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Abstract

Making Static Pivoting Scalable and Dependable

by

Edward Jason Riedy

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James Demmel, Chair

Solving square linear systems of equations Ax = b is one of the primary workhorses in
scientific computing. With asymptotically and practically small amounts of extra calculation
and higher precision, we can render solution techniques dependable. We produce a solution
with tiny error for almost all systems where we should expect a tiny error, and we correctly
flag potential failures.

Our method uses a proven technique: iterative refinement. We extend prior work by
applying extra precision not only in calculating the residual b−Ayi of an intermediate solution
yi but also in carrying that intermediate solution yi. Analysis shows that extra precision in
the intermediate solutions lowers the limiting backward error (measuring perturbations in
the initial problem) to levels that produce a forward error (measuring perturbations in the
solution) not much larger than the precision used to store the result. We also demonstrate
that condition estimation is not necessary for determining success, reducing the computation
in refinement substantially.

This basic, dependable solver applies to typical dense LU factorization methods using
partial pivoting as well as methods that risk greater failure by choosing pivots for non-
numerical reasons. Sparse factorization methods may choose pivots to promote structural
sparsity or even choose pivots before factorization to decouple the phases. We show through
experiments that solutions using these restrictive pivoting methods still have small error so
long as an estimate of factorization quality, the growth factor, does not grow too large. Our
refinement algorithm dependably flags such failures. Additionally, we find a better choice of
heuristic for sparse static pivoting than the defaults in Li and Demmel’s SuperLU package.

Static pivoting in a distributed-memory setting needs an algorithm for choosing pivots
that does not rely on fitting the entire matrix into one memory space. We investigate a set
of algorithms, Bertsekas’s auction algorithms, for choosing a static pivoting via maximum
weight perfect bipartite matching. Auction algorithms have a natural mapping to distributed
memory computation through their bidding mechanism. We provide an analysis of the
auction algorithm fitting it comfortably in linear optimization theory and characterizing
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approximately maximum weight perfect bipartite matches. These approximately maximum
weight perfect matches work well as static pivot choices and can be computed much more
quickly than the exact maximum weight matching.

Finally, we consider the performance of auction algorithm implementations on a suite
of real-world sparse problems. Sequential performance is roughly equivalent to existing
implementations like Duff and Koster’s MC64, but varies widely with different parameter
and input settings. The parallel performance is even more wildly unpredictable. Computing
approximately maximum weight matchings helps performance somewhat, but we still conclude
that the performance is too variable for a black-box solution method.
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Chapter 1

Overview

1.1 Making static pivoting scalable and dependable

The ultimate goal of this thesis is to provide a fully automatic solution of Ax = b for use
within other computations, providing predictable and small errors upon success while clearly
indicating failures. Within that goal, we want to choose pivots within sparse LU factorization
statically for use in distributed memory factorization. A static pivot order provides static
data dependencies for the numerical factorization, and the static dependencies open the
throttle for a faster numerical factorization.

For the goal of solving Ax = b for use within other routines, we provide a variation of
iterative refinement[18, 103] with

• clearly defined error thresholds for successfully computed solutions,

• clear signaling of computations that likely do not meet the thresholds, and

• relevant diagnostic interpretations of many failures.

Appropriate ways to convey diagnostic information to programs is future work. Here we
provide the first step by ascribing failures to likely causes.

1.1.1 Dependability

We provide a dependable algorithm in Part I.

Dependable Returns a result with small error often enough that you expect success with a
small error, and clearly signals results that likely contain large errors.

Chapter 2 defines the error measures of interest.
Chapter 3 provides and analyzes the iterative refinement algorithm. We use twice the input

precision both within residual computations as well as for carrying intermediate solutions.
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Our refinement algorithm requires only O(N2 · k) higher-precision floating-point operations
after O(N3) operations in the working precision, where N is the size of the matrix and there
are k right-hand sides. Applying extra precision in both places permits both perturbations
(backward errors) and solution error (forward errors) that are a small multiple of the input
precision for systems that are not too difficult to solve. Difficult systems are those so ill
conditioned that the matrix is within a few rounding errors of being singular. We also
consider low-precision factorizations like those used with GPGPU and other accelerators.
We duplicate others’ backward error analysis results [69] while explaining and diagnosing
the solution error limitations; future work will validate our algorithm on these architectures.
Chapter 2 provides more detail on the norms involved in measuring a system’s conditioning.
We detect difficult systems by tracking ratios of intermediate quantities.

Chapter 4 validates refinement’s dependability against artificial dense test systems ex-
tended from Demmel et al. [35]. We consider real and complex systems in both single and
double precision. For both, we examine the iteration counts as a measure of performance.

Chapter 5 validates refinement against practical sparse matrices of modest size. We
extend the results to explore restricted and perturbed factorizations. Sparse LU factorization
codes often restrict the pivot selection to preserve sparsity. Threshold pivoting, a common
choice[49], heuristically chooses the pivot of least degree from those within some threshold of
the unrestricted, partial pivoting choice. We validate also against threshold pivoting, properly
detecting the additional failures to converge. Static pivoting used within distributed-memory
parallel LU factorization[71] fixes the pivot order and perturbs the pivot should it prove
too small. We improve the perturbation heuristic and validate our algorithm against static
pivoting, again detecting the additional failures when the perturbations prove too large.

