
Markov Chain Monte Carlo Stimulus Generation for

Constrained Random Simulation

Nathan Boyd Kitchen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-165

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-165.html

December 17, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Markov Chain Monte Carlo Stimulus Generation
for Constrained Random Simulation

by

Nathan Boyd Kitchen

A dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Engineering—Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:
Professor Andreas Kuehlmann, Chair

Professor Sanjit Seshia
Professor David Aldous

Fall 2010

The dissertation of Nathan Boyd Kitchen is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2010

Markov Chain Monte Carlo Stimulus Generation

for Constrained Random Simulation

Copyright 2010

by

Nathan Boyd Kitchen

Abstract

Markov Chain Monte Carlo Stimulus Generation
for Constrained Random Simulation

by

Nathan Boyd Kitchen

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Andreas Kuehlmann, Chair

As integrated circuits have grown in size and complexity, the time required for func-
tional verification has become the largest part of total design time. The main workhorse in state-
of-the-art practical verification is constrained random simulation. In this approach, a randomized
solver generates solutions to declaratively specified input constraints, and the solutions are ap-
plied as stimuli to a logic simulator. The efficiency of the overall verification process depends
critically on the speed of the solver and the distribution of the generated solutions. Previous
methods for stimulus generation achieve speed at the expense of quality of distribution or rely
on techniques that do not scale well to large designs.

In this dissertation, we propose a new method for stimulus generation based on Markov
chain Monte Carlo (MCMC) methods. We describe the basic principles of MCMC methods and
one of the most common of these methods, Metropolis-Hastings sampling. We present our
approach, which combines the Metropolis-Hastings algorithm with stochastic local search. We
show with experimental results that it surpasses existing stimulus-generation methods in speed,
robustness, and quality of distribution.

After presenting our basic algorithm, we describe several refinements and variations of
it. These refinements include the addition of control variables to handle dependencies on external
data and elimination of variables to increase efficiency and distribution. In addition, we present
a parallel version of our algorithm and give theoretical analysis and experimental evidence of
the speedup achieved by parallelization.

1

To Lauren,
who has earned it as much as I have

i

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Constrained Random Simulation . 2
1.2 Previous Work . 3
1.3 Contributions of This Dissertation . 6

2 Background on Markov Chain Monte Carlo Methods 7

2.1 Markov Chains . 7
2.2 The Metropolis-Hastings Algorithm . 8
2.3 Gibbs Sampling . 9
2.4 Convergence . 10

3 Stimulus Generation Based on Markov Chain Monte Carlo Methods 12

3.1 Specifying Constraints . 12
3.1.1 Normal Form . 12
3.1.2 Integer Literals . 14
3.1.3 Translations of Various Constructs to Normal Form 15
3.1.4 Constraint Partitioning . 18

3.2 Applying the Metropolis-Hastings Algorithm . 18
3.2.1 Target Distribution . 18
3.2.2 Proposal Distributions . 19

3.3 Increasing Efficiency with Local Search . 24
3.4 Reducing Correlation . 26
3.5 Overall Generation Algorithm . 27
3.6 Experimental Evaluation . 30

3.6.1 Comparison to Other Stimulus-Generation Methods 30
3.6.2 Comparison of Proposal Types . 34
3.6.3 Evaluation of State Pooling for Decorrelation 35

3.7 Summary . 36

4 Refinements to Markov Chain Monte Carlo Stimulus Generator 37

4.1 Generation of Stimuli Dependent on External Values 37
4.2 Static Variable Elimination . 38
4.3 Dynamic Variable Elimination . 41

ii

4.3.1 Basic Approach . 42
4.3.2 Handling Disjunctions of Equations . 45
4.3.3 Experimental Evaluation . 47

4.4 Summary . 48

5 Parallel Stimulus Generation 50

5.1 Benchmarks . 51
5.2 Bounds on Expected Speedup . 52
5.3 Parallel Generation Algorithm . 55
5.4 Experimental Evaluation . 57

5.4.1 Generation using True Parallelism . 58
5.4.2 Generation using Simulated Parallelism . 61
5.4.3 Evaluation of Control-Value Caching . 67

5.5 Summary . 71

6 Conclusions 72

Bibliography 74

iii

List of Figures

1.1 Structure of a setup for constrained random simulation. 2
1.2 An example of a DUT: an 8-bit ALU, along with input constraints in SystemVerilog. 2
1.3 Distribution of samples when using interval-propagation sampling. 4

3.1 Illustration of how satisfying intervals are computed for a relation f (y1, y2) ≤ 0. . . 14
3.2 Example of substitution and simplification to obtain the active clauses. 20
3.3 Examples of soft-SAT proposal distribution functions. 21
3.4 Motivating example for a soft-SAT proposal distribution. 21
3.5 Illustration of cost function U and cost-based proposal distribution qc. 23
3.6 Illustrations of the construction of the distribution q(yi) for local-search moves. . . 25
3.7 Illustration of data flow with the state pool. 26
3.8 Decimation periods and percentages of unique solutions. 33
3.9 Absolute frequencies of all solutions from Ambigen and DPLL-based generator. . . 33
3.10 Relative frequencies of transitions between regions for different types of proposal

distributions. 34
3.11 Effect of state pooling on autocorrelation and runtime. 36

4.1 Distributions of (y1, y2) in 10 000 solutions to Clauses 4.1–4.15. 41
4.2 Effect of dynamic variable elimination on moves. 42
4.3 Illustration of dynamic variable elimination for Clauses 4.21–4.25. 44
4.4 Ratios of runtimes with dynamic variable elimination to runtimes without it. 48
4.5 Move counts with and without dynamic variable elimination and their ratios. . . . 48

5.1 Quartiles of time per solution for our generalized 3-CNF benchmarks. 52
5.2 Joint distributions of solution times, correlations, and expected speedup. 53
5.3 Distributions of projected speedup from parallel generation on generalized 3-CNF

benchmarks. 53
5.4 Data flow in parallel stimulus generation. 58
5.5 Distributions of speedup from parallel generation. 59
5.6 Runtime and move counts from parallel generation. 60
5.7 Results of parallel generation with linear fits and classification by distance. 61
5.8 Speedup ratios derived from elapsed times and move counts. 62
5.9 Move counts for generation with true and simulated parallelism. 63
5.10 Distributions of move-based speedup from simulated parallel generation. 63
5.11 Projected and measured speedup ratios from simulated parallel generation. 64

iv

5.12 Mean empirical correlation of moves per solution per worker versus ratio of actual
to projected speedup. 65

5.13 Projected and measured speedup ratios from simulated parallel generation, in-
cluding empirical correlations in projections. 66

5.14 Coefficients of variation (CVs) for time and move count per solution. 67
5.15 Mean speedup S(P)

m for number of workers P and number of assigned control bits m. 68
5.16 Different views of the same data shown in Figure 5.15. 69
5.17 Mean projected speedup S(P)

m for number of workers P and number of assigned
control bits m, accounting for gradual loading of control values. 70

v

List of Tables

3.1 Characteristics of benchmarks in Boolean/integer normal form, binary decision
diagrams, and Boolean CNF. 31

3.2 Results of generating 1 000 000 random solutions with Ambigen, BDD-based gen-
eration, and DPLL-based generation. 32

4.1 Patterns of clauses that we identify for eliminating Boolean variables. The integer
relations that replace xi and ¬xi for the second and third patterns are single literals,
not combinations of two literals. 40

4.2 Elimination of variables y3, x2, and x3 from Clauses 4.9–4.12. 40
4.3 Ranges of randomly generated values in benchmarks for dynamic variable elimi-

nation. 47

vi

Acknowledgments

First I would like to thank Professor Andreas Kuehlmann for his support and collaboration. He
has demanded work of high quality, and his encouragement has given me the confidence to
produce it. I hope to emulate his example of integrity and hard work in my own career.

I would like to thank Professors Sanjit Seshia and David Aldous for reviewing my
dissertation and helping me improve it, and thank them and Professor Bob Brayton for being on
my qualifying-exam committee. I would also like to acknowledge Professors Michael Jordan and
Alistair Sinclair, whose courses exposed me to MCMC methods just when I needed them and
showed me how much I could do with them.

Vitaly Lagoon and Giora Alexandron of Cadence Design Systems helped me tremen-
dously with test cases that challenged me. My algorithm is much more useful in practical settings
because of my collaboration with them.

I would like to thank the researchers at Cadence Research Laboratories for their friend-
ship and for many interesting lunch discussions. I am particular grateful to Philip Chong, Carlos
Coelho, and Eric Schaefer, who helped me with debugging and experiments. Without their help
I would likely still be working on this dissertation for months to come.

I am deeply grateful to Cadence Design Systems for their generosity in funding my
studies.

I would like to acknowledge the staff of the UC Berkeley EECS Department for their
support. Extra thanks to Ruth Gjerde, who always made me feel welcome and relieved my
anxiety many times with her reassurance.

I am grateful to my fellow students for their friendship, their collaboration, and their
examples. A few of them deserve special thanks: Abhijit Davare and Bryan Catanzaro, for
their warm friendship; Donald Chai, for many thought-provoking conversations; Qi Zhu, for
the opportunity to do excellent research together, and Tobias Welp, for working with me on the
research for this dissertation and his close friendship.

Finally I would like to thank my family. My parents instilled in me from an early age
the importance of education and of hard work. I am thankful that they did, and I am proud to
be able to follow my father’s example. I am grateful to Karen, Megan, Leslee, and Joanie for
stepping in so that I could focus my attention on this work. Most of all, I am grateful to my wife
Lauren for her unending patience and encouragement and for her sacrifices. I could not have
finished this work without her support.

vii

Chapter 1

Introduction

Modern digital integrated circuits are extremely complex. State-of-the-art chips contain
millions or billions of transistors. Designing such a large circuit with the correct behavior is an
enormous challenge, and functional verification—checking that a design behaves as required by
the specification—is a critical part of the design process. As the size and complexity of circuits has
increased, the time required for functional verification has become the majority of total design
time; two-thirds of design effort is now spent in verification rather than in implementing the
specification [ITR09, Table DESN6]. Thus, the efficiency of functional verification has a significant
impact on the speed with which designs can be put into production.

Approaches for functional verification can be grouped into two broad categories: sim-
ulation-based techniques and formal methods. These two kinds of approaches differ in their
completeness and scalability. Simulation-based methods evaluate the logic of the design for a
subset of the possible input values, while formal methods prove behavioral properties for all
possible inputs. On the other hand, simulation time scales linearly with the design size and
the number of cycles, while the runtime of formal methods can be exponential in the design
size. Contemporary verification flows include both kinds of methods, but simulation has been
and continues to be the main workhorse in practical verification because it is more scalable and
predictable.

The input stimuli for simulation are produced by a testbench that is executed simulta-
neously with the simulator. In order to avoid producing invalid stimuli that might lead to false
negative verification results, the testbench must obey input constraints. For example, the imple-
mentation of a protocol interface may only be required to be correct for data packets with valid
headers, so the input constraints should exclude invalid headers.

The methods used for stimulus production have evolved over time. Testbenches were
originally written in imperative programming languages such as C or C++. In their earliest form,
they simply applied input assignments that had been chosen manually. The need for greater
productivity motivated the development of more complex procedures that generated stimuli
algorithmically rather than just enumerating them. They supported nondeterminism through
the use of random number generators (e.g., rand() in the C standard library); random values
could be used as data or for choosing alternative generation paths. These imperatively specified
testbenches encoded input constraints implicitly in the generation routines.

As the complexity of input constraints increased, such an unstructured approach be-
came unworkable. First, in the absence of a concise way to express complex constraints, the
inputs can easily be under- or over-constrained, resulting in spurious verification failures or un-

1

covered stimuli. Second, the ad hoc use of random number generators to diversify the stimuli
makes it impossible to ensure a “good” distribution over the solution space. This can dramati-
cally decrease the verification coverage and increase the required lengths of simulation runs.

1.1 Constrained Random Simulation

The need to express constraints more concisely led to the use of declarative specifica-
tions. Declarative constraints are not directly executable, so an online constraint solver is required
to generate the stimuli. Since the testbench can have an internal state and the constraints may
depend on it or the state of the design itself (e.g., to vary the data produced during the differ-
ent phases of a communication protocol), the solver must run in lockstep with the simulator to
generate stimuli that correspond to the current state.

This approach to verification, including declarative constraints and a randomized solver
as the stimulus generator, is called constrained random simulation (CRS). Figure 1.1 depicts the
structure of a CRS testbench, along with the design under test (DUT). Besides the stimulus
generator, the testbench includes a monitor to check the correctness of the design’s behavior and
a coverage analyzer to measure how much of the behavior has been checked.

Constraints
under Test
Design

Coverage
Analyzer

Monitor

Biases

Generator
Stimulus

(DUT)

Testbench

Figure 1.1: Structure of a setup for constrained random simulation.

Specific languages used in practice for specifying testbenches declaratively include Sys-
temC [GLMS02], SystemVerilog [SDF03], and e [IJ04]. An example of constraints for an 8-bit
ALU, written in SystemVerilog, is shown in Figure 1.2. The constraints specify input values such
that the output c is computed without overflow or division by zero.

2

8

8
ALU

8
c

a

b

op

rand enum { ADD, SUB, MUL, DIV } op;rand bit signed [7:0℄ a, b;
onstraint valid {op == ADD -> (-128 <= a + b && a + b <= 127);op == SUB -> (-128 <= a - b && a - b <= 127);op == MUL -> (-128 <= a * b && a * b <= 127);op == DIV -> (b != 0);}
Figure 1.2: An example of a DUT: an 8-bit ALU, along with input constraints in SystemVerilog.

2

A constraint solver used in stimulus generation must fulfill two requirements. First, the
solver must be fast to avoid becoming a performance bottleneck; the overall verification runtime
should not be dominated by the time spent solving the input constraints. Second, it must be
possible to control the distribution of the generated stimuli in order to achieve the coverage goal
as quickly as possible. A highly skewed distribution can decrease the likelihood of stimulating
some of the design’s behaviors and thus greatly increase the number of simulation cycles required
to achieve full coverage. If the relationship between the stimulus distribution and the coverage
metric is not known, the best choice for the distribution is the one with maximum entropy—i.e.,
the uniform distribution—so as to maximize the level of “surprise” and thus the chance of hitting
a new coverage point. When many of the coverage points relate to corners of the design’s state
space, it is better to use a stimulus distribution with increased probability at the corners, such as
a piecewise-uniform distribution. This case can be supported by means of user-specified biases
on the stimulus distribution.

The key to finding a stimulus-generation approach with good performance and distri-
bution is the fact that input constraints are typically easy to solve. That is, the set of valid inputs
is relatively dense within the space of all possible assignments and it does not have complex
structure, in contrast with solutions to other decision problems that arise in verification, such
as counterexamples in model checking. Therefore, the full deductive power of general-purpose
constraint solvers is not needed. This opens the possibility of using methods with less solving
capacity in order to gain guarantees on quality of distribution.

1.2 Previous Work

Achieving both efficiency and good distribution in stimulus generation is a demanding
challenge. The difficulty of the problem is reflected in the limitations of existing tools for CRS.
Some generate stimuli efficiently but from highly skewed distributions. Moreover, the distri-
butions are unstable—they can vary significantly with small changes in specifications, such as
changes in variable-declaration order. Other tools generate values uniformly but rely on tech-
niques (e.g., binary decision diagrams) that do not scale well to large designs. In this section, we
give a quick overview of various methods for stimulus generation proposed in previous work
and note their weaknesses.

Sampling from weighted binary decision diagrams (BDDs) was proposed in [YSP+99,
YAPA04]. The idea is to build a BDD from the input constraints and to weight the vertices
in such a way that a simple linear-walk procedure from the root to the terminal vertex, with
branching probabilities derived from the weights, generates stimuli with a desired distribution.
This approach guarantees the correct distribution. However, BDDs often blow up for practical
problems. For example, many testbenches use multiplication operations on data variables, but
the number of vertices in a BDD for multiplication is exponential in the number of bits [Bry86].
In our experiments we compared a BDD-based sampler with our proposed method; we provide
the results in Section 3.6.1.

Another BDD-based approach involves building a circuit whose structure matches that
of the constraint BDD [KS00]. This method does not require the variables to be ordered, and so
it may avoid the common memory blowups, but its output distribution can be highly skewed.

Interval-propagation sampling is a technique described in [Iye03]. It maintains for each
variable a range of possible values, represented as a set of intervals. Each variable is successively
assigned a randomly chosen value from its range, and the intervals of the remaining variables

3

20 40 60 80 100

20

40

60

80

100

y1

y
2

0 20 40 60 80 100

0
200
400
600
800

1000

y1

e
x
p

e
c
te

d
 #

o
f

s
a

m
p

le
s

y2 = 5

20 40 60 80 100

20

40

60

80

100

y1

y
2

0 20 40 60 80 100

0
100
200
300
400
500

y1

e
x
p

e
c
te

d
 #

o
f

s
a

m
p

le
s

y2 = 5

y2 = 50y2 = 80
y2 = 90

(a) (b)

Figure 1.3: Distribution of 505 000 samples when using interval-propagation sampling on the
constraints y1 + y2 ≤ 101; y1, y2 ≥ 1: (a) using fixed sampling order y1, y2, (b) using random
sampling order. The lower parts show the expected number of samples for each y1 for fixed
values of y2. The dashed lines show the expected value of 100 for a uniform distribution.

are subsequently refined. When conflicts reduce a variable’s range to the empty set, the solver
backtracks.

The advantage of the interval-propagation sampling algorithm is its simplicity and rel-
atively high speed. However, the sampling distribution of this algorithm is highly non-uniform.
This results in low stimulus entropy, which reduces the overall coverage of verification. To illus-
trate this problem, Figure 1.3 depicts the skewed sampling distribution given by this method on
the solution space defined by the constraints y1 + y2 ≤ 101; y1, y2 ≥ 1. If the solutions were gen-
erated uniformly and the total number of solutions generated were 505 000, the expectation of the
number of occurrences of each solution would be 100. In contrast, under interval-propagation
sampling, with y1 sampled before y2, the solutions (1, 5) and (101, 5) have expected frequencies
of 50.5 and 1010, respectively. Varying the order of the variables randomly does not help much:
The expected frequencies of the same two solutions become 51.6 and 531.3 (approximately).
Moreover, it can be shown that for an n-dimensional simplex defined by ∑

n
i=1 yi ≤ c there is a

gap between the expected number of occurrences of (0, 0, . . . , 0) and any corner (0, . . . , c, . . . , 0)
that is exponential in n.

Boolean satisfiability solvers, such as those based on the Davis-Putnam-Logemann-

4

Loveland (DPLL) algorithm [DP60, DLL62, MMZ+01], can be randomized to generate stimuli.
To attempt a good distribution for the generated samples, a random pre-assignment is used to
guide decisions. When the solver reaches a decision point, it applies the next available value
from the pre-assignment. At the first conflict, the solver backtracks as usual, effectively finding
a smallest cube that contains both the pre-assignment and a solution. The advantage of DPLL-
based sampling is its fairly good scalability for a large set of practical constraints. The problem
with it is that, depending on the constraints, the distribution can be highly non-uniform. Further-
more, its runtime can be slow, especially for constraints involving arithmetic. We report results
from a comparison of a DPLL-based approach with our method in Section 3.6.1.

In general, all sampling algorithms that require bit-blasting the constraints, including
BDD-based sampling, DPLL-based sampling, and the work presented in [KJR+08], lose the word-
level structure and its information for efficient sampling.

Various specialized stimulus generators [CIJ+95, SD02, SHJ05] have been developed for
specific verification domains utilizing particular domain knowledge for constraint specification
and solving.

The verification work closest to ours is presented in [SCJI07]. Similar to our approach,
the authors propose the use of a Markov chain Monte Carlo (MCMC) sampler to generate
stimuli, in their case for verifying software rather than hardware. They add constraints in each
iteration to guide the generator toward new parts of the input space, in contrast with our work,
in which we generate many stimuli satisfying a single constraint formula. We also apply several
practical adaptations, such as augmenting the basic MCMC moves with stochastic local search.

For the general problem of solving mixed Boolean and integer constraints, a more ef-
ficient alternative to Boolean DPLL is a SAT Modulo Theory (SMT) solver combining proposi-
tional logic with the theory of integers (see [BSST09] for an overview of SMT). Applying the lat-
est advances of DPLL solvers, SMT algorithms enumerate variable assignments over the Boolean
space and dynamically instantiate integer constraint problems which are then solved with a spe-
cialized theory solver. Randomness can be introduced into these algorithms at decision points as
with DPLL, and SMT-based sampling has the same key weakness as DPLL-based sampling: The
distribution is difficult to control.

Random-walk sampling for Boolean constraints was performed in SampleSat [WES04]
by a combination of Metropolis sampling [MRR+53] with greedy steps from the local-search
SAT solver WalkSat [SKC93]. This method works well for small constraint sets, but its perfor-
mance deteriorates for larger constraint sets, especially for those that have been generated from
arithmetic constraints on integers.

