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Abstract

In this work we study the problem of confidential communication when different resources of ran-

domness are available.

We start with the relay channel where source observations are available at each terminal. We

study the scenario where the transmitter (Alice) sends a private message to the destination (Bob),

which is confidential to the relay (Eve). Alice and Bob also want to agree on a secret key that is

protected from Eve. We propose an achievable scheme and show that if the channel is degraded or

reversely degraded, the secret message-secret key sum rate is optimal.

Then, we consider a scenario where three terminals, Alice, Bob and Charlie, observe memoryless

correlated observations. Alice wants to agree with Bob on a key that is secured from Charlie. At

the same time Alice wants to agree with Charlie on a key that is secured from Bob. We further

assume that Alice has no knowledge on how the distributed sources are correlated, and that she is

the one who constructs the codebooks for the key agreement. In order to construct the codebooks

which would achieve a desired level of secrecy, Alice request some information from Bob and Charlie

about their observations. Since Bob and Charlie act like eavesdroppers to each other, they may

not be completely honest about what they observe. Therefore, their reports are based on some

objective that is a function of the key rate and the amount of information they can learn about the

other user’s key, called the leakage rate. We approach this problem from a game-theoretic point of

view. For a class of Bob and Charlie’s objective functions that are linear in the key rate and the

leakage rate, we characterize a Nash equilibrium. Then, we propose a strategy that Alice can apply

in order to ensure that Bob and Charlie’s honest reporting is always a Nash equilibrium. Finally,

for the binary erasure source distributions we extend this concept to the multiple terminal case.
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Chapter 1

Introduction

The fact that channel randomness can be used as a resource for secret communication was first

observed by Wyner in [1]. He considered a point to point communication setup where Alice wants to

send a secret message to Bob that is perfectly concealed from an eavesdropper (Eve) who observes

some noisy version of that transmission. A perfectly secure message can be sent across such a

channel as long as the channel from Alice to Bob is less noisy than the channel from Alice to Eve.

Subsequent work in this area considered different channel problems: the broadcast channel [2],

the multiple access channel [3], the relay channel [4], [5], [6], [7], [8], a broadcast channel with

independent messages [9], the interference channel [9] etc.

On the other hand, correlated source observations can be viewed as another resource for secret

communication. In the simplest model, two terminals, Alice and Bob, observe correlated sources,

and want to agree on a secret key that is protected from an eavesdropper (Eve) who observes public

communication between them. It is shown in [2] that using a Slepian-Wolf coding scheme [10], one

can achieve the optimal key rate. This model was extended to the case when Eve, in addition to

having access to the public communication between Alice and Bob, has access to observations that

are correlated with Alice and Bob’s observations. Csiszár and Narayan proposed a coding scheme

that is based on Slepian-Wolf coding and Wyner’s wiretap channel code.

Further extensions of this model considered a multi-terminal key agreement, where a subset of

the terminals, observing distinct components of a discrete memoryless multiple source (DMMS),

want to agree on a key that is perfectly protected from an eavesdropper. To that end, terminals

are allowed to use a public noiseless channel that can be observed by all terminals including the

eavesdropper. These problems have been studied in [11] and [12].

The question that arises from the discussion is: what if we have both resources of randomness:

channel and correlated source observations? In this type of problems, terminals have access to
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discrete memoryless source observations, and they communicate through a noisy channel. The goal

is to find a tradeoff between the key rate and the secret message rate. For the special case of the

broadcast channel, this problem was studied in [13] and [14]. Under some special conditions it is

shown that a separation strategy for source and channel coding is optimal. In [15] and Chapter 2,

we study this problem for the relay channel. We assumed that the relay node (Eve) is curious

about the private communication between Alice to Bob, but not malicious in terms of altering the

communication protocol. Under some special channel and source distributions we determine the

optimal tradeoff between secret message-secret key sum rate.

The problem with all security related problems is that the legitimate users have to know how

powerful the eavesdropper is. Based on that information, they know how much of their communi-

cation is protected from the eavesdropper. Let us assume that two remote communication nodes,

say Alice and Bob, want to agree on a key by exploiting correlated observations at each node. They

know that an eavesdropper (Eve) is present, but they do not know her eavesdropping capabilities or

even how Eve, Alice and Bob’s observations are correlated. What can Alice and Bob do to ensure

some level of security? They can simply ask Eve to report how powerful she really is. But, Eve

has no incentive to do so unless she gets something in return. But this means that Eve has to be

a part of the system. In this thesis, we therefore consider a “symmetric” version of the classical

eavesdropping problem. To this end we modify our problem by assuming that there are three legit-

imate points of communications: Alice, Bob and Charlie. Alice wants to agree on a key with Bob

that is protected from Charlie. At the same time, she wants to agree on a key with Charlie that

is protected from Bob. In this scenario we essentially have two eavesdroppers (Bob and Charlie).

We assume that both Bob’s and Charlie’s capabilities are unknown to Alice, and it is up to them

to report that to her. If their goal is to maximize the amount of information they can eavesdrop,

then they will report nothing, just like in the previous scenario with the passive eavesdropper. The

problem with this decision is that Bob and Charlie will end up with no secure key shared between

them and Alice. On the other hand, if they honestly report their capabilities, they will use all of

their resources to agree with Alice on the keys, and will end up with no information about the

other user’s key. Therefore, we approach this problem from a game-theoretic point of view, where

Bob and Charlie base their reports on some utility functions. In [16] and Chapter 3, for a special

class of the utility functions, we characterized a stable solution, also known as Nash equilibrium.
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1.1 Overview of Thesis

Secure Communication using an Untrusted Relay

In Chapter 2 we investigate the problem where the transmitter (Alice) sends a private message to

the destination (Bob), which is confidential from the relay (Eve). Alice, Bob and Eve have access to

discrete memoryless source observations, which Alice and Bob can use to boost their security level.

Alice and Bob also want to agree on a secret key that is a function of Alice’s observations. We

propose an achievable scheme based on a separation strategy [13], and Cover and El Gamal’s scheme

(see Theorem 7 in [17]). We also show that if the channel is degraded or reversely degraded [17],

the secret message-secret key sum rate is optimal.

The Role of Game Theory in Key Agreement Over a Public Channel

In Chapter 3 we study the problem when three users, Alice, Bob and Charlie, observe the distinct

components of a discrete memoryless multiple source. For the purposes of key generation, Alice

can communicate with Bob and Charlie over a public channel. Alice and Bob (resp. Alice and

Charlie) want to agree on a key which is concealed from Charlie (resp. Bob). We assume that

the joint distribution PXY Z is unknown to Alice, and that her goal is to learn it. To that end she

requests from Bob and Charlie to send her sufficient information about their observations over the

public channel. In return, Alice constructs the codebooks for the key agreements. We also assume

that Bob and Charlie, besides agreeing with Alice on the keys, want to learn as much as possible

about the other user’s key: we call this quantity the leakage. We model the reports by having Bob

and Charlie select discrete memoryless channels and passing their true observations through them.

We approach this problem from a game-theoretic point of view. For a class of Bob and Charlie’s

objective functions which are linear in the key rate and the leakage rate, we characterize a Nash

equilibrium. Also, we propose a strategy that Alice can apply in order to ensure that Bob and

Charlie’s honest reporting is a Nash equilibrium.
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Chapter 2

Secure Communication using an

Untrusted Relay

2.1 Introduction

The problem of secret communication in relay channels was first studied by Oohama in [4]. He

considered the model where the relay is an eavesdropper, while at the same time it helps transmis-

sion of the message to destination. He proposed an achievable scheme that is based on a partial

decode and forward (PDF) strategy [17], and an outer bound which coincides with the inner bound

in the case of a reversely degraded relay channel (defined in [17]). Yener and He in [5] suggested a

new achievable strategy that is based on compress and forward [17], and in [6] proposed an outer

bound for the relay channel with orthogonal components. Secrecy in relay channels with external

eavesdropper is observed in [7] and [8]. In their recent work, Ekrem and Ulukus [18] studied relay

broadcast channels where the relay and the receiver see each other as eavesdroppers.

The fact that dependent source observations at the terminals can be used as a resource for

generating secret key (a uniform random variable shared by Alice and Bob which is oblivious to

Eve) was recognized by Ahlswede and Csiszár [19] and Maurer [20]. In [21], the problem of secret

key generation with a helper was studied where it is assumed that a noiseless rate constrained

channel is available from Alice to Bob, while Eve can overhear any communication across that

channel. The scenario where both secret communication and secret key agreement are desired

in the presence of noisy one-way broadcast channel and correlated sources at each terminal, was

studied by Prabhakaran, Eswaran and Ramchandran in [13].

We propose an achievable scheme based on a separation strategy [13], and Cover and El Gamal’s

scheme (see Theorem 7 in [17]). We also show that if the channel is degraded or reversely de-
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graded [17], the secret message-secret key sum rate is optimal.
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2.2 Problem Setup

Notation: Random variables are denoted by upper-case letters, their realizations by lower-case let-

ters, and the alphabets over which they take values by calligraphic letters. A vector (X1,X2, ...,Xn)

will be denoted as Xn.

M,K
Alice

XA

SA

PYB ,YE |XA,XE

Eve

YE XE

SE

YB
Bob

SB

M̂, K̂

PSA,SB ,SE

Figure 2.1: Relay channel model with correlated observations. Alice Bob and Eve have access to

a memoryless source observations Sn
A, S

n
B and Sn

E. Alice uses the relay channel and the observed

sequence Sn
A to send a private message M to Bob and to agree with him on a key K. Both M and

K are perfectly protected from Eve.

The relay channel model (see Figure 2.1) consists of a message set M, two input alphabets XA

and XE, and two output alphabets YE and YB. The channel is assumed to be discrete memoryless

with transition probability distribution PYE ,YB|XA,XE
, where XA ∈ XA, XE ∈ XE , YE ∈ YE and

YB ∈ YB . We assume that the source observations Sn
A, S

n
B and Sn

E are memoryless, independent

of the channel and have joint distribution pSA,SB,SE
over the alphabet SA ×SB ×SE . The number

of source observations is the same as the number of channel uses available. Let M and K be

uniformly distributed random variables taking values in the alphabets M = {1, ..., 2nRM } and

k ∈ K = {1, ..., 2nRK } respectively. The random variable M is a private message sent only to the

receiver that contains information that needs to be kept secret from the relay. Suppose the parties

make n observations of their sources.

Based on her side information Sn
A, Alice creates a secret key K = g(Sn

A) for some g which has

to satisfy the following properties

• Key K has to be ǫ-recoverable from (Sn
B , Y

n
B ), meaning that there exists a function f such

that Pr(K 6= f(Sn
B, Y

n
B )) < ǫ.

• Both key K and message M have to satisfy secrecy condition:

1

n
I(M,K;Y n

B , S
n
E) < ǫ
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• K also has to satisfy uniformity condition:

1

n
H(K) ≥ log |K| − ǫ

We say that the key K is ǫ-secret if it satisfies all these properties above. We define (RK,ǫ, RM,ǫ)

to be an ǫ-achievable rate pair if there exists an ǫ-secret key K such that 1
n
H(K) = RK,ǫ, and the

message M that is ǫ-recoverable from (Y n
B , S

n
B) such that 1

n
H(M) = RM,ǫ. A rate pair (RM , RK)

is said to be achievable if there is a sequence of ǫn such that (RM,ǫn , RK,ǫn) are ǫn-achievable rate

pairs, and as n→ ∞,

ǫn → 0, RM,ǫn → RM , RK,ǫn → RK
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2.3 Results

In order to provide an achievable scheme for the problem above, we first consider the scenario

without correlated observations, where besides the secret message, here denoted by MS, we have

a public message MP which can also be decoded by Bob, but it is not protected from Eve (see

Figure 2.2). The Coding strategy is based on the Cover and El Gamal’s scheme (see Theorem 7 in

[17]), random binning [1], and channel prefixing [2].

MS ,MP
Alice

XA
PYB ,YE |XA,XE

Eve

YE XE

YB
Bob

M̂S , M̂P

Figure 2.2: Relay channel model with confidential and public messages. Alice uses the relay channel

to transmit the secret message MS to Bob that is perfectly protected from Eve. She also sends to

Bob the public message MP that is not protected from Eve

Definition 2.1. An (2nRS , 2nRP , n) code for the relay channel (XA,XE , PYE ,YB|XA,XE
,YE,YB) with

confidential messages consists of the following

1. Sets of integers MS = {1, 2, ..., 2nRS } and MP = {1, 2, ..., 2nRP }

2. An encoding function Xn
A : MS ×MP → X n

A and a set of relay functions {fi}ni=1 such that

X2i = fi(YE,1, YE,2, ..., YE,i−1), 1 ≤ i ≤ n

3. Decoding functions

g1 : YB → MS

g2 : YB → MP

Let MS andMP be uniformly distributed random variables taking values in the alphabets MS and

MP , respectively, then the rate pair (RS , RP ) is said to be achievable if

Pr{MS 6= g1(Y
n
B )} ≤ ǫ

Pr{MP 6= g2(Y
n
B )} ≤ ǫ

1

n
H(MS) ≥ RS − ǫ

1

n
H(MP ) ≥ RP − ǫ

1

n
I(MS ;Y

n
E ,X

n
E) ≤ 4ǫ (2.1)
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where limn→∞ ǫ = 0.

We define R̃c to be the set of all achievable rate pairs (RS , RP ).

Let Pc denote the set of all joint distributions of random variables V , U , VA, XA, XE , YE , Ŷ2,

YB satisfying

P
V,U,VA,XA,XE ,YE ,ŶE ,YB

= PV PU |V PVA|UPXA|VA
PXE |V PYE ,YB|XA,XE

P
ŶE |XE ,YE ,U

, (2.2)

For p ∈ Pc, let Rc(p) be the set of all non-negative rate pairs (RS , RP ) which satisfy the following

inequalities:

RS ≤ {I(VA;YB, Ŷ2|XE , U)− I(VA;YE |XE , U)}+

RS +RP ≤ min{I(V ;YB) + I(U ;YB |XE , V ), I(U ;YE |XE , V )}+ I(VA;YB , ŶE|XE , U)

subject to constraint

I(XE ;YB |V ) ≥ I(Ŷ2;YE|YB ,XE , U). (2.3)

Theorem 2.1.

R̃c ⊇
⋃

p∈Pc

Rc(p).

A complete proof of theorem 2.1 is provided in the Appendix A.

Remark 2.1. If we suppress the common message by setting V = 0, U = 0, the channel coding

strategy reduces to compress and forward [5]

RS ≤ {I(VA;YB , ŶE |XE)− I(VA;YE |XE)}+

subject to

I(Ŷ2;YE |XE , YB) ≤ I(XE ;YB), (2.4)

for any joint distribution of the form

PVA
PXA|VA

PXE
PYE ,YB|XA,XE

P
ŶE |XE ,YE

(2.5)

Remark 2.2. If we disable cooperation between the relay and the destination by setting V =

0, XE = 0, ŶE = 0, the channel model reduces to the broadcast channel with the confidential

messages [2].

RS +RP ≤ I(VA;YB |U) + min{I(U ;YB), I(U ;YE)}

RS ≤ {I(VA;YB |U)− I(VA;YE |U)}+, (2.6)
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for any joint distribution

PUPVA|UPXA|VA
PYE ,YB|XA

, (2.7)

which implies that the Markov chain U − VA −XA − (YE , YB) holds.

Remark 2.3. By setting Ŷ2 = 0 and V = XE we obtain Oohama’s [4] partial decode and forward

strategy when stochastic encoder is used.