1.1.2 Scalability

Bertsekas’s auction algorithm[12] for computing a maximum weight complete bipartite
matching is the basis for choosing the static pivot order. Part II extends the auction
algorithm for MPI-based, distributed memory platforms. Chapter 6 introduces the matching
problem underneath our pivot choice. Chapter 6 examines the problem in greater detail,
using linear optimization and linear algebra to simplify existing results.

Chapter 7 details the auction algorithm within the linear optimization framework. We
provide previously unpublished details necessary for effective implementation on real data, like
correct definitions for vertices of degree one. We also improve on the successive approximation
algorithm with two new heuristics. The first dynamically reduces the approximation factor
to the actually achieved approximation (Section 7.5). The second applies a single pass of
price reduction before determining the achieved approximation (Section 7.7).

Chapter 8 examines the performance of the auction algorithm. The performance is,
unfortunately, unpredictable. While the implementation is memory-scalable on distributed
memory machines, the results show extreme performance variability across our moderately
sized test sparse matrices. The extreme variability renders this a special-purpose tool and
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not a good fit for blind use in the dependable solver we want to produce.

1.2 Contributions

• Enhancements to iterative refinement:

– Analysis and experiments justify dependability criteria for the forward error that
do not depend on explicit condition estimation (Chapters 3 through 5).

∗ Given careful computation of the residual, the forward relative error in working
precision εw is at most a small multiple of εw in all cases where the refinement
step size converges to a slightly smaller multiple of εw and that also have a
corresponding backward relative error of the solution in extended precision of
a small multiple of ε2w. See Equation (3.6.12).

∗ We use a constant cN for a given system to encapsulate round-off effects related
to the matrix’s size. Let cN = max{8,

√
N} for dense systems to permit both

one bit of error and a double-rounding in converting an extended-precision
solution back to working precision. For sparse cases, cN can be replaced by
the square root of the largest row degree of the filled factorization. However,
the experiments in Chapter 4 and Chapter 5 show no noticeable dependence
of error measures on the systems’ size.

∗ Relying on refinement’s convergence does flag a small number of successful
cases as failures even when the relevant condition number is below 1/εf , where
εf denotes the precision used to factor the matrix. However, we never let a
failed case pass as successful.

– Similar experiments demonstrate that iterative refinement remains dependable
applied with factorizations containing intentional errors, e.g. restricted pivoting or
perturbed factorizations. These less-accurate factorizations have fewer successful
results.

– Using column-relative perturbations rather than SuperLU’s default norm-based
perturbations permits refinement to reach backward stable results for sparse
systems and small forward error so long as the conditioning and element growth1

are not too severe. The refinement algorithm remains dependable.

• Distributed matching algorithm:

– A memory-scalable auction algorithm can compute a useful static pivoting. How-
ever, Chapter 8 shows that performance is wildly unpredictable.

1Sometimes called pivot growth, but we wish to emphasize that the growth is in matrix elements and not
just the pivots.
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– A touch of linear algebra and linear programming greatly simplifies the analysis of
Bertsekas’s auction algorithm (Chapter 6).

– We include two new heuristics. The first dynamically reduces the weight of the
approximately maximum weight perfect matching to a computed bound on the
achieved approximation (Section 7.5) rather than an arbitrary multiple of an
iteration’s initial factor. The second applies a single pass of price reduction before
determining the achieved approximation (Section 7.7). These help “easy” problems
finish rapidly and occasionally help when chasing the final matching edge.

– Auction algorithms can compute approximately maximum weighted maximal
matchings. A large approximation factor smooths out a few of the wild performance
problems, and the approximate maximum weight maximal matchings appear not
to affect iterative refinement.

1.3 Notation

This thesis is unfortunately heavy on notation. A quick summary:

• The square linear system of n equations and n variables with one right-hand side under
consideration is Ax = b. Results are repeated for multiple right-hand sides treating
each column independently.

• The vector y is a computed solution to Ax = b.

• Quantities at different iterations of an algorithm are denoted by a subscript, so yi is
the computed solution during the ith iteration.

• Matrix and vector elements are referred to with parentheses. A(i, j) refers to the
element at the ith row and jth column.

• Many Octave [51] and Matlab [74] notations and conventions are used. For example,
|A| is an element-wise absolute value. Rather than prefixing the operation with a dot,
however, we denote an elementwise division of vectors v and w by v/w.

• Diagonal scaling matrices are denoted as Dw, where w is a scalar or vector along the
diagonal. At times, the diagonal quantity is assumed and the subscript refers to the
iteration.

• Any norm without a qualifier is an ∞ norm, although we try to add the ∞ explicitly.

• Division by zero is handled specially in computations related to error measures. To
handle exact zeros, we let 0/0 = 0 while anything else divided by zero diverges to ∞.
Section 3.9 provides the rationale. When comparing scaling factors, however, 0/0 = 1.
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Part I

Dependability: Iterative Refinement
for Ax = b
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Chapter 2

Defining accuracy and dependability

2.1 Introduction

Given the ubiquitous linear system Ax = b where A is a square, n× n matrix A and b is a
n ×m matrix, we want the n ×m solution x if one exists. We want an accurate solution,
and we want it quickly. The limitations of finite precision, however, require a few trade-offs.

Finding a solution given a dense matrix A has the same complexity as matrix multi-
plication [36], and practical algorithms require O(n3) operations. Computing x with exact
arithmetic is prohibitively expensive; the bit complexity of individual operations will grow
exponentially with n. Even the cost of computing tight bounds around x using interval
arithmetic over finite precision is NP-hard [89], and computing looser intervals increases the
cost of the O(n3) computation [27].

