameters:

• Coherence time: the coherence time Tc of a time varying channel refers to the minimum
time required for the statistics of the channel to change. Effectively, the statistics of
channel change when the wireless node moves a coherence distance away from the
original location. That means that the coherence time depends on both the coherence
distance and the velocity of the node(s)31:

Tc ∼
vt

rc

(2.21)

where vt is the velocity of the node along the direction of the coherence distance.
The coherence time is low in high mobility environments. This situation is usually
referred to as fast fading. On the other hand, fixed wireless networks are slow fading
environments. Tc is usually of the order of a few milliseconds for fast fading channels.

• Doppler spread: the mobility of a wireless node slightly changes the frequency of the
signal by an amount that is proportional to the ratio of velocity vt of the node to the
speed of the light c:

f ′ = f(1 ± vt/c)

29The angular spread must also specify the direction or the plane of the angle.
30Changes in atmospheric conditions (e.g. temperature, air density, rain) also lead channel variations, but

these happen at a much slower scale.
31The coherence time depends on the velocity of both the transmitter and the receiver as well as the

reflectors.
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where the sign depends on the direction in which the node is moving. The change
in frequency (∆f = fvt/c) is called a Doppler shift. Since the velocity is going to
be different along different paths (velocity is a vector quantity that is also a function
of direction), the Doppler shift will be different for different paths. Let f ′(i) be the
frequency (Doppler shift) of path i. The the Doppler spread Ds is defined as the
maximum in difference in Doppler shift between any pair of paths:

Ds , max
i,j

|f ′(i) − f ′(j)| (2.22)

The Doppler spread is also inversely proportional to the coherence time:

Ds ∼
1

Tc

(2.23)

Channel models

We can classify the wireless channel based on the propagation environment into three
broad categories:

• Line of sight

The line of sight or LOS is the simplest model and assumes a single direct path between
the transmitter and the receiver. In terrestrial communications, there will be usually
at least one reflection (e.g. from the ground). Therefore, a perfect LOS channel is
unattainable in practice. None the less, LOS is a good approximation to many real
channels. In an LOS channel, fading can be approximated with the Friis equation with
an additional exponential factor that captures the loss from the medium32:

L(r, f) =
GTxGRxλ

2e−α(f)r

(4πr)2
(2.24)

where f is the carrier frequency. The LOS channel is sometimes referred to as the
AWGN channel. The delay, angular, and Doppler spreads are zero for an LOS channel.

• Rayleigh fading channel

The Rayleigh channel model is on the opposite extreme of the LOS model. Whereas the
LOS model is completely deterministic, the Rayleigh model is completely probabilistic.
The Rayleigh model is based on the assumption that each channel tap is sum of the
responses from a large number of independent paths with different lengths [59]. Since
the lengths of the paths are much larger than the carrier wavelength, it is reasonable
to assume that the phase response of each path is uniformly distributed between 0
and 2π and is statistically independent across paths. Since there is a large number
of paths, the sum of their complex responses can be approximated with a complex

32The loss exponent is usually dependent on both the medium and the frequency. When the medium is
air, the exponential factor in Equation 2.24 is negligible at low frequencies. It becomes significant at high
frequencies. In fact, at frequencies around 60GHz for example, oxygen absorption is a major factor, and the
exponential term dominates in long distances [45].
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Gausssian random variable (using the Central Limit Theorem) [59]. Therefore, the
discrete complex baseband channel taps are modeled as independent complex Gaussian
random variables. The square magnitude (power) of each of these taps is exponentially
distributed [59].

The key difference between the Rayleigh fading model and the AWGN model is that
in a Rayleigh model, the channel SNR also becomes statistical. The main consequence

of that the bit error probability (BER) improves as 1/SNR instead of e−SNR as is
the case in AWGN channels [59]. This is one of the major hurdles faced by wireless
systems.

The Rayleigh channel model is usually adopted for its simplicity. In Chapters 5, 6,
and 7, we rely on the Rayleigh channel assumption to simplify the analysis.

• Rician fading channel

In practice, the channel in neither completely deterministic nor completely random.
The Rician channel model is used to model channels that lie somewhere between these
two extremes (i.e. channels that have a deterministic component and a random compo-
nent). The Rician model is effectively a linear combination of the LOS model and the
Rayleigh. The relative contributions of the deterministic (LOS) and random (Rayleigh)
components to the overall channel model is determined by a parameter called the K-
factor. A larger K-factor means the channel is more deterministic, and a smaller
K-factor means the channel is more random. The K-factor itself is a random variable.
The distribution of the magnitude of this random variable is Rician [59].

2.3.2 Channel diversity

The wireless channel response varies in both frequency and space. As we mentioned
earlier in this section, the channels become almost statistically independent at locations
that are more than a coherence distance apart, and frequencies that more than a coherence
bandwidth apart. There are different ways for exploiting this property of the channel in
order to improve the channel reliability (i.e. achieve a BER better than 1/SNR):

• By placing multiple receivers (i.e. antennas) or transmitters at multiple locations that
are more than a coherence distance apart, the probability of the channel in all the
locations being in deep fade is reduced considerably. This technique is called spatial
diversity [59]. When implemented at the receiver, it’s called receive diversity, and
transmit diversity when implemented at the transmitter. There are several ways of
combining the signals from different antennas to obtain diversity. The simplest way
is to choose the strongest channel, and discard all others. This is called diversity
combining. The second method, called maximum ratio combining or MRC33, is little
more sophisticated, and involves combining all the channels in phase in order to obtain
the power gain in addition to the diversity gain.

Incidentally, spatial diversity is one of the biggest advantages of using antenna arrays.
We can also consider this diversity method in the angular domain. The idea is that

33In the signal processing literature, MRC is usually referred to as the matched filter.
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if the array contains two or more antennas that are more than a coherence distance
apart, in the angular domain, this means that the array has an angular resolution that
is finer than the angular spread of the channel, which means that the array has the
ability to resolve some paths and significantly attenuate others in order to reduce the
probability of deep fade.

• By communicating over a bandwidth that is larger than the coherence bandwidth,
we can reduce the probability of the entire band being in deep fade. This method is
called frequency diversity [59]. The time domain interpretation of this phenomenon
is as follows. When the channel bandwidth is larger than the coherence bandwidth,
the symbol time will be smaller than the delay spread. Therefore, the channel will
be composed of multiple taps. Since the statistics of these taps are independent, the
probability of all of them simultaneously being in deep fade is also reduced.

The total diversity in the system will be the product of all these diversity methods.
That means if the receiver has NRx antennas that are more than a coherence distance apart
from each other, and the transmitter has NTx that are at least a coherence distance apart
from each other34, and the channel has P effective taps in the time domain, then overall
diversity rank of the channel L = NRxNTxP . Diveristy improves the BER from ∼ 1/SNR to
∼ 1/SNRL. In the limit as L → ∞, the channel approaches an AWGN channel.

There are other methods for achieving diversity. Time diversity is used in mobile and
cellular networks. The idea is that the statistics of the channels change after a coherence
time. So diversity can be achieved by coding and interleaving (spreading) codewords over
multiple coherence times [59]. Time diversity is a product of spatial diversity (radios moving
to different points in space). Another method is polarization diversity. With polarization
diversity, two antennas with opposite polarizations can have independent channel statistics
even when they are less than a coherence distance apart. The reason this is the case is that
wave propagation and reflection are affected by polarization. However, the diversity rank
that can be achieved from polarization is limited since there can only be two orthogonal
polarization states at any given time.

2.3.3 Frequency selective channels

Frequency selective channels improve the system performance by adding more diversity.
However, one of the challenges for communicating at the maximum rate over a frequency
selective channel is that since the channel has multiple taps in the time domain, the current
symbol will interfered with by the delayed versions of previous symbols. This situation is
referred to as inter-symbol interference or ISI [59]. There are several approaches for dealing
with ISI. We describe two of these approaches that are relevant to this dissertation:

• Linear equalization: a linear equalizer is a time domain filter that is chosen such that
when convolved with the multitap channel response, the output will be approximately
single tap. This method is called equalization because it tries to make the channel
response equal at all frequencies across the signal bandwidth. The order of the filter

34The coherence distance at the transmitter and the receiver need not be the same. In fact, they are
usually different because the angular spreads are different.
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has to be larger than the channel response in order to get satisfactory results. While
linear equalization is not optimal, it provides a good balance between performance and
complexity.

• Orthogonal Frequency Division Multiplexing (OFDM): this technique transforms a
single wide band channel into a group of narrow band channels, called subcarriers. The
data are encoded on the subcarriers in the frequency domain, and then converted to the
time domain (using the Inverse Discrete Fourier Transform (IDFT)) to be transmitted.
Since each subcarrier is a narrow band signal, the channel response will be flat for single
subcarrier, but different for different the subcarriers. On the receive side, the receiver
converts the incoming signal back into the frequency domain (using the Discrete Fourier
Transform) to extract the data off of the subcarriers [59].

Other methods include spread spectrum and optimal maximum likelihood detection using
the Viterbi algorithm [59].

For beamforming arrays, a frequency selective or ISI means that the single complex weight
(amplitude + phase) used at each antenna is no longer optimal. The optimal beamformer
will have to be a complex multitap filter at each antenna. The process of computing the
optimal time domain weights for the filters at each antenna is called space/time adaptive
processing or STAP.

2.3.4 Spatial multiplexing

Figure 2.8: A two antenna transmitter antenna Tx communicating with a two antenna
receiver in a Rayleigh fading channel.

Consider the scenario shown in Figure 2.8, where a two antenna transmitter is commu-
nicating with a two antenna receiver in a Rayleigh channel. Also, assume that the antennas
on both the transmitter and the receiver are spaced more than a coherence distance apart
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so that the complex coefficients of the channel matrix H =

[
h11 h21

h12 h22

]
are statistically

independent (we also assume that the channels are flat fading without loss of generality). If
the transmitter transmits data stream x1[n] from the first antenna and x2[n] from the second
antenna, then the received signals y1[n] and y2[n] at the first and second antennas of the
receiver respectively are:

[
y1[n]
y2[n]

]
=

[
h11 h21

h12 h22

] [
x1[n]
x2[n]

]
+

[
v1[n]
v2[n]

]

Or in more compact vector form:

y[n] = Hx[n] + v[n]

where vi[n] is an additive white Gaussian noise signal at antenna i at the receiver. If the
receiver multiplies the input signal y[n] by H−1:

ŷ[n] = H−1y[n] = x[n] + H−1v[n]

then both data steams x1[n] and x2[n] can be recovered at the receiver. This technique is
called multiple-input/multiple output (MIMO) or spatial multiplexing35, and it is a conse-
quence of the Rayleigh fading channel [59]. A prerequisite for spatial multiplexing is that
the spatial channel matrix H be invertible. In general, the transmitter will have NTx an-
tennas and the receiver will have NRx antennas. In this case, the channel matrix H will be
NTx ×NRx . The maximum number of independent data streams that can be communicated
simultaneously over the channel is equal to the rank of H. When the matrix is not square,
then the individual streams can be recovered by doing a singular value decomposition on H.
The number of “significant” non-zero singular values of H will be approximately the effective
rank of H. If N ′

Tx
< NTx is the maximum number of antennas on the transmitter that are

more than a coherence distance apart from each other, and N ′
Rx

< NRx is the maximum
number of antennas on the receiver that are more than a coherence distance apart from each
other, then the effective rank of the channel matrix H is approximately min(N ′

Tx
, N ′

Rx
).

MIMO and spatial multiplexing are key advantages provided by adaptive arrays for in-
creasing system capacity with better spatial reuse. Another easier and more intuitive way to
visualize this problem is through the angular domain. From the angular domain prospective,
we can think of the transmitter as encoding different data streams on different paths. If the
beamwidth of the receiver is narrower than the angle separating the paths at the receiver
(angular spread), then the receiver array can resolve each path independently. The narrower
the beams at both the transmitter and the receiver relative to the angular spreads, the more
independent streams can be transmitter. In general, there is a one-to-one correspondence
between the spatial and angular domains.

35The antennas do not necessarily have to be attached to the same node.



36

Chapter 3

Radio architectures

The practical implementation of phased-array systems has been greatly aided by recent
advances in silicon technology (especially CMOS), which have made possible the integration
of a large number of radios on a single die. Integrating the components of a multi-antenna
radio on a single chip can significantly reduce the overall cost and power consumption of a
phased array. However, there are several possible architectures, which each present a different
combination of benefits and obstacles. The fundamental difference lies in how the signals
from the various antennas are combined. In this chapter, we present an overview of three
beamforming architectures (digital, LO, RF), and discuss their advantages and drawbacks.
Although we focus on receive side of the system, the same ideas apply to transmit as well.
We propose a hybrid RF/digital architecture that combines the benefits of both the RF
and digital beamforming architectures in order to meet the overall system capacity and gain
requirements at a much lower cost and power requirement than each of the RF and digital
architectures used individually. The chapter is organized as follows. In Section 3.1, we
provide an overview of the three basic architectures, and discuss the pros and cons of each,
and describe our proposed RF/digital hybrid architecture. In Section 3.2, we discuss the RF
beamformer implementation.

3.1 Comparison of Architecture

An antenna array must perform two basic operations to dynamically adapt its beam
pattern: change the phase and amplitude of a signal (i.e. multiplying by a complex number
or providing a programmable complex gain), and add multiple signals from different paths1.
This core functionality can be implemented at any stage in the radio transceiver chain (e.g.
RF, IF, local oscillator (LO), analog baseband, digital baseband), as shown in Figure 3.1.
The different array architectures provide different trade offs among cost, complexity, power
consumption, and performance. Here, we analyze three of the most popular architectures.

The work presented in this chapter was done in collaboration with Ehsan Adabi and Ali Niknejad
[9].

1In the context of transmit beamforming, signal combining is replaced by signal splitting.
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(a)

(b)

(c)

Figure 3.1: Radio architectures for beamforming: (a) Digital baseband beamforming (b) LO
beamforming (c) RF path beamforming. While the figures only show the receiver chains,
the same concepts also apply to transmit beamformers as well.
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a) Digital baseband beamforming (Figure 3.1a): In this architecture, the core functional-
ity is implemented in the digital signal processing domain, after the ADC. Performing
the beamforming functions in the digital domain provides the best performance, since
the system can exploit high-speed DSPs and implement complex, high-resolution algo-
rithms in digital domain. It also makes the system highly flexible, as it is relatively easy
to subsequently reprogram the beamforming algorithm. The reconfigurability of this
architecture makes it easier to implement wideband, multitap true time delay filters,
and thus enables support for multiple data streams in both the spatial and frequency
domains. A technique known as space-time adaptive processing (STAP).

However, there is a price to be paid for this flexibility. First, a digital beamformer
requires a complete transceiver chain per antenna (degree of freedom). This will result
in a significant increase in cost and power consumption, which will in turn limit the
scalability (in the number of antennas) of this architecture. The complexity of the
digital baseband processor will also increase in terms of processing power and number
of input/output (I/O) ports. For example, a 20-antenna digital beamformer operating
on a 40MHz signal (sampled at twice Nyquist rate) needs to process 1.6Gsample/sec.
If each sample is quantized to 8 bits by the ADC, then this translates to 12.8Gbps to
be processed and at least 20 I/O lines that are 640Mbps each! Second, each of these
transceivers will have to be tightly synchronized in both time and frequency. Syn-
chronization errors especially in frequency can significantly degrade the performance.
This tight synchronization is harder to achieve at higher frequencies (e.g. mm-wave
bands). At those frequencies, even if all local oscillators (LOs) are to locked to the
same reference clock, the phase noise and jitter can still be significant. Finally, since
the spatial filtering and interference nulling does not occur until the signal reaches
the digital baseband, all the blocks at the receiver prior to the DSP will have to deal
with the interferers and jammers. Therefore, they should have sufficient linearity and
dynamic range to cope with the large blocker levels. This will increase the complexity
and power requirements of these blocks. Furthermore, the linearity of the transceiver
is not only affected by in band jammers, but also out of band jammers. These, how-
ever, can be dealt with using time domain filters with sharp cutoff either at RF or IF
and analog baseband. These filters, however, will require a lot of area and sometimes
expensive material (especially if implemented at RF) and thus increase the overall cost
since they are replicated for each transceiver.

Multi-input/Multi-output systems, which have become popular in the latest IEEE
802.11 and 802.16 standards, are examples of popular systems that are based on digital
beamforming. However, most practical systems can only support a small number of
antennas or degrees of freedom (typically 4-8).

b) LO frequency beamforming (Figure 3.1b): In this architecture, phase shifting is per-
formed in the LO and clock distribution network, while signal combining is performed
in IF or analog baseband (depending on the LO frequency). This has the advantage of
reducing the number of ADCs and baseband circuitry, and relaxing the dynamic range
requirement on them due to spatial filtering after the signal combining. However, the
system needs a highly symmetric distribution network, to provide the exact desired
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phase shift, and it also requires significant power consumption in the buffer stages that
are needed to provide a strong LO signal at each of the mixers. In addition, the LO ar-
chitecture, like the digital baseband architecture, requires that different signal paths be
frequency synchronized. Errors in synchronization can lead to significant performance
degradation. A further limitation is that in general LO phase shifting provides no
control over signal amplitudes2. Examples of this architecture can be found in [25, 38]

c) RF path beamforming (Figure 3.1c): In this architecture, both complex multiplication
and signal addition are performed directly in the RF path. The advantages of this
architecture are that it provides the lowest component count and power consumption,
which yields the lowest cost and best scalability. It also avoids the synchronization
problem of LO and digital beamforming. However, one drawback is that the design
of RF phase shifting components is much more challenging than digital beamforming
algorithms. In addition, the performance is lower than the other architectures, since
practical phase shifters have non-ideal characteristics (e.g., loss, noise, nonlinearity),
which are now directly in the RF path. These problems become even more pronounced
as the frequency increases. Despite the challenges of implementing the beamforming
functions in the RF domain, this architecture is the best candidate for meeting our
scalability requirements. The implementation of this architecture using integrated
circuit (IC) and printed circuit board (PCB) technology will be discussed in more
detail in Section 3.2.

We also note that while the beamforming is performed in the RF domain under this
architecture, the signal processing and parameter optimization can be and is more
efficiently performed in the digital domain. However, the same signal processing tech-
niques used under the digital beamforming architecture cannot be reused in this context
since there is a fundamental difference: the RF beamformer presents the signal pro-
cessing unit with only a single input, which is the aggregate signal. The implications
of this limitation are discussed in more detail in Chapter 5.

3.1.1 Hybrid arrays

We showed in this section that different architectures have their advantages and limita-
tions. While it may not possible to meet the system requirements of a particular application
(e.g. gain, capacity, cost, power consumption) with one of these architectures, a combination
or hybrid architecture is more likely to achieve those desired features since it will combine the
desired features of multiple architectures. For example, a well designed hybrid RF/digital can
achieve high gain and scalability at low cost and power (RF beamforming), and at the same
time achieve high capacity (digital beamforming). Although exact digital/RF breakdown is
application dependent, here are some general guidelines:

1) The total capacity of the system is proportional to product of the signal bandwidth and
the number of simultaneous spatial streams. The number of simultaneous spatial data

2This can be remedied by using programmable gain blocks in IF or analog baseband prior to combining
the signals at the receiver, which imposes additional cost and complexity.
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streams depends on the number of digital I/Os or transceivers3. The bandwidth of the
individual signal also places some limitations of maximum size of an RF subarray. The
size of the RF subarray has to be such that the maximum difference in time of travel
or delay (in any direction between any two elements of the subarray) is small relative
to the symbol duration (inverse of bandwidth). If this condition does not hold, then
not only will the phase shift approximation breakdown, but it may also be difficult to
implement programmable delay blocks at RF that can support these levels of delay.

2) The required rate of adaptation also determines the number of digital I/Os. Since the
RF beamformer only has access to the aggregate signal, the RF beamforming weights
are generally slower to adapt than the digital weights. Chapter 5 contains a more
detailed discussion on this topic.

3) The total number of antennas in the array depend on the required gain and steering
range. If the steering (scanning) range is narrow, then a small number of high gain
directional antennas can be used. However, when the required scanning angle is wide,
then a large number of small antennas need to be used. The number of antennas can be
increased by either increasing the number of RF subarrays or the size of each subarray.
The latter option is more cost effective, since it adds more antennas in the RF domain
without increasing the digital processing and I/Os.

Although the main system requirement that drives the need for more antenna gain is
distance or range, gain is also strongly related to both the capacity and power require-
ments of the system since higher gains result in narrower beams that reduce transmit
power requirements and improve the isolation between different spatial streams and are
better at canceling external interference. Furthermore, the higher gain and improved
isolation increase the reliability of the channel which reduce the probability of error
and enable higher signal constellations that result in better spectral efficiency.

4) The total power consumed is usually dominated by two factors: the RF power amplifiers
and the digital baseband processing unit.

Examples of such a hybrid or hierarchical architecture are shown in Figure 3.2. In Figure
3.2a, the total area is divided into reticles of subarrays. Within each subarray, beamforming
is achieved by RF phase shifting. Then the subarrays are connected and synchronized via the
lower clock frequency, and programmed digitally. The beams of each subarray can be unique
or can be combined with neighboring arrays to create a stronger beam. Multiple target
tracking at different directions and different frequency bands will be controlled by the high-
speed DSPs that program the subarrays. While this hybrid architecture enables multiple
simultaneous beams, each beam only uses one subarray. Figure 3.2b shows an alternative
multibeam hybdrid architecture that enables each beam to use the entire array. In this
architecture, the analog (RF) beamforming architecture is extended to support multiple
beams without significantly increasing the complexity. In order to support K beams, we
need K sets of complex weights. Therefore, the total number of phase shifters or complex

3In theory, the number of digital I/Os has to be at least the number of spatial streams, but is usually a
lot more in practice.
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multipliers will increase by a factor of K. The original N × 1 beamformer (where N is the
total number of antennas) is transformed into an N × K beamformer by replicating the
complex multipliers and signal adders. If N ≫ K, then we are not significantly increasing
the complexity, because most of the RF components (e.g. PAs, LNAs) are still shared. Under
this architecture, each stream uses the full array.

3.2 RF beamformer design

In Section 3.1, we evaluated multiple architectures for beamforming transceivers. Of these
architectures, the one based on RF beamforming is of interest both as a standalone and as a
frontend in a Hybrid RF/digital architecture due to its scalability in both power and area.
The main challenge of the RF beamformer is implementing the core beamforming function-
ality (signal combining/splitting and phase/amplitude correction) in the RF domain. In this
section, we consider the implementation of these blocks in more detail. Before we get into
the circuit details, we first present a high level design of a multi-input/multi-output beam-
forming module in RF, and discuss the main requirements that this module needs to satisfy
in order to meet the overall system specs. We then present different implementation options
for the basic beamforming building blocks and evaluate them in light of those requirements.
We note, however, that many of these requirements cannot be perfectly satisfied, and the
extent to which they are met is application and frequency dependent4.

3.2.1 A multi-input/multi-output RF beamforming module

Like any conventional antenna, the size of an adaptive array system is also proportional
to the gain and the wavelength. Therefore, silicon integration is not an option for the
antennas except at extremely high frequencies (≥ 100GHz). However, the antennas can still
be printed or mounted on a printed circuit board (PCB) at very low cost. In this case, a
large portion of the cost will be the number of components mounted on the board. This
can be reduced by integrating RF blocks from multiple channels (antennas) into a single
IC as shown in Figure 3.3. Figure 3.3 shows a high level block that takes several inputs at
RF (from multiple antennas) and outputs multiple linear combinations of these signal (also
at RF). The linear combinations are programmed through a digital control channel. Figure
3.4 shows a chip that supports 16 RF channels mounted on a PCB and feeding monopole
antennas on a ground plane with microstrip lines.

For phased array systems that require antenna gains of 20dBi or more , the number of
antennas can easily be of the order of hundreds. It is almost impossible to support such a
large number in a single silicon chip. However, even it were possible, it is still not a good idea
to put that many RF channels on a single chip. First, the traces between the antennas and
the chip will get too long and loss will increase. The advantage of using a small chip is that it

4In this chapter we use the term low frequency to refer to frequency bands with wavelengths that are
much larger than the size of the module itself. For example, the wavelength at 5GHz is about 6cm, whereas,
the area of the entire module may not exceed a few square millimeters. On the other hand, the wavelength
at 60GHz is only a few millimeters and is comparable with size of the chip. However, there really is not an
exact cutoff frequency separating the two groups.
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(a)

(b)

Figure 3.2: Two different architectures for a hybrid (hierarchical) RF/digital beamforming:
(a) Large array divided into smaller subarrays connected digitally. Each subarray imple-
mented in the RF domain. (b) A single array with multiple parallel RF beamformers. The
outputs of the RF beamformers are connected and processed digitally.
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Figure 3.3: Multi-input/multi-output RF frontend.

Figure 3.4: RF beamforming chip with 16 RF I/Os connected to monopole antennas with
microstrip lines on a PCB.
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is going to be close to the antennas as shown in Figure 3.4. Second, the cost of the IC drops
in high volumes. If an IC supports 200 channels, it is unlikely to see wide adoption since
it is very application specific (only applications that require around 200 hundred antennas).
However, the advantage of the RFin/RFout chip architecture is that it can be cascaded.
We can take advantage of this feature to support antenna arrays of virtually any size. For
example, suppose we have an IC that supports 16 antennas and outputs 4 different linear
combinations, and we want to build a 64 antenna array. Then we can use 4 of these ICs
to connect to 64 antennas, and the output of these ICs is fed to a 5th IC. The four outputs
of the 5th IC are then fed to 4 transceivers that convert them into digital basedband to be
processed by a DSP unit (the reverse is true for transmit).

The multichannel RF IC would integrate the conventional RF blocks (e.g. PAs, LNAs,
VGAs, switches) as well as the new beamforming related blocks (e.g. complex multipliers
and adders). These components are shown in Figure 3.5a for the receiver and Figure 3.5b
for the transmitter. While both figures show a 4x4 complex vector multiplier block, the
numbers of inputs M = 4 and outputs N = 4 do not have to be restricted (with M ≥ N)5.
Figure 3.6 shows these M × N complex modulators as black boxes that take the M input
(complex) signals at RF si1, . . . , siM and produce N programmable linear combinations of
these inputs:

sok =
M∑

j=1

cjksij ∀1≤k≤N

where cjk are programmable complex coefficients (gains). The equations can also be written
more compactly in matrix form: So = CSi.

The design of these blocks impacts system level performance such as interference rejection.
Therefore, there are certain requirements for these blocks in order to meet the system level
specs. These requirements are:

1) Independent phase and amplitude control must be provided at each signal path. This
is necessary to give the beamformer tight control over the beam nulls and side lobes
to suppress interference.