RS +RP ≤ I(VA;YB|U,XE) + min{I(U,XE), I(U ;YE |XE)}

RS ≤ {I(VA;YB |U,XE)− I(VA;YE |XE , U)}+,

for any joint distribution of the form

PXE
PU |XE

PVA|UPXA|VA
PYE ,YB|XA,XE

. (2.8)

Going back to our original problem, an achievable scheme is based on a separation strategy [13]

which converts the relay channel into a public and private bit pipe. The public bit pipe delivers

bits reliably to both Alice and Eve, while bits sent over the private bit pipe are reliably delivered to

Bob and are perfectly secret form Eve. Then, the sources are used to generate a secret key shared

by Alice and Bob, part of which is used to increase the secret message rate by one time padding

the message sent over the public bit pipe with a key of equal size. We define R̃ to be the set of all

achievable rate pairs (RM , RK).

Let P denote the set of all joint distributions of random variables W , V , U , VA, XA, XE , YE ,

ŶE, YB, SA, SB , SE satisfying

P
V,U,VA,XA,XE ,YE ŶE ,YB

= PV PU |V PVA|UPXA|VA
PXE |V PYE ,YB |XA,XE

P
ŶE |XE ,YE ,U

, (2.9)

PW,SA,SB ,SE
= PWPSA|WPSB ,SE |SA

(2.10)

such that W and (V, VA) are independent.

For p ∈ P, letR(p) be the set of all non-negative rate pairs (RM , RK) which satisfy the following

inequalities:

RK +RM ≤ {I(VA;YB , ŶE |XE , U)− I(VA;YE |XE , U)}+

+ {I(W ;SB)− I(W ;SE)}+ (2.11)

RM ≤ I(VA;YB, ŶE |XE , U)

+ min{I(V ;YB) + I(U ;YB |XE , V ), I(U ;YE |XE , V )}

− I(W ;SA|SB) (2.12)

subject to constraint

I(XE ;YB |V ) ≥ I(ŶE ;YE|YB ,XE , U).

14



Theorem 2.2.

R̃ ⊇
⋃

p∈P

R(p).

Sketch of Proof : Using similar strategy as in [13] and the results from Theorem 2.1, we create

secret and public bit pipes of rates RS and RP respectively. Over the secret bit pipe we send a part

of the secret message at rate RM1 and a part of the bin index from a Wyner-Ziv source coder to

generate part of the key of rate RK1. Then, we use the public bit pipe for the following purposes:

• Generate a secret key of rate RK2 + RM2 by sending the remainder of the Wyner-Ziv bin

index.

• Send the remaining part of the secret message at rate RM2 one-time padded by RM2 bits of

the secret-key.

From the analysis above, the following has to be satisfied:

RK1 +RM1 ≤ RS = [I(VA;YB , ŶE |XE , U)− I(VA;YE |XE , U)]+ (2.13)

Csiszar and Ahlswede showed in [19] that the achievable key rate we can derive from the source is

{I(W ;SB)− I(W ;SE)}+, where W , SA, SB, SE satisfy W − SA − (SB , SE). Thus, we have

RK2 +RM2 ≤ {I(W ;SB)− I(W ;SE)}+ (2.14)

The bin information should fit into its allocated bin budget:

RM1 +RM2 + I(W ;SA|SB) ≤ RS +RP (2.15)

The one time padded part of the secret message is sent over the public bit pipe together with the

common message, so they should not exceed the public bit pipe rate

RM2 ≤ RP (2.16)

To get the achievable rate region, we write

RK = RK1 +RK2 (2.17)

RM = RM1 +RM2. (2.18)

By eliminating variables RK1, RK2, RM1, RM2 we obtain the results from Theorem 2.2. A complete

proof of Theorem 2.2 is provided in the Appendix A.
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Remark 2.4. If we disable cooperation between the relay and the destination by setting XE = 0,

ŶE = 0, U = V , the channel model reduces to the broadcast channel observed in [13].

RK +RM ≤ [I(VA;YB |U)− I(VA;YE |U)]+

+ [I(W ;SB)− I(W ;SE)]+

RM ≤ I(VA;YB)− I(W ;SA|SB), (2.19)

for any joint distributions which satisfy

PU,VA,XA,YB,YE
= PUPVA|UPXA|VA

PYE ,YB|XA

PW,SA,SB,SE
= PWPSA|WPSB ,SE |SA

.
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2.4 An Outer Bound

An outer bound on the rate-equivocation region for the relay channel without correlated observa-

tions is derived in [4], and later improved in [6] for the relay channel with orthogonal components.

Now, we provide an outer bound for the secret message-secret key rate region which is based on

Oohama’s [4] outer bound for the relay channel with confidential messages and an outer bound on

the secret message-secret key rate region for the broadcast channel with correlated observations

studied in [13].

Theorem 2.3. The secret key-secret message rate region of the relay channel PYE ,YB|XA,XE
with

correlated observations lies in the union of the following rate pairs,

RM ≤ I(XA,XE ;YE , YB)− I(W ;SA|SB)

RM +RK ≤ I(XA;YB |XE , YE) + I(W ;SB |SE),

where (W,SA, SB, SE) form the Markov Chain W − SA − (SB , SE).

Proof of Theorem 2.3 can be found in the Appendix A.

Remark 2.5. If the relay channel is reversely degraded [17] i.e. PYB ,YE |XA,XE
= PYB |XA,XE

PYE |YB,XE

and (W,SA, SB , SE) form the Markov chain W − SA − SB − SE , then inner and outer bound on

the secret message-secret key sum rate coincide.

To show this, note that I(W ;SB |SE) = I(W ;SB)−I(W ;SE) and I(XA, YB|XE , YE) = I(XA;YB |XE)−
I(XA;YE |XE). Applying this to the Theorem 2.3, we have

RM +RK ≤ I(XA;YB |XE)− I(XA;YE|XE)

+ I(W ;SB)− I(W ;SE),

which is achieved by setting VA = XA, U = V = 0, ŶE = 0 in the Theorem 2.2.

Remark 2.6. If the relay channel is degraded [17] i.e. PYB ,YE |XA,XE
= PYE |XA,XE

PYB |YE ,XE
and

(W,SA, SB , SE) form the same Markov chain as in the previous remark, we again have that the

secret message-secret key sum rate is optimal.

It is immediately clear from the definition of the degraded relay channel that I(XA;YB|XE , YE) =

0. Therefore,

RM +RK ≤ I(W ;SB)− I(W ;SE),

which is always achievable according to the Theorem 2.2.
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2.5 Gaussian Relay Channel

In this section we confirm our previously stated result about the sum rate optimality when the relay

channel is degraded or reversely degraded, and the sources are distributed such that the Markov

chain SA − SB − SE holds.

2.5.1 Reversely Degraded Gaussian Channel

Reversely degraded Gaussian channel can be defined as follows:

YB = XA +XE + Z2 (2.20)

YE = XA + Z1, (2.21)

where E[X2
A] ≤ PA, E[X

2
E ] ≤ PE , Z2 ∼ N (0, N2), Z1 = Z2 + Z1|2, where Z1|2 ∼ N (0, N1 −N2) is

independent of Z2, and N1 > N2. Rewriting (2.22) and (2.23) we obtain

YB = XA +XE + Z2

YE = XA + Z2 + Z1|2,

from which it is easy to verify that the Markov chain XA − (YB,XE) − YE holds. For the source

model, we assume that the observations at Alice, Eve and Bob are jointly Gaussian, where SB =

SA+ZB, SE = SA+ZE such that SA ∼ N (0, NA), ZB ∼ N (0, NB) and ZE ∼ N (0, NE). Calculating

the inner and the outer bound from the Theorems 2.2 and 2.3, for θ ∈ [0, 1] and ν ∈ [0, 1], we obtain:

RM +RK ≤ 1

2
ln

(

1 +
PA(1− θ2)

N2

)

− 1

2
ln

(

1 +
PA(1− θ2)

N1

)

+
1

2
ln

(

1 +
ν̄NA

νNA +NB

)

− 1

2
ln

(

1 +
ν̄NA

νNA +NE

)

RM ≤ 1

2
ln

(

1 +
PA(1− θ2)

N2

)

− 1

2
ln

(

1 +
ν̄NA

ν(NA +NB)

)

,

for the inner bound, and

RM +RK ≤ 1

2
ln

(

1 +
PA(1− θ2)

N2

)

− 1

2
ln

(

1 +
PA(1− θ2)

N1

)

+
1

2
ln

(

1 +
ν̄NA

νNA +NB

)

− 1

2
ln

(

1 +
ν̄NA

νNA +NE

)

RM ≤ 1

2
ln

(

1 +
PAPE(1− θ2) + PA(N1 −N2) + PEN1 + 2(N1 −N2)θ

√
PAPE

N2(N1 −N2)

)

− 1

2
ln

(

1 +
ν̄NA

ν(NA +NB)

)

,

for the outer bounder, where x̄ = 1 − x. Rate region in Figure 2.3 shows message-key sum rate

optimality when the relay channel is reversely degraded.
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Figure 2.3: Reversely degraded relay channel: (RK , RM ) rate region. PA = PE = 10, N2 = 1,

N1 = 2, NA = 1, NB = 1, NE → ∞. The figure shows the secret key-secret message sum rate

optimality.

2.5.2 Degraded Gaussian Relay Channel

Degraded Gaussian channel can be defined as follows:

YB = XA +XE + Z2 (2.22)

YE = XA + Z1, (2.23)

where E[X2
A] ≤ PA, E[X

2
E ] ≤ PE , Z1 ∼ N (0, N1), Z2 = Z1 + Z2|1, where Z2|1 ∼ N (0, N2 −N1) is

independent of Z1, and N2 > N1. Rewriting (2.22) and (2.23) we obtain

YB = XA +XE + Z1 + Z2|1

YE = XA + Z1,
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from which it is easy to verify that the Markov chain XA − (YE ,XE)− YB holds. Calculating the

inner and the outer bound from the Theorems 2.2 and 2.3, for θ ∈ [0, 1] and ν ∈ [0, 1], we obtain:

RM +RK ≤ 1

2
ln

(

1 +
ν̄NA

νNA +NB

)

− 1

2
ln

(

1 +
ν̄NA

νNA +NE

)

RM ≤ 1

2
ln

(

1 +
PA(1− θ2)

N2

)

− 1

2
ln

(

1 +
ν̄NA

ν(NA +NB)

)

,

for the inner bound, and

RM +RK ≤ 1

2
ln

(

1 +
ν̄NA

νNA +NB

)

− 1

2
ln

(

1 +
ν̄NA

νNA +NE

)

RM ≤ 1

2
ln

(

1 +
PAPE(1− θ2) + PA(N2 −N1) + PEN2 + 2(N2 −N1)θ

√
PAPE

N1(N2 −N1)

)

− 1

2
ln

(

1 +
ν̄NA

ν(NA +NB)

)

,

for the outer bounder. Rate region in Figure 2.4 shows message-key sum rate optimality when the

relay channel is degraded.
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Figure 2.4: Degraded relay channel: (RK , RM ) rate region. PA = PE = 10, N2 = 2, N1 = 1,

NA = 1, NB = 1, NE → ∞. The figure shows the secret key-secret message sum rate optimality.
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Chapter 3

The Role of Game Theory in Key

Agreement Over a Public Channel

3.1 Introduction

The fact that dependent source observations at the terminals can be used as a resource for generating

secret key was recognized by Ahlswede and Csiszar [19] and Maurer [20]. This work was later

extended to multi terminal key agreement (see [22], [23], [11], [12]).

Connections between game theory and information theory were studied in [24] and [25], [26].

Also, the role of game theory in cryptography, especially in the problems of multiparty compu-

tation, where multiple terminals want to agree on some function of their private observations by

transmitting them over a public channel, has been studied in [27], [28].

In this chapter we study the problem of key agreement over a public channel in the presence

of distributed source observations available to each terminal, when only partial knowledge about

their observations is available. We restrict our attention to the three-terminal problem in which

Alice wants to agree with Bob and Charlie on keys KAB and KAC , which are perfectly secret from

Charlie and Bob, respectively.

Alice observes Xn = (X1, ...,Xn), Bob observes Y n = (Y1, ..., Yn), and Charlie observes Zn =

(Z1, ..., Zn), which are elements of X n,Yn,Zn. They can transmit any function of their observations

over a public noiseless channel in order to construct the keys KAB and KAC .

We assume that Alice constructs the codebooks for both keys, and defines the protocol for

the key agreement. To this end, she has to know how “powerful” Bob and Charlie are in terms of

agreeing with her on a key, and in terms of eavesdropping on the other user’s key. The notion of the

capabilities of the three nodes is captured by the joint pmf PXY Z , which is not available to Alice.
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In order to learn this joint distribution, she requests from Bob and Charlie sufficient information

about their observations over the public channel.

We model these reports by having Bob and Charlie select discrete memoryless channels PYr |Y

and PZr |Z , respectively, and essentially sending the information about Yr and Zr over the public

channel (see Figure 3.1). After this, Alice gets access to PXYrZr , and Bob and Charlie both know

PXY YrZZr . Based on the distribution PXYrZr , Alice constructs and sends to Bob and Charlie, the

codebooks for the keys KAB and KAC .

Why do we consider the problem where Bob and Charlie may lie about their observations? To

address this, let us investigate their incentives. Specifically, Bob, as an eavesdropper, is motivated

to misreport his observations, because this gives him a chance to “snoop” more about the key KAC .

But Bob, as a legitimate user, wants to report honestly because this maximizes the key rate that

he can agree with Alice. The same holds for Charlie. Alice, on the other hand, wants to keep both

of them honest because she wants the keys KAB and KAC to be perfectly secret.

Alice

Xn

KAB

KAC

public
channel

Bob

Y n

Charlie

Zn

KAB

KAC

PYr |Y Y n
r

PZr |Z Zn
r

Figure 3.1: Key agreement over a noiseless public channel with unknown joint statistics. Alice

agrees with Bob on a key KAB that is perfectly protected from Charlie. Alice and Charlie agree

on a key KAC that is perfectly protected from Bob. To construct the codebooks for the key

agreement Alice requests from Bob and Charlie to send her some sufficient information about their

observations. Here we model these reports by having Bob and Charlie select discrete memoryless

channels PYr |Y and PZr |Z , respectively, and send sufficient information about Yr and Zr over the

public channel.

We phrase this as a game-theoretic problem. Bob and Charlie select the channels PYr |Y and

PZr |Z , respectively, based on an objective that is a function of their key rates and the amount of

information they can learn about each other’s keys, called the leakage rates. Moreover, Alice’s

behavior is fully known to both Bob and Charlie.
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For simplicity, we consider linear objectives:

UBob = RAB + λRL
AC for some PYr |Y ,

UCharlie = RAC + λRL
AB for some PZr |Z , (3.1)

where λ ∈ [0, 1], RAB and RAC are the rates of the keys KAB and KAC , respectively, and R
L
AB and

RL
AC denote the leakage rates of the keys KAB and KAC , respectively. Considering more general

classes of utility functions is a part of ongoing and future research.

As mentioned above, Alice’s strategy for the key agreement is fixed and known to everyone. In

this work we analyze two games defined as follows:

Game 1

In this game Bob and Charlie choose their reports PYr |Y and PZr |Z by maximizing their utility

functions (3.1). Alice maximizes both key rates RAB and RAC by constructing the codebooks

based on the reported source distribution PXYrZr .

Game 2

In game 1 we assigned Alice a completely passive role, in which she just blindly accepts what

Bob and Charlie report. However, one obvious goal for Alice is to keep Bob and Charlie honest,

because Alice wants the keys KAB and KAC to be as protected as possible. Hence, in this game we

study the scenario where Alice can modify the reports and construct the codebooks based on some

function of Bob and Charlie’s reported observations. Moreover, we assume that Bob and Charlie

have access to the source distributions PXY and PXZ , respectively.