Another line of research [DKBE02, GD06] converts the constraints into belief networks

and performs approximately uniform sampling based on estimating the size of the solution
space. As reported in [GD06], the performance of this method does not match that achieved by
SampleSat, despite some improvements adopted from modern constraint solvers.

Among the random-generation approaches described in this section, three types allow
effective control of distribution: BDD-based sampling, sampling on belief networks, and MCMC
methods. The weaknesses of the former two have already been described in this section. MCMC
methods have potential for greater success. In particular, the Metropolis algorithm used in Sam-
pleSat works well on dense sampling spaces, in contrast with the Boolean solution spaces on
which SampleSat operates. By applying it to word-level constraints instead of Boolean ones, we
enable it to work more effectively.

5

1.3 Contributions of This Dissertation

We have developed a new algorithm for stimulus generation based on a combination of
Markov chain Monte Carlo methods. It is a generalization of the algorithm used in SampleSat;
where SampleSat simply flips Boolean values, we generate new values for integer variables by
constructing and sampling from multiple types of distribution functions. We also reduce the
correlation between successive stimuli to make them more useful for practical verification.

This dissertation presents our stimulus-generation algorithm and several extensions.
Chapter 2 gives a brief introduction to the Markov chain Monte Carlo methods that are the
theoretical foundation of our approach. Chapter 3 describes the primary components of our
algorithm and how we combine them and provides results from experiments comparing our
method with other approaches. Chapter 4 describes several refinements that sometimes increase
our generator’s effectiveness. Chapter 5 describes a scheme for combining multiple generators
in parallel and gives theoretical and experimental results on the resulting speedup. Chapter 6
summarizes our contribution and reports limitations of our approach.

6

Chapter 2

Background on
Markov Chain Monte Carlo Methods

The problem of sampling from a complex sample space (or, equivalently, sampling from
a complex distribution over a sample space) is not unique to constrained random verification. In
other fields where this problem occurs, a standard approach to solving it is to use Markov chain
Monte Carlo (MCMC) methods. For example, these methods are used for:

• Estimating properties of magnets at different temperatures [NB99]

• Constructing phase diagrams of chemical models [FS01]

• Constructing possible phylogenies (family trees) for species based on similarities between
their DNA sequences [MNL99]

• Finding alignments of genetic or protein sequences [HB01, MFWvH01]

• Finding associations of genetic markers for studying diseases [NQXL02]

• Inferring message routes through a network from link traffic [TW98]

Instead of generating each sample independently, an MCMC sampling method takes as
samples the successive states visited in a simulation of a Markov chain. If the state transitions
are set up appropriately, the distribution of states converges over time to a unique stationary
distribution [Bré99]. The value of MCMC methods is that they provide a means to control the
stationary distribution: Given a desired target distribution, they specify how to construct the
Markov chain so that it converges to that distribution.

In this chapter we discuss properties of Markov chains that guarantee their convergence
and give background of the MCMC methods that form the basis of our stimulus generator.

2.1 Markov Chains

For a Markov chain to have a unique stationary distribution and converge to it, two
conditions are sufficient: irreducibility and aperiodicity. In this section we describe these two
properties. We use M to denote the transition-probability matrix for a Markov chain over states
{si}. M(i, j) denotes the conditional probability of moving to state sj given that the chain is

7

in state si. Mn denotes the nth power of the matrix; i.e., M1(i, j) = M(i, j) and Mn(i, j) =

∑k M
n−1(i, k)M(k, j) for n ≥ 2.

Definition 2.1. A Markov chain is irreducible if and only if, for all states si and sj, there exists
t such that Mt(i, j) > 0. That is, every state can be reached from every other state in a finite
number of steps.

The following Markov chain illustrates the importance of irreducibility for convergence:

GFED@ABCs2 1ggGFED@ABCs1

1
2 00

1
2

..GFED@ABCs3 1gg

This chain has more than one stationary distribution—(0, 1, 0) and (0, 0, 1) and all convex combi-
nations of these—and the chain may end up in any of them, so we cannot say that the distribution
converges.

Definition 2.2. A Markov chain is aperiodic if and only if, for all si, gcd{t : M
t(i, i) > 0} = 1. That

is, given enough initial steps, the chain can visit a state at any time, not just at periodic intervals.

Aperiodicity is needed to “dampen” the influence of the choice of initial state so that
the state distribution eventually loses its dependence on it. Consider the periodic Markov chain
below:

GFED@ABCs1
1

++GFED@ABCs2
1

kk

This chain has stationary distribution (12 ,
1
2), but these are not the state probabilities at any partic-

ular time. For example, if the chain starts in state s1, it will be in state s1 with probability 1 after
an even number of steps and in state s2 after an odd number of steps. Neither state probability
is ever 1

2 .

2.2 The Metropolis-Hastings Algorithm

One of the most commonly used MCMC methods is Metropolis sampling [MRR+53].
In the Metropolis algorithm, Markov-chain transitions are implemented with two distributions:
the target distribution p, which is the stationary distribution, and a proposal distribution q. We
execute a transition by first selecting a proposed next state s′ with probability q(s′|s). The state
s′ is then accepted as the actual next state with probability α, where

α = min
{

1,
p(s′)

p(s)

}

(2.1)

If s′ is not accepted, the current state s is repeated as the next state.
Because the acceptance probability depends on the ratio of the target probabilities of s′

and s, not their absolute probabilities, it is not necessary for p to be a normalized probability
distribution. Instead, we can use the desired relative frequencies. For example, we can set
p(s1) = 1 and p(s2) = 2 if we want s2 to be generated twice as often as s1. This property is useful

8

in the setting of randomized constraint solving where the normalizing factor for p is generally
intractable to compute, especially in the typical case where the set of solutions is not known a
priori.

The proposal distribution q may be chosen freely as long as it satisfies a few properties
that ensure convergence. First, the moves with non-zero probability must connect the entire state
space so that the Markov chain is irreducible. Second, the proposed moves must be aperiodic.
Aperiodicity is not a simple property of q—it arises from the interaction between p and q—
but we can easily achieve it by allowing self-loops: q(s|s) > 0. These two properties suffice to
guarantee convergence to a stationary distribution. To ensure that the stationary distribution
is specifically p, we need a third property: q must be symmetric, i.e., q(s′|s) = q(s|s′). The
symmetry requirement on q can be relaxed if we incorporate the proposal probabilities into the
acceptance rule:

α = min
{

1,
p(s′)

p(s)

q(s|s′)

q(s′|s)

}

(2.2)

This generalization of Metropolis sampling is called the Metropolis-Hastings algorithm [Has70].
With this definition of α, the following equation holds for all pairs of states s and s′:

p(s)M(s, s′) = p(s′)M(s′, s)

This property is called detailed balance; it is a sufficient condition for p to be the stationary distri-
bution.

Although the particular choice of proposal distribution does not affect the correctness
of the Metropolis-Hastings algorithm (assuming that requirements for convergence are satisfied),
it does determine the rate at which the distribution converges and how fast samples can be
generated. If the proposed moves are small, then the number of moves needed to cross the state
space is large, and the distribution converges slowly. On the other hand, if long-range moves are
proposed with probabilities very different from the target distribution, the probability of rejection
can be high. A state s with low p(s) may be proposed often but rejected often because α is low.
In this case moves to new states are infrequent and convergence is still slow.

To keep the probability of acceptance reasonably high, we should propose moves with
distribution similar to p. In general, generating long-range moves with such a distribution is
about as difficult as sampling from p directly, which we cannot do efficiently. We must restrict
proposals in some way in order to move efficiently, accept frequently, and converge quickly.

2.3 Gibbs Sampling

One way to generate long-range moves efficiently while keeping the acceptance rate
high is to restrict moves to a single dimension at a time, i.e., to change the value of only one
state variable per move. Suppose the state s is a vector (s1, . . . , sn). When a variable si is chosen
uniformly at random, and the new value of the selected variable is chosen with distribution
p(s′i|s \ si)—the target distribution, conditioned on the current values of all the other variables—
a proposed move is always accepted:

α = min

{

1,
p(s′)

p(s)

q(s|s′)

q(s′|s)

}

9

= min

{

1,
p(s′)

p(s)

1
n p(si|s

′ \ s′i)
1
n p(s

′
i|s \ si)

}

= min

{

1,
p(s′i|s

′ \ s′i)p(s
′ \ s′i)

p(si|s \ si)p(s \ si)

1
n p(si|s

′ \ s′i)
1
n p(s

′
i|s \ si)

}

= min

{

1,
p(s′i|s \ si)p(s \ si)

p(si|s \ si)p(s \ si)

1
n p(si|s \ si)
1
n p(s

′
i|s \ si)

}

= min{1, 1}

= 1

This version of the Metropolis-Hastings algorithm is called Gibbs sampling [GG84, GS90].
Gibbs moves can easily fail to connect the state space, so that the Markov chain is

reducible and may not converge. For example, consider the state space consisting of the assign-
ments (s1, s2) such that a ≤ s1, s2 ≤ b and s1 + s2 = b, shown below; from any given state no
single-variable move can reach a different state.

s1

s2

Because of its susceptibility to disconnectedness, Gibbs sampling from a set of solutions is not
a good approach for randomized constraint solving, at least not by itself. However, it is a key
ingredient in our approach to stimulus generation.

2.4 Convergence

Once we have chosen a proposal distribution that seems likely to give fast convergence,
we would like to know how many moves are actually needed to converge. A standard metric to
quantify the distance of a state distribution p̃ from stationarity is the total variation distance dtv

between p̃ and the stationary distribution:

dtv(p̃, p) =
1

2 ∑
s

|p̃(s) − p(s)|

Theoretical bounds on the total variation distance from p are known, as well as bounds
on the number of moves needed to bring the distance below a desired threshold [Fil91, LPW08],
but these bounds are intractable to compute in practice (for example, they involve computing
eigenvalues of the transition-probability matrix, while we cannot even afford to enumerate the
state space).

Because there are no general bounds on time to convergence, we must assess the quality
of distribution for each constraint set individually. The measure of quality that ultimately matters
is the degree to which the solutions, when applied as input stimuli, exercise the behavior being
verified. This can only be determined by measuring the verification coverage empirically.

When MCMC methods are used for statistical estimation, the initial samples are typ-
ically discarded, the rationale being that the values generated before convergence may not be

10

representative of the target distribution. This practice is known as “burn-in”. In the setting of
constrained random verification, we can use all the solutions without waiting for convergence for
two reasons. First, burn-in is often unnecessary, independent of the application—if we start from
a state that we do not mind having as a sample, our samples are just as good as if we waited
for convergence [Gey92, GeyOL]. In our setting, any solution to the constraints is usually a good
sample, so we can start from any solution. Second, even in cases where the target distribution
is not uniform and we happen to start from a low-probability state, an initial run of improbable
samples does not reduce the quality of results. We are not computing expectations as in a typical
MCMC application, so these samples do not introduce error; they stimulate behavior just as any
other stimulus does, and applying them in simulation can only increase verification coverage.

11

Chapter 3

Stimulus Generation Based on
Markov Chain Monte Carlo Methods

In this chapter we discuss how we combine the Metropolis-Hastings algorithm with
other ingredients in order to solve constraints randomly for stimulus generation. Our approach
is inspired by SampleSat [WES04], which generates random solutions to Boolean constraints by
interleaving Metropolis moves with iterations of a local-search solver. Our method extends this
concept to mixed Boolean and integer constraints.

For MCMC-based methods to be used effectively in practical verification, they must be
adapted. Among the challenges presented by these methods is correlation between successive
stimuli. This correlation is undesirable in simulation because it typically reduces the diversity of
behaviors that are stimulated. Our algorithm includes techniques for reducing correlation.

3.1 Specifying Constraints

Our method operates on constraints specified in clausal form, a generalization of the
conjunctive normal form (CNF) commonly used to express Boolean propositional constraints.
Our constraint form is sufficiently expressive for many practical testbenches but also lends itself
to efficient Metropolis-Hastings sampling. We use a combination of Boolean variables and integer
variables of bounded domain (i.e., of fixed bit-width); in our application domain of hardware
verification these correspond to the inputs of the DUT. The literals in the clauses can be Boolean,
or they can be arithmetic relations on integer variables. Our method can handle linear relations
and a small class of nonlinear relations, as described in this section.

The constraints as we describe them in this section do not depend on the state of the
DUT, even though support for design-state dependence in constraints is important for practical
verification. Our approach requires very little modification to incorporate design state, so we
omit it for clarity in this chapter and postpone our discussion of it to Chapter 4.

3.1.1 Normal Form

Formally, let x = (x1, . . . , xm) be a vector of m Boolean variables and y = (y1, . . . , yn);
−2B−1 ≤ yi ≤ 2B−1 − 1 be a vector of n integer variables, where B is the maximum bit-width

12

of yi. The constraints are specified as a formula ϕ described by the following grammar:

formula : clause
∣
∣ formula ∧ clause

clause : literal
∣
∣ clause ∨ literal

literal : xi
∣
∣ ¬xi

∣
∣ [expression relop Integer]

relop : ≤
∣
∣ ≥

∣
∣ =

∣
∣ 6=

expression : term
∣
∣ expression + term

term : Integer
∣
∣ yi

∣
∣ term · yi

Because all expressions have integer values, we do not include distinct relation types
for strict inequalities < (>); these can be expressed by using non-strict inequalities ≤ (≥) and
decrementing (incrementing) the constant on the right-hand side by one.

As an example of a constraint formula, consider the ALU input constraints given in
SystemVerilog in Figure 1.2. We repeat them here for easy reference:rand enum { ADD, SUB, MUL, DIV } op;rand bit signed [7:0℄ a, b;
onstraint valid {op == ADD -> (-128 <= a + b && a + b <= 127);op == SUB -> (-128 <= a - b && a - b <= 127);op == MUL -> (-128 <= a * b && a * b <= 127);op == DIV -> (b != 0);}
Suppose that the ADD, SUB, MUL, and DIV operations are encoded with x = (0, 0), (0, 1), (1, 0),
and (1, 1), respectively. We express these constraints with the following formula:

[y1 ≥ −128] ∧

[y1 ≤ 127] ∧

[y2 ≥ −128] ∧

[y2 ≤ 127] ∧
(
x1 ∨ x2 ∨ [y1 + y2 ≥ −128]

)
∧

(
x1 ∨ x2 ∨ [y1 + y2 ≤ 127]

)
∧

(
x1 ∨ ¬x2 ∨ [y1 − y2 ≥ −128]

)
∧

(
x1 ∨ ¬x2 ∨ [y1 − y2 ≤ 127]

)
∧

(
¬x1 ∨ x2 ∨ [y1 · y2 ≥ −128]

)
∧

(
¬x1 ∨ x2 ∨ [y1 · y2 ≤ 127]

)
∧

(
¬x1 ∨ ¬x2 ∨ [y2 6= 0]

)

This example demonstrates a common idiom for the normal form: When variables have
bit-width B′ which is less than the maximum B, we constrain their range with explicit clauses
[−yi ≤ 2B

′−1]; [yi ≤ 2B
′−1 − 1].

Unlike decision procedures for word-level hardware verification, our semantics for arith-
metic is based on unbounded integers rather than bit-vectors; that is, results do not overflow. We

13

could use a bit-vector semantics with reasonable overflow rules for operations on variables of
different widths, but this would add complexity without changing the essence of our method.
By using arbitrary-precision arithmetic, we gain the simplicity of having a single interpretation
for each operator, regardless of the ranges of its operands.

3.1.2 Integer Literals

Our approach for applying the Metropolis-Hastings algorithm would work with arbi-
trary relations in the integer literals, as long as we chose suitable proposal distributions. How-
ever, for better performance we restrict integer relations to forms for which we can efficiently
generate single-variable moves, in the matter of Gibbs sampling. This restriction enables faster
convergence of the distribution.

Efficient single-variable moves are possible when we can solve explicitly for each yi in
the support of all relations. That is, we require that for each relation we can efficiently compute
intervals of satisfying values for each variable while keeping other variables constant. The com-
putation of satisfying intervals is illustrated in Figure 3.1. The points within the curve satisfy
the relation f (y1, y2) ≤ 0. For each value of y1, we can compute an interval I1 that contains the
satisfying values of y2; i.e., I1(y1) = {y2 : f (y1, y2) ≤ 0}. Likewise, for each value of y2, we can
compute one or two intervals containing the satisfying values of y1.

y2

y1

f (y1, y2) ≤ 0

I1(a)

I2(b) I3(b)

(a, b)

Figure 3.1: Illustration of how satisfying intervals are computed for a relation f (y1, y2) ≤ 0.

One class of integer relations that meets our requirement for efficient solvability is the
class of linear inequalities, equations, and inequations (relations with 6=). Solving these relations
for a variable yi simply involves moving terms to the right-hand side. For example:

y1 + 2 y2 ≤ 100 =⇒

y1 ∈
[

−2B−1, 100− 2 y2

]

y2 ∈

[

−2B−1,
100− y1

2

]

Besides linear relations, our approach also works well for many nonlinear constraints
that are of practical relevance. In particular, we allow constraints in which the terms multiply
several variables but are linear in the individual variables (i.e., every variable that appears in a
term has degree 1). We call these relations multilinear. Multilinear relations can be solved as

14

easily as linear ones; the only difference is that the denominators of the interval bounds are not
constants. For example:

y1y2 ≤ 100 =⇒







y1 ∈

[

−2B−1,
100

y2

]

for y2 > 0

y1 ∈

[
100

y2
, 2B−1 − 1

]

for y2 < 0

y1 ∈
[
−2B−1, 2B−1 − 1

]
for y2 = 0

The fact that the solution of y1y2 ≤ 100 has three different forms is not a problem, because our
moves change the value of only one variable at a time—we can choose the right form based on
the current value of y2.

Multilinear relations can express multiplicative constraints that cannot be encoded as
linear relations. Efficient handling of multilinear relations is one significant advantage of our ap-
proach over BDD-based methods. Since BDDs for multiplication are exponentially large [Bry86],
they cannot express multiplicative constraints in a scalable way.

In addition to multilinear relations, we can handle other nonlinear relations that can
be solved. For example, relations whose terms are quadratic in their variables, such as y21y2 +
2y1y3 ≤ 12, can be solved using the quadratic formula.

3.1.3 Translations of Various Constructs to Normal Form

Many constructs that are useful in practical constraints can be expressed in our normal
form. In this section we describe transformations from several such constructs to clauses with
multilinear relations. In the descriptions we reserve the symbol yi for variables that appear in the
final normal form. For integer variables that are transformed into combinations of several yis,
we use zi. Term that may be an arbitrary expressions are denoted D or E.

Division operations: We rewrite a quotient (÷) or remainder (mod) operation whose
dividend is a variable zi using new variables yq for the quotient and yr for the remainder. The
divisor, denoted D, can be an expression of any kind.

zi ÷ D =⇒ yq
zi mod D =⇒ yr

zi =⇒ D · yq + yr

We add constraints to preserve the original range of zi and to ensure that the result of
division is defined and that |yr | < |D|. We also constrain the sign of the remainder to match
the semantics of division in C∗, Verilog, SystemVerilog, and e—in these languages the quotient is
rounded toward zero, so the remainder has the same sign as the dividend:

−2B−1 ≤ D · yq + yr ≤ 2B−1 − 1

D 6= 0

[D > 0] → [−D < yr < D]

[D < 0] → [D < yr < −D]

[D · yq > 0] → [yr ≥ 0]

[D · yq < 0] → [yr ≤ 0]

∗According to the 1999 standard—in the previous standard the sign was undefined.

15

(The translation of the previous constraints to disjunctive clauses is straightforward; we omit it
for clarity.)