2) Coupling (cross talk) between different paths must be minimized. That means that
amplitude and phase control on one path should not affect signals on other paths.
Coupling impacts the accuracy of beam nulls.

3) The resolution of the phase and amplitude control must be as high as possible, and
should be robust to process and temperature variations.

4) Since all these blocks are in the signal path, the distortion of these blocks must be
minimized.

5) The mismatch between transmit and receive paths must be minimized in order to
maintain channel reciprocity.

6) Power consumption and area requirements should be as little as possible.

5The numbers of inputs and outputs are usually chosen as powers of 2 for simplicity.
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(a)

(b)

Figure 3.5: Building blocks for RF beamforming fronends: (a) Receiver. (b) Transmitter.

Figure 3.6: Multi-input/Multi-output RF complex multiplier block.
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If we can meet these requirements with a passive implementation, then it is always more
desirable to an active implementation for several reasons. First, a passive implementation
draws a lot less DC power, and is usually a lot more linear. Second and more importantly,
passive networks tend to be symmetric (i.e. input/output are interchangeable). That means
that the same components can be shared among both the transmit and receive chains. This
not only reduces the area requirements, but also reduces the possibility of mismatch between
the transmit and receive beamformers. However, as will see, it is not always possible to meet
all these requirements with passive circuits.

The rest of the chapter covers the implementation of the basic components of the complex
multiplier block in RF: signal combining/splitting and phase amplitude control.

3.2.2 Signal combining/splitting

There are several circuit techniques that can be used for signal combining and splitting
at RF. Different choices are appropriate for different frequency bands. For low frequencies
signal combining/splitting is more efficiently done in the current domain [25]. When this
is not possible, power domain combining and splitting is the only option. Popular circuit
techniques for power combining use transformers and transmission lines:

1) Transformer-based power combiners: a transformer-based power combiner is shown
in Figure 3.7a. It has two desirable characteristics: low loss and compact structure,
which makes it appropriate for integrated circuit implementations and a wide range
for frequency bands. The main disadvantage of the transformer is that it is narrow
band. Examples of this type of combiner can be found in [20, 24, 43].

2) Wilkinson power combiners: the Wilkinson is a popular microwave structure for build-
ing multi-way power combiners and dividers. A two-way/equal-split Wilkinson divider
is shown in Figure 3.7b. The Wilkinson uses quarter-wave transmission line impedance
transformers, and provides three desired properties:

– Simultaneous impedance match at all ports.

– High isolation between combined ports.

– Lossless when all output ports are matched.

Figure 3.11 shows a 2-way/equal-split Wilkinson divider (designed for 2.4GHz) in mi-
crostrip printed on an FR4 board. The measurements from this divider are shown
in Figures 3.8/3.9. Figure 3.8a shows an insertion loss of about .5dB resulting from
non-ideal transmission lines. Figures 3.9ab show a low input return loss from all ports.
Figure 3.8b, shows a high isolation between the divided ports near the frequency of
interest. The the isolation and input return loss are wideband when all the ports are
matched.

The main disadvantage of the Wilkinson is its size. Since it is proportional to the
wavelength, it is more appropriate for high frequencies (e.g. mm-wave or higher),
especially for integrated solutions. Furthermore, the insertion loss of the Wilkinson is
usually higher than the transformer in practice. Also, it is difficult to implement the
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Wilkinson network differentially. A more comprehensive analysis of the Wilkinson and
other microwave-based power combiners can be found in [45]

Other power combining/splitting networks that combine both transmission lines and
transformer have also been proposed [40].

3.2.3 RF phase shifting and complex multiplication techniques

Several methods have been used to implement a programmable complex gain at radio
frequencies. Here are some examples of these techniques:

1) Extended-resonance/path-sharing phase shifters6: the underlying concept behind this
technique is a ladder network that evenly distributes the signal across multiple paths
while at the same time shifting the phase by progressive steps, and thus combining
the signal splitting and phase shifting functionality into a single network [23]7. The
progressive phase-shift is usually accomplished by adding a varactor at each stage of
the ladder to control the shunt impedence. The voltage across the varactor controls the
resonance and phase response (the same varactors and the same voltage are used in all
stages of the ladder). In addition to combining the signal splitting and phase shifting
functionality into a single network, the other advantage of this architecture is that the
phases across the elements of the array are controlled by a single parameter (voltage).
The network is also passive, which means it can used for both transmit and receive
in a time-division duplexing (TDD) system. However, the price of this simplicity is
that the progressive phase distribution is only appropriate for uniform linear arrays.
For arrays of arbitrary geometry, the phase-shifts across the different elements will in
general not be progressing. Even for linear arrays in a rich scattering environment, the
channel phase responses are unlikely to be progressive. Furthermore, since the array
requires a single control parameter, this parameter is required to be high resolution.
The required resolution increases logarithmically with the number of antennas in the
array8. Also, a variable control block is required for amplitude tapering if side-lobe
suppression is desired9.

2) Reflective-type phase shifters: a reflective-type phase shifter consists of a hybrid 90◦

coupler, which can be implemented with lumped circuit elements as shown in Figure

6The path-sharing structure can be used with other types of phase-shifters as well. However, extended-
resonance has a more compact structure

7The concept of a progressive phase shift is discussed in Section 2.2 in the context of linear arrays.
8In Chapters 6 and 7, we analyze the impact of phase and amplitude errors resulting from quantization

and other error sources on the performance of the array. However, in those chapters, we assume that the
beamforming weights are independently chosen for each antenna, and thus the errors can also be assumed to
be independent. This assumption does not hold for this phase-shifting technique since the errors propagate.
A more comprehensive analysis of this technique and similar techniques can be found in [41].

9A path-sharing based phase shifting approach is more appropriate in an LO based beamforming archi-
tecture. The signal distribution network progressively splits the signal at every junction. At each split, an
amplifier is used to compensate for the loss. Unlike, the RF signal, the LO signal is a lot less sensitive to
the gain mismatch at each split especially since it does not require very high linearity.
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(a)

(b)

(c)

Figure 3.7: Power combining and delay structures: (a) Transformer-based power combiner.
(b) Wilkinson power combiner. (c) Discrete programmable delay line implemented with
switched transmission lines.
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Figure 3.8: Measured performance of a 2-way Wilkinson power combiner/splitter (printed
on an FR4 PCB and designed for 2.4GHz): (a) Insertion loss (S12 = S21) in dB (the ideal
loss is 3dB resulting from a 2-way power division). (b) Isolation (S23 = S32) in dB between
the split ports (the ideal isolation is −∞). In both graphs, the third port was terminated
with 50Ω.
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Figure 3.9: Measured performance of a 2-way Wilkinson power combiner/splitter (printed
on an FR4 PCB and designed for 2.4GHz): (a) Input return loss S11 (impedance match) at
Port1 (combined port). (b) Input return loss S22 = S33 (impedance match) at Port2/Port3

(split port).
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3.10 or with tranmission lines, and two reflective loads10. The reflective loads are
usually resonant circuits consisting of inductors and varactors. The amount of phase
shift at the output depends on the reflection coefficient ρ = (ZL − Z0)/(ZL + Z0).
The phase response is controlled by changing the load impedance. By controlling the
voltage across the varactor, the load impedance can be changed from capacitive to
inductive. The range of the phase-shift depends on the range of the varactor. Since
the load impedance is purely imaginary, the theoretical magnitude of the reflection is
always |ρ| = 1. Therefore, the amplitude response remains constant, regardless of the
phase response. Also, since the phase shifter is composed of only passive components
its both highly linear and symmetric11.

Integrated circuit implementations of this phase-shifter have been demonstrated at ISM
bands [63]. However, even a lumped implementation occupies a significant area (usually
dominated by inductors), which is a disadvantage compared to a vector combining
phase rotator described below. Also, a variable gain block after the phase shifter is
required for tighter control over the shape beam pattern.

Figure 3.10: Reflective-type phase shifter using a hybrid 90◦ coupler implemented with
lumped circuit elements.

3) Programmable delay lines: in wideband applications, the phase-shift approximation
no longer holds and a true time delay is required. A simple and straight forward way
to implement a programmable delay is using switched transmission lines as shown in
Figure 3.7. Under this structure, the length of the signal path is controlled through the
RF switches. If the transmission lines are low loss, then the gain variation across the
different delay settings is very small. Since the transmission lines are passive, they can
be used for both transmit and receive12. A discrete 2-bit switched transmission line

10The lumped circuit implementation is more compact than the transmission line implementation, and
thus more appropriate for lower frequency bands. The values of the lumped circuit elements depend on the
center frequency fc and the characteristic impedance Z0 [63].

11The varactor is usually an active component and thus exhibits some non-linearity.
12This is true even if the system uses frequency division duplexing or FDD as long as the wireless channel

is a line of sight, since the broadband delay covers both transmit and receive frequency bands.
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delay implementation on an FR4 PCB for 2.4GHz is shown in Figure 3.11. The main
disadvantage of this technique is that it is very difficult to integrate except at very high
frequencies (e.g. mm-wave frequencies and above). Even for a discrete implementation,
every additional control bit requires a pair of RF switches in addition to a transmission
line section. This increases both the cost and the footprint.

A synthesized transmission line is a more compact implementation of a broadband
programmable delay and is more suitable for integration [3]. Unlike switched trans-
mission lines that use distributed components, synthesized transmission lines can be
implemented with lumped circuit elements that are a lot easier to integrate at low
frequencies. We note, however, that when the array gets very large, the relative de-
lays between array elements on opposite sides of the array are usually much larger
than the maximum delays provided by the programmable delay lines whether they are
implemented with switched or synthesized transmission lines13. In this case, the only
solution is to divide the array into smaller subarrays such that the maximum delay
within each subarray is small relative to the symbol duration. Larger delays are better
handled in the digital domain. Also, this class of controlled delays or phase-shifters
provide no amplitude control. Amplitude control will require adding a variable gain
block (Section 3.2.4).

4) Vector combining: a fundamentally different technique from the ones listed above in
that it enables simultaneous (in-direct) control of both the signal phase and amplitude
by independently controlling the amplitudes of the real and imaginary components of
the signal. The basic idea behind this approach is that if we can split the signal into
two orthogonal components that are 90◦ apart in phase (e.g. sine and cosine), then
we can generate any amplitude/phase combination by controlling the amplitudes of
these two components. The underlying mathematical equations relating the different
quantities:

A cos(ωt) + B sin(ωt) ≡ C cos(ωt + ϕ)

A = C cos(ϕ), B = C sin(ϕ), C =
√

A2 + B2, ϕ = arctan
B

A

The equations show how the amplitude C and phase ϕ are generated as a function of
the real Cartesian coefficients A and B. Figure 3.12 shows the general structure of a
vector combining based complex multiplier. The figure highlights two basic functions
required by this architecture, which will be discussed in detail in Section 3.2.4: I/Q
splitting to obtain two orthogonal components (e.g. real and imaginary) of the RF
signal, and amplitude control achieved by a variable (programmable) gain block at
each path in addition to the digital/analog control circuits for programming the gain.
Vector combining has several advantages that make it the most appropriate choice for
an integrated solution for a wide range of frequency bands. First, it provides reason-
ably accurate control over the phase and amplitude of the signal. Second, it can be
implemented with active circuit elements (e.g. transistors) that use very little area
compared to transmission lines or lumped circuit elements like inductors and trans-
formers. This feature is very useful for a multichannel implementation that requires

13These delays can span multiple symbol intervals and thus result in intersymbol interference (ISI).
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Figure 3.11: A 2-bit switched transmission line phase shifter composed of λ/2 and λ/4
transmission line sections and RF switches for controlling the delay path.
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a large number of complex multipliers (Figure 3.2b). Finally, an active/differential
implementation of the vector combiner can significantly reduce coupling and improve
reverse isolation and enable the signals to combined and split in the current domain.

Integrated circuit implementations in CMOS of this scheme have been demonstrated
at both lower bands and mm-wave frequencies [43, 5]. While an active implemen-
tation is good for reducing area and improving isolation, the price is paid in higher
power consumption, lower linearity, and reduced transmit/receive symmetry (one set
of programmable complex gains is required for the transmitter and another for the
receiver)14.

(a)

(b)

Figure 3.12: (a) A digitally controlled complex multiplier (programmable complex gain) in
the RF domain. (b) A 2 × 2 complex multiplier matrix in the RF domain.

14The MOS transistors can be used in triode mode, in which case they behave like passive resistors. This
improves linearity, symmetry and power consumption. However, isolation will be a challenge.
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3.2.4 Vector combining complex multiplier implementation

In this section, we discuss the two main components of a vector combining architecture,
namely the I/Q signal generation and the variable gain block.

I/Q signal generation

A Cartesian vector combining based phase rotator requires the signal be split into two
orthogonal components that are 90 degrees apart in phase, usually referred to as the in-phase
(I) and quadrature (Q) (or real and imaginary) components of the signal15. There are several
ways of obtaining the I/Q components in the RF domain:

1) Polyphase filters: a polyphase filter is a popular technique for splitting an RF signal
into two orthogonal components that are 90 degrees apart in phase. Originally de-
signed for image reject mixers, a polyphase filter is a differential passive network of
resistors and capacitors16 shown in Figure 3.13. The outputs at the I and Q ports
are 90 degrees apart at all frequencies17. However, the bigger challenge is to get the
output amplitudes matched since the I path has low-pass characteristic, while the
Q path is high-pass. Therefore, the amplitude match occurs at a single frequency
fc = (2πRC)−1. There are several ways to achieve a wideband amplitude match.
First, we can cascade multiple stages of the polyphase filter. If resister/capacitor val-
ues R1/C1, . . . , RK/CK for K stages are such that their geometric mean is the desired
center frequency (fc = ΠK

i=1(2πRiCi)
−1/K), then a wideband response can be achieved.

In general, each stage provides an approximately constant gain (within .2dB) within
10% of fc. The amplitude response of a 4-stage polyphase filter is shown in Figure
3.14. Second, if the system needs to support a narrow band signal over a wide range
of frequencies, then the gain mismatch can be compensated for using a variable gain
block (described in the next section) or by using variable components in the polyphase
filter itself. For example, if the resistors (or the capacitors) in Figure 3.13 are re-
placed by variable resistors (or capacitors)18, then the center frequency can be varied
by adjusting the value of these resistors.

The RC polyphase network has several other advantages:

– It’s very compact since it does not contain any inductors, transformers, or dis-
tributed elements. Furthermore, the same polyphase network can be shared
among multiple channels19.

15Orthogonality is not a necessary condition. As long as the components are linearly independent, then
any phase between 0 and 2π can be synthesized in theory by choosing the appropriate coefficients. However,
the more orthogonal the components, the more accurate the results are in practice.

16A single ended implementation also exists.
17While the actual phase for both I and Q channels varies over frequency, the phase difference is always

90 degrees.
18This can be implemented with transistors in triode mode.
19The order of the I/Q block and the variable gain block in Figure 3.12 can be interchanged without

affecting the output. Thus, the variable gain block from different paths can be combined before the polyphase
filter
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– Since the polyphase network is passive, it has a very high linearity and burns
no DC power and is bidirectional. That means that the same network can be
shared between the transmitter and the receiver, reducing the transmit/receive
mismatch.

– Both the inputs and outputs are in the RF domain. Therefore, it can be used in
a cascadable architecture to build larger arrays.

The polyphase network has some disadvantages as well. First, it is very lossy (every
stage results in roughly a 6dB loss). Second, it requires a very careful layout to
insure symmetry and minimize the mismatch resulting from parasitics and component
variation due to temperature and process.

A more comprehensive treatment of polyphase networks can be found in [28, 13].

2) Mixers: another way to produce the I/Q components of the signal is at the output of the
mixer stage. The advantage of this method is that I/Q components are produced at the
LO stage. Although this I/Q generation technique still requires a polyphase filter, a lot
the drawbacks of the polyphase such as loss and amplitude mismatch are avoided since
they only occur at the LO path20. Therefore, there is little or no amplitude mismatch
between the I and Q channels at the output of the mixer (except for possible mismatch
in the mixer circuit itself as a result of process variation). This scheme, however, has
several disadvantages. First, since signal combining occurs post mixing, the mixers
must have high linearity21. Second, the output (combined) signal is no longer in RF
domain. That means that the blocks cannot be cascaded to assemble a larger array22.
Finally, this approach is only appropriate in a heterodyne radio architecture [43].

Variable gain blocks

The design of variable gain blocks23 for beamformers and phase-rotating slightly differs
from conventional VGA design used in automatic gain control circuits (AGCs) in several
ways:

1) The phase response of the variable gain block has to be independent of the gain setting
especially at the frequencies of interest.

2) Both the input and output impedances of the variable gain block must also be indepen-
dent of the gain setting. A change in the input and output impedances usually impacts
the isolation between different channels and results in phase variation. A simple and
straight forward way to isolate the input and output impedances is by adding buffer

20Since the LO is very narrow band, a single polyphase stage is sufficient. Any amplitude mismatch can
easily be corrected with amplifiers without linearity being an issue since the LO is a “single tone” signal.

21A passive mixer with very high linearity can be used. However, passive mixers a very lossy and thus
negating some of the advantages of this approach.

22An intermediate block or chipset can be designed to take the output signals from each outer RF chip at
an intermediate frequency (IF) and add them in the IF domain. However, using this technique requires that
the LOs feeding the mixers in each of these RF chips to be tightly synchronized.

23We use the term variable gain block to refer to both amplifiers and attenuators. Attenuators maybe
more desirable in some applications due to their high linearity and low power consumption [22].
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(a)

(b)

Figure 3.13: Two equivalent ways of drawing a polyphase filter.
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Figure 3.14: A wideband 4-stage polyphase network with very good amplitude match.

stages at the input and the output. However, reducing the number of buffer stages is
usually more desirable since they affect both the power consumption and the linearity.

3) The gain steps must be uniform and precise.

4) Linearity of the variable gain block is critical since most in-band and out of band
jammers will not be filtered except after the variable gain stage. Furthermore, bet-
ter linearity will also improve the accuracy of the gain steps since they will be less
dependent on the amplitude of the input signal.

5) The design of the variable gain block should be robust to temperature and process
variations. Unlike a single antenna system, mismatch between the different channels
can degrade the performance. Therefore, these these variations need to be minimized
or dynamically calibrated. In general, variation and mismatch can be reduced with a
good layout, and can be calibrated with a combination of analog and digital techniques.

The linearity and precision are usually improved by using amplifiers with discrete (as opposed
to continuous) control steps. For example, many variable gain amplifiers use transistors with
a variable (continuous) bias voltage. In this case, the linearity will be very sensitive to the
gain setting, and the gain steps are going to be more sensitive to temperature and process
variations. A discrete implementation replaces a single variable-bias transistor with bank of
of switch/fixed-bias transistors as shown in Figure 3.15. Each of the transistors in the bank
is hard switched (i.e either set to a fixed bias voltage Vbias or turned off completely). The
gain is controlled by changing the effective size of the virtual transistor represented by the
bank (by turning on the right number of transistors). The gain steps will depend on the
relative sizes of these small transistors. In order to achieve uniform gain steps and reduce
the variation, this concept can be further extended by designing a single unit-gain cell and
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replicating it as shown in Figure 3.16(a). In this figure, each gain block contains twice the
number of unit-gain cells as the preceding block. Each block is differential and is controlled
by a single bit, which controls the sign of the output. The overall gain is controlled by
controlling the signs of the sub-blocks. There have been several reported implementations
that take advantage of this concept [61, 34]. The unit cell in these architectures, shown in
Figure 3.16(b), is composed of two differential pairs that are identical except for a sign flip.
Only one of these pairs is on at any given time, and the circuit is controlled by differential
logic. When control bit B = 1, then the current source M1 is turned on (i.e. set to the
correct bias voltage), and M2 is turned off. In this case, the differential pair M3 and M4 is
turned on, and M5 and M6 are off, and vice versa when B = 0. This architecture has several
advantages. First, the bias current remains constant and independent of the gain setting.
This helps reduce the variation of the circuit properties as a function of control signal.
Second, the input and output impedances of the variable gain block are also independent of
the gain configuration. That means better isolation between channels and little or no phase
variation. This also allows the signal splitting and combining to occur in a single stage in the
current domain without requiring additional input and output buffers. Since the architecture
uses a unit-gain cell, mismatch is also reduced.

In many respects, the design and layout of variable gain blocks for phase shifting are very
similar to the design of digital to analog converters (DACs).

Figure 3.15: Replacing a single variable-bias transistor with a bank of digitally controlled
transistors. Each of the transistors in the bank are either On or Off (hard switched). By
turning different transistors On and Off, the effective size of the transistor is varied.

3.3 Conslusion

In this chapter, we considered different beamforming architectures and examined their
impact on the cost, complexity and power requirements of an adaptive array system. We
proposed a hybrid (hierarchical) RF/digital architecture that combines the scalability and
power efficiency of RF beamforming with the speed and flexibility of digital beamforming.
The relative sizes of the RF and digital components of the system are determined by the
capacity and gain requirements. We also proposed a multi-input/multi-output RF IC archi-
tecture that integrates multiple channels on a single chip and can be cascaded to support large
array with more channels. We examined different techniques and circuits for implementing



60

(a)

(b)

Figure 3.16: (a) A programmable gain block using a unit-gain cell architecture. (b) Unit cell
topology.
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phase shifting and signal combining/splitting. We considered a programmable complex gain
block implementation using a vector combining technique with digitally-controlled variable
gain blocks. We showed that this can be a promising architecture for meeting the desired
requirements of low footprint and accurate phase and amplitude control. Using this tech-
nique, signal combining and splitting can be implemented efficiently in the current domain
in a single stage. The adaptive signal processing (beamforming) techniques for estimating
and optimizing both the RF and digital beamforming weights are presented in Chapter 5.
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Chapter 4

Antenna designs

Antenna design is very critical for beamforming systems. Key performance metrics of a
beamforming system like range, coverage, and capacity depend very strongly on the antenna
properties discussed in Chapter 2. For example, the range can be extended with higher
antenna array directivity, and the coverage (scan angle) can be extended by using arrays
with elements that have wide beams. Capacity is influenced by the antenna in two different
ways. First, narrower beams reduce interference and result in better spatial reuse. Second,
if the array has polarization diversity (i.e. contains antennas with orthogonal polarization
states), then this property can also be used to scale capacity even further (by transmitting
different data streams on different polarizations) [21]1. Ideally, we would like these quantities
to be as large as possible. However, the price usually paid is a bigger aperture with a large
number of elements. The size and form factor are major contributors to the overall cost of
the system. In Chapter 3, we discussed techniques for designing the radio circuit component
of the beamforming system that can reduce the cost and power consumption of the main
circuit blocks by taking advantage of low cost silicon integration. This chapter focuses on
antenna design, with the goal of developing new antenna array design techniques that meet
the system requirements (gain, capacity, coverage) with compact form factors that are easy
to build and manufacture at low costs.

The chapter consists of two parts. In the first part, we examine the impact of different
design choices (e.g. the structure of the individual antennas and their arrangement within
the array) on the properties and performance of the array (e.g. gain and radiation patterns).
In the second part, we introduce new 3-dimensional array structures and geometries that
achieve the desired results in practice with smaller and more compact form factors compared

The work presented in this chapter was done in collaboration with Ehsan Adabi, Kevin Jones,
Jundong Park and Ali Niknejad [9].

1Using polarization for diversity or multiplexing is most beneficial in environments that have little or
no spatial diversity (i.e. environments with little scattering like pure line of sight). In environments with
rich scattering, there is usually enough spatial diversity to enable independent streams to be transmitted
on different antennas with the same polarization. In fact, having different polarizations in a rich scattering
environment may not add a significant advantage since the scattering and reflections usually transform the
polarization randomly.
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with conventional planar antennas. We also present examples that are easy to build and
manufacture using low cost printed circuit board (PCB) technology. In general, reducing
the size of the antenna is more challenging than reducing the size of the radio circuit because,
unlike the radio subsystem, the size of the antenna is limited by the laws of electromagnetics
and is largely unaffected by technology.

4.1 Array factor and radiation pattern calculations

As discussed in Section 2.1.2, the gain (or directivity) of an antenna is inversely propor-
tional to the beamwidth measured in solid angle units2. This gain is also proportional to
the effective area of the antenna. This rule applied to antenna arrays as well.

In Chapter 2, we considered a simple example of a uniform linear array. In this chapter,
we generalize the analysis to arrays of arbitrary geometries. To simplify the analysis, we
factor the overall radiation pattern into two components: the array factor and the element
factor. The array factor (AF) is the pattern of the array when all the antennas are replaced
with isotropic antennas 3. The element factor (EF) is the radiation pattern of a single
antenna element in the array4.

The overall theoretical gain and beam pattern of an array of isotropic antennas depends
on three factors: the number of antennas, the spacing between the antennas, and the ar-
rangement of the antennas. In this section, we examine the impact of each of these factors
on the properties of the beam pattern such as beamwidth, side lobes and grating lobes. Al-
though, these different factors are interrelated and it is difficult to quantify each individually,
we can still provide some general guidelines on how to take advantage of them in designing
the array.

4.1.1 Impact of antenna spacing

Let N be the number of antennas that are arranged in a linear array (along the y-axis)
with equal spacing d between the antennas as shown in Figure 4.2. Let’s also assume that
the observation angle is along the x-axis (i.e. the array is configured to maximize reception
from this angle). When the spacing between the antennas is fixed, then the overall gain of
the array will be proportional to the number of antennas N (the width of the main lobe will
be inversely proportional to N). On the other hand, if the spacing between the antennas d
is increased while number of antennas is fixed, then the gain increases with d up to a point,
and remains flat beyond that point. The break point is approximately d ≈ λ/2 (λ is carrier
wavelength) [12]. The beamwidth of the main lobe will always be inversely proportional to

2This is often approximated with the 3dB beamwidth (Ω3dB) or 10dB beamwidth (Ω10dB) or the null-to-
null beamwidth (ΩNN ). The unit used for solid angles is often called steradians [60].

3Recall from Section 2.1.1 that isotropic antennas have beam patterns that are shaped like spheres (i.e.
radiate equally in all directions (azimuth and elevation)) and are represented by dimensionless point sources.
An isotropic antenna is an abstract concept and is not realizable in practice.