In Game 2 Alice intentionally reduces the key rate in order to lower the leakage rate and enforce

honesty. It is important to point out that Alice has no access to the true joint source distribution

PXY Z . Hence, in Game 2, her protocol cannot depend on it.
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3.2 Problem Statement

A pair of random variables (KAB ,KAC) represents a pair of ǫ-keys if there exist two other pairs of

random variables (K̂AB , K̂AC) and (K̃AB , K̃AC) satisfying

K̂AB = K̂AB(g,X
n) K̂AC = K̂AC(g,X

n),

K̃AB = K̃AB(g, Y
n
r ) K̃AC = K̃AC(g, Z

n
r ),

where K̂AB (K̂AC) and K̃AB (K̃AC) take values in the same finite set KAB (KAC), and g denotes

all transmissions over the public channel such that

Pr{KAB 6= K̂AB} ≤ ǫ, Pr{KAC 6= K̂AC} ≤ ǫ,

Pr{KAB 6= K̃AB} ≤ ǫ, Pr{KAC 6= K̃AC} ≤ ǫ.

In addition, the ǫ-keys generated between Alice and Bob, and Alice and Charlie, respectively, have

to satisfy an independence condition: I(KAB ;KAC) ≤ ǫ, a secrecy condition:

1

n
I(KAB ; g, Z

n
r ) ≤ ǫ,

1

n
I(KAC ; g, Y

n
r ) ≤ ǫ,

and a uniformity condition:

1

n
H(KAB) =

1

n
log |KAB | − ǫ = RAB,ǫ,

1

n
H(KAC) =

1

n
log |KAC | − ǫ = RAC,ǫ.

If all of the above conditions are satisfied, we say that the key rate pair (RAB,ǫ, RAC,ǫ) is ǫ-achievable.

A key rate pair (RAB , RAC) is said to be achievable if there is a sequence of ǫn such that

(RAB,ǫn , RAC,ǫn) are ǫn-achievable key rate pairs, and as n → ∞, ǫn → 0, RAB,ǫn → RAB and

RAC,ǫn → RAC . Since the agreement relies on, in general, a false joint source distribution PXYrZr ,

part of the keys KAB and KAC may leak to Charlie and Bob, respectively. We call this leakage

rate and formally define it as follows:

Definition 3.1. The leakage rate RL
AB for key KAB is defined to be

RL
AB =

1

n
I(KAB ; g, Z

n). (3.2)

It models a part of the key KAB that Charlie may be able to decode. Similarly, we define

RL
AC =

1

n
I(KAC ; g, Y

n), (3.3)

where Y n and Zn correspond to Bob and Charlie’s actual observations, respectively.
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We define R̃ to be the set of all achievable rate tuples (RAB , R
L
AB , RAC , R

L
AC).

Let us now formally define game 1 and game 2.

Definition 3.2. In Game 1 we define Alice, Bob and Charlie’s utility functions as follows:

• UBob = maxPYr|Y
RAB + λRL

AC for some PYr |Y .

• UCharlie = maxPZr |Z
RAC + λRL

AB for some PZr |Z .

• Upon receiving information about Yr and Zr from Bob and Charlie, respectively, Alice con-

structs the codebooks for key agreement based on the the joint source distribution PXYrZr

and objective function

UAlice = maxRAB +maxRAC

Definition 3.3. In Game 2 we define Alice, Bob and Charlie’s utility functions as follows:

• UBob = maxPYr|Y
RAB+λRL

AC for some PYr |Y such that the Markov chain (X,Z,Zr)−Y −Yr
holds. This is equivalent to saying that Bob has no knowledge about the true joint source

distribution PXY Z .

• UCharlie = maxPZr |Z
RAC+λR

L
AB for some PZr|Z such that the Markov chain (X,Y, Yr)−Z−Zr

holds. This is equivalent to saying that Charlie has no knowledge about the true joint source

distribution PXY Z .

• Upon receiving information about Yr and Zr from Bob and Charlie, respectively, Alice con-

structs the codebooks for key agreement based on the joint source distribution PXYrZr such

that Yr = Y and Zr = Z is Nash equilibrium.
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3.3 An Achievable Key Agreement Scheme

Let P1 be the set of all joint distributions of random variables U , X, Y , Yr, Z and Zr that can be

written as

PXY ZPYr |Y PU |Yr
PZr|Z . (3.4)

Similarly, we define P2 to be the set of all joint distributions of random variables V , X, Y , Yr, Z

and Zr that can be written as

PXY ZPZr |ZPV |Zr
PYr |Y . (3.5)

For p ∈ P1, let R1(p) be the set of all non-negative rate pairs (RAB , R
L
AB , RAC , R

L
AC) which satisfy

the following inequalities:

RAB ≤ I(Yr;X|U) − I(Yr;Zr|U),

RL
AB ≤ I(Yr;Z|U)− I(Yr;Zr|U),

RAC ≤ I(X;Zr |Yr),

RL
AC ≤ I(Zr;Y )− I(Zr;Yr).

Similarly, for p ∈ P2, we define R2(p) to be the set of all rate tuples which satisfy the following

inequalities:

RAB ≤ I(X;Yr|Zr),

RL
AB ≤ I(Yr;Z)− I(Yr;Zr),

RAC ≤ I(Zr;X|V )− I(Zr;Yr|V ),

RL
AC ≤ I(Zr;Y |V )− I(Zr;Yr|V ),

where U and V take values in U and V, respectively, such that |U| ≤ |Y|+ 1 and |V| ≤ |Z|+ 1.

Theorem 3.1.

R̃ ⊇ Co (R1(p) ∪R2(p)) for some p ∈ P1 ∪ P2,

where Co denotes the convex hull.

Sketch of Proof: Here, we just show the achievability for the R1 region. The key agreement

protocol is performed in two stages ([29], Theorem 2.2 ): First, Bob agrees with Alice on a key

KAB by treating Charlie as an eavesdropper. Applying the results from [19] RAB ≤ I(Yr;X|U) −
I(Yr;Zr|U) for U −Yr− (X,Zr). Charlie as an eavesdropper has access to the true observations zn,
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and thus can reduce uncertainty about the key KAB . Alice partitions the codebook in such a way

that each bin has exactly one sequence ynr that is jointly typical with znr . Since Charlie observes

zn, there will actually be approximately 2nR
L
AB ≤ 2n(I(Yr ;Z)−I(Yr ;Zr)) bins which have exactly one

sequence zn that is jointly typical with ynr . In the second stage, Alice has access to Yr, and Charlie

agrees with her on a key KAC at the rate RAC ≤ I(Zr;X,Yr) − I(Zr;Yr) = I(X;Zr|Yr). It is

straightforward to show, that the leakage rate for the key KAC is RL
AC ≤ I(Zr;Y ) − I(Zr;Yr). A

complete proof of Theorem 3.1 is provided in the Appendix B.
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3.4 Binary Erasure Distribution

In this example we consider an erasure source distribution: let X ∼ Ber(12), and let Y and Z

correspond to the output of an erasure channel with input X, and erasure probabilities ǫ and δ,

respectively.

3.4.1 Game 1

As pointed out above, Bob and Charlie are ready to sacrifice their key rate in order to gain in

leakage rate. We consider the following utility functions:

UBob = RAB + λRL
AC for some ǫr ≥ ǫ, (3.6)

UCharlie = RAC + λRL
AB for some δr ≥ δ. (3.7)

Based on the utilities and their knowledge of the true joint distribution PXY Z , they select condi-

tional distributions PYr |Y and PZr |Z , respectively. As pointed out in the introduction, PYr |X and

PZr |X are also Binary Erasure Channels. It can be shown that Alice maximizes both key rates by

setting U = V = 0 in Theorem 3.1.

Remark 3.1. For U = V = 0, if the Markov chain Y −X −Z holds, then the following rate tuple

(RAB , R
L
AB , RAC , R

L
AC) is achievable:

RAB ≤ I(Yr;X)− I(Yr;Zr),

RL
AB ≤ I(Yr;Z)− I(Yr;Zr),

RAC ≤ I(Zr;X) − I(Zr;Yr),

RL
AC ≤ I(Zr;Y )− I(Zr;Yr).

This result directly follows from Theorem 3.1 by noticing that R1 and R2 provide the same rate

region. From now on we restrict attention to those source distributions for which the Markov chain

Y − X − Z holds. It is easy to verify that the binary erasure source satisfies this Markov chain

condition.

Before we continue with the analysis of this game, we state a formal definition of Nash equilibria.

Definition 3.4. Nash equilibria are stable states of a system that involves several interacting

participants in which no participant can gain by a change of strategy as long as all the other

participants remain unchanged.

As pointed out in Definition 3.2, Bob and Charlie have access to the true joint distribution

PXY Z . In this example this means that they both know ǫ and δ.
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Claim 1. For the binary erasure source distribution with parameters ǫ and δ, Nash equilibrium for

Game 1, can be computed as follows:

(ǫr, δr) =











































(ǫ, δ) if ǫ > λ
λ+1 and δ > λ

λ+1

(ǫ, 1) if ǫ < λ
λ+1 and δ > λ

λ+1

(1, δ) if ǫ > λ
λ+1 and δ < λ

λ+1

(ǫ, 1) and (1, δ) if ǫ < λ
λ+1 and δ < λ

λ+1

Let us prove this claim: setting U = V = 0 in Theorem 3.1 we have:

RAB = δr(1− ǫr), RL
AB = (δr − δ)(1 − ǫr),

RAC = ǫr(1− δr), RL
AC = (ǫr − ǫ)(1− δr).

Hence, Bob and Charlie’s utilities is equal to

UBob = δr(1− ǫr) + λ(ǫr − ǫ)(1 − δr),

UCharlie = ǫr(1− δr) + λ(δr − δ)(1 − ǫr),

respectively. Optimizing these utilities, we have

arg max
ǫ≤ǫr≤1

UBob = arg max
ǫ≤ǫr≤1

ǫr(λ− δr(λ+ 1)),

arg max
δ≤δr≤1

UCharlie = arg max
δ≤δr≤1

δr(λ− ǫr(λ+ 1)).

Hence ǫr and δr are chosen in the following way:

ǫr =











ǫ if δr >
λ

λ+1

1 if δr <
λ

λ+1

δr =











δ if ǫr >
λ

λ+1

1 if ǫr <
λ

λ+1

This analysis shows that the considered Nash equilibrium sits at the corner points i.e. ǫr = {ǫ, 1},
δr = {δ, 1}. Knowing this, the Nash equilibrium can be easily computed by observing the utility

matrix in Figure 3.2: the entries of the matrix are the utilities evaluated at the points of interest

(in each box, the left entry for Charlie and the right entry for Bob).

When ǫ > λ
λ+1 and δ > λ

λ+1 , Bob and Charlie have no incentive to unilaterally change their

strategies and move from the upper left box of the utility matrix. In other words if Bob changes his

strategy from ǫr = ǫ to ǫr = 1 he will decrease his utility functions (upper right box of the utility

matrix). Similarly, is Charlie changes his strategy from δr = δ to δr = 1 he will also decrease his

utility function (lower left box of the utility matrix). When ǫ > λ
λ+1 and δ < λ

λ+1 , Bob and Charlie

have no incentive to unilaterally change their strategies and move from the upper right box of the
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δ(1 − ǫ) λ(1− ǫ)(1 − δ)

ǫ(1− δ) 1− δ

1− ǫ

λ(1− ǫ)(1− δ)

0

0

ǫr = ǫ ǫr = 1

δr = δ

δr = 1

UBob

UCharlie

Figure 3.2: Utility matrix: In each box, the left entry is Charlie’s utility, and the right entry is

Bob’s utility.

utility matrix. When ǫ < λ
λ+1 and δ > λ

λ+1 , Bob and Charlie have no incentive to unilaterally

change their strategies and move from the lower left box of the utility matrix. When ǫ < λ
λ+1 and

δ < λ
λ+1 , Bob and Charlie have no incentive to unilaterally change their strategies and move from

the upper right box of the utility matrix. They also have no incentive to unilaterally change their

strategies and move from the lower left box of the utility matrix. Hence, for this case there exists

two Nash equilibria.

3.4.2 Game 2

As we can see from the analysis above, the Nash equilibrium depends on the true distributions of

both players. The question we ask is: what should Alice do in this game in order to ensure that

honest reporting by both players is a Nash equilibrium. The answer to this is straightforward if

Alice is ready to consciously leak a portion of the keys she agreed upon with Bob and Charlie. She

generates both keys according to the following parameters:

ǫ̃ =











ǫr if ǫr >
λ

λ+1

λ
λ+1 + α if ǫr ≤ λ

λ+1

δ̃ =











δr if δr >
λ

λ+1

λ
λ+1 + α if δr ≤ λ

λ+1

where 0 < α ≪ 1. Notice that Alice is not any more just a passive observer who blindly follows

some predetermined protocol. For this game, ǫr = ǫ and δr = δ is a Nash equilibrium. However,

it is not the unique equilibrium because if ǫ ≤ λ
λ+1 (δ ≤ λ

λ+1 ), then every point in ǫ ≤ ǫr ≤ λ
λ+1

(δ ≤ δr ≤ λ
λ+1) is Nash equilibrium point. It is obvious that for all these equilibrium points, Bob

and Charlie’s utility functions are the same. Let us verify these results:

Case 1: If ǫ > λ
λ+1 and δ > λ

λ+1 , then by the results of Claim 1, ǫr = ǫ, δr = δ is the unique

Nash equilibrium.

Case 2: ǫ ≤ λ
λ+1 and δ > λ

λ+1 .
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Γ λ(1− ǫ)(1 − δ)

( λ
λ+1 + α)(1 − δ) 1− δ

1
λ+1 − α

λ( 1
λ+1 − α)(1 − δ)

0

0

ǫ ≤ ǫr ≤ λ
λ+1 ǫr = 1

δr = δ

δr = 1

UBob

UCharlie

Figure 3.3: Utility matrix when ǫ ≤ λ
λ+1 , δ >

λ
λ+1 . Γ = δ( 1

λ+1 − α) + λ( λ
λ+1 + α − ǫ)(1 − δ). Bob

and Charlie have no incentive to unilaterally change their strategies and move from the upper left

box of the utility matrix.

The utility matrix (see Figure 3.3) indicates that Bob has no incentive to change his report

from ǫ ≤ ǫr ≤ λ
λ+1 to ǫr = 1 because

δ(
1

λ+ 1
− α) + λ(

λ

λ+ 1
+ α− ǫ)(1 − δ) > λ(1− ǫ)(1− δ)

is equivalent to δ > λ
λ+1 which is true by the assumption. It is only left to show that Charlie also

has no incentive to change his strategy. This is true because

(
λ

λ+ 1
+ α)(1 − δ) > λ(

1

λ+ 1
− α)(1− δ) ⇔ α(1 + λ− δ) > 0,

which is always true.

Case 3: ǫ > λ
λ+1 and δ ≤ λ

λ+1 .

( λ
λ+1 + α)(1 − ǫ) λ(1− ǫ)( 1

λ+1 − α)

∆
1

λ+1 − α

1− ǫ

λ(1− ǫ)(1− δ)

0

0

ǫr = ǫ ǫr = 1

δ ≤ δr ≤ λ
λ+1

δr = 1

UBob

UCharlie

Figure 3.4: Utility matrix when ǫ > λ
λ+1 , δ ≤ λ

λ+1 . ∆ = ǫ( 1
λ+1 − α) + λ( λ

λ+1 + α − δ)(1 − ǫ). Bob

and Charlie have no incentive to unilaterally change their strategies and move from the upper left

box of the utility matrix.

The utility matrix (see Figure 3.4) indicates that Charlie has no incentive to change his report

from δ ≤ δr ≤ λ
λ+1 to δr = 1 because

ǫ(
1

λ+ 1
− α) + λ(

λ

λ+ 1
+ α− δ)(1 − ǫ) > λ(1− ǫ)(1 − δ)
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is equivalent to ǫ > λ
λ+1 which is true by the assumption. Bob has no incentive to change his

strategy because

(
λ

λ+ 1
+ α)(1 − ǫ) > λ(

1

λ+ 1
− α)(1 − ǫ) ⇔ α(1 + λ− ǫ) > 0,

which is always true.

Case 4: ǫ ≤ λ
λ+1 and δ ≤ λ

λ+1 .