Bit shifts: Several useful operations are defined in terms of the binary representations
of integers rather than their numerical values. To encode these, we interpret values as being rep-
resented in a two’s-complement system. Under this interpretation, a left shift («) of an expression
E by k bits is equivalent to multiplication by 2k:

E « k =⇒ 2k · E

A right shift (») is equivalent to a division by 2k, but we round the quotient down,
not toward zero as with other divisions. The k least significant bits that are truncated are the
remainder and the B− k bits that are kept are the quotient. As with other divisions, we require
that the first operand be a variable zi.

zi » k =⇒ yj
zi =⇒ 2kyj + yj+1

−2B−k−1 ≤ yj ≤ 2B−k−1 − 1

0 ≤ yj+1 ≤ 2k − 1

Bit slices: The result of a bit slice zi[a : b] with a > b, also known as a bit selection (if
a = b) or a part selection, is the value containing only the bits of zi’s value with indices between
a and b, where bit 0 is the least significant bit. We encode bit slices similarly to right shifts, with
new variables for the selected slice and the bits to its left and right:

zi[a : b] =⇒ yj+1

zi =⇒ 2a+1yj + 2byj+1 + yj+2

−2B−a−2 ≤ yj ≤ 2B−a−2 − 1

0 ≤ yj+1 ≤ 2a−b+1 − 1

0 ≤ yj+2 ≤ 2b − 1

A variable can be sliced multiple times with different bit indices. If the slices do not
overlap, each slice can still be encoded as a single variable. If the slices do overlap (e.g., a′ ≥ b),
then each slice is translated into a sum of smaller slices. The following diagram shows the how
the bits are partitioned in this case:

zi[a : b]
︷ ︸︸ ︷

a b

yj yj+1 yj+2 yj+3 yj+4

a′ b′

︸ ︷︷ ︸

zi[a
′ : b′]

16

For example, if the slices zi[15 : 8] and zi[11 : 4] are both used in constraints and B = 32, zi is
encoded with four 4-bit slices and one 16-bit value:

zi[15 : 8]

zi[11 : 4]

zi

=⇒

=⇒

=⇒

24yj+1 + yj+2

24yj+2 + yj+3

216yj + 212yj+1 + 28yj+2

−215 ≤ yj ≤ 215 − 1

−23 ≤ yj+1, yj+2, yj+3, yj+4 ≤ 23

We interpret all slices as non-negative. This means that any slice containing the most
significant bit of a variable (the sign bit) must be treated specially, because the bit’s contribution
to the variable’s value is negative (−2B−1 when the bit is 1). If such a slice is used in a constraint,
we create a single-bit slice for the sign bit. For example, if B = 32, the slices zi[31 : 16] and zi[15 : 0]
are translated as follows:

zi[31 : 16]

zi[15 : 0]

zi

=⇒

=⇒

=⇒

215yj + yj+1

yj+2

−231yj + 216yj+1 + yj+2

0 ≤ yj ≤ 1

0 ≤ yj+1 ≤ 215 − 1

0 ≤ yj+2 ≤ 216 − 1

Bitwise logical operators: The result of a bitwise and operation zi ∧∧ zj is obtained by
combining corresponding bits of the operands using the ∧ operator, and likewise for bitwise or

(∨∨), xor (⊻⊻), and not (¬¬). We encode these operations in terms of single-bit slices zi[k : k] and
zj[k : k], written as zi[k] and zj[k] for simplicity:

zi ∧∧ zj =⇒
B−1

∑
k=0

2kzi[k]zj [k]

zi ∨∨ zj =⇒
B−1

∑
k=0

2k
(
1− (1− zi[k])(1− zj[k])

)

zi ⊻⊻ zj =⇒
B−1

∑
k=0

2k
(
zi[k] + zj[k] − 2zi[k]zj [k]

)

¬¬zi =⇒
B−1

∑
k=0

2k(1− zi[k])

Although constraints with bitwise logical operators can be expressed in our normal
form, they are not well suited for our stimulus-generation method. The solution space of such
constraints is complex and sparse relative to the state space, and our ability to handle word-
level constraints provides little benefit in this case. BDD-based sampling will usually be a better
method for these constraints.

17

3.1.4 Constraint Partitioning

One aspect of constraint solving that we do not address in this work is constraint par-
titioning. As described in previous work [YAPA04], variables and constraints can be partitioned
into sets which are sampled separately. These techniques are orthogonal to the constraint-solving
method, so they can be applied in conjunction with our approach as well. This can provide a
major boost to generator efficiency.

3.2 Applying the Metropolis-Hastings Algorithm

The foundation of our method for sampling solutions to mixed Boolean and integer
constraints is the Metropolis-Hastings algorithm. To apply the Metropolis-Hastings framework,
we must define a state space, a target distribution over the states, and a proposal distribution.

3.2.1 Target Distribution

Our state space is the set of possible assignments to (x, y), i.e., Bm × Zn
B, where ZB =

[−2B−1 . . 2B−1 − 1]. (The notation [a . . b] denotes an integer interval.) That is, it includes the
solutions to the constraint formula ϕ, called the satisfying assignments, as well as the members of
the set {(x, y) : ϕ(x, y) = 0}, called the unsatisfying assignments. If any of the clauses give tighter
bounds of a simple form, e.g., a ≤ yi ≤ b, we can narrow the state space to · · · × [a . . b]× · · · , but
otherwise all assignments are included, regardless of whether they satisfy the constraints. Our
rationale for this is the requirement of irreducibility discussed in Sections 2.1 and 2.2: All states
must be reachable from all others. By allowing moves to unsatisfying assignments, we guarantee
that the state space is fully connected, even when the set of solutions on its own is not suitable
for Gibbs sampling.

Our target distribution is the product of two terms: one for user-specified biases and
one to favor solutions over unsatisfying assignments. The bias term is supplied by the user as a
function p̃(x, y); it is the means for specifying a non-uniform distribution on the solutions. Since
unsatisfying assignments are not reported to the user, their bias value is not determined by the
user. Instead, we define p̃(x, y) = 1 when (x, y) is not a solution. When no bias is desired at all
(i.e., the user wants a uniform distribution of solutions), we define p̃(x, y) ≡ 1.

We define the cost function U(x, y) to be the number of clauses unsatisfied under the
assignment (x, y). Then the target distribution p is

p(x, y) = p̃(x, y)e−U(x,y)/T

where T is a parameter called the temperature. If we narrow the state space due to static bounds
for a variable, as described previously, we effectively assign infinite cost to the values outside the
bounds, resulting in zero probability for those values.

The exponential term in p(x, y) is the (unnormalized) Boltzmann distribution used in
the original Metropolis algorithm [MRR+53] and in many other MCMC methods, including
SampleSat and simulated annealing [KGV83]. The general form of the Boltzmann distribution is

p(s) = 1
Z(T)

e−E(s)/T

where E(s) is the energy of state s and Z(T) is a normalizing constant. In our case, the energy
corresponds to the number of unsatisfied clauses, so solutions have the lowest energy.

18

The temperature T provides a means to control the balance between the time spent vis-
iting unsatisfying assignments and the ability to move between separated regions of solutions.
When the temperature is high, the distribution is smooth and we move easily between solution
regions, but the total probability of non-solution states can be large compared to the total prob-
ability of solutions. Conversely, a low temperature biases the distribution toward solutions at
the cost of effectively disconnecting solution regions. Becase low temperatures inhibit movement
through the state space, they increase the correlation between consecutive solutions, although
the correlation-reduction mechanisms described in Section 3.4 mitigate the problem.

3.2.2 Proposal Distributions

We propose only moves that change a single variable’s value at a time. This restriction
enables efficient computation of proposal distributions and fast convergence as discussed in
Sections 2.2 and 2.3. We use different proposal distributions for different types of variables. A
proposal for a Boolean variable xi is simple; we just flip the value of xi. This is the same way that
SampleSat proposes moves.

For an integer variable yi, we construct a proposal distribution from the ranges of values
that satisfy individual relations. Not all of the relations that refer to yi necessarily contribute
to the distribution for the current move; some of them do not constrain yi under the current
assignment (x, y) because their clauses are already satisfied by other literals that do not depend
on yi. We call the relations that do constrain yi the active relations. To identify them, we substitute
the current values of (x, y \ yi) into all clauses in the formula ϕ and remove falsified literals and
satisfied clauses. We call the resulting substituted clauses the active clauses. Our procedure for
collecting the active clauses is shown in Algorithm 3.1. The notation R|x,y\yi in line 6 denotes the

relation on yi obtained by substituting the current values of (x, y \ yi) into R.

Algorithm 3.1 GetActive

Given: formula ϕ, variable index i, current assignment (x, y)
1: A := ∅

2: for each clause C ∈ ϕ do

3: C′ := ∅

4: for each literal l ∈ C do
5: if l is integer relation R and yi ∈ Support(R) then
6: C′ := C′ ∪ {R|x,y\yi}

7: else if l is satisfied by (x, y) then

8: skip to next C
9: if C′ 6= ∅ then

10: A := A ∪ {C′}
11: return A

The example in Figure 3.2 illustrates how the active clauses are obtained by substitution
and simplification of ϕ.

We construct the proposal distribution q(yi|x, y \ yi) by combining indicator functions
for the active relations. Like the active clauses, the combination of indicators has a two-level
structure: For each clause C, we take the pointwise max of the indicators for relations in C to
get an indicator for the clause as a whole. Then we conjoin the clause indicators to create a

19

[2 ≤ y1] ∧ [y1 ≤ 16] ∧

[0 ≤ y2] ∧ [0 ≤ y3] ∧
(
x1 ∨ [y1 + y2 ≤ 12]

)
∧

(
¬x1 ∨ [y1 + y2 ≤ 16] ∨ [y1 − y2 ≥ 0]

)
∧

(
¬x1 ∨ [y1 − y2 ≤ 18] ∨ [y2 + 2y3 ≤ 20]

)

x1 = 1
y2 = 11
y3 = 4
=====⇒

[2 ≤ y1] ∧ [y1 ≤ 16] ∧

(
[y1 ≤ 5] ∨ [y1 ≥ 11]

)

Figure 3.2: Example of substitution and simplification to obtain the active clauses.

distribution. By choosing different forms for the indicator functions and conjunctive operations,
we obtain different kinds of proposal distributions.

The first kind of proposal distribution resembles Gibbs sampling over the solution space
(not over the full state space). However, while true Gibbs proposal distributions would use step
functions for the indicators, we use “soft” indicators that place uniform probability on satisfying
values and decay exponentially in the unsatisfying intervals. The soft indicator σR(yi) for an
inequality R ⇔ yi ≤ c (yi ≥ c), with softness parameter r, is given by:

σR(yi) =

{

1 if yi ≤ c (yi ≥ c)

e−r|yi−c| otherwise
(3.1)

The indicator for relation yi = c (yi 6= c) is constructed from the combination yi ≤ c ∧ yi ≥ c
(yi ≤ c− 1 ∨ yi ≥ c + 1). We use min for the conjunctive combination. Thus, the overall form of
the proposal distribution, which we denote qs, is

qs(yi|x, y \ yi) = p̃(yi|x, y \ yi)min
C∈A

max
R∈C

σR(yi). (3.2)

where A is the set of active clauses. We call qs a soft-SAT proposal distribution because it acts as
a relaxed indicator function for the active clauses, taking the value 1 for satisfying values of yi (in
the absence of user-specified bias). Figure 3.3 illustrates the distribution functions for different
combinations of relations.

The purpose of the decaying segments in soft-SAT proposal distributions is to give non-
zero probability to unsatisfying values, thus ensuring connectedness of the state space, while
still favoring solutions. The exponential form of these segments and the use of min as the con-
junctive operator are particularly motivated by the case shown in Figure 3.3b, where the range
of satisfying values for yi is empty. They are chosen to heuristically minimize the effort to get
back to a solution from an unsatisfying state, e.g., after a flip of some xj changes the set of active
clauses for yi. Figure 3.4 illustrates this case: After x1 is flipped to 1, the state (x, y) is no longer
in a satisfying region for y. Because the double-exponential proposal distribution is aligned with
the new solution region, the first recovery move is likely to be to a point (x′, y′) that is only one
move away from a solution (x′′, y′′).

We sample a new value y′i from a soft-SAT proposal distribution by separating it into
uniform and exponential segments, selecting a random segment, and sampling a value within
the segment. Each segment has the form of one of the cases in Equation 3.1, multiplied by
a scale factor hj. The scale factor may come from the user-specified bias p̃ in Equation 3.2 or
from the intersection of two exponential segments as shown in Figure 3.3b. To select a segment

20

yi

qs(yi|x, y \ yi)
yi ≥ c2

yi ≤ c1

(a) [yi ≤ c1] ∧ [yi ≥ c2] with c1 > c2

yi

qs(yi|x, y \ yi)

yi ≤ c1 yi ≥ c2

(b) [yi ≤ c1] ∧ [yi ≥ c2] with c1 < c2

yi

qs(yi|x, y \ yi)

yi ≤ c1 yi ≥ c2

(c) [yi ≤ c1] ∨ [yi ≥ c2]

Figure 3.3: Examples of soft-SAT proposal distribution functions.

y2

y1

(x, y)

x1 = 0

(x′′, y′′)

(x′, y′)

x1 = 1

Figure 3.4: Motivating example for the soft-SAT proposal distribution illustrated in Figure 3.3b:
A change in the active clauses on y through a flip from x1 = 0 to x1 = 1 results in an empty
range for y1. The soft-SAT distribution enables a quick return to a solution region within a few
moves (e.g., the two moves shown).

21

from a distribution function with segments q1(yi), . . . , qk(yi) on intervals [a1 . . b1], . . . , [ak . . bk],
we compute the unnormalized probability mass (or weight) wj of each segment:

wj =







hj
(
1− e−r(bj−aj+1)

)

1− e−r
if qj(yi) = hje

−r(yi−aj) or qj(yi) = hje
−r(bj−yi)

hj(bj − aj + 1) if qj(yk) = hj

and select segment j with probability wj/∑
k
j′=1 wj′ . Sampling the new value y′i is straightforward

if the segment is uniform. If the segment is exponential, we transform a uniform random vari-
ate using the cumulative distribution within the segment. Let F(yi) be the cumulative weight
function for a congruent decreasing segment starting at 0:

F(yi) =
yi

∑
z=0

hje
−rz

=
hj(1− e−r(yi+1))

1− e−r

We sample θ ∈ (0,wj] uniformly and obtain y′i from F−1(θ):

d =
⌈

F−1(θ)
⌉

=

⌈

−1−
ln

(
1− θh−1

j (1− e−r)
)

r

⌉

y′i =

{

aj + d if qj(yi) = hje
−r(yi−aj)

bj − d if qj(yi) = hje
−r(bj−yi)

The runtime of this sampling procedure is linear in the number of segments because we have
closed-form expressions for the weights of the segments and for F−1(θ).

Soft-SAT proposal distributions tend to minimize the amount of time we spend visiting
non-solution states, which helps efficiency, since it keeps the number of moves per solution small.
However, they do not work well when solutions are found in multiple regions separated by wide
gaps because they put low probability on moves through the gaps.

To move more easily between widely separated regions of solutions, we use a second
kind of proposal distribution that is based on the number of unsatisfied clauses rather than the
distance from satisfying values. This cost-based proposal, denoted qc, is the Gibbs proposal
distribution for our target distribution:

qc(yi|x, y \ yi) = p(yi|x, y \ yi)

= p̃(yi|x, y \ yi)e
−U(yi|x,y\yi)/T (3.3)

To construct qc, we first build up the conditional cost function U(yi|x, y \ yi) from indi-
cator functions χR(yi) for the active relations:

χR(yi) =

{

1 if yi satisfies R

0 otherwise
(3.4)

U(yi|x, y \ yi) = ∑
C∈A

(

1−max
R∈C

χR(yi)
)

(3.5)

22

yi

1

2

3

U(yi|x, y \ yi)

yi

1

qc(yi|x, y \ yi)

Figure 3.5: Illustration of cost function U and cost-based proposal distribution qc.

The cost function U and corresponding distribution function qc are illustrated in Figure 3.5.
Strictly speaking, U as computed by Equation 3.5 does not always give the true cost, because it
omits unsatisfied clauses which do not depend on yi. However, the factors for the missing cost
cancel each other in the Metropolis-Hastings acceptance ratio in Equation 2.2, so the omission
does not change the result.

We sample the new value y′i from a cost-based proposal distribution using the same
procedure as for a soft-SAT proposal. The only difference is that cost-based distribution functions
do not have exponential segments; all segments are uniform.

Our proposal distributions meet the requirements for convergence given in Section 2.2
with one exception: When all variables are Boolean and the target distribution is uniform over
Bm, the Markov chain implemented with the basic Boolean moves is periodic—it alternates be-
tween solutions containing odd and even numbers of 1s. We address this problem by allowing
“lazy” moves: We provide a laziness parameter pz, and with probability pz we use the current
state, unmodified, as the next state.

To confirm that cost-based proposals move more easily between separated solutions
than soft-SAT proposals do, we compared them in experiments. The results, given in Section 3.6.2,
demonstrate this advantage. Nevertheless, cost-based proposals are not always better, as shown
by the following example.

Consider a set of constraints whose solutions lie inside an n -dimensional simplex:

0 ≤ y1, . . . , yn ≤ 10n
n

∑
i=1

yi ≤ 10n

23

Suppose that the generator starts in the state where yi = 5 for all i. Without loss of generality,
let y1 be the first variable chosen for a move. The current range of satisfying values for y1 is
[0 . . 10n − 5(n − 1)] = [0 . . 5n + 5]. If the value of the temperature parameter T is not too low,
the total probability of the unsatisfying values under a cost-based distribution is fairly high, e.g.,
about 0.23 if n = 10 and T = 1. Suppose that the new value proposed and accepted for y1 is, in
fact, outside the satisfying range.

For the next move, the variable selected is likely different (assuming n > 2). Let this
variable be y2, and let the range of its satisfying values be [0 . . b]. We have b = 10n− 5(n− 2)− y1.
Because y1 took an unsatisfying value in the last move, we know that y1 > 5n + 5, so b ≤ 5. Thus
y2 is even more likely to take an unsatisfying value than y1 was. Moreover, for most of the
possible values of y1 the satisfying range for y2 is empty, e.g., 40 out of 45 values if n = 10. In
this case the cost is 1 for all values in [0 . . 10n], so they all have the same probability, and the
generator is likely to select a value that leads it farther from solutions.

This example demonstrates the weakness of the cost-based proposal distribution qc: It
has no bias toward the values that are more likely to lead to a solution. The soft-SAT proposal
distribution qs does have this bias, and it tends to help the generator recover when it wanders
far from solutions. For this reason, we use both proposal types in our algorithm, selecting one of
them at random in each move.

3.3 Increasing Efficiency with Local Search

The Metropolis-Hastings algorithm provides a solid foundation for our stimulus-gener-
ation approach, but sometimes it can spend too much time visiting unsatisfying states without
reaching a solution. In SampleSat [WES04], this weakness is addressed by the addition of an-
other kind of move. The additional moves are iterations of the Walksat local-search algorithm
for Boolean satisfiability [SKC93]. In our approach we take this idea and extend it to integer
constraints, thus strengthening the solving power of our stimulus generator and reducing the
time between solutions.

To perform a local-search move, we select an unsatisfied clause uniformly at random
and attempt to satisfy it by flipping the value of one of its literals. Flipping a Boolean literal is
simple; we just complement the value of its variable. To flip an integer literal, we sample a new
value for one of the variables in the support of the relation. If the new value does not satisfy the
relation, the flip fails and the clause remains unsatisfied (but we do not revert to the previous
assignment).

Local-search moves have random and greedy variants. In a random move, we choose
the literal to flip uniformly at random. In a greedy move, we flip the literal that maximizes the
number of satisfied clauses. Our use of integer constraints gives us an extra degree of freedom
compared to Boolean Walksat: We can choose among multiple variables in the support of each
integer literal, as well as choosing among the literals. We use this freedom by varying the greed-
iness of literal choice and of variable choice independently; we may choose the best variable for
a random literal or select the best literal given random choices of variables.

Once we have chosen an integer literal—i.e., a relation R—and a variable yi, sampling a
new value is very similar to a proposal for a Metropolis-Hastings move. We construct a distribu-
tion q(yi) from the active relations for yi using the soft-SAT and cost-based proposal distributions
as building blocks, as well as indicator functions for R. We give special treatment to any clauses
that unconditionally constrain the value of yi. These clauses define a static range for yi. We

24

construct an indicator function χS(yi) for the static range:

χS(yi) = min
C∈S

max
R′∈C

χR′(yi) (3.6)

where S is the set of clauses referring only to yi and χR′(yi) is an indicator function for relation
R′, exactly as in Equation 3.4.

The new value for yi must be in the static range. If none of the values in the static range
satisfy R, we use a soft indicator for R to bias the distribution, similarly to a soft-SAT proposal
distribution on unsatisfying values:

q(yi) = χS(yi) · σR(yi) (3.7)

Figure 3.6a illustrates the construction of q(yi) for this case.
If some values in the static range do satisfy R, we restrict the distribution q(yi) to those

that satisfy as many other clauses as possible. These are the values with the lowest cost or the
greatest target probability. Since the cost-based proposal distribution qc is the conditional form of
the target distribution, we can identify these values by examining qc. We construct an indicator
function χ∗(yi) for them as the basis for q(yi):

w∗ = max
yi

(
qc(yi|x, y \ yi) · χR(yi) · χS(yi)

)
(3.8)

χ∗(yi) =

{

1 if qc(yi|x, y \ yi) · χR(yi) · χS(yi) = w∗

0 otherwise
(3.9)

The minimum-cost values for yi satisfy the static-range constraints and the selected
relation R, but they may fail to satisfy other clauses. To help satisfy those clauses in future

σR

q

χS

R

y1

(a)

q

qs

χ∗

qc

χR

χS

(b)

Figure 3.6: Illustrations of the construction of the distribution q(yi) for local-search moves: (a) us-
ing Equation 3.7, (b) using Equations 3.8–3.10.