4We assume for simplicity that the antenna elements of the array are identical. However, this does not
guarantee that the beam patterns will be identical. As discussed in Section 2.1.4, the properties of the
antenna not only depend on the structure of the antenna itself, but also on the surroundings, especially
those that are nearby. In Section 4.1.5, we show some simulation results that confirm this observation.
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d. However, when d > λ/2, grating lobes start to appear. The grating lobes keep the overall
directivity constant by compensating for the narrowing of the main lobe. These results are
demonstrated in Figure 4.1. In Figure 4.1a, we simulated three uniform linear arrays with
different number of antennas (N = 4, 8, 16 respectively) and fixed spacing (d = λ/2) along
the y-axis with an angle of observation along the x-axis (φ = 0). The figure shows that the
width of the main lobe being reduced by a factor of 2 for every factor of 2 increase in the
number of antennas. In Figure 4.1b, we simulated three uniform linear arrays with different
inter-element spacing (d = λ/2, λ, 2λ) and a fixed number of antennas along the y-axis with
an angle of observation along the x-axis (φ = 0). The figure shows that the width of the main
lobe being reduced by a factor of 2 for every factor of 2 increase in d. However, the number
of peaks (grating lobes) doubles as well. We also included in Figure 4.1b the beam pattern of
an 8-element linear array with λ/4 spacing in order to illustrate that an increase in spacing
can improve the directivity especially when spacing is small to begin with (i.e. d < λ/2).
Figure 4.1b, shows that the 8-element/λ/4-spaced and 4-element/λ/2-spaced linear arrays
have almost identical beam patterns.

4.1.2 Impact of array geometry

A linear array is not a symmetric structure in the sense that it looks different from
different angles of observations. For example, on the one hand, when the array is observed
from an angle that is orthogonal to the axis of the array, the array appears as a line (i.e.
the entire array is observed). On the other hand, when the array is observed from the same
direction as the axis of the array, the array appears as a single point (i.e. only the first
element is observed). The direction orthogonal to the axis of the array is known as the
array broadside, and the direction along the axis of the array is known as the array endfire
(see Figure 4.2). Therefore, it is natural to expect the radiation pattern to be different for
different observation angles. For example, consider the two extreme cases (broadside/endfire)
plotted in Figure 4.3. Figure 4.3a, shows the azimuth beamwidth much narrower in the
broadside direction than the endfire direction, which may suggest that there is more gain in
the broadside than the endfire. However, gain of the array cannot be based on the azimuth
pattern alone; we have to factor in the elevation pattern as well5. Just by looking at the
symmetry of the structure of a linear array, it is easy to see that it provides no elevation
gain (i.e. no beam resolution) in the broadside direction6. Similarly, in the endfire direction,
the elevation pattern will look identical to the azimuth pattern. Figure 4.3b shows the
elevation patterns for both broadside and endfire. Since the overall solid beamwidth can
be approximated with product of the azimuth beamwidth and the elevation beamwidth (i.e.
Ω3dB ≈ φ3dBθ3dB), then in order for the gain to be linear in the number of antennas N (in
both cases), we must have the following:

• φ3dB ∝ 1/N for broadside.

• φ3dB ∝ 1/
√

N for endfire.

5Recall that the gain is based on the solid angle beamwidth Ω.
6The array cannot distinguish signals arriving from different elevation angles in the broadside direction

since they all arrive at the antenna elements with zero relative delay. In fact, the broadside pattern of a
linear array is omni-directional (see Section 2.1.1).
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Figure 4.1: Impact of number of antennas/antenna spacing on the array pattern. (a) The
main lobe gets narrower as we increase the number of elements while keeping the spacing
fixed. (b) Grating lobes are created when the antenna spacing is increased beyond λ/2. In
both figures, we simulated a uniform linear array along the y-axis with an angle of arrival
along the x-axis.
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Figure 4.2: Broadside/endfire configurations of a linear array.

In order to verify this, we simulated the endfire and broadside azimuth patterns for
N = 10, 100, 1000 in Figures 4.4a (endfire) and 4.4b (broadside) and Table 4.1.2. The
results clearly show that φ3dB ∝ 1/N for broadside and φ3dB ∝ 1/

√
N for endfire. Both

Figures 4.4ab show a 100-element endfire array and a 10-element broadside array having
very similar beamwidths. In general, angles of arrival that fall in between these two extreme
cases will behave somewhere in the middle. The azimuth beam pattern of a linear array for
different steering vectors (observation angles) is shown in Figure 4.5.

4.1.3 Planar arrays

One of the main disadvantages of linear arrays is their inability to scan the beam in more
than one dimension. For this reason, most practical applications that utilize large phased
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Figure 4.3: (c) Impact of the array geometry on the azimuth beamwidth (array steered
towards φ = 0◦ (azimuth) and θ = 90◦ (elevation)). (b) Impact of the array geometry on
the elevation beamwidth (array steered towards φ = 0◦ (azimuth) and θ = 90◦ (elevation)).



68

-120

-100

-80

-60

-40

-20

 0

 20

 0  50  100  150  200  250  300  350

no
rm

al
iz

ed
 a

rr
ay

 g
ai

n 
(d

B
)

azimuth angle φ (degrees)

10x1 λ/2 spacing (linear array endfire)
100x1 λ/2 spacing (linear array endfire)

1000x1 λ/2 spacing (linear array endfire)
1x10 λ/2 spacing (linear array broadside)

(a)

-120

-100

-80

-60

-40

-20

 0

 20

 0  50  100  150  200  250  300  350

no
rm

al
iz

ed
 a

rr
ay

 g
ai

n 
(d

B
)

azimuth angle φ (degrees)

1x10 λ/2 spacing (linear array broadside)
1x100 λ/2 spacing (linear array broadside)

1x1000 λ/2 spacing (linear array broadside)
100x1 λ/2 spacing (linear array endifre)

(b)

Figure 4.4: (a) Azimuth radiation pattern for linear endfire arrays with different number of
antennas. (b) Azimuth radiation pattern for linear broadside arrays with different number
of antennas. In both figures, the arrays are uniform with λ/2 spacing.
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uniform broadside (λ/2) uniform endfire (λ/2)
geometry 1 × 10 1 × 100 1 × 1000 10 × 1 100 × 1 1000 × 1
φ3dB 10.02◦ 1◦ 0.1◦ 48.62◦ 15.24◦ 4.8◦

φ10dB 17.02◦ 1.7◦ .17◦ 63.2◦ 19.7◦ 6.24◦

φNN 23.06◦ 2.3◦ .22◦ 73.8◦ 22.94◦ 7.24◦

Table 4.1: Simulated azimuth beamwidths of uniform broadside and endfire linear arrays
(λ/2 spacing).
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Figure 4.5: Beam pattern of a linear array for different steering vectors.



70

array antennas use arrays with planar geometries. In addition to the ability to scan in every
direction in space, planar arrays have several other advantages7. They have more compact
form factors since they pack antennas in two dimensions instead of just one. This allows more
flexibility in choosing the geometry of the array in order to achieve certain beam properties.
The compact form factor also improves the bandwidth of phased array systems. Recall that
the incoming (or outgoing) signal arrives at the elements of the array with different delays.
For narrow band (long symbol interval) signals, these delays can be approximated with phase
shifts. However, when these delays become large, this approximation starts to break down.
The delays become larger when the array becomes larger (especially between elements at
opposite sides of the array). In planar arrays, the maximum amount time required to travel
from one end of the array to another is going to be much smaller than a linear array of
comparable gain. Figure 4.6 plots the array factor for different deviations from the center
frequency for both a 4096-element linear array (Figure 4.6a) and a 4096-element square array
(Figure 4.6b). The Figure shows that for the linear array, the gain drops well below 30dB
off the peak when the frequency drifts by 2% from the center frequency. On the other hand,
for the square array, the gain is still within 10dB of the peak when the frequency drifts by
2%.

Planar arrays do have a drawback, however. Unlike linear arrays, where the array factor
is proportional to number of antennas for all observation angles, the array factor of a planar
array is not uniform. In general, the gain of a planar array is larger in the broadside direction
(direction orthogonal to the plane of the array) than in endfire directions (directions on the
same plane as the array elements)8. In order to demonstrate this, we simulate the endfire
azimuth pattern of an M ×N rectangular array on the xy-plane (M is the dimension along
the x-axis or the depth of the array, and N is the dimension along the y-axis) with an angle
of arrival along the x-axis (i.e. φ = 0, θ = π/2). We fixed N = 10 and varied the depth of the
array M from 1−400 to see the impact on the azimuth beam pattern. The plots are shown in
Figure 4.7. The figure shows little improvement in the width of the main lobe as we increase
the depth of the array from 1 to 400. In fact, the main lobe starts decreasing only when
M > 100. The planar array is behaving like a linear endfire array of linear broadside arrays.
Since the azimuth endfire beamwidth is proportional to 1/

√
M and broadside beamwidth

is proportional to 1/N , the broadside pattern dominates when N >
√

M , and the endfire
pattern dominates when M <

√
M . Therefore, the azimuth endfire beamwidth φ3dB of a

rectangular array is proportional to min(1/N, 1/
√

M) instead of 1/(N
√

M)9.

7In a real system, the scanning range will be limited by the antenna elements. However, in this section
our focus in on the array factor.

8Recall that the gain (or directivity) of an antenna is proportional to its effective area. The effective area
of a planar array is larger in the broadside direction than in the endfire direction.

9That means that total gain in the endfire direction will be proportional to N
√

M (or M
√

N depending
on the direction of arrival). The extra factor of

√
M comes from the elevation gain. On the other hand, the

overall broadside gain of a planar array is NM (N is the azimuth gain and M is the elevation gain) [12].
Therefore, the different between the broadside and endfire gains is a factor of

√
N or

√
M . Although the

plots in Figure 4.7 show that the side lobe levels decrease significantly as the depth of the array increases,
the gain from side lobe reduction diminishes very quickly and cannot make up for the

√
M lost gain.
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Figure 4.6: (a) Array factor of a 4096-element uniform linear array with λ/2 spacing for
different deviations from the center frequency (fc). (b) Array factor of a 4096-element
uniform square array with λ/2 spacing for different deviations from the center frequency
(fc).
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Figure 4.7: Azimuth endfire pattern of rectangular arrays. Different curves corresponds to
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4.1.4 Side lobes

Any radiation outside the main lobe of the beam is usually undesirable because is creates
unnecessary interference. In a well designed antenna, most of the radiation outside the
main lobe comes from side lobes that are weaker than the main lobe10. However, for some
applications, even the side lobe radiation levels are unacceptable. So far in our analysis, we
have assumed that the antennas are excited with equal amplitudes. This will lead to the
highest directivity because the entire array aperture is fully utilized [12]. Unfortunately, this
pattern of excitation also leads to the higher side lobe levels. If we look back at pattern
plots for linear arrays and planar arrays (e.g. Figures 4.3 and 4.4), we see that although
the width of the first side lobe becomes narrower as we increase the size of the array, its
amplitude relative to the main lobe remains constant (approximate -13dB below the main
lobe) [12]. There are two ways to control the side lobes levels. The first way is by controlling
the amplitude of the signal excitation. As we mentioned in Section 2.2, whereas controlling
the relative phases of the signal excitations helps steer (direct) the beam, controlling the
relative amplitudes of the signal excitations helps shape the beam. For a uniform linear
array, choosing the relative amplitudes to reduce the side lobe levels is very similar to the
well known problem of designing a digital/time domain finite impulse response (FIR) filter,
and lot of the techniques for designing time domain filters apply to spatial domain filters

10As we have seen earlier, radiation can also come from grating lobes which are comparable to the main
lobe. However, grating lobes are a lot easier to avoid than side lobes as will be shown in Section 4.2. Grating
lobes can also be filtered out by the element pattern.
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as well [42, 12]. The second way to reduce the side lobe levels, which is less obvious, is by
properly designing the geometry of the array11. To get an idea how the side lobe levels are
affected by the array geometry, consider the pattern plots of a square array shown in Figure
4.8. The figure shows the pattern of a 10 × 10 square array antenna for two observation
angle φ = 0, 45◦. The figure clearly shows that when the beam is steered towards a 45◦

azimuth angle, then the side lobe levels are lower than when it is steered towards the x-
axis. The reason is that the shape of the array looks different from a 45◦ angle. Section 4.2
discusses some techniques for designing the array geometry to minimize side lobes. Note that
regardless of the technique used (e.g. controlling amplitude and/or geometry), the reduction
in side lobe levels usually comes at the price of reduced directivity [12].
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Figure 4.8: Side lobe level for different angles of arrival.

4.1.5 Antenna coupling

In the preceding sections, we focused our analysis on the array factor. In this section, we
consider the impact of the array geometry on the element factor. The design and properties of
the antenna element are critical because they determine the coverage and polarization state
of the system. In Section 4.1.1, we showed that the minimum spacing d between antennas in
the array required to achieve the maximum theoretical array gain is dmin = λ/2. In practice,
however, the required dmin maybe larger than λ/2. Real antenna elements have physical
dimensions and are not dimensionless point sources, and thus, the presence of neighboring

11This mostly applies to planar arrays.
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Figure 4.9: (a) 3-dimensional radiation pattern of an isolated dipole. (b) 3-dimensional
radiation pattern of a diplole in a circular array with λ/2 spacing.

antennas creates coupling that distorts the radiation pattern (usually results in a net loss),
and alters the impedance of the antenna (affects the bandwidth). Naturally, the coupling
goes down as the spacing between the antenna elements increases.

Figure 4.9a shows the radiation pattern of an isolated dipole, and Figure 4.9b, shows the
distortion in the pattern after placing the dipole in a circular array with λ/2 spacing. As a
result, the realized beamforming gain is usually less than what is predicted by theory (the loss
can be as large as 2-3dB). The loss will also depend on the angle of arrival since the distortion
is not uniform. The distortion will also depend on the type and polarization of the antennas
being used (e.g. patches, monopoles, dipoles), since different types will be affected differently
by different array geometries [12]. In some cases, the distortion in the beam pattern might
result in some antennas having increased gain in some directions relative to others. Since
these directions are usually different for different antennas in the array (different antennas
see different surroundings), these non-idealities in the beam patterns might average out in a
large array and the total gain will be comparable to the case of a uniform array. However, in
this case, we do not get the full benefit of spatial power combining since a significant portion
of the array might not be radiating efficiently in a given direction.

In order to show the impact of antenna spacing on coupling and pattern distortion, we
simulated the peak beamforming gain (accounts for both the element factor and the array
factor) of different uniform square arrays (with different antenna spacings) of monopole
antennas with finite ground plane in HFSS [1]12. The results are shown in Table 4.2. When
we increase the size of the array from 3 × 3 to 5 × 5, the expected theoretical gain would
be 10 log(25/9) ≈ 4.4dB. However, the simulation results show that increasing the number
of antennas from 3 × 3 to 5 × 5 by reducing the spacing from λ to λ/2 yields only 1.8dB
additional gain. While increasing the number of antennas by reducing the spacing from
2λ to λ yields 4.3dB additional gain (almost the entire predicted gain). This means that

12The finite ground plane also contributes to the loss in symmetry of antenna patterns.
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spacing λ/2 λ 2λ
geometry
3 × 3 – 10.2dB 10.3dB
5 × 5 12dB 14.5dB –

Table 4.2: Simulated array gain versus the spacing between antennas.

increasing the spacing from λ to 2λ does not improve the coupling situation by much, which
means that in this case λ spacing provides a good trade off between gain and coupling13.

Although the increase in spacing necessary to avoid coupling might give rise to grating
lobes, in practice, several of these lobes will be filtered (attenuated) by the beam pattern
of individual antennas. For those that are not, we present an array topology in Section 4.2
for canceling or significantly attenuating them. We note, however, that even though λ/2
spacing may not yield the expected (theoretical) beamforming gain, there are other benefits
to having more antennas such as increased diversity and transmit power (by having more
radiating elements).

4.2 3-dimensional arrays

In Section 4.1, we looked at how different design choices (number of antennas, spacing,
array geometry) influence the radiation pattern and gain of the array. In this section, we
propose a new class of array structures that utilize all 3-dimensions, and analyze them in
light of the constraints discussed in Section 4.1. As we mentioned earlier, the goal is to
achieve as much directivity, coverage (in both azimuth and elevation), and diversity (in both
space and polarization) as possible. In this context, using 3-dimensional arrays may seem like
an obvious choice given that they use space a lot more efficiently. However, the advantages
of using a 3-dimensional array structure are a little more subtle than that. Recall that the
directivity of an antenna array (or any antenna) is proportional to the surface area. we
showed in Figure 4.7 that increasing the depth on array does not to lead narrower beams.
Also, 3-dimensional structures are generally more difficult to build and manufacture. This
might lead us to conclude that using 3D array adds little or no value to the system. However,
the advantages of using 3D arrays become clear after further examination:

• We showed in Section 4.1.3 that the array factor of a planar area is not uniform in all
directions since the effective area is larger in some directions (broadside) than others.
On the other hand, when all three dimensions are used (e.g. a cubic array), the array
geometry and the gain become more uniform in all directions.

• Although increasing the depth of the array does not improve the width of the main
lobe, it can reduce the side lobe levels significantly. Also, as we will demonstrate later
in this section, the depth of the array can be exploited to cancel grating lobes that

13The optimal spacing will depend on the geometry and radiation patterns of the individual antennas.
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arise from large spacing between elements of the array. This property can significantly
improve the beam shaping capability of the array.

• Since more antennas can be packed in a three dimensional structure than a planar
structure, the aggregate transmit power (spatial power combining) can be increased
without increasing the transmit power of individual power amplifiers. Furthermore,
having more antennas, while not necessarily contributing to the overall directivity of
array, provides better redundancy and reliability. If one antennas fails, then there are
several backups.

• A larger number of antennas also leads to better noise averaging. Although the direc-
tivity of an array is proportional to the number of antennas on the surface N2, where
N is the number of antennas (length) in each dimension, there is a total of N3 receiving
antennas. The background noise picked up by those antennas will not be completely
uncorrelated14, and thus, the signal to background noise ratio at the output of the array
will not improve beyond N2. However, the thermal noise generated by the receivers
will be independent across different elements, and thus, the component of the noise at
the output of the array that is due to thermal noise can be reduced by N3 relative to
the desired signal. In most systems, the thermal noise dominates over the background
noise15. Therefore, a 3-dimensional array receiver can improve the overall noise figure
of the system16.

• Since we can pack a larger number of antennas in the same amount of space, and not
every antenna contributes equally to the gain, we can design different antennas with
different properties in order to achieve pattern and polarization diversity. Since it is
difficult to achieve all desired properties (e.g. coverage, polarization) with a single type
of antenna elements, using a mixture of different types is the only viable solution in
practice.

Figures 4.10 and 4.11 show examples of 3-dimensional arrays. Figure 4.10 shows a cubic
array composed of multiple stacked planar arrays (sheets). Each sheet is a square array of
monopole antennas. Figure 4.11 shows a similar array with a cylindrical shape. In addition
to having a more compact form factor than planar arrays and conventional static directional
antennas, the arrays shown in Figures 4.10 and 4.11 have other advantages as well:

• In these array designs, our choice for an antenna element was a monopole antenna
with a ground plane. We chose monopoles because they are easy to manufacture
and assemble, and have an omni-direction pattern, which enables beam steering in

14Antennas pickup noise from the environment. The noise temperature of the background noise depends
on the angle of arrival [45]. The correlation of the background noise picked up by different antennas in the
array depend on many factors including directivity.

15The contribution of the thermal noise to the overall noise at the output of a receiver is captured by the
noise figure (NF). The noise figure is defined as the ratio of the SNR at the input of the radio to the SNR
at the output of the radio [28].

16Depending on the number of antennas, this property can be utilized in different ways. For example, if
we relax the noise figure requirements of a receiver, we might be able to design the amplifiers with less power
or better linearity. However, this is still an open problem that requires further investigation.
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any direction in the azimuth plane17. Furthermore, since monopoles do not radiate
vertically, the presence of a ground plane (a wavelength away) from above has little or
no effect on their beam patterns.

• Each sheet can be realized with a printed circuit board (PCB), and the presence of a
metal ground plane simplifies the process of mounting the digital and analog electronic
components. The feedlines for the antennas can be implemented using microstrip lines
on the PCB, which significantly reduces the cost of manufacturing and assembly. The
loss from microstrip lines is not an issue since the amplifiers (e.g. PAs and LNAs) can
be placed very close to the antennas.

• The different sheets (PCBs) can be connected with one another by mounting them on
another PCB.

• Compared with array structure shown in Figure 4.12 (a sectorized array of patch
antennas), which also provides the desired 360◦ coverage and can be configured to
have polarization diversity, the 3D arrays in Figures 4.10 and 4.11 can be built to
improve on the transmit power and noise figures of the system18.

4.2.1 Lobe cancellation

Increasing the antenna spacings beyond λ/2 has other undesirable effects beyond the
increase in size. The most important one is the creation of multiple main lobes, also known
as grating lobes, most of which will point towards undesired directions [12]. These grating
lobes appear in the theoretical array factor of the antenna. In fact, even a linear array with
λ/2 spacing exhibit grating (back) lobes in both the broadside and the endfire directions
because of the symmetry, with the number of grating lobes increasing as we increase the
spacing. One way to break the symmetry and eliminate or reduce the size of grating lobes in
theory is to reduce the spacing between the antennas to λ/4. Figure 4.1 shows the theoretical
array patterns of two uniform square arrays with the same area but different spacings: λ/2
and λ/4. In Figure 4.14a, with both array patterns configured to point towards 90o, we see
that the λ/2 spacing has a back lobe pointing towards 270o that gets reduced by almost
25dB when the spacing is λ/4. In Figure 4.14b, we see that when both arrays are pointing
towards 45o, the back lobes for both spacings are at a significantly lower power level than
the main lobe. The reason for this is that looking through the diagonal of the array, the
spacing between the antennas is no longer λ/2, but

√
2

2
λ instead, which automatically breaks

the symmetry since
√

2
2

λ ≈ 3
4
λ. However, in both figures we notice the level of side lobes

17Ideally, we would like to be able steer the beam in any direction in space. Unfortunately, isotropic
antennas are not realizable in practice. However, if complete coverage is required, it can be achieved with a
mixture of antennas in the array such that their “aggregate” pattern covers the entire space. For example,
we can put patch antennas on the top and bottom sheets in Figures 4.10, 4.11 in order to cover the vertical
directions. Also, we can utilize other types of antenna that are easy to print on a PCB and provide a
different polarization from the monopole. Another way of achieving different polarizations is by changing
the orientation of some sheets relative to others.

18In the patch array, since only a few sectors are pointing at the desired direction at any given time, the
transmit power from other sectors is not fully utilized.
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Figure 4.10: 3-dimensional rectangular array of monopoles.
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Figure 4.11: 3-dimensional cylindrical array of monopoles.

is generally lower for the λ/4 spacing19, and that adding more antennas by reducing the
spacing to λ/4 does not affect the width of the desired main lobe, which is what we expect.

As pointed out in Section 4.1.5, in practice, λ/4 spacing can do more harm than good since
it further increases coupling and pattern distortion between neighboring antennas without
increasing the gain. In fact, we may end up with a net loss in the overall gain. However,
if the array has a 3-dimensional structure (multiple sheets), we make a small modification
to the relative placement of the sheets in order to emulate the lobe cancellation feature of
a λ/4 array. By shifting the different sheets relative to one another by λ/4 in the direction
of the x-axis and the y-axis (as shown in Figure 4.13), the antennas projected onto the xy
plane appear like a single uniform planar array with λ/4 spacing. In this case, the back
lobes and other grating lobes get canceled20, We also don’t have to worry about coupling,
since spacing between antennas is still greater than λ/2 (as long as the different sheets are
far enough from each other). Also, since the beam pointing towards 45◦ has a lower first side
lobe than a beam pointing towards 90◦, we can reduce the side lobes by not only shifting
the sheets relative to one another, but also by changing their relative orientations as well
or by using other planar structures for the sheets that have better side lobe properties (e.g.
circular arrays shown in Figure 4.11).

19The fact that the first side lobe is lower for a 45◦ observation angle is consistent with the discussion in
Section 4.1.4

20To achieve full cancellation of grating lobes, the required number of sheets is such that the total number
of antennas is larger than the number of antennas on a single plane with λ/4 spacing. Also, the sheets do
not have to be stacked vertically in order to achieve the grating lobe cancellation.
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Figure 4.12: Planar and sectorized patch arrays (8 sectors).

Figure 4.13: A multi-sheet/3-dimensional rectangular array of monopoles with λ/4 shifting.
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Figure 4.14: Comparing the theoretical array patterns (in the azimuth (xy) plane) of two
uniform square arrays with same area, but different spacings (λ/2 and λ/4). (a) Both arrays
steered to towards 90◦. (b) Both arrays steered to towards 45◦.



82

Chapter 5

Adaptive beamforming and channel
estimation

At a high level, a multi-antenna receiver maximizes the SNR by steering its main beam
toward the desired signal and nulling out any interfering signals. If the receiver knows the
channels responses of the various transmitters, then the problem becomes trivial. In practice,
though, the channels from the various transmitters are unknown a priori, and will vary in
time. Thus, the system must be able to adaptively estimate the channels and compute the
optimum beamforming weights. Designing optimal methods1 to accomplish this task, also
known as adaptive array processing techniques, is heavily influenced by the radio architecture
of the array and its hardware capabilities. Most of the previous work in this area has focused
on the digital beamforming architecture, while the RF beamforming architecture has received
very little attention.

The fundamental difference between the digital baseband and RF architectures that im-
pacts beamforming is that the digital architecture offers access to the input signals from
each individual antenna element in the array (prior to combining), whereas the RF architec-
ture only offers access to the aggregated signal(s)2. Thus, in a pure digital architecture, the
signals from each antenna are digitized and stored. This capability enables the signals to
manipulated and combined in multiple ways. That means that the optimum beamforming
weight vector(s) can be computed and updated while data is being received. Furthermore,
multiple spatial data streams can be extracted simultaneously. On the other hand, the RF
architecture enables only a single way to aggregate the signals at any given time. This means
that amount of time and training samples required to estimate the optimum beamforming
weights is much larger than the digital architecture, which creates an additional overhead

The work presented in this chapter was done in collaboration with Mark Johnson, Raghuraman
Mudumbai, Kannan Ramchandran and Ben Wild [11, 10, 8, 9].

1The performance criteria will vary from system to system system. These include speed, accuracy, and
complexity. There is usually a trade off between these factors, and the optimal combination will depend on
the system requirements.

2Multi-beam and hybrid RF/digital architectures discussed in Chapter 3 can have M > 1 different
aggregated outputs. In general, however, M ≪ N , where N is the number of antennas.
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since it is difficult update the weights while data is received3. This makes most beamforming
techniques developed for the digital architecture unsuitable for the RF beamforming archi-
tecture. Therefore, new beamforming techniques need to be designed that are tailored for
the RF architecture, which is the focus of this chapter.

Most of the previous work on beamforming schemes that rely only the aggregate signal
at the output of the array were based on greedy energy maximization [36, 37]. In [36], a
scalable algorithm that utilized a single bit feedback was proposed. The algorithm proceeds
by adding small random perturbations to the beamforming weights at each step. If the new
weights result in a higher SNR at the output of the array, then the new weights are retained.
Otherwise, they are discarded. It was shown that if the magnitude of the perturbations
is small enough, then the algorithm is guaranteed to converge, and the number of steps
required grows linearly with the number of antennas N . However, the main disadvantage of
this class of algorithms is that they are slow to converge and are very sensitive to noise and
interference4. Also, while the convergence time scales linearly with the number of antennas,
the constant factor is usually too large for most practical systems.