Π λ(1− ǫ)( 1
λ+1 − α)

Σ
1

λ+1 − α
1

λ+1 − α

λ( 1
λ+1 − α)(1 − δ)

0

0

ǫ ≤ ǫr ≤ λ
λ+1 ǫr = 1

δ ≤ δr ≤ λ
λ+1

δr = 1

UBob

UCharlie

Figure 3.5: Utility matrix when ǫ ≤ λ
λ+1 , δ ≤ λ

λ+1 . Π = ( 1
λ+1 − α)(λ(1 − ǫ) + α(λ+ 1)),

Σ = ( 1
λ+1 −α)(λ(1− δ)+α(λ+1)). Bob and Charlie have no incentive to unilaterally change their

strategies and move from the upper left box of the utility matrix.

The utility matrix in Figure 3.5 indicates that both Bob and Charlie have no incentive to change

their reports from ǫ ≤ ǫr ≤ λ
λ+1 and δ ≤ δr ≤ λ

λ+1 to ǫr = 1 and δr = 1, respectively. This follows

from the fact that Π > λ(1− ǫ)( 1
λ+1 −α) and Σ > λ(1− δ)( 1

λ+1 −α) because α(λ+1) > 0 always.

Since Alice’s strategy in game 2 does not require knowledge of the true joint distributions, she

can apply it when this information is not available to her. Now, Bob and Charlie also do not need to

know the true erasure probabilities ǫ and δ, because their honest reporting is the Nash equilibrium,

and they cannot gain anything by playing according to some other Nash equilibrium.
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3.5 Extension to More General Case

In this section we generalize our result for a special class of discrete memoryless distributions. As

pointed out before, we restrict attention to those distributions for which the Markov chain Y −X−Z
holds.

3.5.1 Game 1

Like in the binary erasure example, Bob and Charlie base their strategy on the best response: they

maximize their utilities for every possible other player’s response. From Remark 3.1, the optimizing

distribution of Bob and Charlie’s utility can be expressed as

arg max
p(yr |y)

UBob = arg max
p(yr |y)

I(Yr;X) − (1 + λ)I(Yr;Zr), (3.8)

arg max
p(zr |z)

UCharlie = arg max
p(zr |z)

I(Zr;X)− (1 + λ)I(Yr;Zr). (3.9)

Based on (3.8) we define the function Ry as follows:

Definition 3.5. For a given distribution PXY ZZr , let PYr be the set defined as follows

PYr = {PYr | ∃PYr|Y s.t. EY [PYr |Y ] = PYr}

We define the function Ry : PYr 7→ R given by

Ry(PYr) = I(Yr;X)− (1 + λ)I(Yr;Zr), (3.10)

and the set

Sy = {(PYr , t) | PYr ∈ PYr , t ≤ Ry(PYr) if Ry(PYr) ≥ 0, t ≥ 0,

t ≥ Ry(PYr ) if Ry(PYr ) < 0, t < 0} (3.11)

Lemma 3.1. If (PY ,Ry(PY )) is on the boundary of the convex hull of the set Sy, then Bob maxi-

mizes his utility by choosing:

Yr =











Y if I(X;Y ) > (1 + λ)I(Y ;Zr)

0 if I(X;Y ) < (1 + λ)I(Y ;Zr)

where Yr corresponds to PYr |Y , and Yr = 0 means that Bob’s report to Alice contains no information.

Proof. Using the mutual information properties we can write

I(Yr;X) − (1 + λ)I(Yr;Zr) = I(Y ;X) − (1 + λ)I(Y ;Zr)

− [I(Y ;X|Yr)− (1 + λ)I(Y ;Zr|Yr)]. (3.12)
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Note that

sup
Yr−Y−(X,Zr)

I(Y ;X|Yr)− (1 + λ)I(Y ;Zr|Yr)

computes the convex hull of the set Sy at the point (PY ,Ry(PY )). From the condition in Lemma 3.1

we have that

I(Y ;X) − (1 + λ)I(Y ;Zr) ≥ I(Y ;X|Yr)− (1 + λ)I(Y ;Zr|Yr) if I(Y ;X)− (1 + λ)I(Y ;Zr) ≥ 0

I(Y ;X) − (1 + λ)I(Y ;Zr) < I(Y ;X|Yr)− (1 + λ)I(Y ;Zr|Yr) if I(Y ;X)− (1 + λ)I(Y ;Zr) < 0

(3.13)

From (3.12) and (3.13), we conclude that

I(Y ;X) − (1 + λ)I(Y ;Zr) ≥ 0 ⇔ I(Yr;X)− (1 + λ)I(Yr;Zr) ≥ 0. (3.14)

If I(Y ;X)−(1+λ)I(Y ;Zr) ≥ 0 then it follows from (3.13) that I(Y ;X|Yr) ≥ (1+λ)I(Y ;Zr|Yr).
This shows that Yr = Y maximizes the expression (3.12).

If I(Y ;X) − (1 + λ)I(Y ;Zr) < 0, then from (3.14) we have that I(Yr;X) < (1 + λ)I(Yr;Zr)

for all Yr such that the Markov chain Yr − Y − (X,Zr) holds. Hence, (3.12) is maximized when

Yr = 0.

Similarly, to optimize Charlie’s utility, we define the function Rz.

Definition 3.6. For a given distribution PXY YrZ , let PZr be the set defined as follows

PZr = {PZr | ∃PZr |Z s.t. EZ [PZr |Z ] = PZr}

We define the function Rz : PZr 7→ R given by

Rz(PZr) = I(Zr;X) − (1 + λ)I(Zr;Yr), (3.15)

and the set

Sz = {(PZr , t) | PZr ∈ PZr , t ≤ Rz(PZr) if Rz(PZr) ≥ 0, t ≥ 0,

t ≥ Rz(PZr) if Rz(PZr) < 0, t < 0} (3.16)

Lemma 3.2. If (PZ ,Rz(PZ)) is on the boundary of the convex hull of the set Sz, then Bob maxi-

mizes his utility by choosing:

Zr =











Z if I(Z;X) > (1 + λ)I(Z;Yr)

0 if I(Z;X) < (1 + λ)I(Z;Yr)

where Zr corresponds to PZr |Z, and Zr = 0 means that Bob’s report to Alice contains no informa-

tion.
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From the results of the Lemmas 3.1 and 3.2, and the analysis of the binary erasure example, it

is straightforward to characterize a Nash equilibrium for the special class of discrete memoryless

source distributions.

Theorem 3.2. For a given joint distribution PXY Z = PXPY |XPZ|X , if the conditions of Lem-

mas 3.1 and 3.2 are satisfied for all PZr |Z and PYr |Y , respectively, then a Nash equilibrium for the

Game 1 can be characterized as follows:

(Yr, Zr) =











































(Y,Z) if I(X;Y ) > (1 + λ)I(Y ;Z) and I(Z;X) > (1 + λ)I(Z;Y )

(Y, 0) if I(X;Y ) > (1 + λ)I(Y ;Z) and I(Z;X) < (1 + λ)I(Z;Y )

(0, Z) if I(X;Y ) < (1 + λ)I(Y ;Z) and I(Z;X) > (1 + λ)I(Z;Y )

(Y, 0), (0, Z) if I(X;Y ) < (1 + λ)I(Y ;Z) and I(Z;X) < (1 + λ)I(Z;Y )

where Yr and Zr correspond to the distributions PYr |Y and PZr|Z , respectively.

3.5.2 Game 2

Applying the same approach as in the binary erasure example, Alice enforces Bob and Charlie’s

honesty at the expense of constructing non-perfectly secret keys.

Let us define By and Bz as follows

By = {PYr |Y | I(Z;X) > (1 + λ)I(Z;Yr)},

Bz = {PZr |Z | I(X;Y ) > (1 + λ)I(Y ;Zr)}.

Definition 3.7. Let Y ⋆ correspond to the distribution PY ⋆|Y such that

I(Z;X) = (1 + λ)I(Z;Y ⋆). (3.17)

Similarly, Z⋆ correspond to the distribution PZ⋆|Z such that

I(X;Y ) = (1 + λ)I(Y ;Z⋆). (3.18)

Theorem 3.3. If the joint distribution PXY Z satisfies the conditions of Theorem 3.2, then Alice

ensures that Bob and Charlie’s honest reporting is a Nash equilibrium by constructing the keys KAB

and KAC based on the following distributions:

(PỸ |Y , PZ̃|Z) =











































(PYr |Y , PZr |Z) if PYr |Y ∈ By, PZr |Z ∈ Bz

(PYr |Y , PZ⋆
+|Z) if PYr |Y ∈ By, PZr |Z /∈ Bz

(PY ⋆
+|Y , PZr |Z) if PYr |Y /∈ By, PZr |Z ∈ Bz

(PY ⋆
+|Y , PZ⋆

+|Z) if PYr |Y /∈ By, PZr |Z /∈ Bz

where PY ⋆
+|Y and PZ⋆

+|Z are chosen such that PY ⋆
+|Y ∈ By and PZ⋆

+|Z ∈ Bz.
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Proof. Using the same analysis as in Lemma 3.1, it is straightforward to show that the possible

conditional distributions which correspond to a Nash equilibrium are PYr |Y = {PỸ |Y , 0} and PZr |Z =

{PZ̃|Z , 0}.
Case 1: If I(Z;X) > (1 + λ)I(Z;Y ) and I(X;Y ) > (1 + λ)I(Y ;Z), then by the the results of

Theorem 3.2, honest reporting is the Nash equilibrium.

Case 2: If I(Z;X) ≤ (1 + λ)I(Z;Y ) and I(X;Y ) > (1 + λ)I(Y ;Z), then Zr = Z is Charlie’s

best response for Ỹ = Y ⋆
+.

UCharlie(Zr = Z) = I(Z;X)− I(Z;Y ⋆
+)

UCharlie(Zr = 0) = λI(Z;Y ⋆
+)

Since I(Z;X) = (1 + λ)I(Z;Y ⋆) > (1 + λ)I(Z;Y ⋆
+), it follows that

UCharlie(Zr = Z) > UCharlie(Zr = 0)

It is only left to check that for Zr = Z, PYr |Y /∈ By is Bob’s best response. For such case Alice

constructs the codebooks according to the distribution PỸ |Y . We have that

UBob(PYr |Y /∈ By) = I(Y ⋆
+;X)− (1 + λ)I(Y ⋆

+;Z) + λI(Z;Y )

UBob(Yr = 0) = λI(Z;Y )

From (3.14) we have that I(Y ⋆
+;X) > (1 + λ)I(Y ⋆

+;Z). Hence,

UBob(PYr |Y /∈ By) > UBob(Yr = 0).

Case 3: If I(Z;X) > (1+λ)I(Z;Y ) and I(X;Y ) ≤ (1+λ)I(Y ;Z), then Yr = Y is Bob’s best

response for Z̃ = Z⋆
+.

UBob(Yr = Y ) = I(Y ;X)− I(Y ;Z⋆
+)

UBob(Yr = 0) = λI(Y ;Z⋆
+)

Since I(Y ;X) = (1 + λ)I(Y ;Z⋆) > (1 + λ)I(Y ;Z⋆
+), it follows that

UBob(Yr = Y ) > UBob(Yr = 0)

It is only left to check that for Yr = Y , PZr|Z /∈ Bz is Charlie’s best response. For that case Alice

constructs the codebooks according to the distribution PZ̃|Z . We have that

UCharlie(PZr |Z /∈ Bz) = I(Z⋆
+;X)− (1 + λ)I(Z⋆

+;Y ) + λI(Y ;Z)

UCharlie(Yr = 0) = λI(Y ;Z)
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From Lemma 3.2 we have that I(Z⋆
+;X) > (1 + λ)I(Z⋆

+;Y ). Hence,

UCharlie(PZr |Z /∈ Bz) > UCharlie(Zr = 0).

Case 4: If I(Z;X) ≤ (1 + λ)I(Z;Y ) and I(X;Y ) ≤ (1 + λ)I(Y ;Z), then PYr |Y /∈ By is Bob’s

best response for Z̃ = Z⋆
+:

UBob(PYr |Y /∈ By) = I(Y ⋆
+;X) − (1 + λ)I(Y ⋆

+;Z
⋆
+) + λI(Z⋆

+;Y )

UBob(Yr = 0) = λI(Z⋆
+;Y )

UBob(PYr |Y /∈ By) > UBob(Yr = 0) because

I(Y ;X) = (1 + λ)I(Y ;Z⋆) ⇒ I(Y ;X) > (1 + λ)I(Y ;Z⋆
+) ⇔ I(Y ⋆

+;X) > (1 + λ)I(Y ⋆
+;Z

⋆
+).

The last inequality follows from (3.14). It is only left to check that PZr |Z /∈ Bz is Charlie’s best

response for Ỹ = Y ⋆
+:

UCharlie(PZr |Z /∈ Bz) = I(Z⋆
+;X) − (1 + λ)I(Z⋆

+;Y
⋆
+) + λI(Y ⋆

+;Z)

UCharlie(Zr = 0) = λI(Y ⋆
+;Z)

UCharlie(PZr |Z /∈ Bz) > UCharlie(Zr = 0) because

I(Z;X) = (1 + λ)I(Z;Y ⋆) ⇒ I(Z;X) > (1 + λ)I(Z;Y ⋆
+) ⇔ I(Z⋆

+;X) > (1 + λ)I(Z⋆
+;Y

⋆
+).

The last inequality follows from Lemma 3.2.

Let us verify that the binary erasure example indeed satisfies the conditions of Theorem 3.3.

The function I(X;Y ) − (1 + λ)I(Y ;Zr) = (1 − ǫ)− (1 + λ)(1 − ǫ)(1 − δr) is linear in δr and thus

satisfies the conditions of Theorem 3.2 for game 1. Furthermore, for game 2 we have

I(X;Y ) > (1 + λ)I(Y ;Zr) ⇔ δr >
λ

λ+ 1
.

Hence, Bz = {δr | δr > λ
λ+1}. Similarly, we can show that By = {ǫr | ǫr > λ

λ+1}. Therefore,

ǫ⋆ = δ⋆ = λ
λ+1 . This allows as to pick ǫ⋆+ = δ⋆+ = λ

λ+1 +α, for α small, which is consistent with our

previous analysis.
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3.6 Binary Symmetric Distribution

Let X ∼ Ber(12), Y = X ⊕ E, Z = X ⊕D, where E ∼ Ber(ǫ) and D ∼ Ber(δ), respectively. We

now evaluate Theorems 3.2 and 3.3 for this special case.

3.6.1 Game 1

As pointed out in the introduction, the conditional distributions PYr |X and PZr |X are modeled

as binary symmetric channels: Yr = X ⊕ Er where Er ∼ Ber(ǫr) such that ǫ ≤ ǫr ≤ 1
2 , and

Zr = X ⊕Dr where Dr ∼ Ber(δr) such that δ ≤ δr ≤ 1
2 . Setting U = V = 0 in Theorem 3.1 we

obtain

RAB = h(ǫr + δr − 2ǫrδr)− h(ǫr),

RL
AB = h(ǫr + δr − 2ǫrδr)− h(ǫr + δ − 2ǫrδ),

RAC = h(ǫr + δr − 2ǫrδr)− h(δr),

RL
AC = h(ǫr + δr − 2ǫrδr)− h(ǫ+ δr − 2ǫδr),

where h(x) = −(1 − x) log2(1 − x) − x log2 x. To check that the conditions of the Lemmas 3.1

and 3.2 are met, we consider the function Ry:

Ry(ǫr) = h(ǫr + δr − 2ǫrδr)− h(ǫr)− λ, for ǫ ≤ ǫr ≤
1

2
.