So for common uses and large systems, we should assume only finite-precision arithmetic
with all its limitations [59, 34]. But we still want as much accuracy or as small an error as is
reasonable. There are many different measures of accuracy and many different expectations
on “reasonable”. We define measures of accuracy through the rest of this chapter. “Rea-
sonable” is up to the reader and user. We assume that a dependable solver that does not
significantly decrease the performance of standard methods, particularly LU factorization, is
reasonable. Adding a small multiple of O(n2) computation and memory traffic will not effect
the performance on large systems.

Our term “dependable” admits a somewhat fuzzy definition:
Definition 2.1.1: A dependable solver for Ax = b returns a result x with small error often
enough that you expect success with a small error, and clearly signals results that likely
contain large errors.

Chapter 3’s algorithm delivers small errors for almost all systems that are not too ill-
conditioned and do not encounter too-large element growth during LU factorization. Table 2.1
depicts the different situations that may occur with our dependable refinement algorithm.
Chapters 4 and 5 provide results with dense and sparse test systems, respectively. A
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true forw. error cond. num. Alg. reports Likeliness given err & cond.

≤ C · εw ≤ 1/εw success Very likely
failure Somewhat rare

> C · εw ≤ 1/εw success May occur, not yet seen
failure Practically certain

≤ C · εw > 1/εw success Whenever feasible
failure Very likely

> C · εw > 1/εw success May occur, not yet seen
failure Practically certain

Table 2.1: Conditions, where εw denotes the precision to which the solution is returned and
C is a small constant related to the size of the system. This table is somewhat generic, and
the condition number in question is the one relating the forward error to an achieved tiny
backward error. We declare cases “rare” when they should never happen but may conceivably
occur. For example, we have seen no cases where the relevant condition number is > 1/εw and
iterative refinement converges to an incorrect solution while declaring success. This table
does not depict formal probabilities but instead intuitive interpretation.

dependable solver should be useful to other software and not just users or numerical analysts.
Either the solution has a small error, or there is a clear indication that the solver likely failed.
Figure 2.1 shows graphically what we intend for a solver based on LU factorization targeting
a small forward error in the solution x. The final errors are small (in blue) or the algorithm
determines that the result may be untrustworthy (in red).

We do permit a slight possibility of catastrophic mistake in a dependable solver. It is
possible that a low-rank A may encounter numerical errors that lead to a factorization and a
solution that happens to satisfy Ax = b. We will touch on techniques for preventing these
mistakes in Chapter 4.

2.2 Measuring errors

Let Ax = b be the system of equations with n× n matrix A and n× 1 column vectors x and
b. The vector x is the true solution. Given a computed solution y, we measure error in two
different ways: backward error and forward error. Backward error measures a distance to
the nearest system exactly satisfied by y, (A+ δA)y = (b+ δb). Forward error measures a
distance between the true solution x and the computed solution y. Each of these distances
can be measured different ways, and we will list our used measures shortly. We will consider
only single solutions. We treat multiple right-hand sides independently rather than as a
block.

The majority of this section includes standard definitions available in the literature [59, 34].
We do introduce an unusual variant, a column-relative backward error, that will prove useful
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Figure 2.1: Gaussian elimination with partial pivoting almost always ensures a small residual and
backward error, but the forward error in the computed y grows proportionally with the difficulty
(condition number, see Section 2.3). Iterative refinement produces solutions either declared successful
with small forward error or are flagged with no statement about the forward error. The horizontal
axis shows an approximate difficulty, and the vertical axis shows error. The horizontal lines denote
the machine precision (blue) and an error bound (red). The vertical blue line is the limit where we
no longer expect convergence, although it still happens. Further details are in Chapter 4.
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for making iterative refinement’s forward error dependable in Chapter 4.
Both error measures have applications. Backward error is most useful when the initial

system is approximate; comparing the backward error to the approximation’s size provides
a measure of trust that the solution is “good enough” relative to the input approximation.
If the data was produced from physical measurements with known tolerances, a backward
error within those tolerances implies the solution is consistent with our best knowledge of the
physical system. In a numerical optimization algorithm, a small backward error implies the
solution fits within a trust region, etc. The forward error makes no assumptions about the
quality of inputs A and b. The forward error is appropriate for general-purpose libraries and
dynamic environments that cannot know users’ intentions.

On top of the choice of forward or backward error, each error can be measured differently.
Two measurements are common, normwise and componentwise. We will introduce a third, a
column-wise measurement for backward error. Both can use different compatible matrix and
vector norms, but we will use the ∞-norm for almost all results:

‖v‖∞ = max
i
|v(i)| for a vector, and

‖A‖∞ = max
i

∑
j

|A(i, j)| for a matrix.

As described in Chapter 1.3, parentheses (e.g. v(i), A(i, j)) select a particular entry of a
vector or matrix, and the absolute value |A| applies elementwise. If we let 1c denote the
vector of all 1s conformal to A’s columns, then ‖A‖∞ = maxi |A|1c.

2.2.1 Backward errors

The first error measurement, and in many senses the easiest to minimize, is the relative
backward error, which we define in this section. The backward error of a computed solution
y measures the distance from the actual system Ax = b to the closest perturbed system
(A+ δA)y = b+ δb exactly satisfied by y. The distance is a function of the perturbations δA
and δb and corresponds to the green circled segment in Figure 2.2. Rearranging the perturbed
system produces δAy − δb = b− Ay, so we expect a relationship between backward errors
and the residual r = b− Ay.

The backward error can be computed given any vector y, unlike the forward error discussed
later. We can measure directly backward errors.