In this chapter, we present a more flexible and robust framework for computing the
complex beamforming weights based on adaptive adaptive filtering. The chapter is organized
as follows. In Section 5.1, we present a brief overview of popular adaptive filter techniques.
In Section 5.2, we show how to use these techniques to estimate the optimum beamforming
weights. The problem of null-steering and the null-steering performance are discussed in
Section 5.3. In Section 5.4, we consider the problem of beamforming in the presence of
interference. In Section 5.5, we discuss the problem of frequency synchronization and fast
fading channels and show how the adaptive filter framework can be modified to handle
fast changing channels and large frequency offsets. We discuss multichannel and hybrid
RF/digital architectures in Section 5.6. Finally in Section 5.7, we conclude with a brief
discussion on transmit beamforming.

5.1 Adaptive filter techniques

Statistical channel estimation and filter design and optimization occur in a wide variety
of applications. Although different applications have different requirements, a lot of these
problems share a common structure and can be written as:

wHx[n] = d[n]

x[n] = [x[n], x[n − 1], . . . , x[n − K + 1]]⊤

where x[n] is a complex column vector (sequence) of order K of data at time n, d[n] is a
complex scalar denoting the desired (training) signal at time n, and w denotes a discrete
time complex order K linear filter5. The interpretation of the data and the desired signal are

3The size of this overhead depends on the rate of channel variation as well as the system requirements.
4It is difficult to reliably detect energy levels even in moderate SNR regimes.
5In this chapter, we denote scalars in lower case, vectors in bold lower case, and matrices in bold upper

case.
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application dependent6. However, the goal is to find the linear combination7 of data samples
that best approximates the desired signal at time n. In practice, the “best” or optimum
solution is defined in terms of the minimum mean square error (MMSE) criterion:

e[n] = d[n] − wHx[n]

wMMSE = argminwE[‖e[n]‖2]

This solution is obtained by solving the Normal Equations (sometime refered to as the
Weiner-Hopf equations) [50]:

wMMSE = R−1
xx rdx (5.1)

Rxx = E[x[n]x[n]H ], rdx = E[d[n]Hx[n]]

Rxx is the K × K autocorrelation matrix of x[n], and rdx is K × 1 cross-correlation vector
of the desired signal d[n] and x[n] (the data vector)8. The solution in Equation 5.1 is
also referred to as the Weiner or least squares solution. This solution is derived from the
orthogonality principle, which states that the power of the error signal is minimized when
the error signal is orthogonal (uncorrelated) with the data9:

E[e[n]x[m]] = E[(d[n] − wH
MMSEx[n])x[m]] = 0 ∀n,m

⇒ E[d[n]x[m]] − E[wH
MMSEx[n]x[m]] = 0 ⇒ rdx[n − m] = wHrxx[n − m]

⇒ rdx[k] = wHrxx[k]

where rxx is the kth column of Rxx. To solve for the K coefficients of wMMSE we need K
equations (i.e. k = 0, . . . , K−1), which is equivalent to Equation 5.1. In general, the second
order statistics Rxx and rdx are not known a priori, and are usually estimated from sample
averages (Rxx and rdx are used instead of Rxx and rdx). In practice, however, the normal
equations are not usually solved by directly inverting the Rxx (or Rxx) for several reasons:

1) The data sequence x[n] is not available all at once, but instead is received over time.
Therefore, waiting for the entire sequence to be available may introduce unnecessary
delay.

2) The data set {x[n]} maybe too large that computing and inverting Rxx maybe com-
putationally unfeasible.

3) The statistics of the signal x[n] are usually not known a priori and frequently vary
with time, and thus using the entire data set to compute the optimum weights vector
(filter) may lead to inaccurate results.

6In communication systems, the desired signal is usually a known pilot signal defined by the system a
priori.

7In this chapter, we focus on finite impulse response filters (FIR). We will also assume that all signals
have zero means (i.e. E[x[n]] = E[d[n]] = 0).

8We assume that these second order statistics are stationary. Otherwise, we need to include the time
index (e.g. Rxx[n], rdx[n]).

9The results are simplified by assuming that x[n] and d[n] are wide sense stationary and jointly wide
sense stationary signal, which means that their first and second order statistics are independent of time [47].
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This motivated the design of a class of filters, known as adaptive filters, that addresses
these issues. Adaptive filters have the following properties:

1) The computation of the beamforming weights proceeds on a sample by sample basis.
That is the filter taps are incrementally updated when a new sample (or a group of
samples) is received, as opposed waiting for the entire sequence. This is sometimes
referred to as online versus batch mode computation. This property addresses the
latency problem.

2) The computational complexity of updating the filter taps when new samples are re-
ceived is far less than direct matrix inversion. This addresses the complexity problem.

3) The algorithms do not assume any prior knowledge of the signal statistics.

4) More recent samples have stronger influence on the values of the filter taps than older
samples. This, together with Properties (1) and (3), gives the algorithm the ability to
track changes in the signal statistics, and is what makes those filters truly adaptive.

Figure 5.1 shows the basic structure and building blocks that most adaptive filters have
in common. Adaptive filters are closed loop systems. The error signal (or a function of it)
in the feedback loop is used to update the filter taps. Different adaptive filters have different
update equations, which in turn depend on the error criterion and other factors.

5.1.1 Gradient descent

One of the most popular classes of adaptive filters are based on the concept of Gradient
descent. Gradient descent defines how the filter taps get updated in order to minimize some
error criterion ξ. The filter taps update proceeds as follows:

gn+1 = gn − µ∇gn
ξn (5.2)

where gn is the vector of filter taps at time (iteration) n, ∇gn
ξn is the gradient of the error

criterion ξn with respect to the filter taps gn, and µ is the step size (a scalar that determines
the rate of adaptation and convergence). Since the gradient defines the direction of the
maximum rate of change, the error is minimized by moving in the opposite direction of the
gradient (and hence the name gradient descent). One of the most popular error criteria is
the mean square error (MSE). The generic minimum mean square error gradient descent
problem is shown in Figure 5.1. The goal is to select the filter taps such that the output
of the filter, when the input is the random sequence {w[n]}, is as close as possible to the
desired sequence {d[n]} in the mean square sense. The MSE is defined as follows:

ξn = E[|e[n]|2] where e[n] = d[n] − gT
n
wn (5.3)

⇒ ∇gn
ξn = ∇gn

E[e[n]e∗[n]]

= ∇gn
E[(d[n] − gT

n
wn)(d∗[n] − gH

n
w∗

n
)] = −E[e[n]w∗

n
]
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Figure 5.1: The standard MMSE adaptive filtering problem.

⇒ gn+1 = gn − µ∇gn
ξn = gn + µE[e[n]w∗

n
] (5.4)

The difficulty in applying gradient descent directly lies in the fact that computing the
expectation in Equation 5.4 requires prior knowledge of the first and second order statistics
of the signals, which defeats the purpose of using a “blind” algorithm. Therefore, in most
implementations, expected values are replaced by sample averages. By far the simplest and
most popular implementation is the LMS, which replaces the expected values of random
variables with their instantaneous values 10, and works well in practice. The LMS update
equations are as follows:

desired sequence: {d[n]}, input sequence: {w[n]}

l-tap FIR filter: gn = [gn[0], gn[1], . . . , gn[l − 1]]T

wn = [w[n], w[n + 1], . . . , w[n + l − 1]]T , error sequence: e[n] = d[n] − gT
n
wn

Filter update: gn+1 ← gn + µe[n]w∗

n
(5.5)

The following condition is sufficient to guarantee that the filter taps converge (in the mean
square sense):

µ ≤ 1

tr{Rww[n]}
where Rww[n] =E[wnwH

n
] is the autocorrelation matrix (of order l ) of the random sequence

{w[n]} (which can potentially be time varying). In general, a smaller value of µ leads to
better convergence, while a larger value leads to faster adaptation and better tracking, but
can make the algorithm less stabe11. The convergence time τ of the LMS algorithm is
roughly:

τ ∼ 1

µ

λmax

λmin

(5.6)

10This is why it is sometimes referred to as the “stochastic” gradient descent algorithm.
11The value of µ doesn’t have to be fixed, and can be varied as a function of time (µn) to achieve a better

compromise between convergence and adaptation.
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where λmax and λmin are the largest and smallest eigenvalue of Rww respectively. The
adaptive filter can be initialized to any random value (usually the filter taps are set to 0)
without affecting the asymptotic convergence time of the algorithm.

The LMS algorithm works very well in practice and is very widely used in communication
systems for channel estimation and equalization. One of the reasons the LMS is very popular
is its low computational complexity. The number of operations required to update the filter
taps is proportional to the number of taps (i.e. O(l)). There are several variants of the
LMS algorithm that optimize some aspect of the performance like stability (e.g. Normalized
LMS) or computational efficiency (e.g. sign-LMS)12.

5.1.2 Other adaptive filtering techniques

There are other adaptive filters that are widely used that are not based on gradient
descent. The most popular example is recursive least squares (RLS). RLS usually leads to
much faster and more accurate convergence than LMS, and does not depend on the eigenvalue
spread as is the case with LMS. However, this improvement in speed comes at the price of
extra compuational complexity (the number of operations required for each update step is
quadratic in the number of filter taps ( O(l2))).

Even though both LMS and RLS do not require any prior knowledge of the signal statis-
tics, they both require a reference (training) signal (e.g. {d[n]}) that is known a priori13.
There is another class of adaptive algorithms that do not rely on a known reference signal,
but instead adapt based on some property of the data signal (e.g. constant modulus). Such
algorithms are usually much slower to converge, and are not always guaranteed to converge
to the correct result.

A more comprehensive treatment of adaptive filters can be found in [50, 27, 26].

5.2 Channel Estimation via Adaptive Filtering

System identification is one of the classical applications or formulations of the adaptive
filter problem. The general system identification problem is illustrated in Figure 5.2. The
algorithm generates a random (usually white) sequence w[n] that is fed into the system with
unknown impulse response h or transfer function H(z) (H(z) is the z-transform of h)14. as
well as to an adaptive filter gn (transfer function Gn(z))15. that is used to approximate the

12In the standard LMS algorithm, the size of the update to the vector gn in Equation 5.5 will be directly
proportional to the magnitude of the data (regression) vector x∗[n]. This can have some undesired effects on
the performance of LMS. Normalized LMS avoids this problem by dividing the step size µ by |x[n]|2 at each
step. Sign-LMS or sign-error LMS on the other hand, simplifies the required computation in the update step
by quantizing the real and imaginary parts of the error signal e[n] to a single bit (the sign bit). However,
the saving in computation comes at the expense of slower convergence [50].

13The reference signal can sometimes be predicted from the data itself. For example, in a communication
system, after a signal is decoded, the output of the decoder can used to train the adaptive filter. Such a
technique is called decision-based or decision-directed adaptive filtering. However, even in such cases, the
LMS or RLS algorithm still needs to be initialized (boot-strapped) using a reference (pilot) signal that is
known a priori. This pilot needs to be injected at regular intervals in order to avoid instability.

14We assume that the unknown system is linear.
15Sometimes we denote a filter with a subscript n (e.g. gn) when the filter taps are time varying.
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Figure 5.2: Identifying the impulse response of an unknown system using adaptive filtering

unknown system. The output from the unknown system is used as the desired signal d[n]:

d[n] = (h ∗ w)[n]

e[n] = d[n] + ν[n] − (gn ∗ w)[n]

(h ∗ w)[n] ,

∞∑

k=−∞
h[k]w[n − k]

where ν[n] is noise signal (usually white) that models the noise in the system, and (∗) denotes
the discrete convolution operator. It is clear from the equations above that the variance of
the error signal is minimized when g → h as n → ∞ (e[n] is reduced to white noise sequence).

The unknown system response does not necessarily have to be a time-domain filter. In
fact, in the case of beamforming, the unknown system to be identified is a spatial filter.
The algorithm proceeds in a similar manner. For example, a receiver Rx estimating the
complex channel response at each antenna from a remote transmitter Tx using the system
identification framework would follow these steps16:

0) Rx locally generates a random sequence {w[n]} (making the samples of w[n] i.i.d
usually results in faster convergence)17.

1) Tx sends a known pilot x[n]. The choice of x[n] does not matter much since the same
signal is received at the different antennas at the receiver. Furthermore, we assume
that if the transmitter has multiple antennas, the transmit beamforming weight vector
remains fixed throughout this process.

16Without loss of generality, we assume that the channels are narrow band or single tap (flat fading)
channels. A large delay spread (frequency selective) channel can be converted into a group of smaller narrow
band subchannels (e.g. OFDM), where the complex channel response is flat fading.

17w[n] can be sampled from any distribution (e.g. Gaussian, Bernoulli, etc.). The choice will depend
on several factors such the set of available beamforming weights, which determines both resolution and the
dynamic range. For example, when the beamformers have low resolution, a Bernoulli distribution maybe
preferable since it takes only two values (e.g. 1, -1). However, as we show in Section 5.4, using this
adaptive filtering based framework in the presence of interference will require much higher resolution for the
beamforming weights. We note, however, that the accuracy of channel estimation does not depend on the
resolution of the beamforming weights, but instead depends on the resolution of the A/D component.



89

2) Rx sets the antenna weights (beamforming weight vector) to a block of length N
(number of antennas) of the random sequence {w[n]}.

3) At each time step n, the block of {w[n]} assigned to the antenna weights is shifted to
the right by one sample. Thus the output of the array at the receiver y[n] mimics the
time domain covolution of the sequence {w[n]} with an N tap filter (channel response
h)18.

4) The received signal at the output of the array y[n] = wH [n]h[n]x[n] + ν[n] is used
by the adaptive filter as the desired signal (y[n] is the output from the A/D after
aggregation). The error signal e[n] is used to update the N tap filter gn.

These steps are summarized in Figure 5.3. The figure shows how the channel vector from
a transmitter to a multi-antenna receiver can be estimated by posing the problem in the
system identification framework. The complex vector h is the unknown channel response
from the transmitter to each antenna in the array19. The adaptive filter can be implemented
by one of the standard algorithms (e.g. LMS or RLS). When the step size in the filter is
chosen appropriately, the filter coefficients g[n] will approximate h, the unknown channel20.
Observe that while the beamforming weights may be applied in the RF or analog domains,
the computation of those weights occurs in the digital domain.

5.2.1 Performance evaluation

In this Section, we analyze the performance (both speed and accuracy) of the adaptive
filtering based beamformer. We also consider the impact of noise and channel variation. For
simplicity, we will focus on the Normalized LMS (NLMS) algorithm. However, the results
extend to a generic adaptive filter.

Let us begin by deriving the expression for the running time under NLMS. Recall from
Equation 5.6 in Section 5.1.1, the convergence time of the LMS algorithm τ :

τ =
1

µ

λmax

λmin

Since the elements of the sequence {w[n]} are chosen i.i.d:

Rww ∼ Rww = σ2
wIN

⇒ λmax

λmin

≈ 1

18It is not strictly necessary for a spatial filter to simulate a time domain filter. For example, new sets
of N weights can be generated independently at each time step n and the subsequent algorithm will still
robustly estimate the channel. In fact, we show in Section 5.4 that in order to cancel a known interferer,
emulating a time domain convolution may no longer be an option.

19In a rich-scattering multipath environment, the channel responses usually follow a Rayleigh distribu-
tion (i.e. the channel coefficients are i.i.d. complex Gaussian random variables). In a clear line of sight
environment, the channel coefficients are functions of the array geometry and the direction of arrival.

20because y[n] is a noisy version of the true desired signal d[n] (due to the presence of the white (thermal)
noise signal ν[n]), gn will be a close, not an exact, estimate of h
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Figure 5.3: The transmitter sends a known signal, and the multi-antenna receiver employs
an adaptive filter to estimate the optimal beamforming weights.
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where σ2
w = E[w[n]∗w[n]] (for simplicity we choose σ2

w = 1), and IN is the identity matrix of
size N . The step size µ under NLMS is chosen as:

µNLMS =
µ

′

ǫ + ‖w[n]‖2

where µ
′

is a constant (usually µ
′

< 1) that is independent of the regression data {w[n]}, w[n]
is a vector of size N of the regression data at time n, ǫ is a positive number to avoid division
by zero or by a small number when ‖w[n]‖2 is close to zero21. Since E[‖w[n]‖2] = σ2

wN = N :

µNLMS ∼ 1

N

⇒ τNLMS ∼ 1

µNLMS

= O(N)

Therefore, the number of steps required for convergence is proportional to the number of
antennas N . This result is not surprising. Another more intuitive way to think about this is
that since we are solving for the N coefficients of unknown spatial filter, we require at least
N unique equations (samples) to solve for these unknown coefficients22. Therefore, the linear
running time is fundamental to this architecture, and not specific to a particular algorithm,
since we can only capture one sample at a time. However, different adaptive algorithms can
differ by a constant factor as well as their performance in the presence of noise, channel
variation, finite resolution, and other factors.

Figure 5.4a shows the fraction of the maximum beamforming power achieved by the LMS
algorithm as a function of the number of iterations (normalized by the number of antennas
N) for different values of N . The fraction of maximum power is a metric of the alignment
between the channel estimate and the actual channel. The graph shows that LMS achieves
at least 90% of the maximum power after approximately 3N iterations, independent of the
value of N . Figure 5.4b shows the same results for RLS. While also linear in N , it achieves
90% of the maximum power much faster than LMS (after approximately N iterations) at
the expense higher computational complexity.

The impact of noise

The signal to noise ratio (SNR) at each individual antenna is not boosted by the beam-
forming (signal combining) gain. Therefore, it is critical for beamforming systems that the
adaptive algorithm performs well under low SNRs. In Figure 5.5a, we add noise to the sys-
tem to analyze the performance degradation as a function of the SNR. The graph shows that
even when the signal is below the noise level prior to beamforming, the LMS estimate still
achieves a significant fraction of the maximum beamforming gain. The performance in the
presence of noise can be further improved by decreasing the step size of the LMS algorithm,
which leads to better noise averaging and more accurate convergence23. Figure 5.5b, shows

21This why the algorithm is sometimes referred to as ǫ-NLMS.
22More than N equations are usually required in practice since the samples are noisy.
23 A small step size will also lead to slower response to channel variations and slower convergence. Thus,

there is an inherent trade off in the choice of the step size.
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Figure 5.4: (a) NLMS convergence speed for different values of N. (b) RLS convergence
speed for different values of N. (c) sing-LMS convergence speed for different values of N. The
x-axis on the plots is the number of iterations normalized by the number of antennas N , and
on the y-axis is fraction of the maximum beamforming gain.
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that almost 70% of the beamforming can be achieved at -5dB SNR when the step size is
decreased from µ = 1 to µ = .1. Compared to Figure 5.4, we see that the overall impact of
noise is slower convergence24.

The impact of channel variation

Time-varying channels is another factor that often degrades the performance of adaptive
algorithms. Channel variation can occur due to the mobility of either or both nodes in a
wireless link or due to the mobility of the reflectors and scatterers25. In a rich multipath
environment (a Rayleigh channel), the variation is independent across the different channel
coefficients and is known as the Doppler rate or Doppler spread [59]. In a line of sight (LOS)
environment, the channel variation results from a change in the angle of arrival (AOA). In
this case, the channel coefficients are functions of the angle of arrival. Figure 5.7a shows the
performance of LMS in a Rayleigh channel with nonzero Doppler spreads. The figure shows
that the LMS still converges even when the channel variation rate (the Doppler spread) is
as large as 1% of the symbol rate (filter update rate). However, adapting to fast channel
variations requires a relatively large step size µ, which in the presence of low SNRs leads to
poor performance. This problem can be addressed with the differential MMSE framework
discussed in Section 5.5.

Quantization

While the performance of the LMS algorithm does not depend on the resolution of the
beamforming weights, it does depend on the resolution of the aggregate signal (A/D con-
verter). Low resolution A/D converters are popular due to their low complexity. However,
they add more quantization noise that usually slows down the adaptive filter. There are
variants of LMS for dealing with quantization. By far, the most popular is sign-LMS; sign-
LMS is the simplest of all since it quantizes the output to a single bit (the sign bit). It’s
popular due to its relatively low computational complexity. Our simulation results show that
sign-LMS exhibits similar performance to NLMS (linear in the number of antennas) with a
slight performance hit due to the quantization noise. The results for sign-LMS are repeated
in Figures 5.4c, 5.6ab, and 5.7b.

5.3 Null-steering

Conventional digital beamforming architectures with multiple inputs enables computing
the optimum beamforming weights, which also implicitly place nulls towards interferers when
they are present. This, however, is not possible with a single input architecture (e.g. RF
based). Under these architectures, each channel response vector has to be estimated sepa-
rately (this can only to happen sequentially) before the optimum beamforming weights can be

24In addition to reducing the step size, we can also reduce the LMS update rate, and thus each sample
will involve more noise averaging.

25Sometimes channels can vary due to temperature and other atmospheric changes that cause variations
in the air density. However, this type of variation is usually very slow compared to ones caused by mobility.
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Figure 5.5: (a) NLMS convergence for different SNRs, with a step size µ = 1. (b) NLMS
convergence for different SNRs, with a step size µ = .1.
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Figure 5.6: (a) sign-LMS convergence for different SNRs, with a step size µ = 3. (b)
sign-LMS convergence for different SNRs, with a step size µ = .1.
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Figure 5.7: (a) NLMS convergence for different Doppler rates (as fractions of the symbol
rate). (b) sign-LMS convergence for different Doppler rates (as fractions of the symbol rate).
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Figure 5.8: An adaptive array receiver must independently estimate the channels from all
the transmitters before forming nulls in directions of interfering signals.
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computed. When the estimates of all the channel response vectors are available, the beam-
forming weights can be optimized for different criteria depending on the application (e.g.
communication, locationing). In this chapter we focus on maximizing the signal to noise
and interference ratio (SINR). The Minimum Variance Distortionless Response (MVDR)
beamformer is a popular technique for achieving the maximum SINR [33]. MVDR works as
follows:

1) The received signal at the output of the adaptive array is a composed of the signal
from the desired transmitter as well as the signal from the interferers (see Figure 5.8):

y[n] = cH(hdxd[n] +
K∑

i=1

hixi[n] + v[n])

where y[n] is the received sequence, c is the complex beamforming weight vector of size
N (‖c‖ = 1), hd is the complex spatial channel response from the desired transmitter
(a vector of size N), xd[n] is the signal from the desired transmitter, hi is the complex
spatial channel response from the ith interferer (a vector of size N), xi[n] is the signal
from the ith interferer, K < N is the number of interferers, and v[n] is a vector of
white signals (with variance σν) that models the noise at each antenna at the receiver.

2) The receiver selects the beamforming weight vector c to maximize the SINR at the
output of the array defined as follows:

SINR(c) =
|cHhd|2∑K

i=1 |cHhi|2 + E[|cHv[n]|2]

⇒ copt = argmaxc SINR(c) s.t. ‖c‖ = 1

The solution to this optimization problem is the Minimum Variance Distortionless
Response and takes the following form:

copt =
R−1

I+Nhd

‖R−1
I+Nhd‖

, RI+N ,

K∑

i=1

hih
H
i + σ2

νIN (5.7)

RI+N is the spatial interference plus noise correlation matrix (IN is an identity matrix
of dimension N).

The MVDR beamformer maximizes the SINR. However, in practice, the beamformer
will not have access to the exact values of hd and h1, . . . ,hK . Instead, it has access only to
noisy estimates of these quantities ĥd and ĥ1, . . . , ĥK produced by the LMS algorithm. The
resulting SINR will degrade because of the mismatch between the actual channel responses
and the estimates26. However, the simulation results in Section 5.2.1 show the channel
estimates improving with SNR. That means that the nulls placed in the directions of large
interferers will be deeper than those in the direction of small interferers, which is critical

26In Chapter 6, we show that the resulting SINR is more sensitive to mismatches in the interfering channel
responses h1, . . . ,hK than the desired channel response hd.



99

since larger interferers have more impact on the SINR. In fact, using this method, the
amount of interference rejection is directly proportional to the input SNR (i.e. SNR prior to
beamforming)27. The simulation results in Figure 5.9 confirm this observation, which will be
proven more rigorously in Chapter 6. In Figure 5.9a, we simulated the interference rejection
of 4 interfering signals whose channels were estimated using the LMS algorithm. On the
x-axis, we vary the input SNR of one of the interferers (the SNR at which the adaptive filter
operates while estimating the channel), and on the y-axis, we plot the output SNR of that
interferer after beam-nulling (The different curves represent different number of antennas).
First, we see that the interference rejection does not depend on the number of antennas as
long as N > K. Second, the curves are relatively flat versus the input SNR. This means
that the interference rejection is directly proportional to the input SNR. In Figure 5.9b, we
repeated the same experiment with quantization noise added to the beamforming weights.
The Figure shows that quantization noise becomes the limiting factor at high input SNRs28.

The interference rejection or null depth can be improved by reducing the step size µ
in the LMS algorithm (i.e. averaging the results for longer periods). We note, however,
that since the channels are estimated one at a time, the process is relatively slow, which
means it can tolerate very little channel variations. We showed in Figure 5.7 that a large
fraction of the signal power (beamforming gain) can be captured by the LMS algorithm
in the presence of fast fading. However, beam-nulling and interference rejection are more
sensitive to errors than beamforming as demonstrated in Chapter 6. Figure 5.10 shows the
interference rejection for different channel variation (Doppler) rates. The x-axis denotes
“time” or the progression of the LMS algorithm. For clarity, we only plot the data after
the algorithm reaches a stable state. The results show that even moderate Doppler rates
can have a severe impact on interference rejection. The requirements are even more strict
for higher data-rates that require higher average SINRs. As result, this architecture is more
suitable for fixed wireless systems than for mobile systems. In Section 5.6, we discuss some
techniques that utilize hybrid and multibeam architectures to enhance the performance.

5.4 Adaptive filtering with interference cancellation

In most practical circumstances, there will be other radios that are transmitting at the
same time and in the same frequency band. It is usually hard to coordinate the transmission
of the different radios especially if the bands are unlicensed. These other radios thus generate
interference at the adaptive array, which impedes its ability to estimate the desired channel
response(s). One way to deal with these interfering signals is to treat them like noise, and
average over longer periods. This, however, can introduce unacceptable delays. Furthermore,
unlike noise, the interfering signals at each antenna are spatially correlated. We can take
advantage of this to minimize the effects of interference without introducing unnecessary
delays (assuming we can estimate the interfering channels prior to the desired channel) by
modifying the original algorithm as follows:

0) Let hd be the channel response vector to be estimated, and let h1, . . . ,hK for K < N

27The SNR referred to here is the interfering signal to noise ratio.
28In Chapter 7, we introduce algorithms for mitigating quantization noise.
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Figure 5.9: (a) The SNR of the interferer at the output of array (post-beamforming) as a
function of the SNR of the interferer at the input of the array (pre-beamforming), for a time-
invariant channel and a total of K = 4 interferers. The curves represent different numbers
of antennas at the receiver. (b) An identical experiment with quantization noise added to
the beamforming weights.
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be the channel response vectors from K different interfering radios that the adaptive
array receiver Rx has already estimated.