It is easy to verify that Ry(ǫ) is on the boundary of the convex hull of Sy for all δr. Similarly, we

can show that Rz(δ) is on the boundary of the convex hull of Sz for all ǫr. Applying the results of

Theorem 3.2, we characterize the Nash equilibrium for this problem as follows

(ǫr, δr) =











































(ǫ, δ) if δ >
h−1(

λ+h(ǫ)
λ+1

)−ǫ

1−2ǫ , ǫ >
h−1(

λ+h(δ)
λ+1

)−δ

1−2δ

(ǫ, 12) if δ <
h−1(

λ+h(ǫ)
λ+1

)−ǫ

1−2ǫ , ǫ >
h−1(

λ+h(δ)
λ+1

)−δ

1−2δ

(12 , δ) if δ >
h−1(

λ+h(ǫ)
λ+1

)−ǫ

1−2ǫ , ǫ <
h−1(

λ+h(δ)
λ+1

)−δ

1−2δ

(ǫ, 12) and (12 , δ) if δ <
h−1(λ+h(ǫ)

λ+1
)−ǫ

1−2ǫ , ǫ <
h−1(λ+h(δ)

λ+1
)−δ

1−2δ

3.6.2 Game 2

In order to ensure that Bob and Charlie’s honest reporting is a Nash equilibrium, it may be tempting

to proceed by analogy to the BEC example and let Alice use the following:
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(ǫ̃, δ̃) =











































(ǫr, δr) if ǫr > ǫ⋆, δr > δ⋆

(ǫr, δ
⋆
+) if ǫr > ǫ⋆, δr ≤ δ⋆

(ǫ⋆+, δr) if ǫr ≤ ǫ⋆, δr > δ⋆

(ǫ⋆+, δ
⋆
+) if ǫr ≤ ǫ⋆, δr ≤ δ⋆

where ǫ⋆ and δ⋆ are derived from the equations (3.31) and (3.32):

I(Z;X) = (1 + λ)I(Z;Y ⋆) ⇔ 1− h(δ) = (1 + λ)(1− h(ǫ⋆ + δ − 2ǫ⋆δ)) (3.19)

I(Y ;X) = (1 + λ)I(Y ;Z⋆) ⇔ 1− h(ǫ) = (1 + λ)(1− h(δ⋆ + ǫ− 2δ⋆ǫ)). (3.20)

Hence,

ǫ⋆ =
h−1(λ+h(δ)

λ+1 )− δ

1− 2δ
, δ⋆ =

h−1(λ+h(ǫ)
λ+1 )− ǫ

1− 2ǫ
. (3.21)

This result directly follows from Theorem 3.3.

In the binary erasure example, we had that ǫ⋆ = λ
λ+1 and δ⋆ = λ

λ+1 do not depend on the

true parameters ǫ and δ. However, this is not the case here (see (3.21)). Therefore, for the binary

symmetric case, Alice’s strategy depends on the true distributions which is not acceptable by the

definition of Game 2.

To get around this problem, Alice can construct ǫ⋆+ and δ⋆+ such that they do not depend on

the true parameters ǫ and δ. To that end, we propose a crude upper bound

1.4(1 + λ)(1− h(ǫ))(1 − h(δ)) > (1 + λ)h(ǫ+ δ − 2ǫδ).

Applying this inequality to (3.19) and (3.20) we obtain

1− h(δ) > 1.4(1 + λ)(1− h(ǫ⋆))(1 − h(δ)) ⇒ 1− h(δ) > (1 + λ)h(ǫ+ δ − 2ǫδ) (3.22)

1− h(ǫ) > 1.4(1 + λ)(1− h(δ⋆))(1 − h(ǫ)) ⇒ 1− h(ǫ) > (1 + λ)h(ǫ+ δ − 2ǫδ) (3.23)

From (3.22) and (3.23) it follows that

ǫ⋆ < h−1

(

λ+ 2
7

λ+ 1

)

, δ⋆ < h−1

(

λ+ 2
7

λ+ 1

)

. (3.24)

Therefore, we can set

ǫ⋆+ = h−1

(

λ+ 2
7

λ+ 1

)

, δ⋆+ = h−1

(

λ+ 2
7

λ+ 1

)

. (3.25)
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Applying the results of Theorem 3.3, Alice constructs the codebooks using the following parameters:

(ǫ̃, δ̃) =











































(ǫr, δr) if ǫr > h−1
(

λ+ 2
7

λ+1

)

and δr > h−1
(

λ+ 2
7

λ+1

)

(ǫr, h
−1
(

λ+ 2
7

λ+1

)

) if ǫr > h−1
(

λ+ 2
7

λ+1

)

and δr ≤ h−1
(

λ+ 2
7

λ+1

)

(h−1
(

λ+ 2
7

λ+1

)

, δr) if ǫr ≤ h−1
(

λ+ 2
7

λ+1

)

and δr > h−1
(

λ+ 2
7

λ+1

)

(h−1
(

λ+ 2
7

λ+1

)

, h−1
(

λ+ 2
7

λ+1

)

) if ǫr ≤ h−1
(

λ+ 2
7

λ+1

)

and δr ≤ h−1
(

λ+ 2
7

λ+1

)

Since we have selected such a crude bound, for λ = 0 or when Bob and Charlie are maximizing

their key rates only, Alice’s mechanism design will not accept Bob and Charlie’s honest reporting

when ǫ < h−1(27) or δ < h−1(27 ). Therefore, we incorporate this special case to Alice’s strategy in

Game 2:

(ǫ̃, δ̃) =











































(ǫr, δr) if ǫr > h−1
(

λ+ 2
7

λ+1

)

and δr > h−1
(

λ+ 2
7

λ+1

)

or λ = 0

(ǫr, h
−1
(

λ+ 2
7

λ+1

)

) if ǫr > h−1
(

λ+ 2
7

λ+1

)

and δr ≤ h−1
(

λ+ 2
7

λ+1

)

and λ 6= 0

(h−1
(

λ+ 2
7

λ+1

)

, δr) if ǫr ≤ h−1
(

λ+ 2
7

λ+1

)

and δr > h−1
(

λ+ 2
7

λ+1

)

and λ 6= 0

(h−1
(

λ+ 2
7

λ+1

)

, h−1
(

λ+ 2
7

λ+1

)

) if ǫr ≤ h−1
(

λ+ 2
7

λ+1

)

and δr ≤ h−1
(

λ+ 2
7

λ+1

)

and λ 6= 0

Like in the binary erasure example, Alice’s strategy does not depend any more on the true

parameters ǫ and δ. Hence, it can be applied when that information is not available to anybody.
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3.7 Privacy Considerations

So far we have assumed that Bob and Charlie’s utility functions depend on their desire of being

legitimate users or eavesdroppers. In this section we briefly analyze the setting where Bob and

Charlie are concerned about how much of the key they agreed upon with Alice leaks to the other

player. To address this, for both games, we consider the following utility functions for Bob and

Charlie, respectively:

UBob = RAB + λ1R
L
AC − λ2R

L
AB , for some PYr |Y

UCharlie = RAC + λ1R
L
AB − λ2R

L
AC , for some PZr |Z , (3.26)

where λ1 ≥ 0, λ2 ≥ 0. The analysis of Games 1 and 2 for the utility functions given in equation

(3.26) proceeds along the same lines as the one given in Section 3.5.

3.7.1 Game 1

Using the same notation as in Section 3.5, we define the function Ry : PYr 7→ R given by

Ry(PYr) = I(Yr;X)− (1 + λ1 − λ2)I(Yr;Zr)− λ2I(Yr;Z), (3.27)

and the set

Sy = {(PYr , t) | PYr ∈ PYr , t ≤ Ry(PYr) if Ry(PYr) ≥ 0, t ≥ 0,

t ≥ Ry(PYr ) if Ry(PYr ) < 0, t < 0} (3.28)

Similarly, we define the function Rz : PZr 7→ R given by

Rz(PZr) = I(Zr;X) − (1 + λ1 − λ2)I(Zr;Yr)− λ2I(Zr;Y ), (3.29)

and the set

Sz = {(PZr , t) | PZr ∈ PZr , t ≤ Rz(PZr) if Rz(PZr) ≥ 0, t ≥ 0,

t ≥ Rz(PZr) if Rz(PZr) < 0, t < 0} (3.30)

Based on the results from Section 3.5, we now characterize a Nash equilibrium for the special

class of discrete memoryless source distributions for which the Markoc chain Y −X − Z holds.

Theorem 3.4. For a given joint distribution PXY Z , if (PY ,Ry(PY )) and (PZ ,Rz(PZ)) are on the

boundary of the convex hull of the sets Sy and Sz, respectively, then a Nash equilibrium for Game
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1 can be characterized as follows:

(Yr, Zr) =











































(Y,Z) if I(X;Y ) > (1 + λ1)I(Y ;Z) and I(Z;X) > (1 + λ1)I(Z;Y )

(Y, 0) if I(X;Y ) > (1 + λ1)I(Y ;Z) and I(Z;X) < (1 + λ1)I(Z;Y )

(0, Z) if I(X;Y ) < (1 + λ1)I(Y ;Z) and I(Z;X) > (1 + λ1)I(Z;Y )

(Y, 0), (0, Z) if I(X;Y ) < (1 + λ1)I(Y ;Z) and I(Z;X) < (1 + λ1)I(Z;Y )

where Yr and Zr correspond to the distributions PYr |Y and PZr|Z , respectively.

Interestingly, the Nash equilibrium described in Theorem 3.4 is exactly the same as that de-

scribed in Theorem 3.2 when the privacy of each key was not considered. However, for Game 2

this is not the case.

3.7.2 Game 2

Like in Section 3.5, we define By and Bz as follows

By = {PYr |Y | I(Z;X)− λ2I(Z;Y ) > (1 + λ1 − λ2)I(Z;Yr)},

Bz = {PZr |Z | I(Y ;X) − λ2I(Y ;Z) > (1 + λ1 − λ2)I(Y ;Zr)}.

Definition 3.8. Let Y ⋆ correspond to distribution PY ⋆|Y such that

I(Z;X) − λ2I(Z;Y ) = (1 + λ1 − λ2)I(Z;Y
⋆). (3.31)

Similarly, Z⋆ correspond to distribution PZ⋆|Z such that

I(Y ;X) − λ2I(Y ;Z) = (1 + λ1 − λ2)I(Y ;Z⋆). (3.32)

Theorem 3.5. For a given joint distribution PXY Z , if (PY ,Ry(PY )) and (PZ ,Rz(PZ)) are on the

boundary of the convex hull of the sets Sy and Sz, respectively, then Alice ensures that Bob and

Charlie’s honest reporting is a Nash equilibrium by constructing the keys KAB and KAC based on

the following distributions:

(PỸ |Y , PZ̃|Z) =











































(PYr |Y , PZr |Z) if PYr |Y ∈ By, PZr |Z ∈ Bz

(PYr |Y , PZ⋆
+|Z) if PYr |Y ∈ By, PZr |Z /∈ Bz

(PY ⋆
+|Y , PZr |Z) if PYr |Y /∈ By, PZr |Z ∈ Bz

(PY ⋆
+|Y , PZ⋆

+|Z) if PYr |Y /∈ By, PZr |Z /∈ Bz

where PY ⋆
+|Y and PZ⋆

+|Z are chosen such that PY ⋆
+|Y ∈ By and PZ⋆

+|Z ∈ Bz.
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3.7.3 Binary Erasure Distribution

In Theorem 3.4 we showed equivalence between Nash equilibria for the utility functions defined in

(3.1) and (3.26) when Bob and Charlie know distributions PXY and PXZ , respectively (Game 1).

Therefore, here we only consider Game 2 setting when source observations are modeled as binary

erasure channels. Applying Definition 3.8 we obtain ǫ⋆ and δ⋆ as follows:

ǫ⋆ =
λ1 − λ2ǫ

1 + λ1 − λ2
, δ⋆ =

λ1 − λ2δ

1 + λ1 − λ2
. (3.33)

Now, ǫ⋆ and δ⋆ depend on the true erasure probabilities ǫ and δ, which is not acceptable according

to the definition of Game 2. Therefore, we construct upper bounds ǫ⋆+ and δ⋆+, which are not the

functions of ǫ and δ, as follows:

ǫ⋆+ =
λ1

1 + λ1 − λ2
, δ⋆+ =

λ1
1 + λ1 − λ2

. (3.34)

Applying the results of Theorem 3.5, Alice constructs the codebooks using the following parameters:

(ǫ̃, δ̃) =











































(ǫr, δr) if ǫr >
λ1

1+λ1−λ2
and δr >

λ1
1+λ1−λ2

(ǫr,
λ1

1+λ1−λ2
) if ǫr >

λ1
1+λ1−λ2

and δr ≤ λ1
1+λ1−λ2

( λ1
1+λ1−λ2

, δr) if ǫr ≤ λ1
1+λ1−λ2

and δr >
λ1

1+λ1−λ2

( λ1
1+λ1−λ2

, λ1
1+λ1−λ2

) if ǫr ≤ λ1
1+λ1−λ2

and δr ≤ λ1
1+λ1−λ2
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3.8 Multiterminal Key Agreement

In this section we consider the scenario in which Alice andm other users observe discrete memoryless

sources Xn, Y n
1 , Y n

2 ,...,Y n
m generated according to

PXnY n
1 ...Y n

m
=

n
∏

i=1

PXiY1,i...Ym,i

Alice wants to agree with user i on a key Ki that is perfectly secret from the remaining m−1 users.

We again consider the scenario wherem users report sufficient information about their observations

to Alice over a public channel. Alice estimates the joint pmf and constructs the codebooks for the

key agreement. Like in the previous sections, the reports are modeled in the shape of fictitious

memoryless channels PZi|Yi
, where i = 1, ...,m.

Before we proceed with the analysis of this problem we define a multi-user version of the leakage

rate.

Definition 3.9. The multi-user leakage rate RL,l
i , l = 1, ...,m, l 6= i, for key Ki is defined to be

RL,l
i =

1

n
I(Ki; g, Y

n) (3.35)

where g corresponds to all transmissions over the public channel. It models a part of the key Ki

that User l may be abe to decode.

For simplicity, we study the case where the Markov chain Yi −X − Yj, i 6= j holds. Under this

condition it is straightforward to show the following achievability result

Theorem 3.6. The following key rate - multi-user leakage rate tuples are achievable:

Ri ≤ I(Zi;X)−max
j 6=i

I(Zi;Zj)

RL,l
i ≤ {I(Zi;Yl)−max

j 6=i
I(Zi;Zj)}+, l = 1, ...,m, l 6= i

for i = 1, ...,m.

We study the case where user i selects the channel PZi|Yi
based on a utility function

Ui = Ri + λ
∑

j 6=i

RL,i
j

3.8.1 Binary Erasure Example

In this example Alice observes X ∼ Ber(12), while m users observe erased versions of Alice’s

observations with erasure probabilities ǫi, i = 1, ...,m. User i reports to Alice erasure probability

δi, where ǫi ≤ δi ≤ 1.
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Applying Theorem 3.6 we have that the following rates are achievable

Ri = min
j 6=i

δj(1− δi)

RL,l
i = min

j 6=i
(δj − ǫl)(1 − δi), l 6= i

Therefore, player i chooses δi based on the utility function:

Ui = min
j 6=i

δj(1− δi) + λ
∑

j 6=i

{min
l 6=j

(δl − ǫi)(1 − δj)}+ (3.36)

In this problem we restrict our attention to characterizing the region where honest reporting

by all players is the unique Nash equilibrium. Then, applying the same strategy as in the Game

2, Alice can ensure that honest reporting by all players is the unique Nash equilibrium when the

joint pmf is not available to anyone. To build our intuition for an arbitrary number of players, we

start with m = 3.

Proposition 3.1. For m = 3, if

ǫi >











λ
λ+1 when λ ∈ [0, 1]

λ

λ+ 1
2

when λ > 1

for i = 1, 2, 3, then honest reporting by all users is the unique Nash equilibrium.

Remark 3.2. The ǫi region, for i = 1, 2, 3 defined in Proposition 3.1 provides only sufficient

condition for honesty to hold.

Proof. This proof contains two parts. First, we show that honest reporting by all players is a

Nash equilibrium. In the second part of the proof we show the uniqueness of that equilibrium by

analyzing all possible responses of the players. Without loss of generality let us assume ǫ1 ≤ ǫ2 ≤ ǫ3.