Note that we never will equate backward error with measurement errors. Having a back-
ward error smaller than measurement or modeling error validates results after computation.
Too often, however, measurement errors are used to justify sloppy numerical methods. Stating
that a solution is “as good as the data deserves” implies that you consider the data you have,
not the data you want or data nearby that you call your own. Admittedly there always are
engineering trade-offs guided by the expected accuracy and performance of algorithms. But
rather than finding the fastest algorithm with hopefully acceptable error, we concentrate on
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Figure 2.2: Backward errors measure the distance from (A, b) to (A + δA, b + δb), circled
here. The density plots show the backward errors in solving Ax = b using LU factorization
and partial pivoting before refinement for Chapter 4’s single-precision, real test systems.
The horizontal axis is an estimate of the problem’s difficulty.
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constructing a dependable, accurate algorithm that also is fast. We leave interpreting fuzzy
blobs and blurry images to the Weekly World News [1].

2.2.2 Normwise backward errors

The first backward error in plotted in Figure 2.2 is the normwise backward error.
Definition 2.2.1: The normwise relative backward error is

nberr(A, y, b) = min
δA,δb,ε

ε

such that (A+ δA)y = b+ δb,

‖δA‖∞ ≤ ε‖A‖∞, and

‖δb‖∞ ≤ ε‖b‖∞.

(2.2.1)

Definition 2.2.1 is a convex optimization problem with a closed-form solution. The
derivation requires extra machinery, specifically vector duals and derivatives of norms, that
carry us too far afield. Rigal and Gaches [88] provide a first-principles derivation, and Higham
[59] provides an ansatz result. Both produce the same solution. First, define the diagonal
scaling matrix

Dnberr = (‖A‖∞ ‖y‖∞ + ‖b‖∞)I = D‖A‖∞ ‖y‖∞+‖b‖∞ .
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We frequently will use the notation Dx = xI or Dv = diag(v) to identify scaling matrices
with scalar or vector quantities x and v. These scaling matrices will express scaled ∞-norms.
With the scaling matrix Dnberr,
Theorem 2.2.1:

nberr(A, y, b) =
‖r‖∞

‖A‖∞ ‖y‖∞ + ‖b‖∞
= ‖D−1nberrr‖∞. (2.2.2)

Higham [59] provides a more general form that measures δA and δb against arbitrary,
non-negative matrices E and f . The result is the same after substituting E and f for A and
b in the denominator. We will not need the general normwise form.

Note that the normwise backward error is sensitive to both row and column scaling.
We can multiply by diagonal matrices Dv and Dw to produce a “new” system Asxs =
(DvADw)(D−1w x) = (Dvb) = bs and “new” computed solution ys = D−1w y. The normwise
backward error can be arbitrarily different for the scaled and original systems. In a sense,
the normwise backward error considers only the largest entries in A and b, and scaling both
rows and columns can change which entries are the largest.

The dependency on row scaling is somewhat expected; the normwise backward error
measures ‖r‖∞, and that depends on the row scaling. But the dependence on column scaling is
unfortunate. Mathematically, r is invariant to column scaling. And the LU factorization used
to solve Ax = b also is column-scaling invariant (with two minor caveats). A measurement
for the error after using an LU factorization to solve Ax = b should respect that invariance.
We use column-scaling invariance frequently in later chapters to estimate scaled norms and
will suggest a column-relative error to replace the normwise relative backward error shortly.

The two minor caveats do not remove our need for a column-invariant measure. The first
caveat mentioned earlier is that an arbitrary column scaling could introduce over- or underflow
errors when storing the scaled As. In practice, the scaling factors can be limited to ensure
this never happens. The second minor caveat is that LU factorization could use accelerated,
Strassen-like [97, 38] matrix multiplication, where the errors are not scaling-invariant. Our
analytical use of column scaling to achieve componentwise results applies the scaling implicitly,
so Strassen-like methods do not affect our key results. Assumptions built into Chapter 4’s
entry growth estimates could be violated with accelerated matrix multiplication. We will
discuss this possibility further in Chapter 4. Demmel et al. [36] also discusses scaling and
Strassen-like algorithms.

2.2.3 Componentwise backward errors

Unlike the normwise error above, the more general form of expressing the componentwise
relative backward error will prove very useful. The general componentwise relative backward
error measures each component of δA and δb against non-negative E and f :
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Definition 2.2.2: The general componentwise relative backward error of a computed solution
y to Ax = b measured against non-negative matrix E and non-negative vector f is

cberrE,f (A, y, b) = min
δA,δb,ε

ε

such that (A+ δA)y = b+ δb,

|δA| ≤ εE, and

|δb| ≤ εf.

(2.2.3)

Oettli and Prager [80] provide the original, clear proof of the following result, and again
Higham [59] provides an ansatz result. This is a linear optimization problem that can be
solved by standard techniques [19] to prove
Theorem 2.2.2:

cberrE,f (A, y, b) = max
i

|r(i)|
(E |y|+ f)(i)

=

∥∥∥∥ r

E |y|+ f

∥∥∥∥
∞

=
∥∥∥D−1(E |y|+f)r

∥∥∥
∞
,

(2.2.4)

where Dv represents a diagonal matrix with vector v along its diagonal, and we define vector
division as componentwise division.

Here and in other computations related to errors, we define 0/0 = 0. Section 3.9 explains
why this is the appropriate choice within solving Ax = b.