1) At each step n, Rx generates a random vector w[n] of length N as described in Section
5.2.

2) Instead of applying w[n] directly to the antenna weights, w[n] is decomposed into
two orthogonal components29, one that is parallel and one orthogonal to the subspace
spanned by h1, . . . ,hK :

w[n] = w⊥[n] + w‖[n]

w⊥[n]Hw‖[n] = w⊥[n]Hh1 = . . . = w⊥[n]HhK = 0

3) The adaptive filter framework in Section 5.2 is used with the new input sequence
{w⊥[n]}.

Since the training weight vectors are chosen orthogonal to the subspace spanned by the
interfering vectors hi, . . . ,hK , the interference disappears at the output of the array and
its impact on the channel estimation process becomes negligible. However, even though the
modified version of the adaptive filtering algorithm (with interference cancellation) has a very
similar performance to the conventional algorithm described Section 5.2, the algorithm does
not converge to the desired channel response hd, but instead converges to h⊥

d (the component
of hd that is orthogonal to the subspace spanned by h1, . . . ,hK). This is not surprising since

h
‖
d (the component of hd that is parallel to the subspace spanned by h1, . . . ,hK) also gets

canceled. Simulation results plotted in Figure 5.11 also confirm this observation30.
If this scheme is used to estimate the interference channels h1, . . . ,hK (for K < N) one

at a time as described in Section 5.3. At each time, we estimate the orthogonal component
of each channel vector. The resulting estimates ĥ1, . . . , ĥK will approximately form an
orthogonal basis of the set of channel vectors h1, . . . ,hK . The process is very similar to
computing the Gram-Schmidt basis. Since the estimated vectors span the same subspace as
the actual interfering vectors, they contain the necessary and sufficient information to form
nulls and suppress the interference. In Figure 5.12, we repeated the same simulation in Figure
5.9 using channel estimation with interference cancellation. The interference suppression
levels achieved are very similar in both cases.

29These components can be computed via projection.
30The interference cancellation feature imposes additional restrictions on the choice of the training weights.

In the absence of interference, the training weights can be as simple as a sequence of independent Bernoulli
random variables (i.e. {−1, 1}N or {0, 1}N ). This property was important because it meant that the channel
estimation algorithm is not impacted by the resolution of the beamforming weights. However, when the
training sequence is projected onto the subspace orthogonal to the interference subspace, the set of new
weights take on a range of values that is continuous. In this case, the resolution of the beamforming weights
begin to matter; finite resolution will result in interference leaking into the system, which raises the noise
floor and degrades the performance. A full analysis as well as techniques for improving the performance will
be presented in Chapters 6 and 7.
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Figure 5.11: The LMS algorithm converges to the component of the channel response that
is orthogonal to the interference.

5.5 Frequency synchronization

We showed in Section 5.2 that our adaptive filtering framework is robust to noise and slow
fading. However, most standard adaptive filters (e.g. LMS, RLS) require that both ends
of the link be locked in frequency to guarantee convergence. Even small synchronization
errors or frequency offsets can cause the filter to oscillate. In practice, this requirement
would be a significant limitation, since it is difficult to frequency lock prior to beamforming,
when the SNR is much lower than after beamforming. To address this problem, we use the
differential minimum mean square error (DMMSE) adaptive filtering framework [31]. The
DMMSE framework tracks the ratio between two consecutive symbols instead of the their
absolute values. The intuition behind this is that even in the presence of fast fading and
frequency offsets, the channel is static over two consecutive symbols, and thus their ratio
remains constant. Therefore, the algorithm need not explicitly track the channel variations.

One approach for dealing with time-variation and frequency offsets is to change the
optimization criterion for the adaptive filter. The new criterion, known as the differential
MMSE or DMMSE criterion, is a variation of the MMSE and was first introduced in [31]
and is defined as:

cDMMSE , arg min
c

∣∣(cHx[n − 1])d[n] − (cHx[n])d[n − 1]
∣∣2, s.t. E[|cHx[n]|2] = 1 (5.8)

The intuition behind this criterion is that even the most rapidly varying channels can be
assumed to be fairly constant over two consecutive symbols. Therefore, by minimizing the
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Figure 5.12: (a) The SNR of 4 different interferers, when the Gram-Schmidt method is
used to iteratively estimate the channels, as a function of the input SNR. (b) An identical
experiment with quantization noise added to the beamforming weights.
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error in tracking the ratio of two consecutive symbols, the algorithm is spared the task of
explicitly tracking the channel variations. Using this definition, the derivation of Equation
5.8 is straight forward. We start by rewriting the error signal eDMMSE[n] as the difference
between ratios:

eDMMSE[n] =
d[n]

d[n − 1]
− cHx[n]

cHx[n − 1]
(5.9)

Since we want to avoid the trivial solution c = 0, we restrict the amplitude of c such that
|cHx[n − 1]|2 = 1. Also, in order to avoid dividing by 0 or a small number, we can rewrite
5.9 as

⇒ eDMMSE[n] =
1

cHx[n − 1]
(
d[n](cHx[n − 1])

d[n − 1]
− cHx[n])

=
1

d[n − 1]cHx[n − 1]
(d[n](cHx[n − 1]) − d[n − 1](cHx[n]))

⇒ eDMMSE[n] = d[n](cHx[n − 1]) − d[n − 1](cHx[n])

Since both d[n] and cHx[n − 1] are fixed, they will not affect optimization, and thus can be
ignored. Therefore, the differential mean square error criterion becomes:

ξDMMSE[n] = |eDMMSE[n]|2 s.t. |cHx[n − 1]|2 = 1

which is similar to Equation 5.8. The standard adaptive filters (e.g. LMS and RLS) can be
easily modified for this criterion. The update equations can be derived similar to Section
5.1.1 by taking the gradient of ξDMMSE[n]. DMMSE based adaptive filters are shown to
converge to the scaled version of the optimum MMSE solution [31].

We can implement both LMS and RLS differentially, in order to improve their perfor-
mance in the presence of frequency offsets and fast channel variations. Figure 5.13 compares
the performance of DMMSE-based algorithms and conventional MMSE-based algorithms for
different frequency offsets. The graph shows that the DMMSE can achieve more than 60%
of the maximum beamforming gain with offsets as large as 15% of the symbol rate. On the
other hand, LMS starts oscillating when the offset is more than 1% of the symbol rate.

5.6 Multi-beam (multi-receiver) arrays

Receivers that are equipped with multiple digital baseband signal paths, as described in
Section 3.1.1, offer a variety of means to enhance performance. First, the basebands can be
used to increase the number of training samples for the adaptive algorithm by processing
multiple random beamforming vectors simultaneously. Second, a fraction of the baseband
processors can be dedicated to channel estimation, while others can be used to receive data.
This scheme allows the array to continue refining the channel estimates after the pilot phase
(by using the decoded data as a reference signal). Finally, having multiple basebands enables
the beamformer to take advantage of conventional digital beamforming algorithms, which
are usually more robust and accurate, to provide better isolation between different beams in
a multibeam system and more accurate null-steering. The reason this can be accomplished
is that the beamforming weights can be applied with a much higher resolution in the digital
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Figure 5.13: DMMSE vs LMS in the presence of frequency offsets (as fractions of the symbol
rate).

domain than the analog domain. The use of digital beamforming techniques takes the
following general form:

1) Let M be the number of digital inputs (ADCs) at the adaptive array receiver (M < N),
and y[n] be a complex vector of size M denoting the received (digitized) signal at each
of these inputs:

y[n] = fdd[n] +
K∑

i=1

fidi[n] + v[n]

where v[n] is additive white noise, fd, f1, . . . , fK represent the combined channel re-
sponses of the desired transmitter (Tx) and interferers at each digital input at the
receiver respectively (K is the number of interferers)31, d[n] is the received signal from
the desired transmitter32 and d1[n], . . . , dK [n] are the interfering signals.

2) The digital beamforming weight vector u is chosen to maximize the output SINR given
by (assuming ‖u‖ = 1):

SINR(u) =
|uHfd|2∑K

i=1 |uHfi|2 + σ2
ν

31 fi represents the combined gain of the channel hi and the analog beamforming weight vectors w1, . . . ,wM

(a set of analog beamforming weights per digital input). We assume that w1, . . . ,wM are estimated as
described in Section 5.2, and remain fixed when the digital beamoforming algorithm is running.

32d[n] can be a known training signal or obtained in a decision directed manner
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3) The adaptive filter implicitly computes SINR maximizing weights using only knowledge
of the desired signal d[n].

The optimum beamforming vector can be computed using the MMSE criterion or DMMSE if
channels vary quickly and/or frequency offsets are large [8]. We simulated the performance of
both the LMS and DMMSE digital beamforming algorithms. In both cases, we simulated a
adaptive array receiver with M = 8 digital inputs and K = 5 interfering signals. The desired
pilot signal power is 20dB below each interferer (thus 27dB below the total interference
power, given that there are 5 interferers) and 10dB above the noise floor. Therefore, the pre-
beamforming SINR is -27dB, and the maximum post-beamforming SINR, achieved when all
interferers are perfectly canceled, is about 19dB. Figure 5.14a shows the post beamforming
SINR under the DMMSE algorithm gets very close to the maximum achievable SINR when
the channel is time-invariant. Figure 5.14b shows that the interference suppression under
DMMSE is a lot more robust that NLMS in the presence of time-varying channels and
frequency offsets. In the figure, the SINR under DMMSE is higher than NLMS even though
DMMSE was simulated under channels with more than 10 times the Doppler spread and a
frequency offset that is 20% of the symbol rate33.

5.7 Transmit beamforming

In practice, the optimum array weights for transmit beamforming can be directly com-
puted from the optimum receive weights if there is channel reciprocity. Channel reciprocity
holds when the uplink (transmit) and the downlink (receive) are on the same frequency band,
or if the environment is line of sight. In other cases, the two channel responses must be es-
timated independently. In order to estimate the optimum transmit beamforming weights,
the same adaptive framework can be used. However, in this case, the array transmits the
pilot weights on the “uplink” and receives the feedback from the remote receiver on the
“downlink” [8]. This scenario is shown in Figure 5.15. Note that the remote receiver does
not need to know the random sequence used by the transmitter array. It simply quantizes
the received signal and sends it back on the downlink.

In general, receive beamforming is usually more desirable because it does not require
explicit feedback from the target node, which incurs additional latency and overhead34.
On the other hand, taking advantage of channel reciprocity requires very careful calibration
between the transmitters and receivers on the array. Any mismatch between the transmit and
receive circuits can significantly degrade the transmit beamforming performance, especially
null-steering 35. In practice, this is implemented with an external circuit that injects (and
extracts) the same signal into each transmit and receive pair in order to synchronize their
phase and amplitude responses. This process is repeated periodically in order to track

33The frequency accuracy of most crystal oscillators found in commodity radios is of the order of tens of
parts per million (ppm). This results in an average frequency offset of the order of tens of KHz when the
carrier frequency is of the order of 1GHz. If the symbol rate is 1MHz, then the frequency offset will be
several percent as a fraction of the symbol rate.

34The extra latency can be very costly when the channels are time varying.
35Chapter 6 provides a more rigorous analysis on the impact of phase and amplitude mismatch.
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Figure 5.14: (a) SINR as a function of time for a time-invariant channel, with the DMMSE
algorithm used at the receiver. (b) The SINR as a function of time for time varying channels.
For the DMMSE algorithm, the Doppler spread is 0.2% of the symbol rate and the frequency
offset is 20%. For the NLMS algorithm the Doppler spread is 0.03% of the symbol rate with
no frequency offset. In both Figures, the number of digital inputs at the receiver is M = 8,
the number of interferers K = 5, and the average desired pilot signal power at the input is
10dB above the noise level while each interfering signal is 30dB above the noise level.
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thermal variations36.

5.8 Conclusion

In this chapter, we considered the problem of beamforming for RF and hybrid multichan-
nel radio architectures. We proposed a framework based on both conventional and advanced
adaptive filtering techniques for robust adaptation in adverse conditions. We showed that
using a system identification formulation of adaptive filtering, we can efficiently estimate the
beamforming weights even in noisy environments. The estimation of beamforming weights
can also occur in the presence of known interferers by appropriately choosing the training
weights. We also showed that by adopting the differential MMSE criterion, the beamform-
ing framework can significantly increase its resiliency towards synchronization errors and fast
fading channels. The RF beamforming framework can be further augmented with digital
beamforming (for hybrid architectures) to further enhance the performance (especially for
interference cancellation).

Figure 5.15: Transmit beamforming scenario: 1) A multi-antenna transmitter sends a known
signal on the uplink. 2) The receiver sends back a channel estimate on the downlink. 3) The
transmitter uses the estimate as input to an adaptive filter.

36Thermal variations are usually very slow, and thus, calibration does not need to be performed very often.
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Chapter 6

Beamforming performance with
weight errors

Adaptive array systems improve the reliability of a wireless communication link by steer-
ing the beam in the direction of the desired signal (beamforming) and away from interfering
signals by placing nulls in their directions (beam-nulling or null-steering), and thus maxi-
mizing the signal to noise and interference ratio (SINR). In order to achieve the maximum
SINR, however, very precise control over the complex weights (both phases and amplitudes)
applied to the signals at each element in the array is required. However, various factors such
as finite resolution, noise, mismatch in circuit elements, and channel uncertainty limit the
precision that can be achieved in practice. Many of these error sources are random, and
cannot be compensated for using pre-calibration or adaptive signal processing techniques.
These errors will degrade the maximum achievable SINR by degrading the strength of the
desired signal and the interference rejection. In this chapter, we examine the impact of phase
and amplitude errors on the array performance. Section 6.1 analyzes the beamforming gain
(desired signal power) as a function of phase errors. In this section, we derive expressions for
the expected (average) degradation in the array gain and establish lower bounds for the worst
case scenario. We show that the beamforming gain is robust to errors in the beamforming
weight vector, and the average and worst case loss are both independent of the number of
antennas. Section 6.2 introduces amplitude errors and focuses on interference rejection. Like
the degradation in the array gain, the degradation in interference rejection depends only on
the magnitude of errors in the beamforming weights and is independent of the number of
antennas. However, unlike the array gain, the interference rejection is a lot more sensitive to
errors in the beamforming weight vector. In both sections, we provide both mathematical
proofs and simulation results that characterize the array performance as a function of errors
in the beamforming weight vector.

The work presented in this chapter was done in collaboration with Mark Johnson, Raghuraman
Mudumbai, and Upamanyu Madhow [6, 7].
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6.1 Beamforming

Figure 6.1: A communication system with an N-antenna phased array receiver and a single
antenna transmitter, which transmits a narrowband signal s[n]. s[n] arrives at antenna i at
the receiver with a phase-shift ψi. The receiver applies a phase shift of φi at each antenna
and sums the signals.

Consider the N -antenna beamforming receiver shown in Figure 6.1. A single antenna
transmitter transmits a narrowband signal s[n]. The transmitted signal arrives at different
antenna elements with different delays, which for narrowband signals can be approximated
with phase shifts [58]. Let ejψi be the normalized channel response at antenna i, which
represents the phase delay1. Antenna i will then apply a phase-shift φi to the incoming
signal. Therefore, the overall complex (baseband) channel response H at the output of the
array is given by:

H =
N∑

i=1

ej(ψi−φi)

The maximum gain |Hmax|2| = N2 is realized by choosing φopt
i = ψi.

1for simplicity, we assume that signal arrives at the different receivers in the array with the same am-
plitude. This assumption is true for an array of antennas with uniform beam patterns in a line of sight
environment. In practice, however, the signal will arrive at different antennas with different amplitudes
due to channel fading and non-uniform antenna patterns. In Section 6.2, we extend the analysis to include
amplitude variation as well.
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6.1.1 Analysis of Imperfect Phase Shifts

Phase errors are usually difficult to predict and can be time varying and are best modeled
as random variables:

φ̂i = φopt
i + δi

We will assume that δi ∼ U [−δmax, δmax], where 0 ≤ δmax ≤ π is an upper bound on the
amplitude of phase deviation2. Furthermore, we assume that the errors are i.i.d across
different antennas. In this case the channel response at the output of the array becomes:

Ĥmax =
N∑

i=1

ejδi =
N∑

i=1

cos(δi) + j

N∑

i=1

sin(δi)

Our goal is to characterize the effect of the phase errors on the square magnitude of the
channel response E[|Ĥmax|2]. To simplify the analysis, let Xi = cos(δi) and Yi = sin(δi):

µX = E[Xi] = E[cos(δi)] =
1

2δmax

∫ δmax

−δmax

cos(x)dx =
1

δmax

∫ δmax

0

cos(x)dx =
sin(δmax)

δmax

µX2 = E[X2
i ] =

1

2δmax

∫ δmax

−δmax

cos2(x)dx =
1

δmax

∫ δmax

0

cos2(x)dx

=
1

2δmax

∫ δmax

0

(1 + cos(2x))dx =
1

2
+

sin(2δmax)

4δmax

µY = E[Yi] = E [sin(δi)] = 0 (by symmetry)

µY 2 = E[Y 2
i ] =

1

2δmax

∫ δmax

−δmax

sin2(x)dx =
1

δmax

∫ δmax

0

sin2(x)dx

=
1

2δmax

∫ δmax

0

(1 − cos(2x))dx =
1

2
− sin(2δmax)

4δmax

Now, we can rewrite the expression for the channel response as:

Ĥmax =
N∑

i=1

Xi + j

N∑

i=1

Yi

⇒ |Ĥmax|2 =

(
N∑

i=1

Xi

)2

+

(
N∑

i=1

Yi

)2

=
N∑

k=1

N∑

l=1

(XkXl + YkYl)

⇒ E[|Ĥmax|2] =
N∑

k=1

N∑

l=1

(E[XkXl] + E[YkYl])

E[XkXl] =

{
E[Xk]E[Xl] = µ2

X when k 6= l (using independence)
E[X2

k ] = µX2 when k = l

2We assume a uniform distribution to simplify the calculations. Note that no assumptions were made
regarding the geometry of the array or the direction of arrival, so the result holds for an arbitrary array.
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E[YkYl] =

{
E[Yk]E[Yl] = µ2

Y when k 6= l (using independence)
E[Y 2

k ] = µY 2 when k = l

⇒ E[|Ĥmax|2] = (N2 − N)(µ2
X + µ2

Y ) + N(µX2 + µY 2)

= (N2 − N)

(
sin2(δmax)

δ2
max

)
+ N = (N2)

(
sin2(δmax)

δ2
max

)
+ N

(
1 − sin2(δmax)

δ2
max

)

If we normalize E[|Ĥmax|2] by dividing by the maximum value |Hmax|2 = N2, we obtain:

ΦN(δmax) =
E[|Ĥmax|2]

N2
=

sin2(δmax)

δ2
max

+
1

N

(
1 − sin2(δmax)

δ2
max

)

⇒ Φ(δmax) = lim
N→∞

ΦN(δmax) =
sin2(δmax)

δ2
max

Thus, the loss in gain due to errors in the phase shifts is bounded by a quantity that depends
only on the distribution of the errors, and not on the number of antennas.

A second method of proving a lower bound on the array gain is by using the mean of the
random variable, which is often easier to compute, instead of the mean of the square of the
random variable. By Jensen’s inequality, the square of the mean of a random variable is less
than or equal to the mean of its square:

E[X]2 ≤ E[X2]

for any random variable X. More generally:

f(E[X]) ≤ E[f(X)] when f(·) is a convex function.

Using this fact, and the expected value of the channel response, we see that:

E[Ĥmax] = E

[
N∑

i=1

Xi + j

N∑

i=1

Yi

]
= NµX = N

sin(δmax)

δmax

⇒ E[|Ĥmax|2] ≥ E[Ĥmax]
2 = N2

(
sin(δmax)

δmax

)2

ΦN(δmax) =
E[|Ĥmax|2]

N2
≥

(
sin(δmax)

δmax

)2

= Φ(δmax)

6.1.2 Simulation Results

Figure 6.2(a) shows a plot of Φ(δmax) for 0 ≤ δmax ≤ π. Figure 6.2(b) shows the same
function in dB scale. Figure 6.2(b) also shows that the calculated array gain closely matches
simulation results. Figure 6.3 shows that the actual distribution of the phase errors has
little impact on the loss in array gain. Notice that using a single bit of phase resolution
corresponds to δmax = 90◦ = π

2
, and Φ(π

2
) = ( 2

π
)2 ≈ .4 ≈ −3.9dB. We expect the bound

to become tighter as N increases, due to the law of large numbers. The graphs in Figures
6.4/6.5 show the loss in array gain as a result of quantizing the phase to one and two bits
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Figure 6.2: (a) The normalized array gain Φ(δmax) as a function of the maximum phase error
δmax. (b) The normalized array gain in dB scale, 10 log Φ(δmax). The plot shows both the
calculated gain and the simulated gain for a 10000 element array.
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for different array sizes. Figures 6.6ab show that quantization does not increase the width
of the main lobe. Also, notice that when δmax = 180◦ = π, which corresponds to completely
randomizing the phase of each antenna, the normalized array response ΦN(π) = 1

N
, which

reduces the array gain to that of an omni-directional antenna. So a simple way of creating
an omni-like beam pattern without reducing the radiated power is to choose the phases
randomly.

6.1.3 Worst case performance analysis

In Sections 6.1.1 and 6.1.2 we analyzed the average (expected) array gain in the presence
of phase errors. In this section, we establish a lower bound on the absolute worst case
scenario. Unlike the average case scenario, the worst scenario is a lot more difficult to
analyze especially if the errors are random and cannot be predicted or controlled by the
system. In this case, the gain can take on any value regardless of how unlikely the event
might be. For example, if the phase error, or more generally, the weight error can take
on any arbitrary value (e.g. a Gaussian distribution), then the gain be arbitrarily small
with a nonzero probability. Therefore, to simplify the analysis, we will assume bounded and
controlled phase errors, which is the case for quantization errors. In the extreme case, where
the beamforming weights can take only a single value (e.g. 1), the worst case gain can be as
low as zero (occurs when the channel response vector [ejψ1 , . . . , ejψN ]⊤ is orthogonal to the
[1, 1, . . . , 1]⊤). We will show that as long as the beamforming weights can take at least two
distinct values, then the array gain in the worst case will still be a constant fraction of the
maximum gain independent of the number of antennas.

Let a0 and a1 6= a0 be the two possible complex values for the beamforming weights.
We want to show that the ratio of the lower bound minimum gain to the maximum gain is
proportional to |a1−a0|2. In order to do that, let us first consider two special cases. In Case
1, we can only turn antennas on or off (i.e. the possible beamforming weights are 1 or 0). In
Case 2, we assume that the antennas are always on and the possible beamforming weights
are a0 = 1 and a1 = −1.

Let Ψ = {ψ1, . . . , ψN} be the set of phase responses at the N antennas such that 0 ≤
φi < 2π ∀1≤i≤N . If we divide the interval [0, 2π] into 8 equal and contiguous sub-intervals of
length π/4, then we know that one of these intervals will contain at least N/8 of the phase
responses3. Let Ψmax=π/4 ⊂ Ψ be the subset of phase responses (or antennas) that fall in
that interval. If we choose a beamforming vector w such that wi = 1 if ψi ∈ Ψmax=π/4 and
wi = 0 otherwise (Case 1), then the power at the output of the array:

E[|H|2] =

∣∣∣∣∣∣

∑

ψ∈Ψmax=π/4

ejψ

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

ψ∈Ψmax=π/4

cos(ψ)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∑

ψ∈Ψmax=π/4

sin(ψ)

∣∣∣∣∣∣

2

≥

∣∣∣∣∣∣

∑

ψ∈Ψmax=π/4

cos(ψ)

∣∣∣∣∣∣

2

≥ (N/8)2 cos(π/4)2 = N2/128

3The worst case scenario occurs when the phases are uniformly distributed, in which case each interval
will contain either ⌊N/8⌋ or ⌈N/8⌉. This is sometimes referred to as the Pigeonhole Principle [49].
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Figure 6.4: (a)-(f) Array loss as a result of phase error (quantization) for uniform 10 × 10
square array with different inter-element spacings.
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Figure 6.5: (a)-(f) Array loss as a result of phase error (quantization) for uniform 100× 100
square array with different inter-element spacings.
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Figure 6.6: (a)-(b) 2-dimensional horizontal beampattern of a 100x100 array with λ/2 spacing
(steered towards 55 degrees) for different phase resolutions.
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⇒ E[|H|2]/Gmax ≥ 1/128

Therefore, the ratio between the minimum and the maximum gain can be bounded from
below by a constant that is independent of the number of antennas N . Therefore, the
array gain will continue to grow linearly with N independent of the phase resolution. The
argument can be extended to the second case (1 and -1 complex weights) by making the
following observation. When we have two complex signals with phase difference (in absolute
value) that is π/2 or less, then the magnitude of the sum will be at least as large as the
magnitude of the largest of the two. Let cmax=π/4 be the sum of signals in the set Ψmax=π/4

(i.e.
∑

ψ∈Ψmax=π/4

ejψ).

Since we can shift the phase of each signal by π (using a1 = −1), we can guarantee that
every complex signal, before being added, will have a phase difference no larger than π/2
with cmax=π/4. Therefore, the minimum gain will grow linearly with N .

Now we can consider the general case where a0 and a1 are arbitrary numbers. Let us
define the following variables:

∆ = |a0 − a1|, X =
∑

ψ∈Ψmax=π/4

ejψ = αN, Y =
∑

ψ/∈Ψmax=π/4

ejψ = −βN

Where α and β are complex constants. We showed that |α|2 can be lower bounded by a
positive constant that is independent of N . We will also assume without loss of generality
that a0 = 1, |a1| ≤ 1, and |α| ≥ |β|4. Therefore, the total gain can be expressed in terms of
these variables5:

G = E[|H|2] = |aiX + ajY |2 = |aiα − ajβ|2N2 =

|α|2|ai − aj
β

α
|2N2 = |α|2|ai − ajγ|2N2, where γ = β

α
, and 0 ≤ i, j ≤ 1

We want to show that we can choose ai and aj such that we can always guarantee that the
term |α|2|ai−ajγ|2 cannot fall below a constant number gmin = α2∆2/4. This will prove that
the gain, in the worst case, can be bounded from below by a constant that is independent
of the number of antennas N . We have two cases. In the first case, |1 − γ| ≥ ∆/2. In this
case, choosing ai = aj = a0 = 1 is sufficient to guarantee that the gain does not fall below
the desired lower bound gmin. In the second case, |1 − γ| < ∆/2. If we choose ai = a0 = 1
and aj = a1, then:

α(1 − a1γ) = α(1 − a1 + a1 − a1γ) = α(1 − a1 + a1(1 − γ))

⇒ |α(1 − a1γ)| ≥ |α|(||1 − a1| − |a1||1 − γ||) using the Triangle Inequality

⇒ |α(1 − a1γ)| ≥ |α|(∆ − ∆

2
) = |α|∆

2

⇒ |α(1 − a1γ)|2 = |α|2|1 − a1γ)|2 ≥ α2 ∆2

4
= gmin

This completes the proof. Notice that gmin → 0 as ∆ → 0 (or a1 → a0), which is what we
would expect.