25

moves, we include the soft-SAT proposal distribution qs as a bias in the distribution. The overall
distribution for sampling the new value is

q(yi) = χ∗(yi) · qs(yi|x, y \ yi) (3.10)

Figure 3.6b illustrates the construction of q(yi) according to Equations 3.8–3.10.
Although our local-search moves are based on the same distributions as our Metropolis-

Hastings moves, they do not use the acceptance rule, so they distort the stationary distribution
away from the target distribution.

3.4 Reducing Correlation

A fundamental property of Markov-chain-based sampling is the high correlation be-
tween consecutive states. Correlation decreases the usefulness of stimuli for verification, so the
sequence of assignments generated by a MCMC method like ours cannot be applied directly to
the DUT. To reduce correlation to a negligible level, we keep a pool of independent states (i.e.,
states from independent Markov chains) and switch to a new state, selected at random from the
pool, each time we find a solution. The state pool is implemented as an array of pointers, so
a state switch is carried out inexpensively by a simple pointer swap. Figure 3.7 illustrates the
random selection of a state and the writeback of the resulting solution to the same slot in the
pool.

We tested the effect of different pool sizes on correlation in experiments. The results are
given in Section 3.6.3.

An alternate method for reducing correlation is subsampling or decimation, in which
every kth solution is used and the rest are discarded. Decimation requires less memory than
our state pool, but it can reduce the throughput by a factor of k, while our pooling technique
preserves throughput unchanged. The two techniques are orthogonal; they can be used in com-
bination.

Generate

solution
DUT

pool

(x, y) (x′, y′)

randomly
select

Figure 3.7: Illustration of data flow with the state pool: At the beginning of each solution cycle,
a random state (x, y) is selected from the pool. The solution (x′, y′) derived from this state is
applied to the DUT as a stimulus and written back to the pool.

26

3.5 Overall Generation Algorithm

In this section we give pseudocode for our algorithm for MCMC-based stimulus gener-
ation, showing explicitly how we combine the elements described in the previous sections.

Algorithm 3.2 shows the routine for initialization of the state pool. Algorithm 3.3 is
the top-level routine for generating a solution. Both techniques for reducing correlation—state
pooling and decimation—are implemented in this routine.

Algorithm 3.4 is the GenerateOne routine, which produces a single solution given
an initial assignment (x0, y0). We begin with a single Metropolis-Hastings move to a new state
(x, y). (For simplicity, we omit the -Hastings qualifier in the code, and we use the same shorthand
throughout the remainder of this chapter.) If the state is not a solution, we perform a series of
recovery moves until we satisfy the constraints or exceed a limit L on the number of moves. Each
recovery move may be a Metropolis move or a local-search move. The probability of the former
is initially pmh0 and decreases exponentially as the recovery time increases; our rationale for this
is that the urgency of finding a solution increases over time. The move limit bounds the time

Algorithm 3.2 Initialize

Given: state pool (s1, . . . , sM)
1: for i := 1 to M do

2: select (x, y) uniformly at random from state space
3: si := (x, y)

Algorithm 3.3 Generate

Given: state pool (s1, . . . , sM); decimation period D
1: select i ∈ [1 . .M] uniformly at random
2: (x, y) := si

3: for t := 1 to D do [Decimate]
4: (x, y) := GenerateOne(x, y)
5: si := (x, y)
6: return (x, y)

Algorithm 3.4 GenerateOne

Given: formula ϕ(x, y); starting state (x0, y0); move limit L; move-type parameter pmh0; rate
parameter γ

1: (x, y) := MetropolisMove(x0, y0)
2: for t := 1 to L− 1 do [Recovery moves]
3: if ϕ(x, y) then

4: return (x, y)
5: pmh := pmh0e

−γ(t−1)

6: with probability pmh do
7: (x, y) := MetropolisMove(x, y)
8: else

9: (x, y) := LocalSearchMove(x, y)
10: Fail(“Too many moves”)

27

spent in the recovery phase. When we exceed the limit, we give up and report failure.
Instead of failing after exceeding the move limit, we could fall back on a stronger solu-

tion method, such as an SMT solver. However, the implementation that we used for our experi-
ments did not include such a solver.

The routine for Metropolis moves is shown in Algorithm 3.5. For a normal (non-lazy)
move, we first choose a variable at random. If the variable is Boolean, we simply flip its value.
For an integer variable, we choose a proposal type randomly, construct a proposal distribution q,
and sample a new value from it. In both cases, we compute the Metropolis-Hastings acceptance
ratio α from the user-specified bias p̃, the proposal distribution, and the change in the number
of unsatisfied clauses. Finally we apply the acceptance rule to make the proposed move or keep
the current state.

Algorithms 3.6, 3.7, and 3.8 are the routines for local-search moves. Algorithm 3.6 shows
the selection of an unsatisfied clause and a literal within the clause. Algorithm 3.7 is the routine
for flipping a particular Boolean or integer literal. The greedy or random choice of a variable in
the support of an integer relation is similar to the choice of a literal within the selected clause,
except that some variables may not be considered for selection. We consider only the variables
whose values have changed since the relation was most recently satisfied. This restriction is

Algorithm 3.5 MetropolisMove

Given: assignment (x, y); laziness parameter pz; proposal parameter ps; temperature T
1: with probability pz do
2: return (x, y)
3: select variable z from {x1, . . . , xm, y1, . . . , yn} uniformly at random
4: if z is Boolean xi then
5: x′i := ¬xi
6: (x′ \ x′i, y

′) := (x \ xi, y)
7: Q := 1
8: else [z is integer yi]
9: A := GetActive(i, x, y) (see Algorithm 3.1)
10: with probability ps do
11: construct soft-SAT proposal distribution qs(yi|x, y \ yi) from A (see Equation 3.2)
12: q := qs
13: else

14: construct cost-based proposal distribution qc(yi|x, y \ yi) from A (see Equation 3.3)
15: q := qc
16: sample y′i with distribution q(y′i|x, y \ yi)
17: (x′, y′ \ y′i) := (x, y \ yi)
18: Q := q(yi|x, y

′ \ y′i) q(y
′
i|x, y \ yi)

−1

19: P̃ := p̃(x′, y′) p̃(x, y)−1

20: ∆U := U(x′, y′)−U(x, y)
21: α := min{1, P̃Qe−∆U/T}
22: with probability α do

23: return (x′, y′)
24: else

25: return (x, y)

28

Algorithm 3.6 LocalSearchMove

Given: formula ϕ; assignment (x, y); greediness parameter pg
1: select unsatisfied clause C ∈ ϕ uniformly at random
2: with probability pg do [Choose literal greedily]
3: for each literal li ∈ C do
4: (xi, yi) := FlipLiteral(li, x, y)
5: i∗ := argmini U(xi, yi)
6: return (xi

∗
, yi

∗
)

7: else [Choose literal randomly]
8: select literal li ∈ C uniformly at random
9: return FlipLiteral(li, x, y)

Algorithm 3.7 FlipLiteral

Given: literal l, assignment (x, y); greediness parameter pg
1: if l is Boolean xi or ¬xi then
2: x′i := ¬xi
3: x′ \ x′i := x \ xi
4: return (x′, y)
5: else [l is integer relation R]
6: I := {i : yi ∈ Support(R) and yi’s value has changed since R was last satisfied}
7: with probability pg do [Choose variable greedily]
8: for each index i ∈ I do
9: yi := FlipRelation(R, i, x, y)
10: i∗ := argminiU(x, yi)
11: return (x, yi

∗
)

12: else [Choose variable randomly]
13: select index i ∈ I uniformly at random
14: y′ := FlipRelation(R, i, x, y))
15: return (x, y′)

motivated by the case where a relation refers to a large number of variables. Once the relation
becomes unsatisfied by a change in one variable yi, it may be difficult to satisfy it by changing
the value of another variable yj while still satisfying yj’s static-range constraints. For example,

suppose that the relation is ∑
100
i=1 yi ≤ a and all the variables have static constraints yi ≥ 0, and

that y1 takes a large value that brings the sum above a. The probability of choosing y1 again from
among all 100 variables is low; to satisfy the relation we would likely have to lower the values of
many variables, which would require many moves.

Algorithm 3.8 is the routine for flipping an integer relation once the variable for the
flip has been chosen. We construct a distribution function q(yi) from indicator functions and
proposal distributions as described in Section 3.3, then sample the variable’s new value from that
distribution.

29

Algorithm 3.8 FlipRelation

Given: relation R, variable index i, assignment (x, y)
1: construct indicator χS(yi) for static-range clauses (see Equation 3.6)
2: if χR(yi) · χS(yi) = 0 for all yi then
3: q(yi) := χS(yi) · σR(yi)
4: else

5: A := GetActive(i, x, y)
6: construct cost-based proposal distribution qc(yi|x, y \ yi) from A
7: w∗ := maxyi(qc(yi|x, y \ yi) · χR(yi) · χS(yi))
8: construct indicator χ∗(yi) for {yi : qc(yi|x, y \ yi) · χR(yi) · χS(yi) = w∗} (see Equation 3.9)
9: construct soft-SAT proposal distribution qs(yi|x, y \ yi) from A
10: q(yi) := χ∗(yi) · qs(yi|x, y \ yi)
11: sample y′i with distribution q(y′i)
12: y′ \ y′i := y \ yi
13: return y′

3.6 Experimental Evaluation

We implemented our MCMC-based stimulus-generation algorithm in a program called
Ambigen (A mixed Boolean/integer generator). In this section we present experimental results
from [KK07] and [KK09] to demonstrate that our algorithm is competitive with other methods
and to validate some of our design decisions.

3.6.1 Comparison to Other Stimulus-Generation Methods

For comparison to our method, we implemented the BDD- and DPLL-based sampling
algorithms described in Section 1.2. We selected these two approaches because of their comple-
mentary characteristics: The BDD-based method is fast and its distribution is uniform, while the
DPLL-based method is more robust. In this section we compare the performance, robustness,
and distribution of both methods with our algorithm using results from [KK07].

To compare the algorithms, we used each of them to generate solutions to several bench-
mark constraint sets, giving each solution equal probability. We derived a few of our benchmarks
(T1–T3) from simple verification scenarios, such as the ALU in Figure 1.2, and extracted the oth-
ers (I1–I4) from industrial verification instances. For the BDD- and DPLL-based generators, we
converted the mixed Boolean and integer constraints to purely Boolean form by synthesizing
circuits that evaluate the constraints. We used OpenAccess Gear [XPC+05] for logic synthesis.
The synthesized circuits use finite-precision arithmetic, in contrast with the arbitrary-precision
arithmetic used in Ambigen; however, the synthesis tool chooses the bit-widths of intermediate
results to avoid overflows, so the difference in precision does not affect the semantics of the
constraints.

For the BDD generator, we built BDDs for the output functions of the constraint evalua-
tion circuits. In the variable order of each BDD, we put the control variables first and interleaved
the bits of the data variables, with the least significant bits first. We used CUDD [Som05] as our
BDD package.

For the DPLL generator, we converted the circuits, with their outputs asserted, to
Boolean CNF. We adapted the solver MiniSat [ES03] to use the method described in Chapter 1:

30

Boolean/integer CNF BDD Boolean CNF

bench-
mark

Boolean
vars

integer
vars clauses literals

multi-
linear vars nodes vars clauses

T1 2 2 11 26 2 34 * 2 634 7 855
T2 10 4 33 60 0 46 6 073 330 961
T3 5 67 146 162 0 539 84 530 6 640 18 347
I1 0 6 30 30 0 116 143 848 879 2 444
I2 1 9 28 34 6 127 * 29 290 87 684
I3 0 30 214 455 0 232 * 1 080 2 954
I4 0 213 497 514 0 244 565 977 7 428 21 827

Table 3.1: Characteristics of benchmarks in different forms: our Boolean/integer normal form
(used by Ambigen), binary decision diagrams, and Boolean CNF (used by DPLL-based genera-
tor). Memory blowups are indicated by *.

We selected a random pre-assignment and variable order, and each time the solver reached a
decision point we used the next available pre-assigned value. When the solver found a conflict,
we allowed it to backtrack and find a solution using its usual decision heuristic.

The characteristics of each version of the benchmarks are given in Table 3.1. For the
benchmarks in our mixed Boolean and integer normal form, the table lists the numbers of
Boolean variables, integer variables, clauses, literals (both Boolean and integer), and multilin-
ear relations (i.e., multiplicative, not linear ones). For the constraints in Boolean CNF, the table
lists the numbers of variables and clauses. For the constraint BDDs, the table lists the number of
variables and the number of nodes. Each entry with a * indicates that the BDD could not be built
with a memory limit of 1 GB.

We used each generation method to generate 1 million solutions for each benchmark,
with a time limit of 10 000 seconds. The results of these experiments are shown in Table 3.2. For
Ambigen, the table lists the runtime, the number of unique solutions, and the number of moves
per solution (including both Metropolis and local-search moves). For the BDD-based generator,
the table lists the total runtime and the time needed to build the BDD. Entries with asterisks in
columns 5 and 6 indicate that no solutions were generated because of memory blowup. For the
DPLL-based generator, the table lists the runtime and the total number of samples generated.
The number of unique samples for the BDD- and DPLL-based generators is not reported because
almost all the solutions generated were unique; there were duplicate solutions in only three cases,
and at most 100 duplicates in each of these.

A comparison of the runtimes shows that Ambigen has similar performance to the BDD-
based generator, and that both of these are faster than the DPLL-based algorithm by 1–3 orders
of magnitude. However, Ambigen is more robust than the BDD-based algorithm, because it does
not suffer from memory blowup. Note that the memory blowup is not limited to benchmarks
with multiplicative constraints. In preliminary experiments, we found this was true even when
we built the BDDs with other variable orders.

Column 4 of Table 3.2 lists the average number of moves per solution. We computed
this value as the ratio of the total number of moves to the total number of solutions, including
those that were decimated (thus the denominator is 106D). This value is an important measure
of Ambigen’s ability to move through the solution space. For each benchmark, the number of

31

MCMC (Ambigen) BDDs DPLL

bench-
mark

runtime
(sec)

unique
solutions

avg moves
per

solution
runtime

(sec)
build time

(sec)
runtime

(sec) solutions

T1 35 975 627 1.11 * * 2 091 1 000 000
T2 49 858 590 1.56 41 < 1 423 1 000 000
T3 193 999 986 1.05 382 70 10 000 16 845
I1 112 992 391 1.40 111 1 4 409 1 000 000
I2 59 999 995 1.00 * * 10 000 252 495
I3 179 999 979 1.19 * * 10 000 854 484
I4 586 920 922 1.58 453 20 10 000 726 645

Table 3.2: Results of generating 1 000 000 random solutions with a time limit of 10 000 sec and a
memory limit of 1 GB. Parameters for Ambigen: state-pool size M = 1, decimation period D = 5,
move limit L = ∞, move-type probability pmh0 = 0.5, rate γ = 0, laziness pz = 0, proposal-type
probability ps = 1, temperature T = 1, softness r = 1, greediness pg = 0.5.

moves per solution is close to 1 (at most 1.58), indicating that the generator is most often able to
find a solution in the initial Metropolis move; recovery moves are usually not needed.

The experiments described above are not well suited for comparing the output distribu-
tions of the algorithms. Each of the benchmarks has a solution space many orders of magnitude
larger than the number of solutions generated in our experiments, so each solution could not
be expected to occur more than once in a uniformly generated sample. Ambigen’s distribution
appears to be skewed because it generates some duplicates. However, some duplication should
be expected, given the local-walk nature of the algorithm. This does not contradict the theory on
the convergence to the target distribution, since the time for convergence can be very long for a
large state space.

Decimation is one of the easiest ways to reduce the number of duplicate solutions. To
investigate the effectiveness of decimation, we swept the decimation period D from 1 to 10 for the
benchmark T2, which had the fewest unique solutions according to the results in Table 3.2. We
kept other parameters, including the number of solutions generated, the same as in the previous
experiments. The results are shown in Figure 3.8, including the percentage of generated solutions
that were unique and the runtime spent on generation. (A large fraction of the runtime was spent
printing the solutions; the times in the plot do not include this I/O time.) Increasing D from 1 to
5 raises the number of unique solutions from 32% to 81% of the total number of solutions, while
the generation time increases by 2.5x. Continued increases of D bring diminishing returns—
increasing D to 9 yields an additional 9% unique samples at the cost of almost 4x the original
runtime.

Given appropriate choices for the parameters and enough time to converge, the output
distribution of our algorithm can be brought arbitrarily close to the target distribution. This is not
the case, in general, for the DPLL-based method. Suppose that the target distribution is uniform.
If the number of solutions is not a power of 2, the backtracking strategy of DPLL cannot map the
full Boolean space—from which the pre-assignments are uniformly selected—into the solution
space in a uniform manner. Depending on the particular constraints, the mapping may not even
be close to uniform. For example, we generated solutions to a small set of constraints similar to

32

0

20

40

60

80

100

 1 5 10

u
n

iq
u

e
 s

o
lu

ti
o

n
s

(%
 o

f
to

ta
l
g

e
n

e
ra

te
d

)

decimation period (D)

11 sec

19 sec

28 sec
35 sec

42 sec

Figure 3.8: Decimation periods and percentages of unique solutions (relative to total solutions)
generated by Ambigen for benchmark T2, along with the time spent in generation for selected
periods (not including I/O time).

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

fr
e

q
u

e
n

c
y

solution index (sorted by frequency from DPLL)

Ambigen

DPLL

Figure 3.9: Absolute frequencies of all solutions to constraints [y1, y2 ≥ 0, y1 + y2 ≤ 63] from Am-
bigen and DPLL-based generator. The total number of samples from each generator is 1 000 000.

the example in Figure 1.3. The resulting output distributions for Ambigen and the DPLL-based
generator are shown in Figure 3.9. The ratio of the greatest frequency from DPLL to the least is
more than 5, while the frequencies from Ambigen are limited to a narrow band.

33

3.6.2 Comparison of Proposal Types

Aswe stated in Section 3.2.2, soft-SAT proposal distributions are not effective for moving
between regions of solution spaces that are separated by wide multidimensional gaps (i.e., gaps
that cannot be crossed in a single move). For this reason we developed cost-based proposal
distributions. In this section we describe experiments that we performed to test the effectiveness
of the cost-based distributions in moving between separated solution regions.

We generated two groups of constraint sets. The solution sets for the benchmarks in the
first group consist of two squares of width 8 separated by distance W in each dimension:

0 ≤ y1, y2 < 16+W

(y1 < 8 ∧ y2 < 8) ∨ (y1 ≥ 8+W ∧ y2 ≥ 8+W)

We generated 100 000 solutions for each of W = 0, 1, 2, 4, 8, . . . , 214 and for each type of
proposal distribution. We disabled local-search moves to avoid distortion of the basic Metropolis-
Hastings distribution. Figure 3.10a shows the relative frequencies of transitions between the re-
gions that we observed, i.e., the frequencies with which consecutive solutions were from different
regions, relative to the total number of solutions. The transition frequencies are constant with
increasing distance for cost-based proposal distributions and decrease quickly to zero for soft-
SAT proposals. Using both proposal types with equal probability gives intermediate transition
frequencies.

 0

 0.05

 0.1

 0.15

 0.2

0 2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

tr
a
n
s
it
io

n
 f
re

q
u
e
n
c
y

separation between regions (W)

cost-based
combined
soft-SAT

(a) Separated squares

 0

 0.025

 0.05

 0.075

 0.1

2 3 4 5 10 20 40 60 80 100

tr
a

n
s
it
io

n
 f

re
q

u
e

n
c
y

number of variables

cost-based
combined
soft-SAT

(b) Simplex corners

Figure 3.10: Relative frequencies of transitions between regions for different types of proposal
distributions. Parameters: M = 1, D = 1, L = ∞, pz = 0, T = 1, r = 1; for (a) pmh0 = 1 and
γ = 1 (i.e., no local-search moves were used); for (b) pmh0 = 0.5 and γ = 1 (local-search moves
had constant probability 0.5).

The second group of benchmarks has solution regions at the corners of n-dimensional
simplices for n = 2, 3, 4, 5, 10, 15, 20, . . . , 100. The constraints have the form:

0 ≤ aiyi ≤ b

34

n

∑
i=1

aiyi ≤ b

n∨

i=1

(yi ≥ ci)

For each value of n, we generated 100 benchmark instances with random values of the coeffi-
cients, constraining them so that the solution regions would not be connected. For each bench-
mark instance we generated 100 000 solutions for each type of proposal distribution. Figure 3.10b
shows the relative frequencies of transitions between regions. The generator moves between re-
gions much more often when using cost-based proposal distributions than when using soft-SAT
proposals. Even for the cost-based proposals, the transition frequency decreases rapidly with
the number of variables; this fits with the fact that the average probability of an unsatisfying
assignment decreases exponentially as the average cost increases.

The results from the experiments on these two groups of benchmarks demonstrate that
cost-based proposal distributions are more effective for moving between disconnected regions
than soft-SAT proposals, especially when the regions are widely separated.