Specializing Theorem 2.2.2 to measure perturbations relative to |A| and |b| provides the
componentwise backward error used throughout later experiments and results,
Corollary 2.2.3:

cberr(A, y, b) =

∥∥∥∥ r

|A| |y|+ |b|

∥∥∥∥
∞

=
∥∥∥D−1(|A| |y|+|b|)r

∥∥∥
∞

=
∥∥D−1cberrr

∥∥
∞ .

(2.2.5)

2.2.4 Columnwise backward error

We introduce another error measurement with great trepidation. Two measurement choices
often are one too many. The normwise backward error’s dependence on the column scaling
makes it less useful for exploring the column-scaling-invariant solution’s behavior. Also, as
we will see in Chapter 5, normwise error measurements are not very useful for sparse systems.

Scaling the columns of A alters the magnitude of components of the solution by

(AD)(D−1x) = b.

A measure of error invariant to column scaling reflects properties of the standard LU
factorization algorithm and should provide information regardless of the relative component
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sizes in the solution. To handle sparse systems well, we want an error measure that allows
for perturbations in A while also providing useful information about smallest components of
y. We also would like to avoid artificial thresholds proposed for other backward errors in
sparse systems [9].

To define an appropriate columnwise backward error, recall the generic componentwise
backward error from Equation (2.2.4),

cberrE,f (A, y, b) = max
i

|r(i)|
(E |y|+ f)(i)

=
∥∥∥D−1(E |y|+f)r

∥∥∥
∞
.

We chose f = |b| as in cberr but pick a matrix E that allows more perturbations than does
|A|.

To maintain column-scaling invariance, each column of E must be determined only
by the corresponding column of A; the entries E(:, j) are a function of A(:, j) only. The
simplest choice, and the path we follow, is to replicate a single scalar across each column
of E. Obeying the analyst’s penchant for sprinkling norms everywhere, we let E(:, j) =
‖A(:, j)‖∞ = max |A(:, j)|.
Definition 2.2.3: The columnwise backward error colberr(A, y, b) is defined through Fig-
ure 2.2.2 with the matrices E and f where

E(i, j) = max
k
|A(k, j)| and f = |b|.

The above definition of E is the same as E = 1r max |A|.1
To compute the columnwise backward error,

Corollary 2.2.4:

colberr(A, y, b) =

∥∥∥∥ r

(1r max |A|) |y|+ |b|

∥∥∥∥
∞

=
∥∥∥D−1(1r max |A|) |y|+|b|r

∥∥∥
∞

=
∥∥D−1colberrr

∥∥
∞ .

(2.2.6)

We leave (1r max |A|) |y| unsimplified to keep it dimensionally commensurate with |b|. An
implementation in a language that permits adding scalars to every component of vectors can
simplify the term to (max |A|)|y|. This columnwise backward error is not comparable with
the normwise backward error.

2.2.5 Forward errors

The forward errors measure the error e = y − x, the distance between the computed solution
y and the true solution x. Generally, these errors cannot be computed because they require
knowledge of the exact solution. Outside testing situations like this thesis, there is little
point in computing a solution when you have the true solution. Forward errors are simple to
describe and understand, see Figure 2.3.

1In Octave, E = ones(size(A,1),1) ∗ max(abs(A)).
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Figure 2.3: Forward errors measure the distance from x to y = x + e, circled here. The
density plots show the backward errors in solving Ax = b using LU decomposition and
partial pivoting before refinement for Chapter 4’s single-precision, real test systems. The
horizontal axis is an estimate of the problem’s difficulty.
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Measuring the forward error against the true solution x is useful for analysis where the
solution can remain implicit. Programs typically lack the imagination for handling implicit
quantities and are limited to explicit quantities like the computed solution y.

So we are faced with the following four ways to measure the error e:

• normwise with respect to y,

nferr(x, y) = ‖D−1‖y‖∞e‖∞ ≡ ‖D
−1
nferr,ye‖∞; (2.2.7)

• normwise with respect to x,

nferrx(x, y) = ‖D−1‖x‖∞e‖∞ ≡ ‖D
−1
nferr,xe‖∞; (2.2.8)

• componentwise with respect to y,

cferr(x, y) = ‖D−1|y| e‖∞ ≡ ‖D
−1
cferr,ye‖∞; and (2.2.9)

• componentwise with respect to x,

cferr(x, y) = ‖D−1|x| e‖∞ ≡ ‖D
−1
cferr,xe‖∞. (2.2.10)

Because the end user of our algorithm has no recourse to the true solution x, our
experimental results will use the definitions with respect to y from Equation (2.2.7) and
Equation (2.2.9). The analysis, however, will consider convergence to the true solution x and
measure against x using Equation (2.2.8) and Equation (2.2.10). Measuring with respect to
x differs significantly only when the scaling matrix has diagonal entries near zero. For the
normwise error, there is no important difference for our test sets as verified in Figure 2.4.

For the componentwise error, however, the difference can be huge. Many algorithms,
including ours, tend to produce its largest componentwise errors in the smallest components
of x. Our test generator never produces a zero entry in x, but our algorithm applied to the
test set occasionally computes y vectors with zero entries. Reporting a small componentwise
error on a vector with zero entries may mislead users, especially those trying to make sense
of results in a hurry. We will always be clear about the forward error being evaluated.

2.3 Estimating the forward error and a system’s con-

ditioning

Backward errors are computable from the data in hand: A, y, and b. Forward errors involve
the unknown true solution x. We use a relationship between backward and forward errors
to bound the forward error. That relationship, which depends on the condition number,
also measures the “difficulty” of solving a given system accurately. Condition numbers
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Figure 2.4: Initial errors measured with respect to the true solution x (vertical axis) or the
final computed solution y (horizontal) show little difference for normwise errors on our test
set.
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summarize the worst-case sensitivity of the solution in response to perturbations of the
problem. Rounding errors serve as perturbations, so a very sensitive problem is deemed more
difficult.