4We can always reassign the variables to ensure that these conditions hold.
5To simplify the proof, we will assume that all complex signals that make up the variable X will be scaled

by the same complex beamforming weight ai, and all complex signals that make up the variable Y will be
scaled by the same complex beamforming weight aj . ai and aj need not be equal.
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6.2 Beam-nulling

In Section 6.1, we analyzed the impact of phase errors on the beamforming gain, and
showed that the gain is very robust in the presence of errors. In this section, we analyze how
the errors impact the interference power, the other component in the SINR6.

In general, adaptive array systems minimize interference by placing beam nulls in the
directions of interfering signals. Controlling the locations of the nulls in the beampattern
will usually require modifying both the phases and amplitudes of the complex beamforming
weights, whether the wireless channel is Rayleigh or LOS. In this case, we need to account
for both phase and amplitude errors. Analyzing the combined effect of phase and amplitude
errors is easier when we consider the problem in the spatial domain where the optimal
complex beamforming weights and channel responses can be represented as complex vectors
in the N -dimensional Euclidean space, where N is the number of antennas in the array. Let
us assume that we have K +1 complex spatial channel response vectors: a desired vector hd

corresponding to the direction of the desired signal7, and K interferering vectors hi ∀1≤i≤K

corresponding to the directions of K interfering signals.

hd = [α1de
jβ1d , . . . , αNde

jβNd ]⊤

hi = [α1ie
jβ1i , . . . , αNie

jβNi ]⊤ ∀1≤i≤K

The incoming signal at the input of the array y[n] is the sum of the desired signal and
interference and noise:

y[n] = hdd[n] +
K∑

i=1

hidi[n] + v[n]

where d[n] is the desired signal, di[n] is interfering signal i, and v[n] is the white noise vector
at the receiver (the variance of each component of v[n] is σ2

v). For simplicity, we shall assume
that the desired and interfering signals have the same power. Using beamforming weights
w (without loss of generality, we can restrict |w| = 1), the signal at the output of the array
will be wHy[n]. The output SINR is given by:

SINRout =
|wHhd|2

|∑K
i=1 wHhi|2 + σ2

v

where (·)H denotes the complex conjugate transpose. Let HI = [h1, . . . ,hK ] be the matrix
whose columns are the interference vectors. Our goal is to achieve maximum interference
rejection while retaining most of the desired signal. This can be achieved by choosing a
beamforming weight vector w that is the projection of the desired vector hd onto the subspace
orthogonal to the column space of HI (or the null-space of H⊤

I , which is also known as the
left nullspace of HI), as described in [53]:

wopt = wprojection = hd − HI(H
H
I HI)

−1HH
I hd

6We will assume that the system is interference limited (i.e. the interference power is much larger than
the noise power).

7In this chapter, we denote scalars in lower case, vectors in bold lower case, and matrices in bold upper
case.
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The projection-based beamformer is sometimes referred to as the zero-forcing (ZF) beam-
former since it completely rejects all the interference (along with any component of the
desired signal that lies in the interference subspace). We can see that rejecting all the in-
terfering signals is only possible when the left nullspace is non-empty, which is guaranteed
when K < N . The projection-based beamformer maximizes the signal to interference ratio
(SIR), but not necessarily the SINR since it does not account for noise8. Optimizing the
output SINR leads to the Minimum Variance Distortionless Response (MVDR) beamformer
[33]. If we define the noise+interference correlation matrix RN+I as:

RN+I =
K∑

i=1

hih
H
i + σ2

νIN

where IN is the N ×N identity matrix, then the output SINR can be maximized by choosing
wopt:

wopt = wMVDR =
R−1

N+Ihd

hH
d R−1

N+Ihd

The denominator is a normalizing factor. When the interference power is much larger than
the noise power, both projection and MVDR yield virtually identical results.

6.2.1 Analysis of Errors in Weights

In this chapter, we focus on interference limited systems (i.e. when interference power
is much larger than the noise floor), in which case both projection and MVDR yield similar
results. Therefore, without loss of generality, we will assume that an optimum beamformer
wopt is computed using projection, and ŵopt takes into account both phase and amplitude
errors:

wopt = [α1wejβ1w , . . . , αNwejβNw ]⊤

ŵopt = [α1w(1 + ǫ1)e
j(β1w+δ1), . . . , αNw(1 + ǫN)ej(βNw+δN )]⊤

where ǫi ∀1≤i≤N are i.i.d zero mean real random variables with variance E[ǫ2
i ] = σ2

ǫ , and
δi ∀1≤i≤N are i.i.d zero mean real random variables with variance E[δ2

i ] = σ2
δ . We also

assume that the phase and amplitude errors are independent of each other. Furthermore,
we scale the weights so that wopt has unit norm (i.e.

∑N
i=1 α2

iw = 1).
The phase and amplitude errors result in ŵopt deviating from wopt by an angle θ. Note

that θ is an angle in N -dimensional space, and does not correspond to a physical direction.
This deviation will result in a reduction in the signal strength in the desired direction as
well as an increase in the interference power, since ŵopt will no longer be orthogonal the
interference subspace. The desired power is proportional to cos(θ), and the increase in
interference (leakage) is proportional to sin(θ) (see Figure 6.7). For small angles θ, we can
use the standard approximations9 sin(θ) ≈ θ and cos(θ) ≈ 1. Thus, we can characterize

8When interference power is near or below the noise floor, complete interference rejection may not result in
the maximum SINR since it might also unnecessarily reduce the power of the desired signal (The component
that lies in the interference subspace).

9This explains why nulls are more sensitive than peaks to phase and amplitude errors, since sin(θ) changes
more rapidly than cos(θ) when θ is small.



123

the effect of phase and amplitude errors on beam nulls by considering how the mean square
angle σ2

θ(σδ, σǫ, N) = E[θ2] behaves as a function of σδ, σǫ, and N .

Figure 6.7: The optimum beamforming vector wopt can be viewed as a projection of the
desired signal onto the subspace orthogonal to the interference subspace. The distorted
beamforming vector ŵopt can decomposed into two orthogonal components: ŵopt = ŵ⊥

opt +

ŵ
‖
opt. ŵ

‖
opt, which is parallel to wopt, represents the potential loss in beamforming gain, and

is proportional to cos(θ). ŵ⊥
opt, which is orthogonal to wopt, represents the potential leakage

into the interference subspace, and is proportional to sin(θ).

If we assume that the phase and amplitude variations are small, and given that wopt is
unit norm, then we can approximate the error angle θ with the length of the error vector:

∆w = wopt − ŵopt = [α1wejβ1w(1 − (1 + ǫ1)e
jδ1), . . . , αNwejβNw(1 − (1 + ǫN)ejδN )]⊤

We can further simplify the above expression using the approximations cos(δi) ≈ 1, sin(δi) ≈
δi, and δiǫi ≈ 0.

∆w = [α1wejβ1w(1 − 1 − ǫ1 − jδ1), . . . , αNwejβNw(1 − 1 − ǫN − jδN)]⊤

= [−α1wejβ1w(ǫ1 + jδ1), . . . ,−αNwejβNw(ǫN + jδN)]⊤

⇒ ‖∆w‖2 = (∆w)H (∆w) =
N∑

i=1

α2
iw(ǫ2

i + δ2
i )
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By taking the expectation of this expression:

σ2
θ ≈ E[‖∆w‖2] = E

[
N∑

i=1

α2
iw(ǫ2

i + δ2
i )

]
=

N∑

i=1

α2
iw(E[ǫ2

i ] + E[δ2
i ])

σ2
θ ≈

N∑

i=1

α2
iw(σ2

ǫ + σ2
δ ) = (σ2

ǫ + σ2
δ )

N∑

i=1

α2
iw = σ2

ǫ + σ2
δ (6.1)

As we can see, the mean square error angle σ2
θ is equal to the sum of the mean square

phase error σ2
δ and the mean square amplitude error σ2

ǫ . The key conclusion that we draw
from this result is that the angle error is independent of N , the number of antennas10.

In many phased and adaptive array systems, phase and amplitude control is achieved by
independently modifying the real (in-phase) and imaginary (quadrature) components of the
signal. The results are similar if we consider the error in the real and imaginary parts of the
components of the beamforming vector. The proof would proceed in a similar fashion:

wopt = [I1w + jQ1w, . . . , INw + jQNw]⊤, ‖wopt‖2 =
N∑

i=1

(I2
iw + Q2

iw) = 1

ŵopt = [I1w(1 + ǫI1) + jQ1w(1 + ǫQ1
), . . . , I1w(1 + ǫIN

) + jQ1w(1 + ǫQN
)]⊤

where ǫIi
∀1≤i≤N are i.i.d zero mean real random variables with variance E[ǫ2

Ii
] = σ2

ǫI
, and

ǫQi
∀1≤i≤N are i.i.d zero mean real random variables with variance E[ǫ2

Qi
] = σ2

ǫQ
. We assume

that the errors in the real parts and the imaginary parts are independent of each other. It
is also reasonable to assume that σ2

ǫI
= σ2

ǫQ
, which is very common in practice.

∆w = wopt − ŵopt =

[I1w(1 − (1 + ǫI1)) + jQ1w(1 − (1 + ǫQ1
)), . . . , INw(1 − (1 + ǫIN

)) + jQNw(1 − (1 + ǫQN
))]⊤

= [I1wǫI1 + jQ1wǫQ1
, . . . , INwǫIN

+ jQNwǫQN
]⊤

⇒ ‖∆w‖2 = ∆wH∆w =
N∑

i=1

(I2
iwǫ2

Ii
+ Q2

iwǫ2
Qi

)

⇒ σ2
θ ≈ E[‖∆w‖2] = E[

N∑

i=1

(I2
iwǫ2

Ii
+ Q2

iwǫ2
Qi

)] =
N∑

i=1

(E[I2
iw]E[ǫ2

Ii
] + E[Q2

iw]E[ǫ2
Qi

]) =

N∑

i=1

(E[Iiw]2σ2
ǫI

+ E[Q2
iw]σ2

ǫQ
)

We assume without loss of generality that
∑N

i=1 E[I2
iw] =

∑N
i=1 E[Q2

iw] = 1
2

⇒ σ2
θ ≈

N∑

i=1

(I2
iwσ2

ǫI
+ Q2

iwσ2
ǫQ

) = σ2
ǫI

N∑

i=1

E[I2
iw] + σ2

ǫQ

N∑

i=1

E[Q2
iw] =

σ2
ǫI

+ σ2
ǫQ

2
(6.2)

The result is very similar to the expression in Equation 6.1.

10The power leakage into the interference subspace is independent of the number of antennas. However,
increasing the number of antennas can still increase the output SINR (peak to null ratio) by increasing
the power gain of the desired signal. Increasing the number of antennas also increases the degrees freedom
necessary to null more interferers.
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6.2.2 Simulation Results

The simulation results shown in Figure 6.8 verify the results in Equations 6.1 and 6.2.
The variance of the weights errors E[‖∆w‖2] is shown on the x-axis in Figures 6.8(a)-
(d). The variance of the error angle σ2

θ = E[θ2] is shown on the y-axis. We have injected
random noise into different components of the complex weight (real, imaginary, phase, and
amplitude) separately, represented by the different curves. The different curves show almost
exactly the same linear relationship between σ2

θ and the real (in-phase) error (σ2
I ), imaginary

(quadrature) error (σ2
Q), phase error (σ2

δ ), and amplitude error (σ2
ǫ ) as predicted in Equations

6.1 and 6.2. Furthermore, the constant of proportionality is approximately 1 (consistent with
the equations). We repeated the simulations for different values of N (Figures 6.8(b)-(d)),
and the results are the same. This shows that the mean square error angle only depends
on the magnitude of the errors in the beamforming weight vector and not the number of
antennas, and that the different quantities σ2

δ , σ2
ǫ , σ2

I/2 and σ2
Q/2 contribute equally to the

overall error angle11.
We repeated the same simulations in Figure 6.9 with the interference rejection or leakage

(average interferer power after applying the beamforming weights in the presence of errors)
on the y-axis. The results are virtually identical to Figure 6.8. This shows that the average
interference rejection can be accurately represented by the error angle θ for small values of
θ. This means that the depth of beam nulls is limited by the accuracy of the beamforming
weights, and is independent of the size of the array N and the number of interferers K, as
long as N > K12.

For completeness, we also simulated the impact of general errors on the desired signal
(beamforming) gain (Figures 6.10, 6.11, and 6.12). These figures show that similar to null-
steering, the loss in beamforming depends on the errors in the weight vector, regardless of
whether the errors are injected directly into the real and imaginary components (Cartesian
representation) or phases and amplitudes (polar representation), and is independent of the
number of antennas N . The figures also show that for a small error angle θ, the normalized
beamforming gain can be approximated by cos(θ)2.

6.3 Conclusion

In this chapter, we analyzed the array performance loss due to errors in the beamforming
weights. We began by considering a beamforming system, which maximizes the gain in a
desired direction. We derived an expression for the loss in gain due to uniform phase errors,
and provided simulations that validate this result. We showed that beamforming is robust
to phase errors. We also derived a lower bound on worst case scenario, and showed that
it is independent of the number of antennas. Then, we considered a beam-nulling system,
which rejects interfering signals. We analyzed the effect of uniform amplitude and phase
errors, and again provided numerical simulations. We showed that the interference rejection
is directly proportional to the magnitude of the errors in the weights, and is independent

11 We have assumed that the different errors (real, imaginary) and (phase, amplitude) and independent
of each other and independent across antennas.

12Even though the depth of the null is independent of N , the desired signal power (beamforming gain)
grows linearly with N , and thus, the peak to null (signal to interference) ratio grows linearly with N .
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Figure 6.8: Simulated relationship between weight errors (both phase (σ2
δ ), amplitude (σ2

ǫ ),
real (σ2

I ), and imaginary (σ2
Q)) on the x-axis and the mean square error angle σ2

θ = E[θ2] on

the y-axis: (a) N=50. (b) N=200. (c) N=400. (d) N=600.
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Figure 6.9: Simulated relationship between weight errors (both phase (σ2
δ ), amplitude (σ2

ǫ ),
real (σ2

I ), and imaginary (σ2
Q)) on the x-axis and the average interference rejection or leakage

E[|∆Hhi|2] on the y-axis: (a) N=50. (b) 200. (c) N=400. (d) N=600.
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Figure 6.10: Simulated relationship between weight errors (both phase (σ2
δ ), amplitude (σ2

ǫ ),
real (σ2

I ), and imaginary (σ2
Q)) on the x-axis and the average desired signal power (beam-

forming gain) on the y-axis: (a) N=50. (b) 200. (c) N=400. (d) N=600.
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Figure 6.11: Simulated beamforming gain and cosine of the error angle E[cos(θ)2] versus
weight errors (N=50): (a) Errors in the real part σ2

I . (b) Errors in the imaginary part σ2
Q.

(c) Phase errors σ2
δ . (d) Amplitude errors σ2

ǫ . (e) Real and imaginary errors (σ2
I + σ2

Q)/2.

(f) Phase and amplitude errors σ2
δ + σ2

ǫ .
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Figure 6.12: Simulated beamforming gain and cosine of the error angle E[cos(θ)2] versus
weight errors (N=400): (a) Errors in the real part σ2

I . (b) Errors in the imaginary part σ2
Q.

(c) Phase errors σ2
δ . (d) Amplitude errors σ2

ǫ . (e) Real and imaginary errors (σ2
I + σ2

Q)/2.

(f) Phase and amplitude errors σ2
δ + σ2

ǫ .
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of the number of antennas, assuming that there are more antennas than interferers. A key
conclusion of this chapter is that interference rejection (null-steering) is a lot more sensitive
to errors than beamforming (peak-steering), and in both cases, the performance degradation
is independent of the number of antennas.
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Chapter 7

Error mitigation with vector
quantization

In Chapter 6, we examined how the errors in the beamforming weights affect the signal
to noise and interference ratio (SINR) at the output of a beamformer. We showed that the
desired signal component of the SINR is largely insensitive to most phase and amplitude
errors that occur in practice. However, the interference component is directly proportional
to the magnitude of phase and amplitude errors, and is independent of the number of anten-
nas when those errors are uncorrelated. This high sensitivity of beam-nulling (interference
rejection) to errors in the beamforming system can be detrimental for wireless systems that
rely on spatial reuse to increase their capacity. In this chapter, we provide a more in-depth
analysis for one of these sources of error: those that arise from quantizing the beamforming
weight vectors. We focus on quantization errors for two reasons. First, whereas most other
sources of error (e.g. noise, jitter) are unpredictable, difficult to control and measure, time-
varying and independent across antennas, quantization errors can be predicted and shaped
by the beamformer. Second, quantization is usually the dominant source of errors in analog
beamforming architectures discussed in Chapter 3 where it is difficult to build high resolution
accurate beamformers especially at high frequencies1.

The chapter is organized as follows. In Section 7.1, we describe the basic quantization
problem. In Section 7.2, we present two popular beamforming schemes and analyze their
performance under the naive scalar quantization approach. We show that in both cases,
the signal to interference ratio (SIR) is proportional to the ratio of the antennas to the
interferers (N/K), while the average interferer power is independent of both N and K
(consistent with the results derived in Chapter 6). In Section 7.3, we shift the focus to
vector quantization techniques. We first derive a lower bound on the achievable SIR under
vector quantization, and show that it is quadratic in the number of antennas N (as opposed to
linear in the case of scalar quantization). Next, we present several computationally efficient

The work presented in this chapter was done in collaboration with Mark Johnson, Raghuraman
Mudumbai, and Upamanyu Madhow [7, 9].

1The LO beamforming architecture presents a bigger challenge because it lacks control over the amplitude
of the signal.
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vector quantization algorithms, based on greedy coordinate descent (GCD), that achieve
this lower bound. We analyze their performance in terms of both achievable SIRs and
computational complexity. We show that the achievable SIRs are proportional to (N/K)2

(compared to N/K for scalar quantization). These algorithms better exploit the available
degrees of freedom to cancel interference without much sacrifice in computational efficiency
as we show. Finally, we examine the optimality of GCD based algorithms by comparing them
with the optimum method based on exhaustive search. Our simulation results show that the
SIR under optimum quantization can grow exponentially in the number of antennas N . This
indicates that although the vector quantization techniques proposed in this chapter result
in significant performance gains, they are still far from optimal, and that a computationally
tractable algorithm that achieves the upper bound remains an open problem. The results
in this chapter are based on a combination of mathematical proofs and simulation results.
Even though we focus on the Rayleigh channel model because it is easier to analyze, we
also present simulation results based on the line of sight (LOS) channel model (the other
extreme), and show that the results are largely consistent.

7.1 Quantization problem statement

We begin by considering an N -antenna receive beamforming system with the goal of
maximizing the array gain in the direction of a desired transmitter with respect to the
interfering signals2. For simplicity and without loss of generality, we assume that the desired
transmitter and the interferers have single antennas. Let hd , [hd[1], hd[2], . . . , hd[N ]]⊤ be
the complex baseband channel response vector from the desired transmitter to the N -antenna
receive array3. We similarly denote the channel gain from the lth interferer to the N -antenna
receive array as hl , [hl[1], hl[2], . . . , hl[N ]]⊤ for 1 ≤ l ≤ K, where K is the number of
interferers (K < N). We assume that the components of hd,h1, . . . ,hK are drawn from
zero-mean i.i.d. complex Gaussian distributions, i.e. Rayleigh fading [59]. We assume that
the variance of the channel gains is unity (i.e. E[|hd[i]|2] = E[|h1[i]|2] = . . . = E[|hK [i]|2] =
1 ∀1≤i≤N). This setup can be readily generalized to interferers with different power levels
and to Rician or Line-of-Sight (LOS) channels, and we will present simulation results to
show that the same ideas extend to more general setups4.

Let w = [w[1], . . . , w[N ]]⊤ be the N -element spatial filter (beamforming vector) used by
the receiver to combine the signals from all N antennas. In this case, the SINR at the output
of the receiver (beamformer):

SINR(w) =
|wHhd|2∑K

i=1 |wHhi|2 + |wHv|2

2A similar analysis also applies to a transmit array that seeks to minimize its interference at given
locations. We focus on the receive array for clarity.

3In this chapter, we denote scalars in lower case, vectors in bold lower case, and matrices in bold upper
case.

4Without loss of generality, we assume a narrow band system or a flat fading channel (i.e. a channel
response that can be represented by a single tap). A frequency-selective (multi-tap) channel can always
be transformed into a group of parallel narrow band subchannels, where each subchannel can be processed
independently (e.g. OFDM).
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(·)H denotes the conjugate transpose operation, and v is an N -element vector denoting the
complex white noise signal generated at each antenna element at the receiver (e.g. thermal
noise). We will assume that the system is interference limited (i.e. the interference compo-
nent is much larger than the noise). In this case, we can ignore the noise and focus on the
signal to interference ratio (SIR):

SIR(w) =
|wHhd|2∑K
i=1 |wHhi|2

Since the beamforming weight vector w appears in both the numerator and the denominator,
the SIR does not depend on ‖w‖. Also, let B be the number of available quantization bits
(i.e. the I (in-phase or real) and Q (quadrature or imaginary) components of each element
w[i], ∀1≤i≤N of the weight vector w are each quantized to 2B discrete levels). Therefore,
there are Nw = 22BN total beamforming weight vectors available from which to choose5.
Let W be the set of these discrete weight vectors. We can then formulate the problem of
computing the optimal weight as an SIR maximization problem:

wopt , arg max
ŵ∈W

|ŵHhd|2∑K
i=1 |ŵHhi|2

Our goal in this chapter, is to compare different strategies for choosing ŵ in terms of both the
SIR performance and computational complexity. In order to do so, we need a good metric
for evaluating SIR performance. If one algorithm outperforms another for every possible
realization of the desire and interference channels, then it is clearly better. However, such a
definition is too stringent to be useful, and in practice, we may have to settle for comparing
some averages. At first glance, it seems as if the natural choice would be to compare the
average SIR, i.e. E

[
SIR

]
; however this measure suffers from some fundamental disadvantages.

First of all, it is rather unwieldy analytically. Secondly, the average can be dominated by a
small number of channel realizations where the SIR becomes very large. We therefore choose
a different measure: the ratio of average signal power to average interference power:

SIR(w) =
E[|ŵHhd|2]∑K
i=1 E[|ŵHhi|2]

7.2 Scalar quantization of beamforming weights

In this section, we analyze techniques based on scalar quantization. In scalar quantiza-
tion, each component of a beamforming vector is quantized separately to the nearest discrete
level [47]. For simplicity, we assume that the quantization is uniform, and the quantization

5 Note that some of these weight vectors may be scaled versions of others. Therefore, Nw is actually
an upper-bound on the number of distinct weight vectors available to choose from. Also, since the SIR is
independent of the magnitude of the beamforming weight vector, we can assume without loss of generality
that the 2B discrete levels are the 2B equal and non-overlapping subintervals between [-1, 1] (i.e. uniform
quantization).
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intervals are obtained by dividing the interval [−1, 1] into 2B equal and contiguous subin-
tervals6. The size of the intervals is not relevant to this problem since we can always scale
the beamforming vector without changing the SIR. As a result, scalar quantization can be
implemented by first diving the vector by its real or imaginary components with the largest
absolute value (to ensure that all components lie in the [−1, 1] interval), and then quan-
tizing each component (real and imaginary) separately. We shall denote this operation by
the operator QB(·), and thus wq = QB(w) represents the B-bit quantized (and possibly
normalized) version of the vector w. We will also denote the quantization error vector by
∆w = w − QB(w). In Chapter 5, we showed that the ability of the beamformer to esti-
mate the channel responses does not depend on the accuracy of the beamforming weights.
Therefore, we will assume that the beamformer has full knowledge of the channel responses
hd,h1,h2, . . . ,hK . We will now consider two strategies for choosing w to improve the SIR
and analyze how they are impacted by scalar quantization.

7.2.1 Spatial matched filter

A simple and straight forward choice for the beamforming weight vector is wmf = hd

‖hd‖ ,

also known as the spatial matched filter or maximum ratio combiner (MRC). The spatial
matched filter ensures the maximum attainable signal to noise ratio (SNR). The SIR under
the matched filter is

SIR(wmf) =
|wH

mfhd|2
∑K

i=1 |wH

mf
hi|2

=
|hH

d hd|2∑K
i=1 |hH

d hi|2

SIR(wmf) =
E[|hH

d hd|2]∑K
i=1 E[|hH

d hi|2]

E[|hH
d hd|2] = E[(

N∑

i=1

|hd[i]|2)2] = E[
N∑

i=1

N∑

j=1

|hd[i]|2|hd[j]|2]

=
N∑

i=1

N∑

j=1

E[|hd[i]|2|hd[j]|2] =
N∑

i=1

N∑

j=1,j 6=i

E[|hd[i]|2]E[|hd[j]|2] +
N∑

i=1

E[|hd[i]|4]

= N2 − N + 3N = N2 + 2N ∼ N2

E[|hH
d hi|2] = E[|

N∑

j=1

h∗
d[j]hi[j]|2]

= E[
N∑

j=1

N∑

k=1

h∗
d[j]hi[j]hd[k]h∗

i [k]]

=
N∑

j=1

E[|hd[j]|2]E[|hi[j]|2] = N

6In general, the number and size of each interval will depend on the analog and digital beamforming
circuitry.
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⇒ SIR(wmf) ∼
N

K

Therefore, the average SIR is proportional to N
K

. The linear growth with the number of
antennas is due to the beamforming gain which boosts the desired signal power by a factor
N , but leaves the interference power almost unchanged because the beamforming weight
vector is chosen independent of the channel responses of the interfering signals. Now let’s
look at the impact of quantization on the matched filter beamformer. Let wqmf = QB(wmf)

be the matched filter quantized to B bits. The interference should not be affected by the
quantization since the beamforming vector is still independent of the channel responses of
the interfering vectors (i.e. E[|wH

qmfhi|2] = E[|wH

mfhi|2]). In Chapter 6, we showed that the

desired signal (beamforming) gain is robust to errors in the beamfoming weights (the gain
degradation is proportional to the cosine of the error angle). Therefore, even for B = 1, the
loss in beamforming is small. Therefore, the quantized matched filter yields similar gain in
the SIR as the matched filter:

SIR(wqmf) ≃ SIR(wmf) ∼
N

K
(7.1)

In order to support the results derived in this section, we simulated the relationship be-
tween the average SIR, as well as its subcomponents (desired signal and interference power),
and the number of antennas N , the number of interferers K, and the number of quantiza-
tion bits B under the spatial matched filter beamformer. Figure 7.1a shows that the average
SIR, when normalized by the number of antennas N , remains constant as a function of N
for different quantization levels (B = 1 − 6). Figure 7.1b shows that the average SIR, when
multiplied by the number of interferers K, remains constant as a function of K. Both these
results are consistent with Equation 7.1. In Figure 7.2, we simulated the SIR while keeping
the ratio N/K constant. In all the Figures 7.1/7.2, however, we see that using more bits
of resolution slightly improves the SIR by a constant factor independent of both N and K.
Figures 7.3/7.4 show that this gain in the SIR is a result of improved beamforming gain and
not interference cancellation (Figures 7.5/7.6). In Figures 7.3/7.4, the SIR is replaced by the
average desired signal power on y-axis, and the results show a linear growth with N , a slight
improvement with B, and an independence of K. Figures 7.5/7.6 show a constant average
interferer power independent of N ,K, and B. Therefore, the improvement in average SIR
obtained from increasing N and B is due to the desired signal, while the degradation from
increase in K is due to the interference.