The utility functions of users 1, 2 and 3 are:

U1(δ1) = min{δ2, δ3}(1− δ1) + λ(min{δ1, δ3} − ǫ1)(1− δ2) + λ(min{δ1, δ2} − ǫ1)(1− δ3) (3.37)

U2(δ2) = min{δ1, δ3}(1− δ2) + λ(min{δ2, δ3} − ǫ2)(1− δ1) + λ(min{δ1, δ2} − ǫ2)(1− δ3) (3.38)

U3(δ3) = min{δ1, δ2}(1− δ3) + λ(min{δ2, δ3} − ǫ3)(1− δ1) + λ(min{δ1, δ3} − ǫ3)(1− δ2) (3.39)

Let us start by writing conditions for User 3 to be honest (δ3 = ǫ3) assuming that users 1 and

2 reported their erasure probabilities honestly, i.e. δ1 = ǫ1 and δ2 = ǫ2. Due to the linearity of

U3(δ3), the only two candidates are δ3 = ǫ3 or δ3 = 1. Evaluating U3 in (3.39) for δ3 = ǫ3 and
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δ3 = 1, respectively, we find:

U3(δ3 = ǫ3) = ǫ1(1− ǫ3)

U3(δ3 = 1) = 0

Therefore, User 3 has no incentive to switch from δ3 = ǫ3 to δ3 = 1.

For User 2, setting δ1 = ǫ1 and δ3 = ǫ3, the utility U2(δ2) can be evaluated at δ2 = ǫ2 and

δ2 = 1 as:

U2(δ2 = ǫ2) = ǫ1(1− ǫ2) (3.40)

U2(δ2 = 1) = λ(ǫ3 − ǫ2)(1− ǫ1) (3.41)

In order for honest reporting by User 2 to be a Nash equilibrium the following inequality has

to hold:

U2(δ2 = ǫ2) ≥ U2(δ2 = 1) (3.42)

Substituting for U2(δ2 = ǫ2) and U2(δ2 = 1) from (3.40) and (3.41) into (3.42) one obtains

U2(δ2 = ǫ2) ≥ U2(δ2 = 1) ⇔ ǫ1 − λǫ3(1− ǫ1) ≥ ǫ2[ǫ1 − λ(1− ǫ1)]

Since ǫ1−λǫ3(1− ǫ1) ≥ ǫ1−λ(1− ǫ1) is always true, User 2 will report his observations honestly

if ǫ1 >
λ

λ+1 .

For User 1, setting δ2 = ǫ2 and δ3 = ǫ3, the utility U1(δ1) can be evaluated at δ2 = ǫ2 and

δ2 = 1 as:

U1(δ1 = ǫ1) = ǫ2(1− ǫ1)

U1(δ1 = 1) = λ(ǫ3 − ǫ1)(1− ǫ2) + λ(ǫ2 − ǫ1)(1− ǫ3)

Repeating the same analysis as for User 2, we obtain

U1(δ1 = ǫ1) > U1(δ1 = 1) ⇔ ǫ2 − λ[ǫ2 + ǫ3 − 2ǫ2ǫ3] ≥ ǫ2 − λ(2− ǫ2 − ǫ3) (3.43)

Since 2− ǫ2 − ǫ3 ≥ ǫ2 + ǫ3 − 2ǫ2ǫ3 is always true, it follows from (3.43) that User 1 will report

his observations honestly if

ǫ2 >
λǫ3

1− λ+ 2λǫ3
(3.44)

It is straightforward to show that λǫ3
1−λ+2λǫ3

< λ
λ+1 when λ ∈ [0, 1], and λǫ3

1−λ+2λǫ3
< λ

λ+ 1
2

when

λ > 1. Combining the last two inequalities with (3.44) one obtains that δ1 = ǫ1 when ǫ2 > Λ,
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where

Λ =











λ
λ+1 if λ ∈ [0, 1]

λ

λ+ 1
2

if λ > 1

In order for δi = ǫi, i = 1, 2, 3, to be the unique Nash equilibrium the following inequality has

to be satisfied:

Ui(δi = ǫi) ≥ Ui(δi = 1) (3.45)

no matter what the other players’ responses are. We only need to check end points δi = ǫi and

δi = 1, because Ui(δi) is linear.

For User 3 we already analyzed the case when users 1 and 2 are honest. It is also obvious that

when δ1 = δ2 = 1 User 3 maximizes his utility by reporting δ3 = ǫ3. The remaining two cases can

be analyzed as follows.

If δ1 = ǫ1, δ2 = 1 then

U3(δ3 = ǫ3) = ǫ1(1− ǫ3) (3.46)

U3(δ3 = 1) = λ(1− ǫ3)(1− ǫ1) (3.47)

From (3.45), (3.46) and (3.47) we have

U3(δ3 = ǫ3) ≥ U3(δ3 = 1) ⇔ ǫ1(1− ǫ3) ≥ λ(1− ǫ3)(1− ǫ1) ⇔ ǫ1 ≥
λ

λ+ 1

If δ1 = 1, δ2 = ǫ2 then

U3(δ3 = ǫ3) = ǫ2(1− ǫ3) (3.48)

U3(δ3 = 1) = λ(1− ǫ3)(1− ǫ2) (3.49)

From (3.45), (3.48) and (3.49) we have

U3(δ3 = ǫ3) ≥ U3(δ3 = 1) ⇔ ǫ2(1− ǫ3) ≥ λ(1− ǫ3)(1− ǫ2) ⇔ ǫ2 ≥
λ

λ+ 1

For User 2 we again have to check only two cases (since U2(δ2)):

If δ1 = ǫ1, δ3 = 1 then

U2(δ2 = ǫ2) = ǫ1(1− ǫ2) (3.50)

U2(δ2 = 1) = λ(1− ǫ2)(1− ǫ1) (3.51)

From (3.45), (3.50) and (3.51) we have

U2(δ2 = ǫ2) ≥ U2(δ2 = 1) ⇔ ǫ1(1− ǫ2) ≥ λ(1− ǫ2)(1− ǫ1) ⇔ ǫ1 ≥
λ

λ+ 1

47



If δ1 = 1, δ3 = ǫ3 then

U2(δ2 = ǫ2) = ǫ3(1− ǫ2) (3.52)

U2(δ2 = 1) = λ(1− ǫ2)(1− ǫ3) (3.53)

From (3.45), (3.52) and (3.53) we have

U2(δ2 = ǫ2) ≥ U2(δ2 = 1) ⇔ ǫ3(1− ǫ2) ≥ λ(1− ǫ2)(1− ǫ3) ⇔ ǫ3 ≥
λ

λ+ 1

For User 1 we have:

If δ2 = ǫ2, δ3 = 1 then

U1(δ1 = ǫ1) = ǫ2(1− ǫ1) (3.54)

U1(δ1 = 1) = λ(1− ǫ1)(1− ǫ2) (3.55)

From (3.45), (3.54) and (3.55) we have

U1(δ1 = ǫ1) ≥ U1(δ1 = 1) ⇔ ǫ2(1− ǫ1) ≥ λ(1− ǫ1)(1− ǫ2) ⇔ ǫ2 ≥
λ

λ+ 1

If δ2 = 1, δ3 = ǫ3 then

U1(δ1 = ǫ1) = ǫ3(1− ǫ1) (3.56)

U1(δ1 = 1) = λ(1− ǫ1)(1− ǫ3) (3.57)

From (3.45), (3.56) and (3.57) we have

U1(δ1 = ǫ1) ≥ U1(δ1 = 1) ⇔ ǫ3(1− ǫ1) ≥ λ(1− ǫ1)(1− ǫ3) ⇔ ǫ3 ≥
λ

λ+ 1

This completes the proof.

3.8.2 Simulations

For the three player game, the region where honest reporting by all players is a Nash equilibrium is

provided in Figure 3.6; axes in this figure correspond to the true erasure probabilities. Comparing

this with the results of Proposition 3.1 we can confirm that ǫi >
λ

λ+1 for λ = 1
2 , is indeed contained

in the region shown in Figure 3.6. To see this, we break the boundaries of the region in Figure 3.6

into two parts from which it is visible that ǫi >
λ

λ+1 belongs to that region (see Figures 3.7 and 3.8).
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Figure 3.6: Binary erasure distribution: Region where honest reporting by all players is a Nash

equilibrium. The figure shows the case λ = 1
2

3.8.3 Generalizations of Proposition 3.1 for arbitrary number of users

Proposition 3.2. For an arbitrary number of users m, if

ǫi >















λ

λ+ 1
m−2

when λ ∈ [0, 1
m−2 ]

λ

λ+ 1
m−1

when λ > 1
m−2

for i = 1, 2, ...,m, then honest reporting by all users is the unique Nash equilibrium.

Remark 3.3. The ǫi region, for i = 1, ...,m defined in Proposition 3.2 provides only sufficient

condition for honesty to hold.

Proof. Like in the three player game we break our proof in two parts. First, we show that honest

reporting by all players is a Nash equilibrium. Without loss of generality let us assume ǫ1 ≤ ǫ2 ≤
· · · ≤ ǫm. We start by writing conditions for users 3 through m to be honest assuming that all the

remaining users are honest. From (3.36) we have the following

Ui(δi = ǫi) = ǫ1(1− ǫi)

Ui(δi = 1) = 0

for i = 3, 4, ...,m. Hence, users 3 through m have no incentive to switch from δi = ǫi to δi = 1

where i = 3, 4...m.
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Figure 3.7: Lower boundary of the region in Figure 3.6 shows that ǫi >
λ

λ+1 for i = 1, 2, 3 and

λ = 1
2 belongs to the region where honest reporting by all players is a Nash equilibrium.

For User 2, setting δi = ǫi where i = 1, 3, 4, ...,m we have

U2(δ2 = ǫ2) = ǫ1(1− ǫ2)

U2(δ2 = 1) = λ(ǫ3 − ǫ2)(1− ǫ1)

Notice that U2(δ2 = ǫ2) and U2(δ2 = 1) are exactly the same as in proof of Proposition 3.1. Hence,

in order for honest reporting by User 2 to be a Nash equilibrium ǫ1 >
λ

λ+1 has to hold.

For User 1, setting δi = ǫi where i = 2, 3, ...,m we have

U1(δ1 = ǫ1) = ǫ2(1− ǫ1)

U1(δ1 = 1) = λ(ǫ3 − ǫ1)(1− ǫ2) + λ(ǫ2 − ǫ1)(1 − ǫ3) + λ(ǫ2 − ǫ1)(1 − ǫ4) + · · ·+ λ(ǫ2 − ǫ1)(1− ǫm)

= λ(ǫ3 − ǫ1)(1− ǫ2) + λ(ǫ2 − ǫ1)(m− 2− s) (3.58)

where s =
∑m

i=3 ǫi. In order for honest reporting by User 1 to be a Nash equilibrium U1(δ1 = ǫ1) ≥
U1(δ1 = 1) has to hold. This condition is satisfied if

ǫ2 − λǫ3(1− ǫ2)− λǫ2(m− 2− s) ≥ ǫ1[ǫ2 − λ(1− ǫ2)− λ(m− 2− s)] (3.59)

Since ǫ2 − λǫ3(1− ǫ2)− λǫ2(m− 2− s) ≥ ǫ2 − λ(1− ǫ2)− λ(m− 2− s) is always true, we have that

ǫ2 − λ(1− ǫ2)− λ(m− 2− s) ≥ 0 ⇒ ǫ2 − λǫ3(1− ǫ2)− λǫ2(m− 2− s) ≥ 0 (3.60)
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Figure 3.8: Upper boundary of the region in Figure 3.6 shows that ǫi >
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2

belongs to the region where honest reporting by all players is a Nash equilibrium.

Since m− 2− s ≤ m− 2− (m− 2)ǫ2 = (m− 2)(1 − ǫ2) it follows that

ǫ2 − λ(1− ǫ2)− λ(1− ǫ2)(m− 2) ≥ 0 ⇒ ǫ2 − λ(1− ǫ2)− λ(m− 2− s) ≥ 0 (3.61)

From (3.59), (3.60) and (3.61) it follows that if ǫ2 − λ(1− ǫ2)− λ(1− ǫ2)(m− 2) ≥ 0 then δ1 = ǫ1.

The last inequality is equivalent to ǫ2 >
λ

λ+ 1
m−1

.

However from (3.59) we have that if ǫ2 ≥ λǫ3
1+λǫ3−λ(m−2−s) then δ1 = ǫ1. In order to prove

Proposition 3.2 we need to check under which conditions

λǫ3
1 + λǫ3 − λ(m− 2− s)

≤ λ(m− 2)

λ(m− 2) + 1
(3.62)

holds. This means that if ǫ2 ≥ λ(m−2)
λ(m−2)+1 then δ1 = ǫ1. Inequality (3.62) reduces to

ǫ3(1− λ(m− 2)2) ≤ m− 2− λ(m− 2)2,

which is true whenever m − 2 − λ(m − 2)2 ≥ 0 ⇔ λ ≤ 1
m−2 . This completes the first part of the

proof.

To show that honest reporting by all players is the only equilibrium under the conditions given

in Proposition 3.2, we break our analysis into two cases. Let us consider User i. First we assume

that at least one of the users 1 through i− 1 is honest i.e. δ1 = ǫ1 or δ2 = ǫ2 or · · · or δi−1 = ǫi−1

In this case utility Ui can be evaluated at δi = ǫi and δi = 1 as

Ui(δi = ǫi) = min
j=1,...,i−1

δj(1− ǫi)

Ui(δi = 1) = 0
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Hence, honest reporting by player i is his best strategy. Now, we analyze the case when δ1 = δ2 =

· · · = δi−1 = 1. Users i + 1 through m can either be honest or completely lie due to the linearity

of utility functions. Assuming that among these m − i users, k of them are telling the truth, let

us define ǫ(j), j = 1, ..., k + 1 in the following way: ǫ(1) = ǫi, ǫ(2) through ǫ(k+1) are equal to the

honest reports from users i+ 1 through m such that ǫ(1) ≤ ǫ(2) ≤ · · · ≤ ǫ(k+1). Now, we have

Ui(δi = ǫi) = ǫ(2)(1− ǫ(1))

Ui(δi = 1) = λ(ǫ(3) − ǫ(1))(1 − ǫ(2)) + λ(ǫ(2) − ǫ(1))(1 − ǫ(3)) + · · · + λ(ǫ(2) − ǫ(1))(1 − ǫ(k+1))

= λ(ǫ(3) − ǫ(1))(1 − ǫ(2)) + λ(ǫ(2) − ǫ(1))(k − 1− r) (3.63)

where r =
∑k+1

i=3 ǫ(i). Using the same analysis as in the first part of this proof, we conclude that

payer i best strategy is to be honest i.e. δi = ǫi if

ǫ(2) >















λ

λ+ 1
k−1

when λ ∈ [0, 1
k−1 ]

λ

λ+ 1
k

when λ > 1
k−1

for 2 ≤ k ≤ m− i, i = 1, ...,m − 2, and ǫ(2) >
λ

λ+1 for k = 1. Upper-bounding this region we have

that δi = ǫi is the best strategy if

ǫ(2) >















λ

λ+ 1
m−2

when λ ∈ [0, 1
m−2 ]

λ

λ+ 1
m−1

when λ > 1
m−2

no matter what the remaining players’ responses are. This completes the proof.

3.8.4 Game 2

As we can see from the analysis above, the Nash equilibrium depends on the true erasure probabili-

ties of all players. Using exactly the same approach as in Game 2 of the original problem, Alice can

enforce honesty of all players, by using the following erasure probabilities to construct codebooks

for key agreement:

ǫ̃i =















δi if δi >
λ

λ+ 1
m−2

and λ ∈ [0, 1
m−2 ]

λ

λ+ 1
m−2

+ α if δi ≤ λ

λ+ 1
m−2

and λ ∈ [0, 1
m−2 ]

ǫ̃i =















δi if δi >
λ

λ+ 1
m−1

and λ > 1
m−2

λ

λ+ 1
m−1

+ α if δi ≤ λ

λ+ 1
m−1

and λ > 1
m−2

for i = 1, 2, ...,m and 0 < α ≪ 1. It is easy to show that (δ1, δ2, ..., δm) = (ǫ1, ǫ2, ..., ǫm) is the

unique Nash equilibrium. The proof of this claim is straightforward extension of the analysis of

Game 2 provided in section 3.4.2.
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Chapter 4

Conclusions

In this work we studied the problem of confidential communication when different resources of

randomness were available.