Recall that a backward error measures a perturbation to the data, and a forward error
measures a perturbation to the solution. The sensitivity of the solution to perturbations in
the problem is that problem’s conditioning and is summarized in a scalar condition number.
This section derives upper bounds on various condition numbers. Condition numbers depend
on the norms used for the system’s domain (x) and range (r).

Nothing presented in this section is fundamentally new. Condition numbers related to the
normwise forward error are well-described in Higham [59], Demmel [34], Golub and Van Loan
[54]. Our presentation here unifies results for normwise and componentwise forward error but
does not prove that our expressions are the true condition numbers. The “condition numbers”
derived are upper-bounds. We do not prove here that the upper bounds are achievable. The
referenced texts provide full derivations for conditioning relating to the normwise forward
error.

The condition number relationship always holds regardless of how a solution has been
obtained. Unfortunately, the forward error estimate derived from the condition number can
be very pessimistic. The over-estimate combined with the expense of estimating condition
numbers is one reason why Chapter 4’s refinement algorithm avoids condition estimation.

For our uses an upper-bound of the following form suffices, where B is the backward error
and F is the forward error:

forward error ≤ condition number relating B and F × backward error.
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Assume throughout that all quantities are invertible. Let DF be the scaling factor for the
forward error ‖D−1F e‖∞ with e = y − x. Let DB be the scaling factor for the backward error
‖D−1B r‖∞. Then the expressions take the form

‖D−1F e‖∞ ≤ condition number× ‖D−1B r‖∞.

Theorem 2.3.1: Let y be a computed solution to the system Ax = b with error e = y − x
and residual r = b − Ay. Assume A is invertible. If scaling matrices DF and DB define a
forward error measure ‖D−1F e‖ and a backward error measure ‖D−1B r‖, respectively, then for
any consistent matrix and vector norms,

‖D−1F e‖ ≤ ‖D−1F A−1DB‖ ‖D−1B r‖. (2.3.1)

Proof. Expressing the backward error (A+δA)y = b+δb in terms of the residual, δAy−δb = r,
and substituting Ax = b shows that Ae = A(y− x) = δb− δAy = −r. We have assumed A is
invertible, so e = −A−1r. Multiplying both sides by D−1F and introducing I = DBD

−1
B leads

to D−1F e = −
(
D−1F A−1DB

) (
D−1B r

)
. Taking norms proves Equation (2.3.1).

We have not shown that the bound always is achievable, but treating this upper-bound as
a condition number is conservative. With this breach of rigor, we define condition numbers
for this thesis.
Definition 2.3.1: ‖D−1F A−1DB‖∞ is the condition number of A with respect to the given
forward and backward error measures.

Theorem 2.3.1 is generic, but we only use the ∞-norm form.

2.3.1 Conditioning of the normwise forward error

The most commonly used condition numbers relate to the normwise forward error. We
reproduce the standard expressions from our general framework. The normwise forward error
nferr(x, y) is defined by DF = Dnferr,y = ‖y‖∞I. Substituting ‖y‖∞I into Equation (2.3.1),

nferr(x, y) ≤ ‖A−1DB‖∞ ·
1

‖y‖∞
· ‖D−1B r‖∞

To relate nferr(x, y) to the normwise backward error nberr(y), we substitute DB =
Dnberr = diag(‖A‖∞ ‖y‖∞ + ‖b‖∞) to obtain

nferr(x, y) ≤ ‖A−1‖∞ (‖A‖∞ + ‖b‖∞/‖y‖∞) · nberr(y) (2.3.2)

To relate nferr(x, y) to the general componentwise backward error cberrE,f (y), we substi-
tute DB = diag(E |y|+ f) to obtain

nferr(x, y) ≤ ‖A
−1 · (E |y|+ f)‖∞
‖y‖∞

· cberrE,f (y). (2.3.3)
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The condition number is the sensitivity as the perturbations bounded by E → 0 and
f → 0. As stated, we are not being rigorous, so here we simply substitute x for y to obtain
upper-bounds on the true condition numbers. But even with our sloppiness, Equation (2.3.2)
provides the standard normwise-normwise condition number

κ(A, x, b) =
‖A−1‖∞‖b‖∞
‖x‖∞

+ ‖A−1‖∞ ‖A‖∞. (2.3.4)

Taking advantage of the fact that ‖Mz‖∞ = ‖|Mz|‖∞ = ‖|M |z‖∞ when z ≥ 0, we replace
A−1 with |A−1| in Equation (2.3.3) to obtain the standard normwise-componentwise condition
number

cond(A, x, b) =
‖|A−1| (|A| |x|+ |b|)‖∞

‖x‖∞
. (2.3.5)

The literature cited above proves these actually are the relevant condition numbers and not
just upper bounds. For the columnwise backward error, the normwise-columnwise condition
number taken from Equation (2.3.3) is

colcond(A, x, b) =
‖A−1 · ((1r max |A|) |x|+ |b|)‖∞

‖x‖∞
. (2.3.6)

Approximating to within a factor of two, the expressions simplify to the more commonly
used condition numbers

κ(A) = ‖A−1‖∞ ‖A‖∞, (2.3.7)

cond(A, x) =
‖|A−1| |A| |x|‖∞

‖x‖∞
, and (2.3.8)

colcond(A, x) =
‖A−1 · (1r max |A|) |x|‖∞

‖x‖∞
. (2.3.9)

We also use a form of cond(A, x) that removes the dependency on x,

cond(A) = cond(A, 1c) =
∥∥|A−1| |A|∥∥∞ . (2.3.10)

Given that we can at best approximate the condition numbers inexpensively and that
Chapter 4’s algorithm does not rely on condition number estimates, we use the simpler
expressions κ(A), cond(A, x), and cond(A) where possible.