The results in Figures 7.1/7.2, 7.3/7.4, and 7.5/7.6 were obtained using the Rayleigh
channel model. We repeated the same simulations under the LOS channel. In Figures
7.7/7.8, 7.9/7.10, and 7.11/7.12, we simulated a uniform linear array with λ/2 spacing, and
randomized the azimuth angle of arrival of each transmitter. In Figures 7.137.14, 7.15/7.16,
and 7.17/7.18, we simulated a uniform square array with λ/2 spacing, and randomized
the direction of arrival (in 3 dimensions) of each transmitter. These results show that the
performance of the quantized spatial matched filter is consistent with with Equation 7.1,
and is not sensitive to the channel or the quantization resolution.

In addition to being robust to quantization, notice that the matched filter beamformer
requires only computing and quantizing the complex conjugate of the desired channel vector
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hd and is independent of the interfering channel vectors, and hence it has a low computational
complexity O(N).

7.2.2 Zero-Forcing beamformer

In Chapter 6, we showed that complete interference cancellation (nulling) can be achieved
by using a beamforming weight vector wzf that is the projection of hd onto the vector sub-
space orthogonal to the subspace spanned by the interfering vectors h1, . . . ,hK , a technique
sometimes referred to as zero forcing (ZF) in the signal processing literature. We also showed
that in the presence of errors in the ZF beamformer will result in interference ”leakage” that
is directly proportional to the variance of the errors independent of the number of antennas
N . Since quantization is only a special type of errors, the same derivation applies. Since
the errors will be roughly uniform in the interval [−2−B, 2−B] (within a constant factor), the
variance of the quantization noise σw will be proportional to 2−2B, and the thus the power
of a single interferer will also be proportional to 22B. Therefore, the total interference power
will be proportional to 2−2BK. Since the desired signal grows linearly with N (beamforming
gain), the average SIR at the output of the quantized ZF beamformer wqzf = QB(wzf)

SIR(wqzf) =
E[|wH

qzfhd|2]
∑K

i=1 E[|wH

qzf
hi|2]

∼ N

K
22B (7.2)

This result is also supported by the simulation results we present in this section. Unlike
the spatial matched filter, the zero forcing beamformer is a function of both the desired signal
and the interfering channel responses. While the SIR at the output of the beamformer grows
linearly with the ratio N/K (Figure 7.20(a) shows a constant SIR when N/K is constant),
the relationship with both N and K individually is a little more complicated. The reason
is that when hd is projected onto the subspace orthogonal to the interference subspace, we
lose the component of hd that lies in the interference subspace (h

‖
d). When N ≫ K, ‖h‖

d‖
will be negligible, and the SIR will be linear in N and 1/K. However, when the interference
subspace is larger than the orthogonal subspace (K > N/2), there will be significant gains
in increasing N and reducing K. This is shown in Figures 7.19ab, and this is gain in
SIR is a result of increasing the desired signal power (Figures 7.21ab). Also, unlike the
spatial matched filter, the zero forcing beamformer gets approximately 6dB boost in SIR
for every additional quantization bit (Figures 7.19ab and 7.20ab). This gain in SIR comes
mostly from interference rejection component of the SIR, and slightly from the desired signal
(Figures 7.23ab, 7.24ab). While the average interferer power at the output of the beamformer
decreases exponentially with the number of quantization bits B, like the spatial matched
filter, it is largely independent of both N and K. The zero forcing beamformer also differs
from the spatial matched filter in the dependence of the desired signal on the number of
interferers. However, the loss in the desired signal power is insignificant compared to the
large gain obtained from interference nulling.

The results in Figures 7.19/7.20, 7.21/7.22, and 7.23/7.24 were obtained using the Rayleigh
channel model. We repeated the same simulations under the LOS channel. In Figures
7.25/7.26, 7.9/7.10, and 7.29/7.30, we simulated a uniform linear array with λ/2 spacing,
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Figure 7.1: Simulated (averaged) SIR under the quantized spatial matched filter beamformer
(QMF) in a Raleigh channel. (a) SIR (normalized by N in dB scale) as a function of the
number of antennas N for different quantization levels B (K = 15). (b) SIR (multiplied by
K in dB scale) as a function of the number of interferers K for different quantization levels
B (N = 150).
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Figure 7.2: Simulated (averaged) SIR under the quantized spatial matched filter beamformer
(QMF) in a Raleigh channel. The SIR (in dB scale) is simulated as a function of the number
of interferers K for different quantization levels B when the ratio N/K = 3.
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Figure 7.3: Simulated (averaged) desired signal under the quantized spatial matched filter
beamformer (QMF) in a Raleigh channel. (a) Desired signal (normalized by N) as a function
of the number of antennas N for different quantization levels B (K = 15). (b) Desired signal
(normalized by N) as a function of the number of interferers K for different quantization
levels B (N = 150).
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Figure 7.4: Simulated (averaged) desired signal under the quantized spatial matched filter
beamformer (QMF) in a Raleigh channel. The desired signal (normalized by N) is simulated
as a function of the number of interferers K for different quantization levels B when the ratio
N/K = 3.
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Figure 7.5: Simulated (averaged) power of a single interferer under the quantized spatial
matched filter beamformer (QMF) in a Raleigh channel. (a) Interferer power (in dB scale)
as a function of the number of antennas N for different quantization levels B (K = 15).
(b) Interferer power (in dB scale) as a function of the number of interferers K for different
quantization levels B (N = 150).
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Figure 7.6: Simulated (averaged) power of a single interferer under the quantized spatial
matched filter beamformer (QMF) in a Raleigh channel. The interferer power (in dB scale)
is simulated as a function of the number of interferers K for different quantization levels B
when the ratio N/K = 3.
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Figure 7.7: Simulated (averaged) SIR under the quantized spatial matched filter beamformer
(QMF) in an LOS channel. In this model, we used a uniform linear array with λ/2 spacing,
with all the antennas located on the xy-plane. Both the desired signal and the interferers
are located on the xy-plane and their angle of arrival (azimuth) is chosen randomly at each
iteration. (a) SIR (normalized by N in dB scale) as a function of the number of antennas
N for different quantization levels B (K = 15). (b) SIR (multiplied by K in dB scale) as a
function of the number of interferers K for different quantization levels B (N = 150).
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Figure 7.8: Simulated (averaged) SIR under the quantized spatial matched filter beamformer
(QMF) in an LOS channel. In this model, we used a uniform linear array with λ/2 spacing,
with all the antennas located on the xy-plane. Both the desired signal and the interferers
are located on the xy-plane and their angle of arrival (azimuth) is chosen randomly at each
iteration. The SIR (in dB scale) is simulated as a function of the number of interferers K
for different quantization levels B when the ratio N/K = 3.
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Figure 7.9: Simulated (averaged) desired signal under the quantized spatial matched filter
beamformer (QMF) in an LOS channel. In this model, we used a uniform linear array
with λ/2 spacing, with all the antennas located on the xy-plane. Both the desired signal
and the interferers are located on the xy-plane and their angle of arrival (azimuth) is chosen
randomly at each iteration. (a) Desired signal (normalized by N) as a function of the number
of antennas N for different quantization levels B (K = 15). (b) Desired signal (normalized by
N) as a function of the number of interferers K for different quantization levels B (N = 150).
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Figure 7.10: Simulated (averaged) desired signal under the quantized spatial matched filter
beamformer (QMF) in an LOS channel. In this model, we used a uniform linear array with
λ/2 spacing, with all the antennas located on the xy-plane. Both the desired signal and
the interferers are located on the xy-plane and their angle of arrival (azimuth) is chosen
randomly at each iteration. The desired signal (normalized by N) is simulated as a function
of the number of interferers K for different quantization levels B when the ratio N/K = 3.
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Figure 7.11: Simulated (averaged) power of a single interferer under the quantized spatial
matched filter beamformer (QMF) in an LOS channel. In this model, we used a uniform
linear array with λ/2 spacing, with all the antennas located on the xy-plane. Both the desired
signal and the interferers are located on the xy-plane and their angle of arrival (azimuth) is
chosen randomly at each iteration. (a) Interferer power (in dB scale) as a function of the
number of antennas N for different quantization levels B (K = 15). (b) Interferer power
(in dB scale) as a function of the number of interferers K for different quantization levels B
(N = 150).
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Figure 7.12: Simulated (averaged) power of a single interferer under the quantized spatial
matched filter beamformer (QMF) in an LOS channel. In this model, we used a uniform
linear array with λ/2 spacing, with all the antennas located on the xy-plane. Both the desired
signal and the interferers are located on the xy-plane and their angle of arrival (azimuth)
is chosen randomly at each iteration. The interferer power (in dB scale) is simulated as a
function of the number of interferers K for different quantization levels B when the ratio
N/K = 3.
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Figure 7.13: Simulated (averaged) SIR under the quantized spatial matched filter beam-
former (QMF) in an LOS channel. In this model, we used a uniform square array with λ/2
spacing. Both the desired signal and the interferers are placed randomly on the surface of a
large sphere (in the far field of the array) centered around the origin at each iteration. (a)
SIR (normalized by N in dB scale) as a function of the number of antennas N for different
quantization levels B (K = 15). (b) SIR (multiplied by K in dB scale) as a function of the
number of interferers K for different quantization levels B (N = 150).
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Figure 7.14: Simulated (averaged) SIR under the quantized spatial matched filter beam-
former (QMF) in an LOS channel. In this model, we used a uniform square array with λ/2
spacing. Both the desired signal and the interferers are placed randomly on the surface of
a large sphere (in the far field of the array) centered around the origin at each iteration.
The SIR (in dB scale) is simulated as a function of the number of interferers K for different
quantization levels B when the ratio N/K = 3.
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Figure 7.15: Simulated (averaged) desired signal under the quantized spatial matched filter
beamformer (QMF) in an LOS channel. In this model, we used a uniform square array with
λ/2 spacing. Both the desired signal and the interferers are placed randomly on the surface
of a large sphere (in the far field of the array) centered around the origin at each iteration.
(a) Desired signal (normalized by N) as a function of the number of antennas N for different
quantization levels B (K = 15). (b) Desired signal (normalized by N) as a function of the
number of interferers K for different quantization levels B (N = 150).
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Figure 7.16: Simulated (averaged) desired signal under the quantized spatial matched filter
beamformer (QMF) in an LOS channel. In this model, we used a uniform square array with
λ/2 spacing. Both the desired signal and the interferers are placed randomly on the surface
of a large sphere (in the far field of the array) centered around the origin at each iteration.
The desired signal (normalized by N) is simulated as a function of the number of interferers
K for different quantization levels B when the ratio N/K = 3.
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Figure 7.17: Simulated (averaged) power of a single interferer under the quantized spatial
matched filter beamformer (QMF) in an LOS channel. In this model, we used a uniform
square array with λ/2 spacing. Both the desired signal and the interferers are placed ran-
domly on the surface of a large sphere (in the far field of the array) centered around the
origin at each iteration. (a) Interferer power (in dB scale) as a function of the number of
antennas N for different quantization levels B (K = 15). (b) Interferer power (in dB scale)
as a function of the number of interferers K for different quantization levels B (N = 150).
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Figure 7.18: Simulated (averaged) power of a single interferer under the quantized spatial
matched filter beamformer (QMF) in an LOS channel. In this model, we used a uniform
square array with λ/2 spacing. Both the desired signal and the interferers are placed ran-
domly on the surface of a large sphere (in the far field of the array) centered around the
origin at each iteration. The interferer power (in dB scale) is simulated as a function of the
number of interferers K for different quantization levels B when the ratio N/K = 3.
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and randomized the azimuth angle of arrival of each transmitter. In Figures 7.31/7.32,
7.33/7.34, and 7.35/7.36, we simulated a uniform square array with λ/2 spacing, and ran-
domized the direction of arrival (in 3 dimensions) of each transmitter. These results show
that the performance of the quantized spatial matched filter is consistent with with Equation
7.2 independent of the channel model.

The quantized ZF beamformer improves the average SIR/interference rejection by a factor
of 22B relative to the spatial matched filter. However, this improved SIR comes at the
expense of increased computational complexity. Since the quantized ZF beamformer requires
solving an N × K complex least squares problem, the overall computational complexity is
O(NK2). In both cases, however, the interference leakage remains independent of the number
of antennas N .

7.3 Vector quantization of antenna weights

In Section 7.2, we showed that a naive strategy of coefficient-by-coefficient quantization
of the beamforming weights is not very efficient: the average SIR scales as N/K. That is,
we obtain the combining gains for the desired signal, but increasing the number of degrees
of freedom N does not lead to any improved scaling in the residual interference power
at the output of the beamformer. In this section, we explore more sophisticated vector
quantization strategies. In Section 7.3.1, we establish an analytical lower bound on the
expected SIR improvement using vector quantization techniques. In Section 7.3.2, we propose
three computationally efficient vector quantization schemes and analyze their performance,
optimality, and complexity as a function of N , K, and B. Finally, in Section 7.3.3, we
analyze the beamforming gain using vector quantization techniques.

7.3.1 An approximate lower bound on achievable SIR

In [7], we showed that the SIR that can be achieved by intelligently choosing the quantized
weights has a lower bound that grows quadratically with the number of antennas N . The
proof idea is very simple and intuitive. We can think of the problem of choosing the optimal
weight vector w as a problem of choosing the optimal error vector ∆w. Our goal is to show
that when the components of ∆w are chosen dependently of each other, the interference
power can be made to decrease significantly with N (as opposed being independent of N
when the components are chosen independently).

For simplicity, we will assume a single interferer or K = 1 (The extension to the more
general case K > 1 is straight forward). Our goal is to minimize the term |∆wHh1|2,
when the coefficients of h1 are independent zero-mean complex Gaussian random variables
with unit variance (i.e. Rayleigh channel coefficients). Let’s start by considering a simpler
problem. Suppose we simply wish to minimize |uHh1|2, where u takes all possible values in
U = 1√

N
{−1, +1}N (i.e. the elements of U are binary vectors normalized to unit norm). Let

T (u) , uHh1. Note that T (u) ∼ CN(0, 1) for any u ∈ U since the coefficients of h1 are
also assumed to be CN(0, 1). Therefore, T (u1), T (u2) are jointly complex Gaussian with
covariance equal to uH

1 u2. We now take a subset Uo ⊂ U which forms an orthonormal basis
in N dimensions: the Walsh-Hadamard codes [29]. Then {T (u) : u ∈ Uo} are N independent
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Figure 7.19: Simulated (averaged) SIR under the quantized zero-forcing beamformer (QZF)
in a Raleigh channel. (a) SIR (normalized by N in dB scale) as a function of the number
of antennas N for different quantization levels B (K = 15). (b) SIR (multiplied by K in
dB scale) as a function of the number of interferers K for different quantization levels B
(N = 150).
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Figure 7.20: Simulated (averaged) SIR under the quantized zero-forcing beamformer (QZF)
in a Raleigh channel. (a) SIR (in dB scale) as a function of the number of interferers K for
different quantization levels B when the ratio N/K = 3. (b) SIR (in dB scale) as a function
of the quantization level B for N=500 and K=250.
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Figure 7.21: Simulated (averaged) desired signal under the quantized zero-forcing beam-
former (QZF) in a Raleigh channel. (a) Desired signal (normalized by N) as a function of
the number of antennas N for different quantization levels B (K = 15). (b) Desired signal
(normalized by N) as a function of the number of interferers K for different quantization
levels B (N = 150).
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Figure 7.22: Simulated (averaged) desired signal under the quantized zero-forcing beam-
former (QZF) in a Raleigh channel. The desired signal (normalized by N) is simulated as
a function of the number of interferers K for different quantization levels B when the ratio
N/K = 3.
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Figure 7.23: Simulated (averaged) power of a single interferer under the quantized zero-
forcing beamformer (QZF) in a Raleigh channel. (a) Interferer power (in dB scale) as a
function of the number of antennas N for different quantization levels B (K = 15). (b)
Interferer power (in dB scale) as a function of the number of interferers K for different
quantization levels B (N = 150).
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Figure 7.24: Simulated (averaged) power of a single interferer under the quantized zero-
forcing beamformer (QZF) in a Raleigh channel. (a) Interferer power (in dB scale) as a
function of the number of interferers K for different quantization levels B when the ratio
N/K = 3. (b) Interferer power (in dB scale) as a function of the quantization level B for
N=500 and K=250.
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Figure 7.25: Simulated (averaged) SIR under the quantized zero-forcing beamformer (QZF)
in an LOS channel. In this model, we used a uniform linear array with λ/2 spacing, with all
the antennas located on the xy-plane. Both the desired signal and the interferers are located
on the xy-plane and their angle of arrival (azimuth) is chosen randomly at each iteration. (a)
SIR (normalized by N in dB scale) as a function of the number of antennas N for different
quantization levels B (K = 15). (b) SIR (multiplied by K in dB scale) as a function of the
number of interferers K for different quantization levels B (N = 150).
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Figure 7.26: Simulated (averaged) SIR under the quantized zero-forcing beamformer (QZF)
in an LOS channel. In this model, we used a uniform linear array with λ/2 spacing, with all
the antennas located on the xy-plane. Both the desired signal and the interferers are located
on the xy-plane and their angle of arrival (azimuth) is chosen randomly at each iteration.
(a) SIR (in dB scale) as a function of the number of interferers K for different quantization
levels B when the ratio N/K = 3. (b) SIR (in dB scale) as a function of the quantization
level B for N=500 and K=250.
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Figure 7.27: Simulated (averaged) desired signal under the quantized zero-forcing beam-
former (QZF) in an LOS channel. In this model, we used a uniform linear array with λ/2
spacing, with all the antennas located on the xy-plane. Both the desired signal and the inter-
ferers are located on the xy-plane and their angle of arrival (azimuth) is chosen randomly at
each iteration. (a) Desired signal (normalized by N) as a function of the number of antennas
N for different quantization levels B (K = 15). (b) Desired signal (normalized by N) as a
function of the number of interferers K for different quantization levels B (N = 150).
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Figure 7.28: Simulated (averaged) desired signal under the quantized zero-forcing beam-
former (QZF) in an LOS channel. In this model, we used a uniform linear array with λ/2
spacing, with all the antennas located on the xy-plane. Both the desired signal and the in-
terferers are located on the xy-plane and their angle of arrival (azimuth) is chosen randomly
at each iteration. The desired signal (normalized by N) is simulated as a function of the
number of interferers K for different quantization levels B when the ratio N/K = 3.
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Figure 7.29: Simulated (averaged) power of a single interferer under the quantized zero-
forcing beamformer (QZF) in an LOS channel. In this model, we used a uniform linear array
with λ/2 spacing, with all the antennas located on the xy-plane. Both the desired signal
and the interferers are located on the xy-plane and their angle of arrival (azimuth) is chosen
randomly at each iteration. (a) Interferer power (in dB scale) as a function of the number of
antennas N for different quantization levels B (K = 15). (b) Interferer power (in dB scale)
as a function of the number of interferers K for different quantization levels B (N = 150).
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Figure 7.30: Simulated (averaged) power of a single interferer under the quantized zero-
forcing beamformer (QZF) in an LOS channel. In this model, we used a uniform linear array
with λ/2 spacing, with all the antennas located on the xy-plane. Both the desired signal
and the interferers are located on the xy-plane and their angle of arrival (azimuth) is chosen
randomly at each iteration. (a) Interferer power (in dB scale) as a function of the number
of interferers K for different quantization levels B when the ratio N/K = 3. (b) Interferer
power (in dB scale) as a function of the quantization level B for N=500 and K=250.
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Figure 7.31: Simulated (averaged) SIR under the quantized zero-forcing beamformer (QZF)
in an LOS channel. In this model, we used a uniform square array with λ/2 spacing. Both
the desired signal and the interferers are placed randomly on the surface of a large sphere (in
the far field of the array) centered around the origin at each iteration. (a) SIR (normalized
by N in dB scale) as a function of the number of antennas N for different quantization levels
B (K = 15). (b) SIR (multiplied by K in dB scale) as a function of the number of interferers
K for different quantization levels B (N = 150).
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Figure 7.32: Simulated (averaged) SIR under the quantized zero-forcing beamformer (QZF)
in an LOS channel. In this model, we used a uniform square array with λ/2 spacing. Both
the desired signal and the interferers are placed randomly on the surface of a large sphere (in
the far field of the array) centered around the origin at each iteration. (a) SIR (in dB scale)
as a function of the number of interferers K for different quantization levels B when the
ratio N/K = 3. (b) SIR (in dB scale) as a function of the quantization level B for N=500
and K=250.
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Figure 7.33: Simulated (averaged) desired signal under the quantized zero-forcing beam-
former (QZF) in an LOS channel. In this model, we used a uniform square array with λ/2
spacing. Both the desired signal and the interferers are placed randomly on the surface of a
large sphere (in the far field of the array) centered around the origin at each iteration. (a)
Desired signal (normalized by N) as a function of the number of antennas N for different
quantization levels B (K = 15). (b) Desired signal (normalized by N) as a function of the
number of interferers K for different quantization levels B (N = 150).
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Figure 7.34: Simulated (averaged) desired signal under the quantized zero-forcing beam-
former (QZF) in an LOS channel. In this model, we used a uniform square array with λ/2
spacing. Both the desired signal and the interferers are placed randomly on the surface of a
large sphere (in the far field of the array) centered around the origin at each iteration. The
desired signal (normalized by N) is simulated as a function of the number of interferers K
for different quantization levels B when the ratio N/K = 3.
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Figure 7.35: Simulated (averaged) power of a single interferer under the quantized zero-
forcing beamformer (QZF) in an LOS channel. In this model, we used a uniform square
array with λ/2 spacing. Both the desired signal and the interferers are placed randomly on
the surface of a large sphere (in the far field of the array) centered around the origin at each
iteration. (a) Interferer power (in dB scale) as a function of the number of antennas N for
different quantization levels B (K = 15). (b) Interferer power (in dB scale) as a function of
the number of interferers K for different quantization levels B (N = 150).
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Figure 7.36: Simulated (averaged) power of a single interferer under the quantized zero-
forcing beamformer (QZF) in an LOS channel. In this model, we used a uniform square
array with λ/2 spacing. Both the desired signal and the interferers are placed randomly on
the surface of a large sphere (in the far field of the array) centered around the origin at each
iteration. (a) Interferer power (in dB scale) as a function of the number of interferers K for
different quantization levels B when the ratio N/K = 3. (b) Interferer power (in dB scale)
as a function of the quantization level B for N=500 and K=250.
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Gaussian random variables. Since the square magnitude of a Gaussian random variable is
exponentially distributed [59] 7, the minimum interference power can be upper bounded as

Pmin = min
u∈U

|T (u)|2 ≤ min
u∈Uo

|T (u)|2 (7.3)

It is easy to show that taking the minimum of N i.i.d. exponential random variables reduces
the mean by a factor of N . Thus, for our simplified model, the interference power scales
down at least as fast as 1/N .

The original problem T (∆w) ≡ ∆wHh1 is very similar. For each coefficient of ∆w,
if we restrict ourselves to two options: either round both I and Q coefficients up or round
them both down, then there will be a total of 2N choices for ∆w. There is a one-to-one
correspondence between these choices and the binary vectors U = 1√

N
{−1, +1}N . The main

difference is that the Walsh-Hadamard vectors no longer yield independent Gaussian random
variables when we account for the distribution of the coefficients of ∆w. However, since U
is an N -dimensional vector space, it is always possible to find a set of basis vectors vi which
yield independent random variables T (vi) for which (7.3) holds. Therefore, we expect the
minimum interference power to decrease by at least a factor of 1/N . This means that the
SIR should increase at least quadratically with N .

7.3.2 Constructive algorithms for improving interference suppres-
sion

While a naive approach based on scalar quantization does not achieve the optimum in-
terference suppression, the space of all possible quantized vectors grows exponentially with
NB, and thus a vector quantizer that exhaustively searches through the set of reconstruction
levels is impractical. Instead, in this section, we focus on a set of simple and computation-
ally efficient algorithms based on greedy coordinate descent optimization. This approach
substantially improves over the naive method, yet has computational cost that is linear in
the number of antennas. We will present a detailed analysis of three variants of this ap-
proach: greedy coordinate descent (GCD), iterative greedy coordinate descent (iGCD), and
least-significant-bit greedy coordinate descent (LSB-GCD).

Greedy coordinate descent (GCD)

The greedy coordinate descent algorithm (GCD) quantizes the weight vector by search-
ing through the set of discrete quantization levels for each element individually, instead of
jointly as in the exhaustive search algorithm, and chooses the value that maximizes the SIR.
This process is repeated for each coefficient until algorithm converges. More precisely, the
algorithm, proceeds as follows. We first start by choosing a vector from the set of valid
reconstruction levels. Next, we search through all 22B valid reconstruction levels of the first
coefficient8, while keeping the other N coefficients fixed. The value which maximizes the
output SIR (SINR) is chosen as the quantized value of the first coefficient. We then proceed

7The mean of the exponential distribution is equal to the variance of the Gaussian random variable.
8Recall that each coefficient is represented by 2B bits: B bits for the real part and B bits for the imaginary

part.
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to quantize the second coefficient, keeping the first coefficient fixed at its quantized value
and coefficients 3 through N fixed at their initial values, by a similar search. This method
is applied to each of the N coefficients of the weight vector w. This process is repeated for
several rounds until the weights stabilize (converge). Our simulation results indicate that
the number of rounds required for convergence is constant and independent of N , K, and B.