In Chapter 2 we observed the problem where two resources of randomness were given: the relay

channel, and the source observations available at each terminal. We studied the scenario where

transmitter (Alice) sends a private message to the destination (Bob), which was confidential to the

relay (Eve). Alice and Bob also want to agree on a secret key that is also protected from Eve. We

proposed an achievable scheme based on a separation strategy and showed that if the channel was

degraded or reversely degraded [17], the secret message-secret key sum rate would be optimal.

In Chapter 3 we considered the key agreement scenario where the joint distribution of Alice,

Bob and Charlie’s observations was not known to Alice who constructs the codebooks for the key

agreement. We studied the problem where Alice and Bob want to agree on a key that is protected

from Charlie. At the same time, Alice and Charlie want to agree on a key that is protected from

Bob. We further assumed that it was up to Bob and Charlie to report a sufficient information about

their observations to Alice using a public channel. We modeled these reports by having Bob and

Charlie select discrete memoryless channels with true observations as their inputs, and reporting a

sufficient information about the outputs to Alice. Bob and Charlie picked those channels according

to some objective that was a function of a key rate and the amount of information they could learn

about the other user’s key, called the leakage rate. We approached this problem from a game-

theoretic point of view. For a class of Bob and Charlie’s objective functions which were linear

in the key rate and the leakage rate, we characterized a Nash equilibrium. Then, we proposed a

strategy that Alice can apply in order to ensure that Bob and Charlie’s honest reporting is always

a Nash equilibrium. For the binary erasure source distributions we extended this concept to the

multiple terminal case.
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Appendix A

Appendix 1

Proof of Theorem 2.1

Proof. If I(VA;YB, ŶE |XE , U) − I(VA;YE |XE , U) < 0, the claim follows from theorem 7 in [17].

Therefore, we will focus on the case when I(VA;YB , ŶE |XE , U) − I(VA;YE |XE , U) > 0. Let us

divide MP into two parts MP,a and MP,b such that they are random variables distributed over the

sets {1, 2, ..., 2nRP,a} and {1, 2, ..., 2nRP,b}, where RP,a and RP,b are non-negative satisfying

RP = RP,a +RP,b. (A.1)

Random Coding

1. Generate 2n(I(V ;YB)−ǫ) i.i.d. v sequences, each with probability

PV(v) =

n
∏

i=1

PV (vi).

Label these v(m), m ∈ [1, 2n(I(V ;YB)−ǫ)].

2. For every v(m) generate 2n(I(XE ;YB|V )−ǫ) i.i.d. xE sequences, each with probability

PXE |V(xE |v(m)) =
n
∏

i=1

PXE |V (xEi|vi(m)).

Label these xE(s|m), s ∈ [1, 2n(I(XE ;YB|V )−ǫ)].

3. For every v(m) generate 2nRP,a i.i.d. u sequences, each with probability

PU|V(u|v(m)) =

n
∏

i=1

PU |V (ui|vi(m)).

Label these u(w′|m), w′ ∈ [1, 2nRP,a ].
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4. For every u(w′|m) generate 2n(RS+RP,b) i.i.d. vA sequences, each with probability

PVA|U(vA|u(w′|m)) =

n
∏

i=1

PVA|U (vAi|ui(w′|m)).

Label these vA(j, l|m,w′), where j ∈ [1, 2nRP,b ], l ∈ [1, 2nRS ]. Let

RP,b = I(VA;YE |XE , U)− ǫ (A.2)

5. For every (xE(s|m),v(m)), generate 2n(I(ŶE ;YE |XE ,U)+ǫ) i.i.d. ŷE sequences, each with prob-

ability

P
ŶE |XE ,U

(ŷE |xE(s|m),u(w′|m)) =

n
∏

i=1

P
ŶE |XE ,U

(ŷEi|xEi(s|m), ui(w
′|m)).

Label these ŷE(z|w′, s,m), z ∈ [1, 2n(I(ŶE ;YE |XE ,U)+ǫ)].

Random Partitions

1. Randomly partition the set {1, ..., 2nRP,a} into 2n(I(V ;YB)−ǫ) cells S1m, wherem ∈ [1, 2nI(V ;YB)].

2. Randomly partition the set {1, ..., 2n(I(ŶE ;YE |XE ,U)+ǫ)} into 2n(I(XE ;YB|V )−ǫ) cells S2s, where

s ∈ [1, 2n(I(XE ;YB|V )−ǫ)].

Encoding

Let wi = (w′
i, ji, li) be the message to be sent in block i, and assume that

(ŷE(zi−1|w′
i−1, si−1,mi−1),yE(i− 1), u(w′

i−1|mi−1),xE(si−1|mi−1)) are jointly ǫ-typical and that

w′
i−1 ∈ S1mi

and zi−1 ∈ S2si . Then the codeword pair (xA(ji, li|mi, w
′
i),xE(si|mi)) will be trans-

mitted in block i, where the channel input sequence is generated from the mapping PXA|VA
.

Decoding

At the end of block i we have the following.

1. The receiver estimates mi and si, by first looking for the unique ǫ-typical v(mi) with yB(i),

then for the unique ǫ-typical xE(si|mi) with (yB(i),v(mi)). For sufficiently large n this

decoding step can be done with arbitrarily small probability of error. Let the estimates of si

and mi be ŝi, m̂i respectively.

2. The receiver calculates a set L1(yB(i−1)) of w′ such that w′ ∈ L1(YB(i−1)) if (u(w′|mi−1),yB(i−
1)) are jointly ǫ-typical. The receiver then declares that ŵ′

i−1 was sent in block i − 1 if
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ŵ′
i−1 ∈ S1mi

∩L1(yB(i−1)). For sufficiently large n, ŵ′
i−1 = w′

i−1 with probability arbitrarily

close to one if

RP,a ≤ I(V ;YB) + I(U ;YB |XE , V )− ǫ (A.3)

3. The receiver calculates a set L2(yB(i− 1)) of z such that z ∈ L2(yB(i− 1)) if

(ŷE(z|ŵ′
i−1, ŝi−1, m̂i−1),xE(ŝi−1|m̂i−1),yB(i− 1)) are jointly ǫ-typical. The receiver declares

that ẑi−1 was sent in block i − 1 if ẑi−1 ∈ S2si ∩ L2(yB(i − 1)). For sufficiently large n,

ẑi−1 = zi−1 with probability arbitrarily close to one if

I(ŶE ;YE |XE , U) + ǫ < I(ŶE ;YB |XE , U) + I(XE ;YB |V )− ǫ.

Since I(ŶE;YE , YB |XE , U) = I(ŶE ;YE |XE , U) the above inequality becomes

I(XE ;YB |V ) > I(ŶE ;YE |YB ,XE , U) + 2ǫ

4. Using both ŷE(ẑi−1|ŵ′
i−1, ŝi−1, m̂i−1) and yB(i− 1) the receiver declares that (ĵi−1, l̂i−1) was

sent in block i−1 if (vA(ĵi−1, l̂i−1|m̂i−1, ŵ
′
i−1), ŷE(ẑi−1|ŵ′

i−1, ŝi−1, m̂i−1),yB(i−1)) are jointly

ǫ-typical. (ĵi−1, l̂i−1) = (ji−1, li−1) with probability arbitrarily close to one if

RS +RP,b < I(VA;YB, ŶE |XE , U)− ǫ (A.4)

5. The relay upon receiving yE(i) declares that ŵ′
i was received if (u(ŵ′

i|mi),yE(i),xE(si|mi))

are jointly ǫ-typical. For sufficiently large n, ŵ′
i = w′

i with probability arbitrarily close to one

if

RP,a < I(U ;YE |XE , V ) (A.5)

6. The relay also finds a zi such that (ŷE(zi|w′
i, si,mi),yE(i),xE(si|mi)) are jointly ǫ-typical.

Such zi will exist with high probability for large n, therefore the relay knows that zi ∈ S2si+1 .
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Computation of Security Level

Suppose that MS(k), Wpublic,a(k) andWpublic,b(k) are random variables corresponding to the trans-

mitted messages at block k. For each block, we now establish a lower bound onH(MS(k)|Y n
E (k),Xn

E(k)).

H(MS(k)|Xn
E(k), Y

n
E (k)) ≥ H(MS(k)|Xn

E(k), Y
n
E (k), Un(k))

= H(MS(k), Y
n
E (k)|Xn

E(k), U
n(k))−H(Y n

E (k)|Xn
E(k), U

n(k))

= H(MS(k), Y
n
E (k), V n

A (k)|Xn
E(k), U

n(k))

−H(V n
A (k)|Xn

E(k),MS(k), Y
n
E (k), Un(k))−H(Y n

E (k)|Xn
E(k), U

n(k))

= H(MS(k), V
n
A (k)|Xn

E(k), U
n(k))

+H(Y n
E (k)|MS(k), V

n
A (k),Xn

E(k), U
n(k))

−H(V n
A (k)|Xn

E(k),MS(k), Y
n
E (k), Un(k))−H(Y n

E (k)|Xn
E(k), U

n(k))

≥ H(V n
A (k)|Xn

E(k), U
n(k)) +H(Y n

E (k)|V n
A (k),Xn

E(k), U
n(k))

−H(V n
A (k)|Xn

E(k),MS(k), Y
n
E (k), Un(k))

−H(Y n
E (k)|Xn

E(k), U
n(k)) (A.6)

We proceed to bound each of four terms in (A.6).

1. H(V n
A (k)|Xn

E(k), U
n(k)) = H(V n

A (k)) = n(RS +RP,b)+nǫ. The first equality comes from the

fact that Xn
E(k) is computed from the blocks received before k and therefore is independent

of V n
A (k).

2. H(Y n
E (k)|V n

A (k),Xn
E(k), U

n(k)) = nH(YE|VA,XE , U)+nǫ, follows from the fact that channel

is memoryless.

3. H(V n
A (k)|Xn

E(k),MS(k), Y
n
E (k), Un(k)) ≤ nǫ, follows from Fano’s inequality.

4. H(Y n
E (k)|Xn

E(k), U
n(k)) = nH(YE|XE , U) + nǫ, follows from the fact that the channel is

memoryless.

Substituting these results into (A.6), we get

H(MS(k)|Xn
E(k), Y

n
E (k)) ≥ n(RS +RP,b)

+ nH(YE|VA,XE , U)− nH(YE|XE , U)− 4nǫ

= n(RS +RP,b − I(VA;YE |XE , U))− 4nǫ. (A.7)

Therefore, using (A.2), we can write (A.7) as

RS − 1

n
H(MS(k)|Xn

E(k), Y
n
E (k)) ≤ 4ǫ (A.8)
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and, thus, the security condition (2.1) is satisfied. Based on (A.4) it follows that

RS ≤ I(VA;YB , ŶE |XE , U)− I(VA;YE |XE , U)

Combining (A.1), (A.2), (A.3) and (A.5) we obtain

RP ≤ min{I(V ;YB) + I(U ;YB |XE , V ), I(U ;YE |XE , V )}+ I(VA;YE|XE , U).

The following lemma is exactly the same as Lemma 2 in [13]. For the sake of completeness, we

will state it here without proof.

We consider a discrete memoryless multiple source with three components with alphabets

(SA,SB ,SE), respectively, and corresponding generic random variables (SA, SB , SE), observed by

Alice, Bob and Eve, respectively. We are given a noiseless public channel of capacity R. The goal

is to design a key shared by Alice and Bob that is perfectly secret from Eve.

Lemma A.1. Consider any joint distribution PW,SA,SB ,SE
satisfying the Markov chain W − SA −

(SB , SE) such that I(W ;SB) > I(W ;SE). If R ≥ I(W ;SA|SB), the following secret key rate is

achievable

I(W ;SB)− I(W ;SE). (A.9)

Specifically, for all δ > 0 and sufficiently large n, there exists an encoding function ψ : Sn
A →

{1, ..., 2nR} and decoding function KA : {1, ..., 2nR} × Sn
A → {1, ..., 2n((W ;SB )−I(W ;SE)−δ)}, KB :

{1, ..., 2nR} × Sn
B → {1, ..., 2n((W ;SB )−I(W ;SE)−δ)} such that

Pr{KA(ψ(S
n
A), S

n
A) 6= KB(ψ(S

n
A), S

n
B)} ≤ δ (A.10)

and the following conditions are satisfied:

1

n
I(KA(ψ(S

n
A), S

n
A);ψ(S

n
A), S

n
E) ≤ δ (A.11)

1

n
I(ψ(Sn

A);S
n
E) ≤ δ (A.12)

1

n
H(KA(ψ(S

n
A), S

n
A)) ≥ I(W ;SB)− I(W ;SE)− 2δ (A.13)

1

n
H(ψ(Sn

A)) ≥ I(W ;SA|SB)− δ (A.14)

Proof of Theorem 2.2

Proof. We will now use Theorem 2.1 and Lemma A.1 to prove our achievability result. We consider

two cases depending on whether RM is larger than RS in Theorem 2.1.
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Case 1. IfRM ≥ RS , we split the secret message into two independent partsM = (MSBP ,MPBP )

of rates RSBP − δ and R′
M − δ = RM − RPBP − δ, respectively. Let us denote the key generated

by Alice by KA. Let us split this key into two independent parts K = (K1,K2) of alphabet sizes

2nRK and 2nR
′
M , respectively. Now, we can write

RK +R′
M = RK +RM −RSBP

= {I(W ;SB)− I(W ;SE)}+

Now, we can set

MS =MSBP

MP = (ψ(Sn
A),K2 ⊕MPBP )

where ⊕ is a bit-wise XOR. In choosing MP as above, we have to make sure that

RPBP − I(W ;SA|SB)−R′
SM = RPBP +RSBP − I(W ;SA|SB)−RSM

= min{I(V ;YB) + I(U ;YB |XE , V ), I(U ;YE |XE , V )}+ I(VA;YB , ŶE |XE , U)

− I(W ;SA|SB)−RSM

≥ 0

where inequality follows from (2.12). With high probability, Bob can recover (MS ,MP ) (by The-

orem 2.1) and KA = (K1,K2) (by Lemma A.1). Bob declares K1 to be the secret key. He also

recovers MPBP by undoing the bit-wise XOR and thus can outputM . It is straightforward to show

that the key satisfies uniformity conditions and that the secrecy constraints are met (see [13]).

Case 2. If RM < RS and I(W ;SA|SB) ≥ RS − RM , we split ψ(Sn
A) into two parts ψ(Sn

A) =

(ψSBP , ψPBP ) such that their alphabets are {1, 2, ..., 2n(RS−RM )} and {1, 2, ..., 2n(I(W ;SA |SB)−RS+RM )},
respectively. In doing this, we made use of Theorem 2.1 which implies that

RP +RS − I(W ;SA|SB)−RM = min{I(V ;YB) + I(U ;YB |XE , V ), I(U ;YE |XE , V )}

+ I(VA;YB, ŶE |XE , U)− I(W ;SA|SB)−RM ≥ 0

If I(W ;SA|SB) ≤ RS −RM , we define ψSBP = ψ(Sn
A) and ψPBP = 0. Now, we make the following

choice

MS = (M,ψSBP )

MP = ψPBP

By Theorem 2.1, Bob recovers the secret message M and the pair (ψSBP , ψPBP ), and therefore KA

with high probability. In this case, we define secret key as K = (ψSBP ,KA). Following the similar
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steps as in [13] uniformity and secrecy conditions are easily verifiable. Since the key is defined as

above, we have

RK = {I(W ;SB)− I(W ;SE)}+ +RS −RM .