3.6.3 Evaluation of State Pooling for Decorrelation

To test the effectiveness of state pooling at reducing serial correlation, we generated
benchmarks with solution spaces consisting of points “sandwiched” between oblique hyper-
planes:

−c ≤ yi ≤ c

−b ≤
n

∑
i=1

aiyi ≤ b

b =
c

10

Because the bounding hyperplanes are oblique—not orthogonal to any coordinate axis—and
close together, the range of any single move is much less than the width of the solution space.
As a result, successive solutions are highly correlated.

We generated 100 benchmark instances with random coefficients for each of n = 4,
16, and 64 and sampled 10 000 solutions for each instance with state-pool sizes 1, 2, 4, . . . , 256.
Figure 3.11a shows the autocorrelation of the solutions, computed as an average of the autocor-
relation for each variable. The correlation decreases quickly as the size of the state pool increases,
showing the effectiveness of our technique.

Figure 3.11b shows the average runtimes of the instances for each state-pool size M. For
M = 1, the runtime increases linearly with the number of variables, and this is expected, since
each benchmark has constraints with all the variables in their support and these constraints are
evaluated for every move. However, the trend of the runtimes for the 64-variable benchmarks
requires further explanation. The rapid rise for small values of M and the disproportionately
long runtimes in general are likely due to cache misses. This suggests a strategy for improving
runtime: Subsample with a longer period and use a smaller state pool. Subsampling on the same
position in the pool gives higher cache-hit rates than state pooling but reduces serial correlation
similarly.

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

a
v
e
ra

g
e
 a

u
to

c
o
rr

e
la

ti
o
n

size of state pool (M)

64 vars
16 vars

4 vars

(a)

 0

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64 128 256

ru
n
ti
m

e
 (

s
e
c
)

size of state pool (M)

64 vars
16 vars

4 vars

(b)

Figure 3.11: Effect of state pooling on (a) average autocorrelation and (b) average runtime in
seconds. Parameters: D = 1, L = ∞, pz = 0, T = 1, r = 1, pmh0 = 0.5, γ = 1 (local-search moves
had constant probability 0.5).

3.7 Summary

In this chapter we described how we apply the Metropolis-Hastings algorithm and how
we adapt it to make it practical for stimulus generation. We use two types of proposal distri-
butions for easy traversal of the state space and avoid wandering far from solutions. For quick
recovery from unsatisfying states, we use additional, more directed moves that integrate the pro-
posal distributions into iterations of a local-search SAT solver. We keep serial correlation low by
switching among a pool of independent states. Our experiments demonstrate that our approach
surpasses other methods in speed, robustness, and quality of distribution.

In the next chapter we describe several refinements that increase the capability of our
algorithm and improve its performance.

36

Chapter 4

Refinements to Markov Chain
Monte Carlo Stimulus Generator

In the previous chapter we presented the essential components of our approach for
stimulus generation. After implementing it as described there, we worked with developers of
an industrial testbench-automation tool to integrate our generator into their software. Our expe-
rience from the integration work motivated further research into refinements to make our gen-
erator more effective. In this chapter we describe two successful refinements: generation with
externally controlled values and static variable elimination. We also present a dynamic form
of variable elimination that handles arbitrary combinations of equality constraints and show re-
sults that demonstrate that our basic, unmodified algorithm works just as effectively on such
constraints.

4.1 Generation of Stimuli Dependent on External Values

Chapter 3 presents our generation approach as having a one-way flow of information
from the stimulus generator to the logic simulator. However, in practice the generator often uses
information from other components of the testbench. Two scenarios in particular require this:
First, input constraints for constrained random simulation often refer to the current state of the
design under test (DUT). Second, the verification of complex protocols often requires sequential
constraints, which specify conditions on sequence of stimuli, e.g., using PSL [Acc04] or System-
Verilog [SDF03]. Sequential constraints can be implemented by storing state in the testbench.
We support these both scenarios by allowing control variables whose values are not generated
randomly but set by the testbench to communicate the state of the DUT or the testbench itself.

Formally, let u = (u1, . . . , um′) be a vector of Boolean control variables and v = (v1, . . . ,
vn′); −2B−1 ≤ vi ≤ 2B−1 − 1 be a vector of integer control variables. We extend the state
space to include assignments to the control variables in addition to the randomly generated
vectors x and y; that is, a state in the extended state space is a tuple (u, v, x, y). For a given
assignment to (u, v), we denote by Φ(u, v) the set of solutions for the constraint formula ϕ,
i.e., Φ(u, v) = {(x, y) : ϕ(u, v, x, y) = 1}. When sampling solutions to ϕ for a stream of con-
trol values ((u1, v1), . . . , (ut, vt)), we want a sequence of solutions ((x1, y1), . . . , (xt, yt)) with
(xi, yi) ∈ Φ(ui, vi) whose distribution matches the desired user bias function p̃(x, y|u, v). That is,
each sample in the sequence is chosen independently of the other samples and with probability

37

proportional to its bias value:

∀(xi, yi) : Pr((xi, yi)=(x, y)) =
p̃(x, y|ui, vi)

∑(x,y)∈Φ(ui,vi) p̃(x, y|u
i, vi)

where Pr(A) denotes the probability of event A.
The use of control variables effectively creates a changing sequence of constraints for the

generator. Each new assignment to (u, v) selects a new constraint formula, namely, ϕ|(u,v)=(ui,vi).

The previous values of (x, y) do not necessarily satisfy the new formula; in fact, they may be very
far from a solution.

Our algorithm can handle control variables with very little modification. Within the con-
text of an individual move, the state (u, v, x, y) with new control values looks just like any other
state; it could have been reached via a Metropolis move instead of a new control assignment.
Our generator already handles recovery from unsatisfying assignments; the only modification
needed in the GenerateSolution procedure is to exclude u and v when a variable is chosen for
a move.

Our observation is that dependence on external values usually does not trigger a large
amount of jumping between disjoint solution spaces in practice. That is, the solution sets Φ(ui, vi)
and Φ(ui+1, vi+1) tend to overlap significantly. In cases where the control variables do move
frequently between values with substantially different solution sets, the distribution can be dis-
torted significantly. Solutions that are closest (in number of moves) to the previous solution set
are usually sampled more often.

4.2 Static Variable Elimination

Our generation algorithm tends to perform best on dense solution spaces—i.e, when a
large fraction of the possible assignments are solutions—but constraints are not always specified
in the densest possible way. This is not merely a hypothetical problem; when our generator
was used in the industrial tool we observed that the translation of constraints into our normal
form often used more variables than necessary, increasing the size of the state space. We can
improve the performance of our algorithm by preprocessing such constraints to eliminate the
extra variables. Because this transformation is carried out before any values are generated, we
refer to it as static variable elimination.

Both Boolean and integer variables may be added in the process of translating con-
straints to clausal form. The translator may introduce a variable for each Boolean subexpression
in order to ensure that arbitrary constraints can be expressed with linear complexity. Similarly,
integer variables are sometimes introduced for integer subexpressions. For example, consider
the following SystemVerilog constraints with solutions in two regions, as illustrated on the right:rand bit [8:0℄ y1;rand bit [9:0℄ y2;
onstraint
 {3*y1 >= 2*y2;3*y1 + 2*y2 <= 1200 || (y1 inside {[350:600℄} &&y2 inside {[200:400℄});} 0

0

400

600
y1

y2

38

A straightforward way to translate these constraints into clauses is to introduce new variables x1,
x2, and x3, constraining them to have the same values as the Boolean subexpressions, and add
variable y3 for the expression 3y1 + 2y2:

[y1 ≥ 0] (4.1)

[y2 ≥ 0] (4.2)

[y3 ≥ 0] (4.3)

[y1 ≤ 1023] (4.4)

[y2 ≤ 511] (4.5)

[y3 ≤ 3579] (4.6)

[3y1 ≥ 2y2] (4.7)

[y3 = 3y1 + 2y2] (4.8)

[y3 ≤ 1200] ∨ x1 (4.9)

¬x1 ∨ x2 (4.10)

¬x1 ∨ x3 (4.11)

x1 ∨ ¬x2 ∨ ¬x3 (4.12)

¬x2 ∨ [y1 ≥ 350] (4.13)

¬x2 ∨ [y1 ≤ 600] (4.14)

x2 ∨ [y1 < 350] ∨ [y1 > 600] (4.15)

¬x3 ∨ [y2 ≥ 200] (4.16)

¬x3 ∨ [y2 ≤ 400] (4.17)

x3 ∨ [y2 < 200] ∨ [y2 > 400] (4.18)

In theory, all variables added during translation to clausal form could be identified and
eliminated. In practice, this is not a good idea. Eliminating Boolean variables can increase the
number of clauses exponentially. For example, the constraint

∨n
i=1 (xi ∧ xi+n) can be expressed

in 3n + 1 clauses using n additional variables; without the extra variables it requires 2n clauses.
We can eliminate some Boolean variables without increasing the number of clauses,

while still preserving conjunctive normal form (CNF), by introducing new types of relations. In
particular, when a variable xi is constrained to be equivalent to a conjunction or disjunction of
integer relations, we can replace occurrences of it with a relation that combines the argument
relations. For example, if the clauses specify that xi ⇔ (yj ≥ a ∧ yj ≤ b), each literal xi can be
replaced by the relation [a ≤ yj ≤ b]. The replacement relation is a single literal, not a pair of
literals [a ≤ yj] and [yj ≤ b] whose conjunction must be distributed in order to maintain CNF.
The two-sided inequality is not in our normal form, but it works just as well within our algorithm
as one-sided inequalities, because we can efficiently construct the interval of satisfying values for
it. We simply take the intersection of the intervals that satisfy the constituent inequalities a ≤ yj
and yj ≤ b. Likewise, for a disjunction (yj ≤ a ∨ b ≤ yj), we can construct the satisfying intervals

as the union [−2B−1 . . a] ∪ [b . . 2B−1 − 1].
The composite relations resulting from eliminating Boolean variables can themselves

be combined in further elimination steps. However, as relations become more complex, the
efficiency of moves decreases, potientially offsetting the benefit of elimination. In preliminary
experiments, we observed that our algorithm performed best when we combined only relations
with the same variable support. For example, we do not eliminate xi if xi ⇔ (yj ≤ a ∧ yj+1 ≤ b).

We perform static elimination of Boolean variables by identifying patterns of clauses that
specify equivalence between variables and combinations of integer relations. We also identify
simple equivalence with Boolean or integer literals. Table 4.1 lists the patterns we search for and
the equivalences they specify. When we find a pattern, we replace each occurrence of the variable
xi with its equivalent literal (or the complement, for occurrences of ¬xi).

Elimination of integer variables does not increase the number of clauses nor the number
of relations, so we do not restrict it based on variable support as we do with Boolean variables.
We identify all clauses of the form [yi = f (y \ yi)] and eliminate each such yi.

Table 4.2 illustrates static variable elimination for the example given earlier. The second
column shows how Clauses 4.9–4.12 are transformed as each variable is replaced by its equivalent

39

Pattern Equivalence Replacement for ¬xi

xi ∨ ¬l xi ⇔ l ¬l
¬xi ∨ l

xi ∨ ¬R1 ∨ ¬R2 xi ⇔ [R1 ∧ R2] [¬R1 ∨ ¬R2]
¬xi ∨ R1

¬xi ∨ R2

¬xi ∨ R1 ∨ R2 xi ⇔ [R1 ∨ R2] [¬R1 ∧ ¬R2]
xi ∨ ¬R1

xi ∨ ¬R2

Table 4.1: Patterns of clauses that we identify for eliminating Boolean variables. The integer rela-
tions that replace xi and ¬xi for the second and third patterns are single literals, not combinations
of two literals.

expression. Clause 4.8 enables us to eliminate y3. Clauses 4.13–4.15 and 4.16–4.18 match the
second equivalence pattern in Table 4.1, so we can eliminate x2 and x3.

Eliminating k Boolean variables from a constraint formula decreases the size of the state
space by a factor of 2k without changing the number of solutions. Elimination of integer variables
provides an even greater reduction. As a result, the generator spends less time visiting unsat-
isfying states. For the example in this section, after y3, x2 and x3 are eliminated, the fraction of
states that are solutions rises from 7.4× 10−6 to 0.11. The increase in the density of the solution
space lessens the need for local-search moves and reduces their distortion of the distribution. To
demonstrate this benefit, we generated 10 000 solutions for Clauses 4.1–4.15, both with static vari-
able elimination and without it. With elimination, the fraction of moves made with local search
decreased from 41% to 18%. The corresponding improvement in the distribution is illustrated
in Figure 4.1. The plots show the values of y1 and y2, as well as the number of occurrences of

Variable eliminated Transformed clauses (replacements underlined)

y3 [3y1 + 2y2 ≤ 1200] ∨ x1
¬x1 ∨ x2
¬x1 ∨ x3
x1 ∨ ¬x2 ∨ ¬x3

x2 [3y1 + 2y2 ≤ 1200] ∨ x1
¬x1 ∨ [350 ≤ y1 ≤ 600]

¬x1 ∨ x3
x1 ∨ [350 > y1 ∨ y1 > 600] ∨ ¬x3

x3 [3y1 + 2y2 ≤ 1200] ∨ x1
¬x1 ∨ [350 ≤ y1 ≤ 600]
¬x1 ∨ [200 ≤ y2 ≤ 400]

x1 ∨ [350 > y1 ∨ y1 > 600] ∨ [200 > y2 ∨ y2 > 400]

Table 4.2: Elimination of variables y3, x2, and x3 from Clauses 4.9–4.12.

40

 0

 200

 400

 0 200 400 600

y
2

y1

Occurrences
 1-10
 11-50
 51-381

(a) Without variable elimination

 0

 200

 400

 0 200 400 600

y
2

y1

Occurrences
 1-10

(b) After eliminating y3, x2, and x3

Figure 4.1: Distributions of (y1, y2) in 10 000 solutions to Clauses 4.1–4.15.

each distinct solution. Figure 4.1a shows that the bias of the local-search moves pushes most of
the probability mass to the edges and corners of the solution space. In contrast, the solutions in
Figure 4.1b are evenly distributed. The improvement in distribution came without a significant
difference in runtime—the runtime for generation with elimination was about 3% greater than
the runtime without elimination.

4.3 Dynamic Variable Elimination

Sometimes clauses do not fit the patterns we use to eliminate variables statically, but
during generation, when we have specific values for the variables, the active clauses do fit the
patterns. In such a case, we can increase the time spent visiting solutions by eliminating variables
temporarily, for the duration of a single move. For example, consider the following clauses:

¬x1 ∨ [y1 = 2y2] (4.19)

x1 ∨ [y2 ≤ 3y3] (4.20)

We cannot eliminate y1 statically. However, when y2 is chosen as the variable for a Metropolis
move and x1 = 1, the equation y1 = 2y2 is active and y1 can be eliminated during the move. The
elimination leaves y2 without any active constraints, so it can take any value without falsifying a
clause; in contrast, the only satisfying value before the elimination was

y1
2 . After a new value for

y2 is sampled, it can be substituted into the equation to get a new value for y1. We refer to this
technique of temporary elimination and resubstitution as dynamic variable elimination.

Figure 4.2 illustrates how dynamic variable elimination operates on the state space for
constraints similar to Clauses 4.19 and 4.20. Figure 4.2a shows moves without dynamic elim-
ination: It requires multiple moves to go between distinct solutions in the front plane (where
x1 = 1), because an equality constraint is active. Figure 4.2b shows a single move between the
same solutions using dynamic elimination. Either y1 or y2 can be eliminated temporarily. Sup-
pose that y2 is selected as the variable for a move. The elimination of y1 projects solutions in
the front plane onto the subspace ZB; consequently, more than one of them can be reached with

41

y1

x1

y2

solutions

unsatisfying states

(a)

resubstitution

proposal

elimination

(b)

Figure 4.2: Effect of dynamic variable elimination on moves: (a) Without elimination, reaching a
new solution requires multiple moves. (b) Elimination of y1 projects solutions in the x1 = 1 plane
onto a single line, making multiple solutions reachable in a single move.

only one move. After a solution is proposed, resubstitution projects the new state back onto the
diagonal plane that satisfies the active equation.

The patterns that clauses must match for elimination of Boolean variables are more
complex than the clause pattern for eliminating integer variables (a single equation), and the
number of states we avoid visiting is smaller, so the effort of matching patterns is less likely to
result in a net benefit. Therefore, we restrict dynamic variable elimination to integer variables.

The mechanism by which we implement dynamic variable elimination (i.e., the projec-
tion of states onto a subspace) is simultaneous solution of the active equations and inequalities.
With this approach we can easily handle a wide variety of equations, not only those of the form
yi = f (y \ yi) that we use in static elimination. To ensure that we can solve the equations effi-
ciently, we perform elimination only when all the active relations are linear.

4.3.1 Basic Approach

For simplicity, we first describe the process of dynamic variable elimination for the
restricted case where each equation is the only integer literal in its clause. Suppose that we have
selected variable yi as the primary variable for the move (i.e., in line 3 of Algorithm 3.5). If
the values of y \ yi are held fixed, each equation referring to yi has only one solution (at most).
When the current state is a solution (which is ideally the common case for our algorithm), it is the
unique solution for yi, and the generator must move to an unsatisfying state or repeat the current
state. In order to reach other solutions without recovery moves, we must allow a simultaneous
change to at least one other variable in each active equation. In general, to ensure that this is
possible, we must select at least as many additional variables for the move as there are active
equations. We call them dependent variables. These are the variables that we effectively eliminate
for the duration of the move.

Each dependent variable may be constrained by other equations that do not have yi
in their support. To have multiple solutions available as destinations for the move, we must
consider each of these equations as active, too, and choose an additional dependent variable
for each of them, and so on. Different choices of the initial dependent variables may lead to
different sets of active equations to solve. In our approach we select between possible dependent

42

variables randomly; if the resulting system of equations does not have a solution we fall back to
a single-variable move (i.e., a move with no variables eliminated).

Algorithm 4.1 outlines our procedure for selecting dependent variables and collecting
active equations (still assuming that equations do not share clauses with other relations). In each
iteration, we take an equation Ej from a priority queue, select an available dependent variable
yk in its support, and push onto the queue any equations referring to yk that were not already
taken as active. The queue is ordered by increasing size of variable support in order to reduce
the likelihood that all the variables in an equation’s support have already been selected by the
time it is popped from the queue, in which case we would not have enough dependent variables.

Algorithm 4.1 Selection of Dependent Variables and Active Equations

Given: primary variable yi
Local data: priority queue Q of equations, sorted by increasing |Support(Ei)|
1: initialize Q with all active equations Ej for yi
2: Y := {} [dependent variables]
3: A := {} [active equations]
4: loop

5: if |Q| = 0 then

6: return (Y, A)
7: pop Ej from Q
8: V := Support(Ej) \ {yi} \Y [candidate variables]
9: if |V| > 0 then
10: select new yk from V uniformly at random
11: Y := Y ∪ {yk}
12: A := A ∪ {Ej}
13: for each El such that yk ∈ Support(El) do
14: if El /∈ A ∪Q and El’s clause is not satisfied by x then

15: push El onto Q

As an illustration of the selection of dependent variables, consider the following clauses:

[y1 ≤ 100]

[y1 + y2 = 200]

[y2 ≤ 300]

[y2 + y3 − y4 = 400]

[y3 ≤ 500] ∨ [y3 ≥ 600]

[y3 − y4 ≥ 700]

[y4 + y5 = 800]

Suppose that y1 is selected as the primary (i.e., non-dependent) variable for a move. In
the first iteration of the loop in Algorithm 4.1, the only equation in the queue is y1 + y2 = 200,
and y2 is selected as a dependent variable. The equation y2 + y3 − y4 = 400 is pushed onto the
queue and popped in the second iteration of the loop. At this point either y3 or y4 may be chosen
as the next dependent variable. Suppose that y3 is chosen. Then no more equations are pushed
onto the queue, and the procedure terminates.

After selecting the dependent variables, we collect the active clauses; they include all
clauses that refer to the primary variable or any dependent variable, except those currently satis-
fied by Boolean literals and relations that do not depend on the primary or dependent variables.
For the previous example, all the clauses are active except [y4 + y5 = 800].

43

We take each of the active inequalities in turn and solve it simultaneously with the
active equations to get a satisfying interval for the primary variable yi. We combine the resulting
intervals to construct the proposal distribution for yi just as described in Section 3.2.2 for ordinary
single-variable moves. We sample a new value for yi; if it is a satisfying value, we substitute it
into the active equations and solve them to obtain new values for the dependent variables. We
then proceed with the Metropolis acceptance step as usual.

The following example illustrates the solution of the active inequalities with the equa-
tions. A two-dimensional problem is established by the following clauses:

[y1 − y2 ≥ −2] (4.21)

[y1 + y2 ≤ 32] (4.22)

[y1 + y2 ≥ 17] (4.23)

[y1 − 4y2 ≤ 1] (4.24)

[2y1 − y2 = 16] (4.25)

The constraints in the clauses and the solutions are shown in Figure 4.3a. Let y = (13, 10) be
the current state and assume that we select y1 as the primary variable; y2 is the only possible
dependent variable. In an ordinary move without dynamic variable elimination, the sampling
range for y1 would include 13 with cost 0 and 8 . . . 12, 14 . . . 22 with cost 1. The soft-SAT proposal
distribution for such a move is shown in Figure 4.3b.