We ran several simulations to evaluate the performance of GCD as a function of N , K,
and B. The results are shown in Figures 7.37/7.38, 7.39/7.40, and 7.41/7.42. The plots in
Figures 7.37/7.38 are for the average SIR under GCD.In Figure 7.37a, we fixed the number
of interferers K = 15 and plot the average SIR for different values of B as we vary the
number of antennas N from 20-245 on the x-axis (on the y-axis is the SIR normalized by N2

in dB scale). The graph suggests that the increase in SIR versus N is quadratic (compared
with a linear growth in the case of scalar quantization) since SIR/N2 remains relatively
flat as we increase N . In Figure 7.37b, we fix the number of antennas N while varying
the number of interferers K on the x-axis (on the y-axis is the average SIR multiplied by
K2 in dB scale). Since K2SIR remains relatively flat as we increase K, we can conclude
that the average SIR decays as 1/K2. However, similar to the scalar quantized zero-forcing
beamformer, the functional dependence of the SIR under GCD on N and K individually is
a little more complicated and depends on the ratio N/K. When N/K is large, then the SIR
is approximately quadratic in N and 1/K. However, more generally, the SIR is quadratic
in the ratio N/K. The functional dependence of the SIR on N and K through the ratio
N/K is corroborated by Figure 7.38a, where vary the number of interferers K on the x-axis
while keeping the ratio N/K = 3 fixed. The graph shows that the average SIR stays flat as
we increase K as long as the ratio N/K remains constant. The dependence of GCD on the
number of quantization bits is shown in Figures 7.37ab/7.38a (different curves correspond
to different number of quantization bits) and further corroborated by Figure 7.38b (number
of bits on the x-axis). Just as in scalar quantization, the average SIR grows exponentially in
the bit rate, with a gain of approximately 6dB per bit. Therefore, the functional dependence
of the SIR under GCD on N , K, and B is approximately:

SIR(wgcd) =
E[|wH

gcdhd|2]
∑K

i=1 E[|wH

gcd
hi|2]

∼
(

N

K

)2

22B (7.4)

We also analyzed the desired signal and interference components separately to see how
each contributes to the overall average SIR. The average desired signal power is shown in
Figures 7.39/7.40. In Figure 7.39a, the x-axis is the number of antennas N (the number of
interferers K = 15 is fixed), and the y-axis is the average desired signal power normalized by
N (the different curves represent different quantization levels). In Figure 7.39b, the x-axis
is the number of interferers K (the number of antennas N is fixed), and the y-axis is the
average desired signal power (the different curves represent different quantization levels).
Taken together, these two figures show an approximate linear growth of the desired signal
power with N , little dependence on B, and a small decay versus K. The slight non-linear
increase versus and the small decay versus K has to do with desired signal component lost
in the interference subspace. However, when the ratio N/K is kept constant, the desired
signal power grows linearly with N (Figure 7.40a). However, the desired signal power under
GCD is slightly below the quantized matched filter and ZF beamformer (Figure 7.40b).
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Figure 7.37: (a) Simulated (averaged) SIR (normalized by N2 in dB scale) under GCD as
a function of the number of antennas N for different quantization levels B (K = 15). (b)
Simulated (averaged) SIR (multiplied by K2 in dB scale) under GCD as a function of the
number of interferers K for different quantization levels B (N = 150). The simulations in
both Figures were under the Rayleigh channel model.
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Figure 7.38: (a) Simulated (averaged) SIR (in dB scale) in under GCD as a function of
the number of interferers K for different quantization levels B when the ratio N/K = 3.
(b) Simulated (averaged) SIR (in dB scale) under GCD as a function of the number of
quantization bits B (N = 245, K = 10). The simulations in both Figures were under the
Rayleigh channel model.
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Figure 7.39: (a) Simulated (averaged) desired signal power (normalized by N) under GCD
as a function of the number of antennas N for different quantization levels B (K = 15). (b)
Simulated (averaged) desired signal power (normalized by N) under GCD as a function of
the number of interferers K for different quantization levels B (N = 150). The simulations
in both Figures were under the Rayleigh channel model.
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Figure 7.40: (a) Simulated (averaged) desired signal power (normalized by N) under GCD
as a function of the number of interferers K for different quantization levels B when the ratio
N/K = 3. (b) Comparing the desired signal power under GCD to the desired signal power
under the scalar quantization schemes described in Section 7.2 (quantized spatial matched
filtering and quantized zero-forcing) as a function of the number of antennas (N) (K = 15,
B = 4). The simulations in both Figures were under the Rayleigh channel model.
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Figure 7.41: (a) Simulated (averaged) power of a single interferer (multiplied by N in dB
scale) under GCD as a function of the number of antennas N for different quantization levels
B (K = 15). (b) Simulated (averaged) power of a single interferer (divided by K in dB scale)
under GCD as a function of the number of interferers K for different quantization levels B
(N = 150). The simulations in both Figures were under the Rayleigh channel model.
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Figure 7.42: (a) Simulated (averaged) power of a single interferer (in dB scale) in under
GCD as a function of the number of interferers K for different quantization levels B when
the ratio N/K = 3. (b) Simulated (averaged) power of a single interferer (in dB scale)
under GCD as a function of the number of quantization bits B (N = 245, K = 10). The
simulations in both Figures were under the Rayleigh channel model.



183

However, the difference is a constant factor (compared with the factor of N in interference
reduction). Therefore, a factor of N in Equation 7.4 comes from the desired signal and
the rest (22BN/K2) comes from the interference rejection. This is validated by the results
in Figures 7.41/7.42, which plots the average interferer power under GCD versus N , K,
and B. Figure 7.41a shows that the average interferer power scales as 1/N when K is
fixed, while Figure 7.41b shows that the average interferer power increases linearly with
K when N is fixed. Therefore, the average interferer power scales with the ratio K/N
(Figure 7.42a). Furthermore, the gap between the different curves corresponding to the
different quantization levels is approximately 6dB indicating an exponential dependence on
the number of quantization bits B. Therefore, the total interference power scales as K2

N
2−2B

(recall that we have a total K interferers).

Iterative greedy coordinate descent (iGCD)

The GCD algorithm improves the overall SIR by an extra factor of N/K, and achieves this
with a computational complexity that grows linearly with N (as opposed to exponentially in
the case of exhaustive search). However, GCD still searches through all valid reconstruction
levels for each coefficient, and thus the running time grows exponentially with 2B. In this
Section, we present a variant of the conventional greedy coordinate descent algorithm called
the iterative greedy coordinate descent algorithm or iGCD that eliminates the exponential
dependence on B, while retaining the extra factor of N/K in SIR improvement. iGCD
computes the bits of each antenna weight separately, instead of searching over all 22B possible
weights as in GCD. We start by running GCD on the most significant bit of each weight.
After converging on a single bit solution, the next iteration runs a single bit GCD for the next
significant bit. In this iteration, the most significant is fixed at the optimal solution found
in the previous iteration, and the search is only performed over the values of the second bit.
This process is repeated B times (for each bit, while it is being modified, all previous more
significant bits are fixed). Therefore, the overall running time will be linear in B instead of
exponential as in GCD.

Figures 7.43/7.44, 7.45/7.46, and 7.47/7.48 show the same results as Figures 7.37/7.38,
7.39/7.40 and 7.41/7.42 for iGCD. These plots show that the behavior of iGCD is almost
identical to that of GCD. In Figure 7.55a, we plot both GCD and iGCD on the same graph.
This shows that we incur no penalty by optimizing the quantized beamforming vector one
bit at a time instead of searching all reconstruction levels.

Least significant bit-greedy coordinate descent (LSB-GCD)

A straight forward algorithm that can be derived directly from the proof in Section
7.3.1 is least significant bit-greedy coordinate descent or LSB-GCD. LSB-GCD, as the name
suggests, is a variant of the general coordinate descent algorithm that optimizes only the least
significant bit or bits. In other words, we start with the quantized least squares (ZF) solution,
then we optimize the least significant bit using GCD. Figures 7.49/7.50, 7.51/7.52, and
7.53/7.54 show the simulation results for LSB-GCD (similar to Figures 7.37/7.38, 7.39/7.40,
and 7.41/ 7.42). The plots show that LSB-GCD exhibits similar behavior to that of GCD
and iGCD. A direct comparison between the three algorithms in Figure 7.55a shows that
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Figure 7.43: (a) Simulated (averaged) SIR (normalized by N2 in dB scale) under iGCD as
a function of the number of antennas N for different quantization levels B (K = 15). (b)
Simulated (averaged) SIR (multiplied by K2 in dB scale) under iGCD as a function of the
number of interferers K for different quantization levels B (N = 150). The simulations in
both Figures were under the Rayleigh channel model.
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Figure 7.44: (a) Simulated (averaged) SIR (in dB scale) in under iGCD as a function of
the number of interferers K for different quantization levels B when the ratio N/K = 3.
(b) Simulated (averaged) SIR (in dB scale) under iGCD as a function of the number of
quantization bits B (N = 245, K = 10). The simulations in both Figures were under the
Rayleigh channel model.
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Figure 7.45: (a) Simulated (averaged) desired signal power (normalized by N) under iGCD
as a function of the number of antennas N for different quantization levels B (K = 15). (b)
Simulated (averaged) desired signal power (normalized by N) under iGCD as a function of
the number of interferers K for different quantization levels B (N = 150). The simulations
in both Figures were under the Rayleigh channel model.
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Figure 7.46: (a) Simulated (averaged) desired signal power (normalized by N) under iGCD
as a function of the number of interferers K for different quantization levels B when the ratio
N/K = 3. (b) Comparing the desired signal power under iGCD to the desired signal power
under the scalar quantization schemes described in Section 7.2 (quantized spatial matched
filtering and quantized zero-forcing) as a function of the number of antennas (N) (K = 15,
B = 4). The simulations in both Figures were under the Rayleigh channel model.
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Figure 7.47: (a) Simulated (averaged) power of a single interferer (multiplied by N in dB
scale) under iGCD as a function of the number of antennas N for different quantization levels
B (K = 15). (b) Simulated (averaged) power of a single interferer (divided by K in dB scale)
under iGCD as a function of the number of interferers K for different quantization levels B
(N = 150). The simulations in both Figures were under the Rayleigh channel model.
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Figure 7.48: (a) Simulated (averaged) power of a single interferer (in dB scale) in under
iGCD as a function of the number of interferers K for different quantization levels B when
the ratio N/K = 3. (b) Simulated (averaged) power of a single interferer (in dB scale)
under iGCD as a function of the number of quantization bits B (N = 245, K = 10). The
simulations in both Figures were under the Rayleigh channel model.
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their performance is almost identical. While the desired signal power under LSB-GCD is
slightly higher than both GCD and iGCD (Figure 7.55b), the interference power is also
slightly higher (Figure 7.55c).

Impact of channel model

The proofs and simulation results presented in this section assumed a Rayleigh fading
model (i.e. the complex channel weights are i.i.d complex Gaussian random variables) for
its simplicity. However, these results extend to other channel models as well. In Figure
7.56, we compare the performance of iGCD under two extreme channel conditions: Rayleigh
fading and line of sight (LOS). For the LOS channel, we used both uniform linear and square
arrays with λ/2 spacing. For square arrays, we randomized the direction of arrival, whereas
for linear arrays, we only randomized the azimuth angle of arrival. In the figure, we plot the
SIR (normalized by N2) on the y-axis versus the number of antennas N on the x-axis. The
results show that the SIR maintains a quadratic growth as a function of N for both Rayleigh
and LOS channels.

Optimality of GCD based algorithms

Our simulations show that GCD-based algorithms converge after O(N) steps. However,
a guaranteed convergence does not necessarily mean that it will converge to the optimum
result. In order to verify this, let us consider the impact of the initial state of the algorithm
on the final output. If the algorithm is optimal, then it should converge to the same result
regardless of how the algorithm is initialized. In Sections 7.3.2 and 7.3.2, we did not tackle the
question of initializing the GCD and iGCD algorithms, and assumed that both are initialized
to the quantized matched filter. Here, we consider three different initializations: quantized
matched filter, quantized ZF beamformer, and a random vector. Figure 7.57 shows the
average SIR under iGCD for the three different initializations. To get a fair and accurate
comparison, we used the same values of hd,h1, . . . ,hK for each initialization. The plots
show that even though the channel responses are the same, the average SIR changes when
we change the initial state of the algorithm. These results suggest that these algorithms
converge to local instead of global optima. However, this still does not tell us how far from
the optimum is the GCD solution. To answer this question we simulated the average SIR
using a full exhaustive search of all possible quantized weight vectors. The results are shown
in Figures 7.58ab. while it is difficult to draw conclusions from these graphs since we can
only simulate a full exhaustive search for small values of N and B, Figures 7.58ab suggest
an exponential growth in average SIR as a function of N (K is fixed in Figure 7.58a) and
an exponential decay as a function of K (N is fixed in Figure 7.58b). In [7], we derived
an upper bound on the achievable SIR and showed that it is indeed exponential, and the
results in Figure 7.58a would suggest that this bound is tight. Therefore, while GCD-based
algorithms provide substantial improvements over scalar quantization, they are still far from
optimum.
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Figure 7.49: (a) Simulated (averaged) SIR (normalized by N2 in dB scale) under LSB-GCD
as a function of the number of antennas N for different quantization levels B (K = 15). (b)
Simulated (averaged) SIR (multiplied by K2 in dB scale) under LSB-GCD as a function of
the number of interferers K for different quantization levels B (N = 150). The simulations
in both Figures were under the Rayleigh channel model.
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Figure 7.50: (a) Simulated (averaged) SIR (in dB scale) in under LSB-GCD as a function
of the number of interferers K for different quantization levels B when the ratio N/K = 3.
(b) Simulated (averaged) SIR (in dB scale) under LSB-GCD as a function of the number of
quantization bits B (N = 245, K = 10). The simulations in both Figures were under the
Rayleigh channel model.
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Figure 7.51: (a) Simulated (averaged) desired signal power (normalized by N) under LSB-
GCD as a function of the number of antennas N for different quantization levels B (K = 15).
(b) Simulated (averaged) desired signal power (normalized by N) under LSB-GCD as a
function of the number of interferers K for different quantization levels B (N = 150). Both
simulations were under the Rayleigh channel model.
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Figure 7.52: (a) Simulated (averaged) desired signal power (normalized by N) under LSB-
GCD as a function of the number of interferers K for different quantization levels B when
the ratio N/K = 3. (b) Comparing the desired signal power under LSB-GCD to the desired
signal power under the scalar quantization schemes described in Section 7.2 (quantized spatial
matched filtering and quantized zero-forcing) as a function of the number of antennas (N)
(K = 15, B = 4). Both simulations were under the Rayleigh channel model.
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Figure 7.53: (a) Simulated (averaged) power of a single interferer (multiplied by N in dB
scale) under LSB-GCD as a function of the number of antennas N for different quantization
levels B (K = 15). (b) Simulated (averaged) power of a single interferer (divided by K in dB
scale) under LSB-GCD as a function of the number of interferers K for different quantization
levels B (N = 150). Both simulations were under the Rayleigh channel model.
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Figure 7.54: (a) Simulated (averaged) power of a single interferer (in dB scale) in under
LSB-GCD as a function of the number of interferers K for different quantization levels B
when the ratio N/K = 3. (b) Simulated (averaged) power of a single interferer (in dB scale)
under LSB-GCD as a function of the number of quantization bits B (N = 245, K = 10).
Both simulations were under the Rayleigh channel model.
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Figure 7.55: Comparing the performance of three vector quantization techniques (GCD,
iGCD, LSB-GCD) versus the number of antennas (N) under a Rayleigh channel model
(K = 15 and B = 4). (a) Average SIR normalized by N2 in dB scale. (b) Desired signal
power (normalized by N). (c) Average interferer power in dB scale.
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Figure 7.57: Average SIR normalized by N2 under iGCD, for three different initializations
(quantized matched filter, quantized zero-forcer, and random quantized vector), versus the
number of antennas N (the x-axis), with a fixed number of interferers K = 15, and quanti-
zation bits B = 4. The simulation was under the Rayleigh channel model.



200

 10

 15

 20

 25

 30

 35

 40

 5  6  7  8  9  10

S
IR

 (
dB

)

number of antennas (N)

1-bit exhaustive search/LOS

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1  2  3  4  5  6

S
IR

 (
dB

)

number of interferers (K)

1-bit exhaustive search/LOS

(b)

Figure 7.58: (a) Average SIR under exhaustive (optimal) searching versus the number
of antennas N (the x-axis), with a fixed number of interferers K = 2, and quantization
bits B = 1. (b) Average SIR under exhaustive (optimal) searching versus the number of
interferers K (the x-axis), with a fixed number of antennas N = 10, and quantization bits
B = 1. The simulation was under an LOS channel model with a uniform linear array with
λ/2 spacing.
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Computation complexity

Simulation results show that the number of steps (iterations) required for convergence is
proportional N (for all three algorithms). At each step, the SIR needs to be re-evaluated.
However, since we are only changing one coefficient at a time, the number of complex oper-
ations (multiplications/additions) needed to compute (update) the new SIR is proportional
to K. Since both GCD and iGCD can be initialized using the scalar quantized matched
filter (requires only O(N) operations), the total number operations required to compute
the GCD and iGCD solutions is O(NK22B) and O(NKB) respectively9. Since LSB-GCD
only works with the least significant bit(s), it eliminates the dependence on B. However,
LSB-GCD requires computing the least-squares (ZF) solution as a starting point. This re-
quires O(NK2) operations. Therefore, the total running time of LSB-GCD is proportional
to O(NK2). Therefore, if K ≫ B, then the iGCD can even outperform the scalar quantized
ZF beamformer from a computational complexity standpoint.

Switched antenna arrays

In Chapter 2, we listed several alternative architectures for implementing dynamic beam-
forming in addition to phased antenna arrays, including switched antenna arrays and switched
parasitic antennas. While the underlying theory and physical properties behind these dif-
ferent architectures may differ, they all share several key properties. First, they all require
an array of antennas10. Second, the overall gain (if well designed) is proportional to the size
of the array. Finally, in all the architectures, some aspect (weight) of each antenna element
is dynamically controlled. Therefore, from a mathematical point view, all these different
antenna systems can be represented by a size N complex column vector of beamforming
weights (channel responses). The universe from which these weights can be drawn will be
different for each architecture. For switched antenna arrays and switched parasitic anten-
nas, this universe is usually {0, 1}N (i.e. antennas are either turn on or off). This very low
resolution makes vector quantization algorithms like GCD a natural fit for these systems.

The performance is similar to GCD with conventional I/Q quantization. The SIR grows
almost quadratically with the ratio N/K (Figure 7.59a shows quadratic increase with N
while Figure 7.59b shows a fixed SIR when N/K is fixed). The desired signal grows linearly
with N and is largely independent of the number of interferers K (Figures 7.61ab), while
the average interferer power shrinks with N/K (Figures 7.60ab).

7.3.3 Improving the beamforming gain using vector quantization

Our focus in this chapter has been almost exclusively on improving the interference
suppression since the beam nulls tend to be a lot more sensitive to weight errors than peaks.
However, even in the absence of interference, the signal to noise ratio (SNR) can still be
improved by using a vector quantization technique like GCD or iGCD although the extra
gain from using these techniques will be very small since the loss from scalar quantization is

9GCD is exponentially dependent on B while iGCD is only linearly dependent on B.
10Not all these antennas are necessarily driven by a signal, and may act only as passive reflectors (e.g.

switched parasitics).
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Figure 7.59: (a) Average SIR normalized by N2 under GCD with two quantization levels
{0, 1} versus the number of antennas N (the x-axis), with a fixed number of interferers
K = 15. (b) Average SIR under GCD with two quantization levels {0, 1} versus the number
of interferers K (the x-axis), when the ratio N/K is fixed. The plots in this figure used the
Rayleigh channel model.
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Figure 7.60: (a) Average interferer power multiplied by N (in dB scale) under GCD with
two quantization levels {0, 1} versus the number of antennas N (the x-axis), with a fixed
number of interferers K = 15. (b) Average interferer power (in dB scale) under GCD with
two quantization levels {0, 1} versus the number of interferers K (the x-axis), when the ratio
N/K is fixed. The plots in this figure used the Rayleigh channel model.
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Figure 7.61: (a) Normalized desired signal gain under GCD with two quantization levels
{0, 1} versus the number of antennas N (the x-axis), with a fixed number of interferers
K = 15. (b) Normalized desired signal gain under GCD with two quantization levels {0, 1}
versus the number of interferers K (the x-axis), when the ratio N/K is fixed. The plots in
this figure used the Rayleigh channel model.
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already small to begin with as we showed in Chapter6. Figure 7.62a shows the normalized
beamforming gain of the scalar quantized matched filter and the GCD quantizer for two
quantization levels: B = 1 and B = 1/2 (for a Rayleigh channel) 11. The graph shows that
GCD provides a slight improvement over a scalar quantizer and the gap gets smaller as we
increase N and B. Furthermore, GCD is still below the optimum though the gap is extremely
small (Figure 7.63a shows that the normalized beamforming gain is slightly below optimum
solution obtained by exhaustive search). Figure 7.64a shows the normalized beamforming
gain when GCD is initialized to two different values (the quantized matched filter and a
random vector). The graph shows that the final result is slightly different depending on
how we initialize the GCD algorithm, which shows that GCD does not converge to a global
minimum. However, the difference is almost negligible. Figures 7.62b, 7.63b, and 7.64b show
that the same results hold for an LOS channel (a uniform linear array (λ/2 spaced) with the
azimuth angle chosen randomly and the elevation angle fixed at 90◦ from the z-axis) as well.

7.4 Conclusion

In this chapter, we have shown that coefficient quantization in digital receiver implemen-
tations can have a profound effect on the performance of interference-limited multi-antenna
systems. In particular, quantization of beamforming weights critically affects interference
suppression performance, and must be performed carefully in order to exploit the degrees
of freedom gains from using an increased number of antennas. We have analyzed the per-
formance of both scalar and vector quantization techniques, and presented computationally
efficient greedy sequential quantization algorithms that provide substantial gains over naive
scalar quantization. However, we have also shown that the interference rejection achieved by
those algorithms (polynomial in the number of antennas) is still far from optimum (exponen-
tial in the number of antennas). Important open problems include refinement of the analysis
to provide tight upper and lower bounds on SIR scaling, and devising efficient algorithms
for finding the quantized weights that approach the performance of the optimal quantized
weights.

11B = 1 corresponds to four quantization levels: {1 + j, 1 − j,−1 + j,−1 − j}. B = 1/2 corresponds to
two quantization levels: {1,−1}
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Figure 7.62: Normalized beamforming gain under GCD and scalar quantization (quantized
matched filtering) versus the number of antennas N for two different quantization levels
(B = 1, 1

2
): (a) Rayleigh channel. (b) LOS channel (a uniform linear array with a λ/2

spacing).
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Figure 7.63: Normalized beamforming gain under GCD and exhaustive search versus the
number of antennas N for two different quantization levels (B = 1, 1
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): (a) Rayleigh channel.

(b) LOS channel (a uniform linear array with a λ/2 spacing).
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Figure 7.64: Normalized beamforming gain under GCD with two different initializations
(quantized matched filter and a random initialization) versus the number of antennas N
for two different quantization levels (B = 1, 1

2
): (a) Rayleigh channel. (b) LOS channel (a
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Chapter 8

Conclusion and future work

In this work, we have presented an architecture for building high gain adaptive an-
tenna array systems for long range and high capacity systems. The hardware component
of the proposed architecture covers both the radio circuit design as well as the antenna
design. We found that a hybrid RF/digital beamforming radio architecture provides the
best trade off between performance (speed/precision/bandwidth) on the one hand, and cost
(complexity/power consumption) on the other hand. We also found that we can utilize 3-
dimensional array structures to improve the signal to noise ratio and the beam scan angle.
These structures are more compact than traditional planar antennas. In both cases, we
proposed different techniques for implementing the radio and antenna architecture with low
cost technologies like integrated circuits and printed circuit boards.

The software component of the framework is composed of signal processing and adap-
tive algorithms for optimizing the performance of arrays that utilize our proposed hardware
architecture. We introduced signal processing techniques that improve the performance of
conventional adaptive filters used for beamforming in the presence of adverse channel condi-
tions (e.g. noise, interference, fast fading and frequency offsets). We also proposed compu-
tationally efficient vector quantization techniques for improving the interference suppression
under low resolution and error prone RF and analog beamformers in large arrays.

Up to this point, we have validated our approach mostly with mathematical proofs and
computer simulations. The next logical step would be to implement those techniques in
hardware and test them in real world settings. Some of this work is already underway. We
have already built several prototypes of phased array antennas with 16 and 32 elements
operating at frequency bands in the 2.4GHz and 5GHz range (WiFi bands). The prototypes
were built with discrete circuit components mounted on PCBs. So far we have had success
with initial lab tests and some limited outdoor tests. However, more rigorous testing is
required before these prototypes can be deployed in a large scale outdoor testbed.

The next major step in fulfilling our ultimate goal is the realization of a fully integrated
beamforming solution. Although our project has been mainly focused on frequencies near
cellular bands (e.g. ISM bands), There are ongoing parallel efforts at the Berkeley Wireless
Research Center for building and testing a fully integrated phased array system at 60GHz
[4, 52, 34, 56]. As of now (December 2010), The project is at the stage where a fully integrated
4-channel phased array transceiver has been built and successfully tested (in 65nm CMOS
process) [56].
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There also remains a lot of work to be done on the algorithms side. We showed that even
though our proposed vector quantization algorithms improve the performance of the array
by a factor proportional to the number of antennas compared with scalar techniques, there
is still a lot of room for improvement. The performance of the techniques we have proposed
is quadratic in the number of antennas, whereas an exhaustive search of all reconstruction
levels can be exponential. Therefore, designing a tractable algorithm that approaches this
upper bound remains an open problem.

Another direction we would like to pursue in the future is to consider the impact of
incorporating beamforming and adaptive antenna techniques on the design of higher layers
in the network stack. In this work, we have restricted our attention to the physical layer.
However, existing higher layers in the protocol stack (e.g. MAC, network, transport) have
not taken into account recent advances in wireless technologies when originally designed.
In fact, some of these protocols, like TCP, have not been designed with wireless networks
in mind. Therefore, care must by taken when introducing new technologies to ensure that
the performance of upper layer protocols is not adversely affected. At the same time, we
need to consider how to design future networking protocols in order to take full advantage of
state of the art technologies in the wireless space, and how much improvement in the system
performance can be achieved when the different components of the system are designed
jointly compared when they are designed independently. There has already been some work
in this area [51, 16, 17, 19, 18]. However, we believe we barely scratched the surface.
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