In other words

RK = {I(W ;SB)− I(W ;SE)}+ + {I(VA;YB , ŶE |XE , U)− I(VA;YE |XE , U)}+ −RM .

Proof of Theorem 2.3

Proof. Let Q be uniformly distributed over {1, 2, ..., n} and independent of all other random vari-

ables. Then, we have

nI(XA,Q,XE,Q;YE,Q, YB,Q|Q)

≥ I(Xn
A,X

n
E ;Y

n
E , Y

n
B )

= I(M,K,Sn
A,X

n
A,X

n
E ;Y

n
E , Y

n
B )

≥ I(M,K,Sn
A,X

n
E ;Y

n
E , Y

n
B )

≥ I(M,K,Sn
A,X

n
E ;Y

n
E , Y

n
B )− I(Sn

B , S
n
E ;Y

n
E , Y

n
B )

= I(M,K,Sn
A, S

n
B, S

n
E ,X

n
E ;Y

n
E , Y

n
B )− I(Sn

B , S
n
E;Y

n
E , Y

n
B ) (A.15)

= I(M,K,Sn
A,X

n
E ;Y

n
E , Y

n
B |Sn

B, S
n
E)

= I(M ;Y n
E , Y

n
B |Sn

B , S
n
E)

+ I(K,Sn
A,X

n
E ;Y

n
E , Y

n
B |Sn

B , S
n
E,M)

= H(M |Sn
B , S

n
E) + I(K,Sn

A,X
n
E ;Y

n
E , Y

n
B |Sn

B , S
n
E ,M) (A.16)

= H(M) + I(K,Sn
A,X

n
E ;Y

n
E , Y

n
B |Sn

B , S
n
E,M)

= RM + I(K,Sn
A,X

n
E ;Y

n
E , Y

n
B |Sn

B , S
n
E ,M), (A.17)

where (A.15) is true because (Sn
B , S

n
E) − Sn

A − (M,K,Xn
A,X

n
E , Y

n
E , Y

n
B ) is a Markov chain,

and (A.16) follows from Fano’s inequality which gives H(M |Y n
E , S

n
E) = o(n). To bound the sec-

ond term in (A.17), we write

60



I(K,Sn
A,X

n
E ;Y

n
E , Y

n
B |Sn

B , S
n
E,M)

= H(Y n
E , Y

n
B |Sn

B, S
n
E ,M)

−H(Y n
E , Y

n
B |K,Sn

A, S
n
B , S

n
E ,X

n
E ,M)

= H(Y n
E , Y

n
B |Sn

B, S
n
E ,M) +H(K,Xn

E |Y n
E , Y

n
B , S

n
B , S

n
E,M)

−H(Y n
E , Y

n
B |K,Sn

A, S
n
B , S

n
E ,X

n
E ,M) (A.18)

≥ H(K,Xn
E , Y

n
E , Y

n
B |Sn

B , S
n
E,M)

−H(K,Xn
E , Y

n
E , Y

n
B |Sn

A, S
n
B , S

n
E,M)

= I(K,Xn
E , Y

n
E , Y

n
B ;Sn

A|Sn
B , S

n
E ,M)

= I(K,Xn
E , Y

n
E , Y

n
B ;Sn

A|Sn
B , S

n
E ,M) + I(M ;Sn

A|Sn
B , S

n
E)

= I(M,K,Xn
E , Y

n
E , Y

n
B ;Sn

A|Sn
B, S

n
E)

=

n
∑

i=1

I(M,K,Xn
E , Y

n
E , Y

n
B ;SA,i|Si−1

A , Sn
B , S

n
E)

=
n
∑

i=1

I(M,K,Xn
E , Y

n
E , Y

n
B ;SA,i|Sn

B, S
n
E)

=

n
∑

i=1

I(M,K,Xn
E , Y

n
E , Y

n
B , SB,̃i, SE,̃i;SA,i|SB,i, SE,i)

= nI(W ;SA,Q′|SB,Q′ , SE,Q′), (A.19)

where (A.18) follows from Fano’s inequality which implies that H(K|Y n
B , S

n
B) = o(n) and the

fact that Xn
E = gn(Y

n−1
E ). We define SB,̃i = (Si−1

B , Sn
B,i+1) and SE,̃i = (Si−1

E , Sn
E,i+1), and W =

(M,K,Xn
E , Y

n
E , Y

n
B , SB,̃i, SE,̃i, Q

′). Note that W does indeed satisfy the condition W − SA,Q′ −
(SB,Q′ , SE,Q′).

n(RM +RK)

≤ I(M,K;Y n
E , Y

n
B , S

n
B, S

n
E |Xn

E)

= I(M,K;Y n
E , Y

n
B , S

n
B, S

n
E |Xn

E)− I(M,K;Y n
E , S

n
E|Xn

E) (A.20)

= I(M,K;Y n
B , S

n
B |Y n

E ,X
n
E , S

n
E)

= I(M,K;Y n
B |Y n

E ,X
n
E , S

n
E)

+ I(M,K;Sn
B |Y n

E , Y
n
B ,X

n
E , S

n
E)

≤ I(M,K,Sn
A, S

n
E ,X

n
A;Y

n
B |Y n

E ,X
n
E)

+ I(M,K;Sn
B |Y n

E , Y
n
B ,X

n
E , S

n
E)
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= I(Xn
A;Y

n
B |Xn

E , Y
n
E )

+

n
∑

i=1

I(M,K;SB,i|Si−1
B , Y n

E , Y
n
B ,X

n
E , S

n
E)

=

n
∑

i=1

H(YB,i|Y i−1
B ,Xn

E , Y
n
E )−H(YB,i|Y i−1

B ,Xn
A,X

n
E , Y

n
E )

+
n
∑

i=1

I(M,K;SB,i|Si−1
B , Y n

E , Y
n
B ,X

n
E , S

n
E)

≤
n
∑

i=1

H(YB,i|XE,i, YE,i)−H(YB,i|XA,i,XE,i, YE,i)

+

n
∑

i=1

I(M,K, Y n
E , Y

n
B ,X

n
ESB,̃i, SE,̃i;SB,i|SE,i)

=
n
∑

i=1

I(XA,i;YB,i|XE,i, YE,i)

+

n
∑

i=1

I(M,K, Y n
E , Y

n
B ,X

n
E , SB,̃i, SE,̃i;SB,i|SE,i)

= nI(XA,Q;YB,Q|XE,Q, YE,Q, Q) + nI(W ;SB,Q′ |SE,Q′), (A.21)

where (A.20) follows from the secrecy assumption I(M,K;Y n
E , S

n
E |Xn

E) = o(n).
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Appendix B

Appendix 2

Proof of Theorem 3.1

Proof. To avoid complicated notation, we just show the achievability for the R1 region. Key

agreement protocol is performed in two stages (see [29], Theorem 2.2 ). First, Bob uses the public

channel to agree on a key KAB with Alice. Given the random variables X, Y , Z, Yr, Zr and U

satisfying (3.4)

• Generate randomly a typical sequence Un with probability

PUn(Un) =

n
∏

i=1

PU (ui)

We assume that Alice, Bob and Charlie know the sequence Un.

• Generate 2n(H(Yr |U)+ǫ) i.i.d. yr sequences, each with probability

PY n
r |Un(Y n

r |Un) =
n
∏

i=1

PYr |U (yr,i|ui)

and label each of them yr(b, k, j), where 1 ≤ b ≤ 2nRb , 1 ≤ k ≤ 2nRAB , 1 ≤ j ≤ 2nR
′
. Hence,

Rb +RAB +R′ = H(Yr|U) + ǫ (B.1)

This random codebook is generated such that all the codewords

Cb = {Y n
r (b, k, j) | 1 ≤ k ≤ 2nRAB , 1 ≤ j ≤ 2nR

′}

constitutes a Discrete Memoryless Channel (DMC) codebook for the channel PX|Yr
. There-

fore, if RAB + R′ = I(Yr;X|U) − ǫ′ then with high probability, there is the unique sequence

yr that is jointly typical with x given Un.
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• Bob partitions the codebooks Cb, 1 ≤ b ≤ 2nRb by randomly assigning the codewords yr ∈ Cb

to 2nRAB bins. Each bin, denoted by k ∈ [1, 2nRAB ], corresponds to a DMC codebook for the

channel PZr |Yr
. For R′ = I(Yr;Zr) − ǫ′, with high probability, within each bin there will be

the unique sequence zr that is jointly typical with yr ∈ Cb. Key KAB is defined to be the

index k in the codeword yr.

• Observing a typical source sequence yr(b, k, j), Bob sends the bin index b to Alice over the

public channel.

• Alice looks for a codeword yr(b, k, j) such that

(yr(b, k, j),x) ∈ A∗(n)
ǫ (X,Yr|U).

As pointed out above, since yr ∈ Cb, Alice can find the unique yr that is jointly typical with

x given u.

• As an eavesdropper, Charlie has access to the sequence z. He can reduce uncertainty about

the key KAB by assigning all sequences yr ∈ Cb to 2n(I(Yr ;X|U)−I(Yr ;Z|U)−δ′) bins of size

2n(I(Yr ;Z|U)−δ′). Each such bin represents a DMC codebook for the channel PZ|Yr
, so with

high probability, within each bin, there will be the unique sequence yr ∈ Cb. By doing

this Charlie is able to reduce uncertainty about KAB from 2n(I(Yr ;Zr|U)−ǫ′) to 2n(I(Yr ;Z|U)−ǫ′)

possible key outcomes. This key rate uncertainty reduction is the leakage rate RL
AB. Hence,

RL
AB ≤ I(Yr;Z|U)− I(Yr;Zr|U)

After this stage, Alice has access to yr, and her own observations x. To construct the key KAC

we repeat the same approach as above by considering Bob as an eavesdropper. The assumption is

that Charlie has access to the noisy observations zr (generated from PZr |Z), while Alice observes

(x,yr). Hence,

RAC = I(Zr;X,Yr)− I(Zr;Yr) = I(Zr;X|Yr)− ǫ′ (B.2)

RL
AC = I(Z;Yr)− I(Zr;Yr)− ǫ′, (B.3)

where (B.2) is true because the Markov chain Zr − (X,Yr)− Yr holds.
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Computation of Security Level

Charlie’s uncertainty about the key KAB can be bounded as follows

H(KAB |b, Zn) ≥ H(KAB |b, Zn, Un)

= H(KAB , Z
n|b, Un)−H(Zn|b, Un)

= H(KAB , Z
n, Y n

r |b, Un)−H(Y n
r |KAB , Z

n, b, Un)−H(Zn|b, Un)

= H(KAB , Y
n
r |b, Un) +H(Zn|KAB , Y

n
r , b, U

n)

−H(Y n
r |KAB , Z

n, b, Un)−H(Zn|b, Un)

≥ H(Y n
r |b, Un) +H(Zn|Y n

r , U
n)

−H(Y n
r |KAB , Z

n, b, Un)−H(Zn|b, Un)

(a)

≥ H(Y n
r |b, Un) +H(Zn|Y n

r , U
n) + nδ1 −H(Zn|Un)

= H(Y n
r |b, Un)− I(Y n

r ;Zn|Un) + nδ1 (B.4)

where (a) follows from Fano’s inequality and the fact that conditioning reduces entropy.

We now bound each of these terms:

H(Y n
r |b, Un) = H(Y n

r , b|Un)−H(b|Un)

(b)
= H(Y n

r |Un)−H(b|Un)

(c)

≥ n[H(Yr|U) + ǫ]− n[H(Yr|X,U) + ǫ′′]

≥ nI(Yr;X|U) + nǫ

where (b) holds because b is a component of Y n
r , and (c) follows from the fact that given Un, Y n

r

and b have I(Yr;X|U) + ǫ and H(Yr|X,U) + ǫ′′ possible values, respectively.

To bound I(Y n
r ;Zn|Un) in (B.4), let L be an indicator random variable which takes on the
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value 1 when (Y n
r , Z

n) ∈ A
∗(n)
ǫ (Yr, Z|U) and 0 otherwise.

I(Y n
r ;Zn|Un) ≤ I(Y n

r , L;Z
n|Un)

= I(Y n
r ;Zn|L,Un) + I(L;Zn|Un)

=

1
∑

j=0

Pr(L = j)I(Y n
r ;Zn|Un, L = j) + I(L;Zn|Un)

≤
1
∑

j=0

Pr(L = j)I(Y n
r ;Zn|Un, L = j) +H(L)

≤
1
∑

j=0

Pr(L = j)I(Y n
r ;Zn|Un, L = j) + 1

≤ Pr(L = 1)I(Y n
r ;Zn|Un, L = 1) + n log |Y|Pr(L = 0) + 1

≤ Pr(L = 1)I(Y n
r ;Zn|Un, L = 1) + nδ′ + 1 (B.5)

From the joint typicality properties, we have

Pr(T = L)I(Y n
r ;Zn|Un, L = 1) ≤ I(Y n

r ;Zn|Un, L = 1)

=
∑

(yr ,z)∈A
∗(n)
ǫ (Yr ,Z|U)

Pr(yr, z|u)[log Pr(yr, z|u) − log Pr(yr|u)− log Pr(z|u)]

≤ n[H(Yr|U) +H(Z|U)−H(Yr, Z|U) + δ′′]

= n[I(Yr;Z|U) + δ′′]

Combing the last step with (B.5) we get

I(Y n
r ;Zn|Un) ≤ nI(Yr;Z|U) + n[

1

n
+ δ′ + δ′′]

≤ n[I(Yr;Z|U) + δ] (B.6)

From (B.4), (B.5) and (B.6) we have

1

n
H(KAB |b, Zn) ≥ I(Yr;X|U) − I(Yr;Z|U)

Similarly, we can show

1

n
H(KAB |b, Zn

r ) ≥ I(Yr;X|U) − I(Yr;Zr|U)

It is only left to calculate an upper bound on the leakage rate RL
AB. From Definition 3.1 we

have

RL
AB =

1

n
I(KAB ; b, Z

n)

=
1

n
(H(KAB)−H(KAB |b, Zn))

≤ I(Yr;Z|U)− I(Yr;Zr|U).
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Now we bound Bob’s uncertainty about the key KAC . Let c be the bin index of the codeword

zr, which Charlie sends to Alice over the public channel.

H(KAC |c, Y n) ≥ H(KAC |c, Y n)

= H(KAC , Y
n|c)−H(Y n|c)

= H(KAC , Y
n, Zn

r |c)−H(Zn
r |KAC , Y

n, c) −H(Y n|c)

= H(KAC , Z
n
r |c) +H(Y n|KAC , Z

n
r , c)

−H(Zn
r |KAC , Y

n, c) −H(Y n|c)

≥ H(Zn
r |c) +H(Y n|Zn

r )−H(Zn
r |KAC , Y

n, c)−H(Y n|c)
(d)

≥ H(Zn
r |c) +H(Y n|Zn

r ) + nδ2 −H(Y n)

= H(Zn
r |c)− I(Zn

r ;Y
n) + nδ2 (B.7)

where (d) follows from Fano’s inequality and the fact that conditioning reduces entropy. Using the

same approach as we did for the key KAB , we can show that

H(Zn
r |c) = I(Zr;X,Yr)− δ′ (B.8)

I(Zn
r ;Y

n) ≤ nI(Zr;Y ) (B.9)

Hence,

1

n
H(KAC |c, Y n) ≥ I(Zr;X,Yr)− I(Zr;Yr)

Similarly, we can show

1

n
H(KAC |c, Y n

r ) ≥ I(Zr;X,Yr)− I(Zr;Yr)

It is only left to calculate an upper bound on the leakage rate RL
AC . From Definition 3.1 we

have

RL
AC =

1

n
I(KAC ; c, Y

n)

=
1

n
(H(KAC)−H(KAC |c, Y n))

≤ I(Zr;Y )− I(Zr;Yr).
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