We combine each inequality with the equation in Clause 4.25 to create a linear system
and solve it using Gaussian elimination to obtain a transformed bound for y1. To determine the
direction of a bound c (i.e., upper or lower), we substitute c− 1 for y1 in the equation, solve for
y2, and check whether the inequality is satisfied. For example, solving the linear system

[
1 −1 −2
2 −1 16

]

gives us y1 = 18. Substituting y1 = 17 into the equation, we get y2 = 18. Since 17− 18 ≥ −2, we
conclude that 18 is an upper bound on y1.

y1 − y2 ≥ −2

y1 + y2 ≤ 32

y1 − 4y2 ≤ 1

y1 + y2 ≥ 17

2y1 − y2 = 16

y1

y2

(a)

y1 = 8 y1 = 22

(13, 10)

(b)

y1 = 18

y1 = 16

y1 = 11

y1 = 9

(13, 10)

(c)

Figure 4.3: Illustration of dynamic variable elimination for Clauses 4.21–4.25: (a) constraints and
solutions, (b) soft-SAT proposal distribution for y1 without variable elimination, (c) proposal
distribution with dynamic elimination of y2.

44

Solving all the inequalities in Clauses 4.21–4.24 in this way gives the following trans-
formed bounds for y1:

[y1 ≤ 18] ∧ [y1 ≤ 16] ∧ [y1 ≥ 11] ∧ [y1 ≥ 9]

We combine the intervals satisfying these bounds to get a proposal distribution with maximum
probability on all values in the range 11 ≤ y1 ≤ 16, as shown in Figure 4.3c. Suppose that we
sample 15 as the new value y′1. We substitute it into the equation and get y′2 = 14.

If y2 had been selected as the primary variable for the move and an odd value had been
sampled for it, no integer solution would exist for y1. In this case we would take the nearest
integer value. Since the resulting state does not satisfy the constraints, it may be rejected when
the Metropolis acceptance rule is applied or be handled by recovery moves.

A drawback of dynamic variable elimination is that it may distort the distribution of so-
lutions because it breaks the theoretical guarantee of the Metropolis-Hastings algorithm. Moves
with elimination avoid proposing states that do not satisfy equations, so they do not have the de-
tailed-balance property described in Section 2.2. For example, consider the following constraints:

0 ≤ y1, y2 ≤ 100

x1 ∨ [y1 = y2]

The state s = (0, 10, 20) may be reached by flipping x1. From this state, a move with dynamic
elimination may arrive at s′ = (0, 30, 30). The reverse move from s′ to s is never proposed, neither
with elimination nor without it. Therefore, the Markov chain does not exhibit detailed balance:

p(s)M(s, s′) > 0

p(s′)M(s′, s) = 0

p(s)M(s, s′) 6= p(s′)M(s′, s)

4.3.2 Handling Disjunctions of Equations

When a clause contains an equation and another relation that shares variable support
with it, the dependencies between variables may not be defined in a way that allows us to
identify the active equations unambiguously. For example, suppose that one of the clauses is
[y1 + y2 = 200] ∨ [y1 − y3 ≥ 250] and the primary variable for a move is y1. If y1 + y2 = 200 is
active, then y2 is a dependent variable, but if y1− y3 ≥ 250 is satisfied, then the equation need not
be true, so no dependent variable is required. The dependency between y1 and y2 holds only for
possible values of y1 that do not satisfy y1 − y3 ≥ 250. However, our approach for constructing
the proposal distribution assumes that the active constraints are known before we try to select
values for the variables.

We handle such cases by transforming the constraints to forms whose active relations
can be determined unambiguously: We apply the distributive law to create multiple CNF subfor-
mulas, each satisfying the simplifying assumption used in the previous section that each equation
is the only integer literal in its clause. Formally, let E be an equation and R be another relation
(equation or inequality). If the constraint formula ϕ has the form (E ∨ R) ∧ ϕ′, where ϕ′ is any
subformula, then we apply the transformation:

(E ∨ R) ∧ ϕ′ =⇒ (E ∧ ϕ′) ∨ (R ∧ ϕ′)

45

Boolean literals do not cause ambiguity in the selection of active constraints, so we do not create
additional subformulas for them, only for the integer literals. For example:

(xi ∨ E ∨ R) ∧ ϕ′ =⇒
(
(xi ∨ E) ∧ ϕ′

)
∨

(
(xi ∨ R) ∧ ϕ′

)

We apply dynamic variable elimination to each subformula separately to obtain pro-
posal distributions, using the procedure described in the previous section, then take the point-
wise maximum of them to create a distribution for the entire formula. (That is, we apply the
same disjunctive operator between subformulas as we do for literals in clauses as described in
Section 3.2.2.) The new value y′i that we sample from the combined distribution may be part of
a solution for more than one subformula. From among all the subformulas whose distribution
functions are maximized at y′i, we select one at random and solve its linear system to obtain
values for the dependent variables.

The number of subformulas after distribution may be exponential in the number of
clauses, so we impose a bound on the number of them that we solve. If the total number after
distribution exceeds the bound, we select a random subset of them from which to construct the
proposal distribution for the move.

As an illustration of how we handle disjunctions of equations, consider the following
variation on Clauses 4.21–4.24:

[y1 − y3 ≥ −2] (4.26)

[y1 + y2 ≤ 32] (4.27)

[y1 + y2 ≥ 17] (4.28)

[y1 − 4y3 ≤ 1] (4.29)

[2y1 − y2 = 16] ∨ [2y1 + 3y3 = 69] (4.30)

Let y = (13, 10, 6) be the current state and y1 be the primary variable selected for the current
move. Distributing over Clause 4.30 produces two subformulas, each containing one of the
equations in that clause. The dependent variable for the first subformula is y2. We substitute
the current value of y3 and solve the relations in Clauses 4.26–4.29 with 2y1 − y2 = 16 to get the
following bounds:

[y1 ≥ 4] ∧ [y1 ≥ 11] ∧ [y1 ≤ 16] ∧ [y1 ≤ 25]

For the second subformula, the dependent variable is y3. Substituting the current value of y2 and
solving the inequalities with 2y1 + 3y3 = 60 gives the following bounds:

[y1 ≥ 7] ∧ [y1 ≥ 12.6] ∧ [y1 ≤ 22] ∧ [y1 ≤ 25.36]

Suppose that the selected type of proposal distribution is cost-based. The number of bounds
violated in each subformula ranges between 0 and 2. We compute the distribution functions
for both sets of bounds and take their pointwise maximum to get the composite distribution
function:

q(y1) =







e−2/T for y1 ∈ [−2B−1 . . 3]

e−1/T for y1 ∈ [4 . . 10]

1 for y1 ∈ [11 . . 22]

e−1/T for y1 ∈ [23 . . 25]

e−2/T for y1 ∈ [26 . . 2B−1 − 1]

46

Suppose that we sample y′1 = 20 from the distribution function. This value has cost 1 for the first
subformula and cost 0 for the second, so we use the second to obtain values for the dependent
variable. Substituting into 2y′1 + 3y′3 = 69 gives y′3 = 9.6; since this is not an integer, we take
y′3 = 10 instead. The new state is not a solution; recovery moves will follow.

4.3.3 Experimental Evaluation

To evaluate the effectiveness of dynamic variable elimination, we generated a set of 100
random benchmarks. Each benchmark has 40 integer variables and 10 clauses. No benchmark
has Boolean variables. Each relation has the form:

∑
i∈I

aiyi ≤ b or ∑
i∈I

aiyi = b (4.31)

where I is a set of indices. The clause sizes, index sets, coefficients, and constant terms were
all chosen uniformly at random; Table 4.3 shows the ranges of these values. We accepted only
satisfiable sets of constraints. When we could not generate the full number of desired solutions
to a benchmark, we discarded it and generated a new one to replace it.

Value
Symbol in
Formula 4.31 Range

Relations per clause [1 . . 2]
Linear terms per inequality |I| [1 . . 4]
Linear terms per equation |I| [2 . . 4]
Coefficient of variable ai [−4 . . − 1, 1 . . 4]
Constant term b [−1000 . . 1000]

Table 4.3: Ranges of randomly generated values in benchmarks for dynamic variable elimination.

We generated 10 000 solutions to each benchmark using our Ambigen program with
dynamic variable elimination, and the same number of solutions without elimination. We ex-
pected the moves without elimination to be faster because of their simplicity, but they are also
more likely to repeat solutions. To test whether the moves with elimination might still be more
efficient at generating useful solutions, we rejected repeated solutions. That is, we counted each
solution only when it differed from the preceding one.

The results of this experiment are shown in Figures 4.4 and 4.5. The plot in Figure 4.4
shows for each benchmark the ratio Te/T0, where Te is the runtime with elimination and T0 is
the runtime without it; this ratio is the slowdown caused by dynamic variable elimination. The
benchmarks are sorted in order of increasing slowdown. As the plot shows, dynamic elimination
does not enable our generator to find distinct solutions faster; on the contrary, the runtime is
7–53x slower, with an average slowdown of about 23x (the arithmetic mean of the ratios is 22.8
and the ratio of the total runtimes—i.e., ∑ Te/∑ T0—is 22.6).

Figure 4.5a shows the number of moves made in each mode; for 58 of the 100 bench-
marks more moves were required when dynamic variable elimination was used. At most elim-
ination reduced the number of moves by 42%. The reduction was not enough to compensate
for the extra time taken by elimination. Figure 4.5b shows the relationship between the move

47

 0

 10

 20

 30

 40

 50

 60

 1 100

s
lo

w
d
o
w

n
 (

T
e
/T

0
)

benchmark (sorted by ratio)

Figure 4.4: Ratios of runtimes with dynamic variable elimination (Te) to runtimes without it (T0).

 10000

 30000

 50000

 70000

 90000

 10000 30000 50000 70000 90000

n
u
m

b
e
r

o
f
m

o
v
e
s

(w
it
h
 d

y
n
a
m

ic
 v

a
ri
a
b
le

 e
lim

in
a
ti
o
n
)

number of moves (no variable elimination)

42%
reduction

(a)

 0

 10

 20

 30

 40

 50

 60

 0.5 0.75 1 1.25 1.5

s
lo

w
d
o
w

n
 (

T
e
/T

0
)

ratio of move counts (Ne/N0)

(b)
Figure 4.5: (a) move counts with and without dynamic variable elimination, (b) ratios of move
counts (Ne = with elimination, N0 = without it) and runtimes.

counts and the slowdowns: the runtime ratios are plotted against the ratios Ne/N0, where Ne is
the number of moves made with dynamic elimination and N0 is the number of moves without it.
The slowdowns were least when elimination reduced the number of moves most, but otherwise
the relationship is weak.

These results show that for constraints like our generated benchmarks dynamic variable
elimination, unlike static variable elimination, does not provide enough benefit to offset its cost.
Our benchmarks may not be representative of all constraints where it could be applied, but the
magnitude of the slowdowns we observed suggest that it is too slow in general.

4.4 Summary

In this chapter we presented several refinements to our basic generation algorithm. The
first refinement is slight: We can handle constraints that depend on the current state of the DUT
or testbench by including control variables in the constraints. The procedures for generating

48

moves support this with almost no change. The second refinement is static variable elimination,
a preprocessing step that increases the density of the solution space and improves both efficiency
and distribution. The third refinement, dynamic variable elimination, applies a similar idea
during generation, but it has high overhead which outweighs its benefit.

49

Chapter 5

Parallel Stimulus Generation

Parallelism is becoming increasingly important as a means to make programs faster.
During the last decade, manufacturers of high-performance microprocessors have shifted their
efforts away from making individual processors faster; instead, they now make processors with
increasing numbers of cores. As this trend continues, applications that cannot exploit parallelism
for speedup will waste increasingly larger fractions of available computational power.

In this chapter we describe how our generation method can be parallelized for faster
production of stimuli. Our parallelization approach does not replace the sequential algorithm
given in the previous chapters but uses multiple sequential generators in combination. In the
absence of control variables, we could use a division-of-labor scheme in which each generator
would produce a subset of the stimuli needed. In the best case, such a scheme would yield
linear speedup (neglecting synchronization overhead): With P generators running in parallel, the
total runtime would be reduced by a factor of P. However, this approach does not work in the
general case; when the constraints depend on the current state of the DUT or testbench, stimuli
must be generated on demand, in sequence. Therefore, we use a “race” parallelization scheme
instead, in which the generators search using the same control values and only the first solution
found is used as a stimulus. This scheme seems more wasteful than division of labor because the
generators that lose the race make many moves whose results are not directly used. However, it
has the potential to yield greater speedup, as we show in this chapter.

The organization of this chapter is as follows: Before we describe our parallel algorithm
in detail, we show how variability in generation time creates potential for speedup. To illustrate
this point, we introduce a set of benchmarks with constraints more difficult than those used in
previous chapters; we refer back to them throughout the chapter. We project speedup bounds
for the benchmarks based on data from sequential generation, and we show through theoretical
analysis that there are conditions under which speedup can be arbitrarily high. We demonstrate
with results of experiments using our benchmarks that this theoretical potential for speedup is
difficult to realize in practice. The speedup we observed in our experiments falls short of our
projections, and we examine our results in detail to determine why. Among the reasons for the
discrepancies are insufficient parallelism in hardware, correlation in the generators’ performance,
and delayed application of control values to the generators. Our investigation demonstrates that
achieving high speedup from parallelization, even with a straightforward algorithm, is challeng-
ing.

50

5.1 Benchmarks

The potential for speedup in our parallel generation approach comes from variability
in the time needed for a single generator to produce a solution. When one generator takes a
long time to solve the constraints, another generator, starting from a different state and sampling
different random values, may reach a solution in much less time.

For many constraint sets, the average number of moves per solution made by our al-
gorithm is close to 1. Because the variability in solution time for such constraints is low, they
have little potential for speedup from parallel generation. Most of the benchmarks in previous
chapters are in this category, so they are not interesting test cases for parallelization. To explore
parallel generation where it may actually provide a significant benefit, we generated benchmarks
with constraints that are more difficult to solve. The generated constraints are a generalization
of random Boolean 3-CNF using integer variables, including control variables. A Boolean 3-CNF
clause, e.g., x1 ∨ x2 ∨ ¬x3, can be expressed with integer constraints in our normal form in two
ways—as a clause with three literals:

[y1 ≥ 1] ∨ [y2 ≥ 1] ∨ [y3 < 1]

or as an integer literal with three terms:

[y1 + y2 + (1− y3) ≥ 1]

0 ≤ y1, y2, y3 ≤ 1

In our benchmarks we included clauses generalized from both of these forms, for example:

[y1 ≥ v1] ∨ [y2 ≥ v2] ∨ [y3 < v3]

[y1 + y2 + (1000− y3) ≥ 1000]

0 ≤ yi ≤ 1000

We departed from the 3-CNF pattern slightly by using equality literals such as [y1 = y2] in place
of inequalities with probability 0.1. The full grammar for the clauses in the benchmarks is the
following:

clause : literal ∨ literal ∨ literal
∣
∣ [term + term + term ≥ 1000]

literal : [yi ≥ vi]
∣
∣ [yi < vi]

∣
∣ [yi = yj]

∣
∣ [yi = 1000 − yj]

term : yi
∣
∣ 1000 − yi

We generated 100 random benchmarks, each with 20 random integer variables yi, 20
integer control variables vi, and 100 random clauses (not including the clauses for 0 ≤ yi ≤
1000). To check the potential for speedup from parallelism, we generated 10 000 solutions to
each benchmark, using our sequential algorithm described in the previous chapters, with control
values assigned randomly from the range [0 . . 1000], and recorded the elapsed (wall-clock) time
used to generate each solution. Figure 5.1 shows, for each benchmark, a box-and-whisker plot
of the summary statistics of the solution times, including the minimum, the maximum, and the
quartiles. The benchmarks are sorted by median solution time. The wide variability in the times
suggests that these benchmarks have good potential for speedup from parallelization.

51

10
0

10
1

10
2

10
3

 1 100

s
o

lu
ti
o

n
 t

im
e

 q
u

a
rt

ile
s
 (

m
s
)

benchmark (sorted by median time)

Figure 5.1: Quartiles of time per solution for our generalized 3-CNF benchmarks, sorted by
median time. For each benchmark, the box is between the first and third quartiles; the line across
the box is at the median. The whiskers extend from the first and third quartiles to the maximum
and minimum times.

5.2 Bounds on Expected Speedup

The expected speedup from parallelization on a given set of constraints is intractable to
compute because the solution time may depend on the control values. However, we can compute
an upper bound on the expected speedup, based on the empirical distribution of solution time for
a single generator. If we assume that the solution times of multiple generators are independent
of each other and of the control values and identically distributed (i.i.d.) with cumulative dis-
tribution F(1)(t), that is, F(1)(t) = Pr(solution time ≤ t), then the solution time of P generators,
starting simultaneously and working in parallel, has distribution:

F(P)(t) = 1− (1− F(1)(t))P (5.1)

This formula holds for both continuous and discrete distributions. We apply this formula to
the discrete empirical distribution F̂(1)(t) to get a projected distribution F̃(P)(t), from which we
compute the projected density f̃ (P)(t), mean µ̃(P), and speedup S̃(P):

f̃ (P)(t) = F̃(P)(t) − F̃(P)(t− 1)

µ̃(P) =
∞

∑
t=0

t f̃ (P)(t)

S̃(P) =
µ̃(1)

µ̃(P)

The projected speedup is an upper bound on expected speedup, not an estimate of it,
for two reasons. First, it does not take into account the overhead of synchronization. Second, the
assumption of i.i.d. solution times often does not hold in practice. The constraints may be harder
to solve for some control values than for others, and all generators with the same control values
will be subject to the increased difficulty, so that the times are positively correlated. Positive
correlation lowers the speedup of parallelization relative to the i.i.d. case, as Figure 5.2 illustrates.
The figure shows simple discrete joint distributions f (t1, t2) of solution times t1 and t2 for two

52

f (t1, t2)

t2 = 1 t2 = 2
t1 = 1 0.36 0.24
t1 = 2 0.24 0.16

corr(t1, t2) = 0

E
[
S(2)

]
= 1.207

f (t1, t2)

t2 = 1 t2 = 2
t1 = 1 0.45 0.15
t1 = 2 0.15 0.25

corr(t1, t2) = 0.375

E
[
S(2)

]
= 1.120

f (t1, t2)

t2 = 1 t2 = 2
t1 = 1 0.25 0.35
t1 = 2 0.35 0.05

corr(t1, t2) = −0.4583

E
[
S(2)

]
= 1.333

Figure 5.2: Joint distributions of solution times for two generators in parallel and resulting cor-
relations and expected speedup. For each distribution, Pr(ti = 1) = 0.6 and Pr(ti = 2) = 0.4.

generators in parallel, along with the correlation of the times and the expected speedup. All
three cases have the same distribution for a single generator’s solution time.

In addition to the effect of positive correlation, the figure also shows that a distribution
with negative correlation has greater speedup than the uncorrelated distribution. As the exam-
ple implies, the i.i.d. speedup is not an upper bound on the speedup for an individual run; the
empirical solution times may happen to be negatively correlated. However, the expected corre-
lation is positive. All the generators receive the same external input (the control values); there
is no mechanism for this information to consistently influence the solution times of different
generators in opposite directions.

We computed the projected speedup S̃(P) for each of our 100 benchmarks with P = 2, 3,
4, . . ., 16 from the empirical solution-time distributions summarized in Figure 5.1. The resulting
distributions of S̃(P) across the benchmarks are shown in Figure 5.3 as quartiles. For P < 4, more

 2

 4

 8

 16

 32

 2 4 6 8 10 12 14 16

p
ro

je
c
te

d
 s

p
e
e

d
u
p
 S~

(P
) (

q
u
a
rt

ile
s
)

P (number of generators)

linear speedup

Figure 5.3: Distributions of projected speedup from parallel generation on generalized 3-CNF
benchmarks.

53

than 50% of the benchmarks had S̃(P) ≥ P, i.e., superlinear speedup. For larger P, the median
speedup was sublinear, but in each case a significant fraction of benchmarks still had superlinear
projected speedup.

It may seem counterintuitive that parallelization can give a speedup greater than the
number of generators working in parallel. However, we can show it analytically for a certain
type of distribution of solution times: a mixture of exponential distributions. We do not claim
that this distribution is a good model for the solution times of our generation algorithm, but
the derivation shows that solution-time distributions with superlinear speedup exist and thus
supports the plausibility of our projections.