Are these error bounds tight enough for practical use? Comparing the estimates with
actual errors in Chapter 4’s test cases, Figures 2.5 and 2.6 show that the median upper
bound overestimation is 11× when using κ(A) and 4.3× using cond(A). The worst case
overestimation on problems by factors of 9.5× 105 and 3.4× 105, respectively, suggest these
bounds cause alarm when not warranted. Our data contains underestimates by at most a factor
of two for problems with bounds below one, which is expected from approximating κ(A, x, b)
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Figure 2.5: Examining nferr(x, y) ≤ κ(A) · nberr(y) (before refinement): The median error
over-estimation ratio when the bound is at most one is ≈ 11 or ≈ 23.5. The worst case for
problems with a bound below one is a ratio of ≈ 9.5×105. There are no severe underestimates
when the bound is below one; the only overestimates are within a factor of two (the vertical
red line) and occur from approximating κ(A, x, b) by κ(A).
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Figure 2.6: Examining nferr(x, y) ≤ cond(A) · cberr(y) (before refinement): The median error
over-estimation ratio of ≈ 4.3 or ≈ 22.1. The worst case for those with bound below one is
≈ 3.4 × 105. No underestimates beyond a factor of two (the vertical red line) appear for
problems with bound below one, and that factor is expected.
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by κ(A) and cond(A, x, b) by cond(A). The Higham and Tisseur [62] norm approximation
algorithm with three test vectors does not contribute noticeably to the underestimation.

Later we use refinement to drive the errors below nεw and do not need condition numbers
for error estimates. Lapack uses the relation with cond(A, x, b) to provide error bounds in
the expert Ax = b drivers xGESVX [6]. Experience with users shows that providing too-large
error bounds is counter productive. The error bound is ignored even when the bound could
signal a true problem.

We use condition numbers to summarize the worst-case difficulty of solving a linear system.
The final algorithm will not rely on computing estimates. Computing condition number
estimates adds additional O(N2) working-precision operations per right-hand side.

2.3.2 Conditioning of the componentwise forward error

The generic framework above reproduces the standard results with respect to normwise
forward error. We also can relate backward errors to the componentwise forward error. The
resulting expression supports the componentwise condition number assumed in Demmel et al.
[37, 35].

Again, we are not rigorous and simply substitute the appropriate scaling matrices even
when some component of x or y is zero. Figure 2.4 borrows traditional results to demonstrate
that our results are the condition numbers, but we do not offer an elementary proof.

Note that the condition number is a property of the system Ax = b and does not depend
on the computed solution y. So we use cferrx(x, y) (relative to x) rather than the cferr(x, y)
(relative to y) measurement in this analysis.

The componentwise forward error cferrx(x, y) is defined using DF = Dnferr,x = D|x|. We
ignore the possibility of zero components and assume the inverses of A and D|x| are defined.
Substituting,

cferrx(x, y) ≤ ‖D−1|x|A
−1DB‖∞ ‖D−1B r‖∞

To relate the componentwise forward error cferrx(x, y) to the normwise backward error
nberr(y), we substitute DB = Dnberr = diag(‖A‖∞ ‖y‖∞ + ‖b‖∞) to obtain

cferrx(x, y) ≤ ‖D−1|x|A
−1‖∞ · (‖A‖∞ ‖y‖∞ + ‖b‖∞) · nberr(y). (2.3.11)

Substituting DB = diag(E |y|+ f) for the general componentwise backward error cberrE,f (y)
provides

cferrx(x, y) ≤
∥∥∥D−1|x|A−1 · (E |y|+ f)

∥∥∥
∞
· cberrE,f (y). (2.3.12)

A few substitutions and rearrangements produce condition numbers very similar to
those of Section 2.3.1. First, we substitute ‖A‖∞ ‖y‖∞ = ‖AD‖y‖∞‖∞ and rearrange
D−1|x|A

−1 = (AD|x|)
−1. We specialize to E = |A| and f = |b|. Following the chain
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Figure 2.7: Examining cferrx(x, y) ≤ cond(AD|x|) · cberr(y): The median over-estimate is a
factor of ≈ 6 or ≈ 22.6. The worst case for well-conditioned problems is ≈ 6.6 × 106. Not
including the right-hand side in cond(AD|x|) again induces underestimates by at most a factor
of two (the vertical red line).
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|A| |x| = |A| |D|x| · sign(x)| = |A|D|x| |sign(x)| = |AD|x|| |sign(x)| = |AD|x|| produces the
componentwise condition numbers

cκ(A, x, b) = ‖(AD|x|)−1‖∞ ·
(
‖AD‖x‖∞‖∞ + ‖b‖∞

)
, (2.3.13)

ccond(A, x, b) =
∥∥(|(AD|x|)−1| · |AD|x|| · |signx|

)
+ |(AD|x|)−1| |b|

∥∥
∞ , and (2.3.14)

ccolcond(A, x, b) =
∥∥(AD|x|)

−1 ·
(
(1r max |AD|x||) + |b|

)∥∥
∞ . (2.3.15)

Note that |sign(x)| = 1c, but using sign(x) shows the similarity between solving Ax = b for x
and (AD|x|)z = b for z = sign(x).