Suppose that the solution time of a single generator is distributed as a mixture of two
exponential variates: F(1)(t) = θ1(1− e−λ1t) + θ2(1− e−λ2t), with λ1 6= λ2, 0 < θ1, θ2 < 1, and
θ1 + θ2 = 1. That is, with probability θ1 the time is exponentially distributed with mean λ−1

1 , and

likewise for θ2 and λ−1
2 . The mean µ1 of the mixture is θ1λ−1

1 + θ2λ−1
2 . We apply Equation 5.1 to

obtain the distribution for two generators in parallel:

F(2)(t) = 1−
(

1−
(
θ1(1− e−λ1t) + θ2(1− e−λ2t)

))2

= 1−
(
θ1e

−λ1t + θ2e
−λ2t

)2

= 1− θ21e
−2λ1t − 2θ1θ2e

−(λ1+λ2)t − θ22e
−2λ2t

= (θ1 + θ2)
2 − θ21e

−2λ1t − 2θ1θ2e
−(λ1+λ2)t − θ22e

−2λ2t

= θ21(1− e−2λ1t) + 2θ1θ2(1− e−(λ1+λ2)t) + θ22(1− e−2λ2t)

The result is a mixture of three exponential distributions with mean:

µ(2) = θ21(2λ1)
−1 + 2θ1θ2(λ1 + λ2)

−1 + θ22(2λ2)
−1

Next we use Jensen’s inequality, which states that for a strictly convex function g(x) and x1 6= x2,
g
(
1
2(x1 + x2)

)
<

1
2

(
g(x1) + g(x2)

)
. We apply it to the second term of µ(2) with g(x) = x−1, which

is strictly convex for x > 0, to get:

µ(2)
< θ21(2λ1)

−1 +
1

2
θ1θ2(λ−1

1 + λ−1
2) + θ22(2λ2)

−1

= (θ1 + θ2)θ1(2λ1)
−1 + (θ1 + θ2)θ2(2λ2)

−1

=
1

2

(
θ1λ−1

1 + θ2λ−1
2

)

=
µ(1)

2

Thus the expected speedup E[S(2)] is strictly greater than 2.
There is no upper bound on E[S(2)] for a mixture of exponential distributions. Assume,

without loss of generality, that λ1 > λ2. For fixed θ1, θ2, and λ2, the derivative dµ(2)/dλ1 is always
negative, so the bounds of µ(2) can only be found at the extremes of the range of λ1. One extreme
gives the speedup bound of 2 that we derived above: limλ1→λ2

µ(2) = 1
2µ(1). We find the other

bound as we let λ1 grow indefinitely:

lim
λ1→∞

µ(2) = θ22(2λ2)
−1

54

lim
λ1→∞

E
[
S(2)

]
=

θ2λ−1
2

θ22(2λ2)−1

=
2

θ2

By choosing a sufficiently small θ2 and large λ1, we can make the speedup arbitrarily large.
Similar analytical bounds apply for P > 2. Although we do not show the deriva-

tions, the arguments given in this section can be generalized to prove that E[S(P)] > P and

limλ1→∞ E[S(P)] = Pθ
−(P−1)
2 for exponential mixtures. These results show that our speedup val-

ues projected from empirical data are plausible; in fact, they are modest compared to the values
that theory allows.

5.3 Parallel Generation Algorithm

In the introduction of this chapter, we outlined briefly our general approach for parallel
stimulus generation: We run multiple sequential generators simultaneously; in each iteration we
take the solution from the first generator that finds one. In this section we describe in detail how
we implement this approach as multi-threaded code.

Each sequential generator runs in a separate worker thread. An additional component,
the master, runs in the same thread as the rest of the testbench and provides the interface between
it and the workers. The master receives the control values from the testbench and supplies them
to the workers, and it selects between available solutions.

The master and the workers store their own copies of the control values and generated
values. The master’s values are denoted (u, v)0 and (x, y)0, and the values in worker i are
denoted (u, v)i and (x, y)i. As shorthand for ((u, v)i, (x, y)i) we use (u, v, x, y)i. Each worker also
maintains output buffers (~u,~v)i and (~x,~y)i. These buffers provide stable values for the master to
read while the worker continues generation. To avoid data races when variables are accessed by
multiple threads, we use mutex locks such as those provided by the Pthreads library [NBF96].
The output buffers in worker i are protected by lock Li, and the lock L0 protects access to (u, v)0.

Besides the state of the generator and the output buffers, each worker stores an addi-
tional piece of state: a blocking count βi. This count is used to prevent a single worker’s solutions
from being selected too often. When the master takes a solution from worker i, it resets the block-
ing count to the value of the blocking parameter β0. Adjustment of β0 enables a tradeoff between
throughput and correlation of solutions.

Algorithm 5.1 is the top-level routine executed in each worker thread. The worker
does not necessarily load new control values from the master as soon as they become available
but rather loads them with probability pld. Consequently, when a generation cycle begins with
control values that were used for a previous solution, there is some chance that one of the workers
still has these values, along with a solution for them. This caching behavior can make a solution
available more quickly. On the other hand, if cache “hits” are infrequent, a low value of pld
will increase the average time to find a solution because the number of workers with the current
control values will increase only gradually.

After (possibly) loading the control values (u, v)0, the worker makes a single Metropolis
or local-search move, altering its private state (x, y)i. Because this state is separate from the out-
put buffers and not accessed directly by the master thread, no locks are held during this period
where the most intensive computation is performed. The Move routine, shown in Algorithm 5.2,

55

Algorithm 5.1 Worker Thread

Given: worker index i; load probability pld; formula ϕ(u, v, x, y)
1: initialize (u, v, x, y)i randomly
2: loop

3: with probability pld do
4: locking L0 do
5: (u, v)i := (u, v)0

6: ti := 0
7: (x, y)i := Move((u, v, x, y)i, ti)
8: ti := ti + 1
9: locking Li do

10: if βi > 0 then

11: βi := βi − 1
12: if ϕ((u, v, x, y)i) then
13: ti := 0
14: locking Li do
15: (~u,~v,~x,~y)i := (u, v, x, y)i

Algorithm 5.2 Move

Given: formula ϕ(u, v, x, y); state (u, v, x, y); move count t; move-type parameter pmh0; rate pa-
rameter γ

1: if t = 0 or ϕ(u, v, x, y) then
2: (x, y) := MetropolisMove(u, v, x, y)
3: else

4: pmh := pmh0e
−γ(t−1)

5: with probability pmh do

6: (x, y) := MetropolisMove(u, v, x, y)
7: else

8: (x, y) := LocalSearchMove(u, v, x, y)
9: return (x, y)

is a refactored version of the GenerateOne routine given in Algorithm 3.4. The reason we make
only one move, rather than continuing until a solution is found, as in GenerateOne, is to allow
earlier preemption of the worker: It may begin working with new control values before it finds a
solution with the old ones, a solution which would likely be discarded anyway.

After making a move, the worker increments its move count and decrements its blocking
count. The decrement must be synchronized using the lock Li, because the master also reads and
writes βi. If the state resulting from the move is a solution, the worker copies it to the output
buffer, along with its control values, and resets the move count (thus resetting the bias toward
local-search moves described on page 28).

Algorithm 5.3 is the routine invoked by the testbench in the master thread. It copies the
control values from the testbench into its buffer, then checks the output buffers of the workers
repeatedly until it finds a solution for those control values. We use two techniques to avoid
taking solutions from any worker too often: We check the workers in random order, and we
avoid recently chosen workers using the blocking count βi as described earlier in this section.

56

Algorithm 5.3 Generate (in master thread)

Given: control assignment (u, v); blocking parameter β0

1: locking L0 do
2: (u, v)0 := (u, v)
3: loop

4: I := (1, . . . , P)
5: randomize order of I
6: for each i ∈ I do
7: locking Li do

8: if βi = 0 and (~u,~v)i = (u, v)0 then
9: (x, y)0 := (~x,~y)i

10: βi := β0

11: goto line 12 [unlocking Li]
12: return (x, y)0

The master is likely to repeat the main loop in Generate many times before a solution
becomes available. Other mechanisms for synchronization, such as condition variables, would
allow the master thread to be suspended rather than consuming CPU time in busy waiting.
However, the time needed to find a solution is often much less than the length of a time slice
in the scheduler (e.g., the default time slice in Linux 2.4 is 10 ms). A context switch would add
significant delay to the master. For this reason we keep the master polling for solutions instead
of suspending it.

Figure 5.4 shows the flow of data between the master and workers. The diagram illus-
trates key features of our parallel algorithm: the master as the sole interface between the DUT
and the sequential generators, and the locks associated with all the variables accessed by more
than one thread.

Programs with a high degree of parallelism are typically written with a different ap-
proach from ours, e.g., using a message-passing model such as MPI [Mes94] instead of the
shared-memory model that we use. Our approach could be implemented using message pass-
ing; the communication between the master and workers would be significantly slower because
sending messages over the network takes much longer than synchronization with locks. As the
number of cores per processor increases, greater parallelism will be possible without incurring
the overhead of message passing.

5.4 Experimental Evaluation

To evaluate our approach for parallelizing our stimulus-generation algorithm, we gen-
erated solutions to the benchmarks described in Section 5.1. In this section we present the results
of our experiments.

A significant challenge in our evaluation of parallel stimulus generation was the avail-
ability of parallel hardware. Although we expect processors with more cores to become more
common in the future, at the time we performed this research we had ready access only to com-
puters with four cores or fewer. Because our master thread consumes CPU cycles while waiting,
we could run at most three workers with true simultaneity. Later in this section we describe how
we worked around this limitation.

57

(x, y)0

=

(u, v)0

(x, y)P
Worker P

(~x,~y)P

LP

βP

(~x,~y)1

L1

β1(~u,~v)1

(x, y)1

(u, v)1

with prob. pld

Worker 1

β0

DUT

L0
Master

Figure 5.4: Data flow in parallel stimulus generation.

5.4.1 Generation using True Parallelism

We generated 10 000 solutions to each of our benchmarks with P = 1, 2, 3 (i.e., using
1, 2, and 3 workers). For the load probability parameter we used pld = 1, because the number
of possible control assignments for the benchmarks is so large that we expected the hit rate on
cached control values to be negligibly small. For the blocking parameter we used β0 = 1.

The primary metric of performance is elapsed time; because it tends to be unstable
under scheduling competition with other, unrelated processes in the system, we recorded it as
the median of the elapsed times from five runs with the same random seed. We computed the
resulting speedup ratio S(P) (the ratio of the median time with P workers to the time with 1
worker) for each benchmark. The distributions of S(P) are shown in Figure 5.5 as quartiles. In
every case, generation with multiple workers was faster than generation with a single worker.
However, the best speedup is still sublinear. On average, S(3) is only slightly greater than S(2).
The range of S(3) is greater than the range of S(2), but the distribution of S(3) is more tightly
concentrated around the median. The tighter concentration means that the speedup becomes
more predictable, on average, as the number of workers increases.

Besides elapsed time, another metric of generation performance is the number of moves
used. Comparing the two metrics from our experiments helps explain the results in Figure 5.5.
For each benchmark, we took the move count from the run with the median elapsed time. Each
move count includes only the moves used to generate the selected solutions. That is, each worker

58

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

 2 3

s
p
e
e
d
u
p
 r

a
ti
o
 S

(P
) (

q
u
a
rt

ile
s
)

number of workers (P)

Figure 5.5: Distributions of speedup from parallel generation.

counted the moves it made since it had last loaded the control values, and each time the master
selected a worker and took the solution from it, we recorded that worker’s move count. We did
not record moves made by other workers to produce solutions that were not used.

The times and move counts are compared in Figure 5.6a. With P = 1, the time and
move count are well correlated. The same is true with P = 3, but with fewer moves per unit
time than with P = 1. The points for P = 2 follow neither of these trends consistently but are
distributed between them instead. The distributions of points correspond to the different degrees
of dispersion in Figure 5.5: As the points for P = 3 follow a more consistent trend than those for
P = 2, the speedup for P = 3 is less dispersed.

Overall, the number of moves used per unit time decreases with the number of workers.
The plot in Figure 5.6b reveals the patterns in these results in greater detail. It shows the same
data with the addition of lines connecting the three data points for each benchmark. The lines
make clear that generation with 2 workers consistently takes less time and fewer moves than
generation with 1 worker, and the number of moves always decreases as P increases. However,
for about 40% of the benchmarks, generation with 3 workers is slower than with 2, despite the
lower move counts.

We cannot explain the decreasing move rate of parallel generation with certainty, but
we have a hypothesis as to its cause: We believe it is an artifact of scheduling conflicts. Although
we ran our experiments on a processor with sufficient cores for the master and worker threads,
our program was not the only process running on the system. At least one other process was
occasionally scheduled: the daemon that periodically flushes data from the disk cache. The total
CPU load from this process is negligible, but our algorithm is highly sensitive to any interruption
in a thread. We conjecture that context switches delay the master’s recognition of available
solutions, with greater delay when our threads are using all the cores.

The total move count can serve as a proxy metric for the elapsed runtime, and it pro-
vides a significant advantage over the latter: It can be decoupled from scheduling. That is, the
workers’ moves can be scheduled in such a way that the total number of moves is unaffected by
context switches. Consequently, we can run many more workers than there are cores available,

59

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

n
u

m
b

e
r

o
f

m
o

v
e

s
 u

s
e

d
 (

×
1

0
0

0
)

elapsed runtime (s)

P=1
P=2
P=3

(a)

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

n
u
m

b
e
r

o
f

m
o
v
e
s
 u

s
e
d
 (

×
1
0
0
0
)

elapsed runtime (s)

P=1
P=2
P=3

(b)

Figure 5.6: Results of parallel generation of 10 000 solutions for the benchmarks described in
Section 5.1: (a) elapsed runtime and number of moves, (b) a subset of the same data, with links
between the three data points for each benchmark.

circumventing the problem of insufficiently parallel hardware. To justify this, we first establish
that the move count is a sufficiently faithful proxy for elapsed time, or rather, that the speedup
computed as a ratio of move counts accurately represents the speedup as a ratio of elapsed times
in the absence of scheduling conflicts.

We denote the speedup ratio derived from elapsed times S(P)
t and the speedup derived

60

from move counts S(P)
m . Given that our algorithm has a consistently lower move rate with 3

workers than with 1 worker, S(3)
t and S(3)

m can not be expected to match. However, for P = 2
a significant fraction of the data points are close to the trend for P = 1. For these, S(2)

m should
be a good predictor of S(2)

t . To check this relationship, we computed least-squares linear fits to
the data points for P = 1 and P = 3 and classified the data points for P = 2 into three groups
depending on their distances to the two fit lines. Figure 5.7 shows the data with the fit lines and
different markers for the three groups of points. Figure 5.8 shows the speedup ratios, both time-
and move-based, with the same markers for the groups. The plot illustrates that the two kinds
of speedup ratios do indeed match closely for the benchmarks whose times follow the trend line
for P = 1; i.e., S(P)

m is a good proxy for S(P)
t in the absence of artifacts due to scheduling.

5.4.2 Generation using Simulated Parallelism

Having justified the use of the move count as a performance metric, we ran the re-
mainder of our experiments with simulated parallelism: We modified our parallel generation
algorithm to have the workers make their moves in a round-robin fashion rather than simultane-
ously, as shown in Algorithm 5.4. The master still takes the first solution available, but it is the
solution generated with the fewest moves, regardless of the time taken.

We generated 10 000 solutions for each benchmark using Algorithm 5.4 with P = 1, 2,
3, 4, 5, 6, 8, 12, 16, 24, 32, 48, and 64. We kept all other parameter values the same. Figure 5.9
compares the resulting move counts for each benchmark for P = 1, 2, and 3 to the move counts
for the same benchmarks run with workers in parallel. The strong correlation shows that our use
of simulated parallelism does not significantly impact the move counts.

Figure 5.10 shows the distributions of speedup S(P)
m across benchmarks as quartiles. The

median and maximum speedup increases with the number of workers, but it is sublinear in

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120

n
u
m

b
e
r

o
f
m

o
v
e
s
 u

s
e
d
 (

×
1
0
0
0
)

elapsed runtime (s)

P=1
P=2 (closest to fit for P=1)
P=2 (intermediate between fits)
P=2 (closest to fit for P=3)
P=3

Figure 5.7: Results of parallel generation, using the same data as in Figure 5.6, with linear fits for
P = 1 and P = 3 and the points for P = 2 classified by distance to the fit lines.

61

 1.4

 1.6

 1.8

 2.0

 2.2

 2.4

 2.6

 2.8

 3.0

 3.2

 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

m
o

v
e

-b
a

s
e

d
 s

p
e

e
d

u
p

 S
(P

)
m

time-based speedup S
(P)
t

P=2 (closest to fit for P=1)
P=2 (intermediate between fits)
P=2 (closest to fit for P=3)
P=3

Figure 5.8: Speedup ratios derived from elapsed times and move counts in Figure 5.6, with the
same group markers for P = 2 as in Figure 5.7.

almost every case. The only exceptions are a few benchmarks run with two workers that had
speedup slightly greater than 2. In contrast with the results in Figure 5.5, here the speedup
becomes less predictable as the number of workers increases.

Figure 5.11 shows comparisons of the projected speedup S̃(P)
m and actual speedup S(P)

m

for each benchmark and value of P. In every case the actual speedup is less than the projection,
consistent with the description of the projection as an upper bound in Section 5.2. For low
values of P, the discrepancy is relatively small, but it grows with P, until the ratio S(P)

m /S̃(P)
m

Algorithm 5.4 Generate (with simulated parallelism)

Given: control assignment (u, v); load probability pld; formula ϕ(u, v, x, y)
1: for i := 1 to P do

2: with probability pld do

3: (u, v)i := (u, v)
4: ti := 0
5: loop

6: I := (1, . . . , P)
7: randomize order of I
8: for each i ∈ I do
9: (x, y)i := Move((u, v, x, y)i, ti)
10: ti := ti + 1
11: if βi > 0 then

12: βi := βi − 1
13: if ϕ((u, v, x, y)i) and βi = 0 and (u, v)i = (u, v) then

14: βi := β0

15: return (x, y)i

62

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

n
u

m
b

e
r

o
f

m
o

v
e

s
 u

s
e

d
 (

×
1

0
0

0
)

[s
im

u
la

te
d

 p
a

ra
lle

l]

number of moves used (×1000)
[parallel]

P=1
P=2
P=3

Figure 5.9: Move counts for generation with true and simulated parallelism.

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6 8 12 16 24 32 48 64

s
p
e
e
d
u
p
 r

a
ti
o
 S

(P
)

m

 (

q
u
a
rt

ile
s
)

number of workers (P)

Figure 5.10: Distributions of move-based speedup from simulated parallel generation.

approaches 0.5.
The increasing discrepancy between the projected and observed speedup is likely due

to the fact that the projection does not take into account correlation between workers. Some
combinations of constraints and control values are more difficult to solve than others, so that
they require more moves, on average. In our experiments we applied the same control values
to all workers at the same time, so the workers were simultaneously subject to the increased
difficulty. We expect positive correlation of moves per solution as a consequence of this. The
correlation results in reduced speedup relative to the projection, as described in Section 5.2.

63

ac
tu
al

sp
ee
d
u
p
S

(P
)

m

 0

 1

 2

 3

 0 1 2 3

P=2
 0

 1

 2

 3

 4

 0 1 2 3 4

P=3
 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

P=4
 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

P=5

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

P=6
 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

P=8
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9

P=12
 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

P=16

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

P=24
 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

P=32
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18

P=48
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

P=64

projected speedup S̃(P)
m

Figure 5.11: Projected and measured speedup ratios from simulated parallel generation.

64

ra
ti
o
o
f
sp

ee
d
u
p
s
S

(P
)

m
/
S̃

(P
)

m

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=2
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=3
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=4
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=5

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=6
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=8
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=12
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=16

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=24
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=32
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=48
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.1 0.2 0.3 0.4

P=64

mean empirical correlation r̄

Figure 5.12: Mean empirical correlation of moves per solution per worker versus ratio of actual
to projected speedup.

To check our hypothesis about the effect of correlation on speedup, we compare the
mean empirical correlation in the moves per solution made by each worker with the ratio
S(P)
m /S̃(P)

m of actual to projected speedup (how much the observed results fell sort of the projec-
tion). Collecting data to compute the correlation required a slight modification to Algorithm 5.4:
Each worker was allowed to make as many moves as necessary to reach a solution, even after the
first solution was found. Figure 5.12 shows the comparison, along with least-squares linear fits
for the data (including outliers). The data supports our hypothesis: The ratio of speedups—in
other words, the performance relative to projections—falls as the correlation increases, and the
decline appears steepest for the largest values of P.

Correcting the projections to account for correlation is difficult. Even if we assume that
the distribution of moves per solution is the same for all workers, there are many possible joint
distributions with the same mean correlation, and we would need much more data to approxi-
mate one of them than our experiments produced. However, there is one joint distribution that
we can easily construct with a given move-count correlation, and it serves for a crude check on
our results: Suppose that the empirical distribution of move counts for a single worker working
alone is F̂(1)(t), and that the empirical mean correlation for P workers is r̄, where r̄ ≥ 0. Then we
use the following mixture distribution for the projected move counts of the P workers:

F̃(P)(t) = r̄F̂(1)(t) + (1− r̄)
(
1− (1− F̂(1)(t))P

)
(5.2)

65

ac
tu
al

sp
ee
d
u
p
S

(P
)

m

 0

 1

 2

 3

 0 1 2 3

P=2
 0

 1

 2

 3

 4

 0 1 2 3 4

P=3
 0

 1

 2

 3

 4

 0 1 2 3 4

P=4
 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

P=5

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

P=6
 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

P=8
 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

P=12
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

P=16

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P=24
 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

P=32
 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

P=48
 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

P=64

projected speedup S̃(P)
m including correlation

Figure 5.13: Projected and measured speedup ratios from simulated parallel generation, includ-
ing empirical correlations in projections.

That is, with probability r̄ the workers are perfectly correlated, all making the same number of
moves, and otherwise their move counts are i.i.d. We expect the projected move counts to be
pessimistic, because perfectly correlated move counts give the worst possible speedup—none—
while the actual distribution has some variation that allows for positive speedup.

Figure 5.13 compares the projected speedup using the correlated mixture distribution
with the actual speedup. The actual speedup is greater than the projection except for a few
benchmarks at low values of P, and the pessimism of the projection increases with P. The plots
lend further support to our correlation hypothesis.

Correlation may explain the discrepancy between the projected and observed speedup
shown in Figure 5.11, but a second discrepancy remains that still needs explanation: The projec-
tions shown in that figure, although optimistic, are significantly lower than the projected speedup
ratios derived from the distributions of time per solution, as shown in Figure 5.3. The likely
reason for it is greater dispersion in the solution-time distributions than in the move-count dis-
tributions, due to variability in time per move. Greater dispersion yields greater speedup from
parallelization because the minimum value (e.g., solution time) is farther from the other values.
To check this explanation, we computed the coefficient of variation (CV), a standard measure of
dispersion, of the time per solution and the number of moves per solution. The CV is defined as
σ
µ , the ratio of the standard deviation to the mean. The solution-time data was from our sequen-

tial algorithm; this is the same data set used for Figure 5.1. The move-count data is from our

66

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
C

V
 o

f
m

o
v
e

s
 p

e
r

s
o

lu
ti
o

n

CV of time per solution

Figure 5.14: Coefficients of variation (CVs) for time and move count per solution.

simulated parallel algorithm with one worker; this data was also used for Figure 5.10.
Figure 5.14 compares the CVs for all 100 benchmarks. In almost every case, the CV of

the move count is less than the CV of the solution time. That is, the solution time is indeed more
dispersed than the move count. This result supports our explanation for the discrepancy between
the time-based and move-based projected speedup. It also suggests that our parallel generation
algorithm, if run with adequate hardware parallelism, would provide greater speedup in runtime
than the values reported in this section.

5.4.3 Evaluation of Control-Value Caching

When the number of possible assignments to control variables is small, and we set the
parameter pld < 1 so that workers do not load new control values immediately, the control values
in the workers act as a cache: The control values from the testbench may match the values loaded
by a worker in a previous assignment, and that worker’s state may already be a solution.

To evaluate this caching behavior in our algorithm, we generated 40 benchmarks with
a small number of control assignments. These benchmarks are similar to the ones described in
Section 5.1, but they do not have integer control variables vi nor constraints of the form yi ≥ vi.
Instead, they have constants ai and 8 Boolean control variables u1, . . . , u8, and each clause (except
for the static-range clauses) includes one control variable. For example, the following are possible
clauses in the benchmarks:

u1 ∨ [y1 ≥ a1] ∨ [y2 ≥ a2] ∨ [y3 < a3]

¬u2 ∨ [y1 + y2 + (1000− y3) ≥ 1000]

Each benchmark has 100 random clauses in addition to static-range clauses for y1, . . . , y20.
We generated 10 000 solutions for each benchmark using Algorithm 5.4 with P = 1, 2, 3,

4, 5, 6, 8, 12, 16, 24, 32, 48, and 64 and pld = P−1. For each benchmark and value of P we varied
the effective number of control bits from 1 to 8 by taking m = 1, . . . , 8 and assigning variables
u1, . . . , um randomly and keeping um+1, . . . , u8 fixed. For the blocking parameter, we used β0 = 1.

The results are shown in Figures 5.15 and 5.16. Figure 5.15 shows the mean speedup
S(P)
m across benchmarks for each value of P and m as a 3-dimensional surface. Figure 5.16a and

67

 1
 2

 3
 4

 5
 6

 7
 8

 2
 4

 8
 16

 32
 64

1.1

1.2

1.3

1.4

1.5

S
(P)
m

m

P

S
(P)
m

Figure 5.15: Mean speedup S(P)
m across benchmarks for number of workers P and number of

assigned control bits m.

Figure 5.16b show different views of this same data. The speedup does not follow a simple
trend of decreasing with m (due to caching) and increasing with P. Instead, there are several
unexpected patterns in the data: For low P, the speedup increases with m; for high P, it is
non-monotonic with the minimum at m = 4. Along the other axis, the speedup increases mono-
tonically with P for low m, but for high m, it peaks at P = 4 and decreases thereafter.

We can show that some of the unexpected trends in these results are consistent with a
simplified theoretical projection from empirical data. The projection is based on a distribution
similar to the one described by Equation 5.2; it additionally accounts for the fact that the workers
load the control values gradually, not all at once. Let F̂(1)(t) be the empirical distribution of moves
per solution for a single worker working alone on a benchmark with m control bits changing.
Let r̄ > 0 be the mean empirical correlation of move counts for generation with P workers on the
same benchmark with the same value of m. Then we construct F̃(1)

/P (t), the projected distribution

of moves per solution for one worker among a set of P workers, and F̃(P)(t), the projected
distribution of move counts for the solutions taken by the master:

F̃
(1)
/P (t) =

t−1

∑
τ=0

Pr(worker loads u after τ moves) F̂(1)(t− τ)

=
t−1

∑
τ=0

(1− pld)
τpld F̂

(1)(t− τ)

=
t−1

∑
τ=0

(

1−
1

P

)τ 1

P
F̂(1)(t− τ)

F̃(P)(t) = r̄F̂
(1)
/P (t) + (1− r̄)

(
1− (1− F̂

(1)
/P (t))P

)

Note that this projection does not model caching of control values. Unlike the projected distri-
butions used in previous sections, F̃(P)(t) as defined here has non-zero value for arbitrarily large
t, not only the values of t in the support of the empirical distribution F̂(1). To bound the number
of terms when computing projected speedup, we limit t to values such that F̃(P)(t) < 1− 10−3.
That is, we stop when the constructed distribution has probability mass at least 0.999.

68

1.1

1.2

1.3

1.4

 1 2 3 4 5 6 7 8

m
e

a
n

 s
p

e
e

d
u

p
 S

(P
)

m

number of changed control bits (m)

P= 2
P= 3
P= 4
P= 5
P= 6
P= 8
P=12
P=16
P=24
P=32
P=48
P=64

(a)

1.1

1.2

1.3

1.4

 2 4 8 16 32 64

m
e
a
n
 s

p
e
e
d
u
p
 S

(P
)

m

number of workers (P)

m=8
m=7
m=6
m=5
m=4
m=3
m=2
m=1

(b)

Figure 5.16: Different views of the same data shown in Figure 5.15.

69

We computed the projected speedup from this distribution for all benchmarks and val-
ues of P and m. The results are shown in Figure 5.17. The range of speedup extends lower than
in the actual experimental data, but the data exhibit several of the same trends: The speedup
decreases with P for large m and even shows non-monotonicity for high P, albeit more subtly.
These projections do not fully explain the experimental data, but they give it credibility.

 1
 2

 3
 4

 5
 6

 7
 8

 2
 4

 8
 16

 32
 64

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
~(P)

m

m

P

S
~(P)

m

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

 1 2 3 4 5 6 7 8

m
e
a
n
 p

ro
je

c
te

d
 s

p
e
e
d
u
p
 S~

(P
)

m

number of changed control bits (m)

P= 2
P= 3
P= 4
P= 5
P= 6
P= 8
P=12
P=16
P=24
P=32
P=48
P=64

(b)

Figure 5.17: Mean projected speedup S(P)
m across benchmarks for number of workers P and

number of assigned control bits m, accounting for gradual loading of control values. Both plots
show the same data.

70

The region of the parameter space where the trends in projected speedup differ most
from those in the actual speedup is where P is high and m is low. This is also the only region
where the speedup seems to show the effect of control caching: It decreases as m increases. This
result makes sense: These are the conditions under which the caching hit rate is expected to be
highest—the probability of a hit for a single worker is 1

2m , so the expected number of hits is P
2m . In

general, though, the effects of caching seem to be negligible compared to other effects, including
the effect of gradual loading of control values. Therefore, in practice the best speedup is likely to
be achieved with immediate loading (pld = 1).

5.5 Summary

In this chapter we described how we parallelized our stimulus-generation algorithm
for faster generation. The potential for speedup in our parallelization scheme arises from vari-
ability in generation time per solution. We introduced benchmarks that exhibit this variability.
We computed upper bounds on speedup for the benchmarks using theoretical projections from
empirical data and derived speedup values analytically to support the plausibility of our projec-
tions. We presented experimental results for our benchmarks from two implementations of our
parallel algorithm: one using multiple threads and a variant implementation using simulated
parallelism; the latter enabled us to evaluate generation for numbers of workers exceeding the
number of cores in available hardware. Our results showed that parallelization made generation
faster, but the amount of speedup observed was smaller than we projected. We explained the
discrepancy as a consequence of correlation between generators. We also presented results from
experiments on caching of control values and showed that it did not provide significant benefit.
Our investigation of our experimental results illustrates that understanding the performance of
parallel algorithms may require analysis deeper than simple runtime measurement.

71

Chapter 6

Conclusions

We began this dissertation by describing the importance of efficient functional verifica-
tion in the production of digital integrated circuits. Constrained random simulation has become
the dominant approach in state-of-the-art verification because of its scalability, predictability, and
ability to handle complex input constraints. For high productivity, the constraint solver that sup-
plies random stimuli for simulation must solve the constraints quickly and produce values that
are well distributed over the input space.

As the main contribution of this work, we proposed a generation approach usingMarkov
chain Monte Carlo (MCMC) methods that meets the requirements for productive simulation. In
Chapter 2 we introduced the basic principles of MCMC methods. In Chapter 3 we presented
our approach, which combines the widely used Metropolis-Hastings algorithm with a local-
search satisfiability solver and correlation-reduction techniques. It surpasses existing stimulus-
generation methods in speed, robustness, and quality of distribution. The value of our approach
is attested by the fact that it has been adopted by developers of industrial verification software
for integration into their testbench tool.

The integration work motivated several refinements that we described in Chapter 4. We
explained how our algorithm handles dependencies on external data with the addition of control
variables. We described how elimination of variables increases the density of solutions in the state
space; we applied it both statically as preprocessing and dynamically during generation and
showed that static elimination improves the distribution of solutions but dynamic elimination
imposes too much overhead.

In Chapter 5 we explored the effects of parallelizing our algorithm. We computed
bounds on achievable speedup using theoretical analysis and empirical data, and we showed
that that parallelism enables faster generation. We also investigated conditions that limit the
speedup achieved.

Our stimulus-generation algorithm is able to run efficiently and produce well-distributed
stimuli because we assume a restriction on the input constraints: We expect them to be relatively
easy to solve and to have a dense solution space. When this assumption does not hold (e.g.,
as when the constraints involve mostly Boolean variables or the solution space is highly frag-
mented), the efficiency and quality of distribution are likely to be low. Nevertheless, for many
constraints used in practice, our MCMC-based approach is a good way to generate stimuli for
constrained random simulation.

A direction of future work that could bring further improvements in verification effi-
ciency is implementation of our approach in hardware rather than software. Designs are some-

72

times run in hardware emulators or field-programmable gate arrays instead of logic simulators
because they are much faster than software. The communication between a software testbench
and a design in hardware is a major bottleneck for constrained random simulation, and an im-
plementation of our algorithm as digital logic would remove this bottleneck.

73

Bibliography

[Acc04] Accellera Organization. Property Specification Language, Reference Manual, Version 1.1,
June 2004.

[Bré99] Pierre Brémaud. Markov Chains: Gibbs fields, Monte Carlo Simulation, and Queues,
volume 31 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers, 35:677–691, Aug 1986.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[CIJ+95] A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair, B. Rosen, M. Mullen,
J. Yoon, R. Armoni, D. Geist, and Y. Wolfsthal. AVPGEN-a test generator for archi-
tecture verification. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
3(2):188–200, 1995.

[DKBE02] Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Generating random solutions
for constraint satisfaction problems. In Eighteenth national conference on Artificial
intelligence, pages 15–21, Menlo Park, CA, USA, 2002. American Association for
Artificial Intelligence.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Comms. ACM, 5:394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
J.˜ACM, 7:201–215, 1960.

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. 6th Int’l Conf.
Theory & Appl. Satisfiability Testing (SAT), pages 502–518, May 2003.

[Fil91] James A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible
Markov chains, with an application to the exclusion process. The Annals of Applied
Probability, 1(1):62–87, February 1991.

[FS01] Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms
to Applications, volume 1 of Computational Science Series. Academic Press, San Diego,
second edition, November 2001.

74

[GD06] Vibhav Gogate and Rina Dechter. A new algorithm for sampling CSP solutions uni-
formly at random. Technical report, School of Information and Computer Science,
University of California, Irvine, May 2006.

[GeyOL] Charles Geyer. Burn-in is unnecessary. Available: http://www.stat.umn.edu/~
harlie/m
m
/burn.html. Loaded 6 March 2010.

[Gey92] Charles J. Geyer. [Practical Markov Chain Monte Carlo]: Rejoinder. Statistical Sci-
ence, 7(4):502–503, 1992.

[GG84] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 6(6):721–741, November 1984.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design with
SystemC. Kluwer Academic, Boston, 2002.

[GS90] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating
marginal densities. J. Amer. Statist. Assoc., 85(410):398–409, 1990.

[Has70] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57:97–109, 1970.

[HB01] Ian Holmes and William J. Bruno. Evolutionary HMMs: a Bayesian approach to
multiple alignment. Bioinformatics, 17(9):803–820, September 2001.

[IJ04] Sasan Iman and Sunita Joshi. The e Hardware Verification Language. Kluwer Aca-
demic, Norwell, MA, USA, 2004.

[ITR09] International Technology Roadmap for Semiconductors 2009 edition. Available:http://www.itrs.net.
[Iye03] Mahesh A. Iyer. RACE: A word-level ATPG-based constraints solver system for

smart random simulation. In IEEE International Test Conference (ITC), pages 299–
308, Charlotte, NC, United States, September 2003.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[KJR+08] Hyondeuk Kim, Hoonsang Jin, Kavita Ravi, Petr Spacek, John Pierce, Bob Kurshan,
and Fabio Somenzi. Application of formal word-level analysis to constrained ran-
dom simulation. In Computer Aided Verification, pages 487–490, Princeton, NJ, July
2008. Springer-Verlag.

[KK07] Nathan Kitchen and Andreas Kuehlmann. Stimulus generation for constrained
random simulation. In IEEE/ACM Int’l Conf. on CAD, pages 258–265, Nov 2007.

[KK09] Nathan Kitchen and Andreas Kuehlmann. A Markov chain Monte Carlo sam-
pler for mixed Boolean/integer constraints. In Computer Aided Verification (CAV’09),
pages 446–461, Grenoble, France, July 2009. Springer-Verlag.

75

http://www.stat.umn.edu/~charlie/mcmc/burn.html
http://www.stat.umn.edu/~charlie/mcmc/burn.html
http://www.itrs.net

[KS00] James H. Kukula and Thomas R. Shiple. Building circuits from relations. In Proc.
12th Int’l Conf. Computer-Aided Verif. (CAV), pages 113–123. Springer-Verlag, 2000.

[LPW08] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing
Times. American Mathematical Society, 2008.

[Mes94] Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, University of Tennessee, 1994.

[MFWvH01] D. Metzler, R. Fleissner, A. Wakolbinger, and A. von Haeseler. Assessing variability
by joint sampling of alignments and mutation rates. J Mol Evol, 53(6):660–669,
December 2001.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Linto Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proc. 38th ACM/IEEE Design
Automation Conf., pages 530–535, June 2001.

[MNL99] Bob Mau, Michael A. Newton, and Bret Larget. Bayesian phylogenetic inference
via Markov chain Monte Carlo methods. Biometrics, 55(1):1–12, March 1999.

[MRR+53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. J. Chem. Phys., 21:1087–
1092, June 1953.

[NB99] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics.
Oxford University Press, New York, 1999.

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline P. Farrel. Pthreads Programming.
O’Reilly and Associates, Inc., 1996.

[NQXL02] T. Niu, Z. S. Qin, X. Xu, and J. S. Liu. Bayesian haplotype inference for multi-
ple linked single-nucleotide polymorphisms. American Journal of Human Genetics,
70(1):157–169, January 2002.

[SCJI07] Sriram Sankaranarayanan, Richard M. Chang, Guofei Jiang, and Franjo Ivancic.
State space exploration using feedback constraint generation and Monte-Carlo sam-
pling. In Proc. ESEC-FSE ’07: – 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, pages 321–330, New York, NY, USA, 2007. ACM.

[SD02] Kanna Shimizu and David L. Dill. Deriving a simulation input generator and a
coverage metric from a formal specification. In Proc. 39th Design Automation Conf.,
pages 801–806, New Orleans, LA, United States, Jun 2002.

[SDF03] Stuart Sutherland, Simon Davidmann, and Peter Flake. SystemVerilog for Design: A
Guide to Using SystemVerilog for Hardware Design and Modeling. Kluwer Academic,
Norwell, MA, USA, 2003.

[SHJ05] Che-Hua Shih, Juinn-Dar Huang, and Jing-Yang Jou. Stimulus generation for inter-
face protocol verification using the nondeterministic extended finite state machine
model. In Proceedings of the Tenth IEEE International High-Level Design Validation and
Test Workshop, pages 87–93. IEEE Computer Society, 2005.

76

[SKC93] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for satisfi-
ability testing. In Michael Trick and David S. Johnson, editors, Proc. 2nd DIMACS
Challenge on Cliques, Coloring, and Satisfiability, Providence RI, 1993.

[Som05] Fabio Somenzi. CUDD: CU decision diagram package, release 2.4.0, 2005.

[TW98] Claudia Tebaldi and Mike West. Bayesian inference on network traffic using link
count data. Journal of the American Statistical Association, 93(442):557–573, 1998.

[WES04] Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting
random walk strategies. In Proc. Nat’l Conf. Artificial Intelligence, pages 670–676, Jul
2004.

[XPC+05] Zhong Xiu, David A. Papa, Philip Chong, Christoph Albrecht, Andreas
Kuehlmann, Rob A. Rutenbar, and Igor L. Markov. Early research experience with
OpenAccess Gear: An open source development environment for physical design.
In Proc. ACM Int’l Symp. Phys. Design (ISPD), pages 94–100, 2005.

[YAPA04] Jun Yuan, Adnan Aziz, Carl Pixley, and Ken Albin. Simplifying Boolean constraint
solving for random simulation-vector generation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(3):412–420, March 2004.

[YSP+99] Jun Yuan, Kurt Shultz, Carl Pixley, Hillel Miller, and Adnan Aziz. Modeling design
constraints and biasing in simulation using BDDs. In Digest Tech. Papers IEEE/ACM
Int’l Conf. Computer-Aided Design, pages 584–589, Nov 1999.

77

	List of Figures
	List of Tables
	Introduction
	Constrained Random Simulation
	Previous Work
	Contributions of This Dissertation

	Background on Markov Chain Monte Carlo Methods
	Markov Chains
	The Metropolis-Hastings Algorithm
	Gibbs Sampling
	Convergence

	Stimulus Generation Based on Markov Chain Monte Carlo Methods
	Specifying Constraints
	Normal Form
	Integer Literals
	Translations of Various Constructs to Normal Form
	Constraint Partitioning

	Applying the Metropolis-Hastings Algorithm
	Target Distribution
	Proposal Distributions

	Increasing Efficiency with Local Search
	Reducing Correlation
	Overall Generation Algorithm
	Experimental Evaluation
	Comparison to Other Stimulus-Generation Methods
	Comparison of Proposal Types
	Evaluation of State Pooling for Decorrelation

	Summary

	Refinements to Markov Chain Monte Carlo Stimulus Generator
	Generation of Stimuli Dependent on External Values
	Static Variable Elimination
	Dynamic Variable Elimination
	Basic Approach
	Handling Disjunctions of Equations
	Experimental Evaluation

	Summary

	Parallel Stimulus Generation
	Benchmarks
	Bounds on Expected Speedup
	Parallel Generation Algorithm
	Experimental Evaluation
	Generation using True Parallelism
	Generation using Simulated Parallelism
	Evaluation of Control-Value Caching

	Summary

	Conclusions
	Bibliography