And again, loosening our bound by a factor of two permits simplifying to

cκ(A, x) = ‖(AD|x|)−1‖∞ ‖AD|x|‖∞, (2.3.16)

ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞ = cond(AD|x|), and (2.3.17)

ccolcond(A, x) =
∥∥|(AD|x|)−1| · (1r max |AD|x||

∥∥
∞ . (2.3.18)

The second, Equation (2.3.17), is equal to the expression cond(ADx) derived in Demmel et al.
[37, 35] by considering the normwise error in (ADx)z = b where z = D−1x x = 1c.

Figure 2.7 shows that cond(AD|x|) · cberr(y) does provide an upper-bound for cferrx(x, y).
But again the upper bound is too loose for practical use. The worst case on problems with
bound below one overestimates the error by a factor of 6.6× 106.
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2.4 From normwise results to componentwise results

In the previous section, we see that the normwise and componentwise forward errors differ
only in the scaling factor applied to the right of A. From an implementation point of view,
that one difference leads to a generalization that makes supporting both measures simple.

Here we explain the reason in more detail and discuss why using the absolute value, D|x|,
may be preferable over Dx for analysis. Ultimately there is no serious difference between the
two choices. Using D|x| will make a few results more obvious. We explain our choice here
only because it differs from previously published results. Because our focus is analysis, we
measure errors relative to x rather than the computed y. Also, we assume that norms are
absolute, so ‖A‖ = ‖ |A| ‖.

Consider Ax = b where b(i) = sum(A(i, :)) and x = 1c. Then D‖x‖∞ = D|x| = Dx = Ic,
an identity matrix commensurate with the columns of A. The normwise and componentwise
errors in a computed y coincide,

nferrx(x, y) = ‖D−1‖x‖∞(y − x)‖ = ‖y − x‖ = ‖D−1|x| (y − x)‖
= cferrx(x, y).

(2.4.1)

This relationship holds for any system where |x(i)| = 1 and b = Ax. The resulting scaling
matrix is diagonal with diagonal entries of absolute value 1, and the absolute norm annihilates
any resulting sign change, real or complex.

Equation (2.4.1) suggests that we can obtain a componentwise error by transforming the
solution for a general Ax = b. There are two obvious transformations, either Ax = (ADx)1c =
b or Ax = (AD|x|)(sign(x)) = b. For the latter, remember that ‖sign(x)‖∞ = 1. Demmel
et al. [37, 35]’s work on iterative refinement applies the former without discussion.

This work prefers the latter, using D|x| to scale the results. Ultimately, there is no serious
difference. Using the absolute value makes a few results obvious from the beginning.

• The resulting formulas are identical using either Dx or D|x|, so the sign of a floating-point
zero must not matter.

• The error is a measure of distance and does not depend on the direction from which
the computed y approaches x.

• The scaling matrix D|x| passes through absolute values without change.

There is one important caveat related to common implementations of complex arithmetic.
Most software uses an |x| ≈ abs1(x) = |real(x)|+ |imag(x)| that is cheaper to compute than
|x| =

√
real(x)2 + imag(x)2. This approximate absolute value squares the circle, so using

abs1 within ∞-norms introduces a
√

2 approximation factor,

‖x‖∞√
2
≤
∑
i

abs1(xi) ≤
√

2‖x‖∞.

We absorb the factor of
√

2 into other arithmetic parameters; see Section 3.3.1.
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2.5 A note on our abuse of “condition number”

Condition numbers summarize the worst case achievable sensitivity to perturbations of a
problem. We have not shown the quantities called condition numbers above are achievable.
Unlike Demmel et al. [39, 37, 35], we do not rely on condition number estimation for
determining success. Our “condition numbers” are used only for plotting results and for
discussion.

For our purposes, condition numbers represent the difficulty of a problem. Rounding
errors within backwards-stable algorithms are represented by perturbations to the initial
data. The condition number is the worst-case magnification of those perturbations into the
solution’s error. In Chapter 5, we see that well-conditioned systems are solved poorly when
the algorithm introduces too-large perturbations through element growth, so we cannot rely
solely on condition numbers to indicate potentially large errors.

Estimating the condition numbers that depend on the solution x require an estimation for
each x. This becomes computationally expensive for multiple right-hand-sides and moderately
sized systems [37]. Demmel et al. [31] conjectures that guaranteed condition estimation must
be as computationally costly as matrix multiplication, and Demmel et al. [36] reduces matrix
factorization algorithms to the complexity of matrix multiplication. These computational
complexity results imply that guaranteed condition estimation may remain computationally
expensive relative to the LU factorization used to solve the system. Applying the practical
O(n2) algorithms [25, 62, 57] for each error we wish to return greatly increases the operational
cost and memory traffic for iterative refinement.

Referring to conditioning for a problem requires nailing down two aspects: the perturbation
structure and the measure used on the errors. There is much related work for different
structured perturbations [56]. Here we consider only the simplest of perturbations, uniform
perturbations across A and b. Higham and Higham [56] shows that respecting symmetry
introduces at most a factor of two, and that is sufficient for plotting purposes. Chapter 5
introduces a simple structural element to capture the non-zero structure of L and U , but
that is relatively unimportant.

How we measure the backward error perturbation and the forward error accuracy is quite
important. This work focuses on the infinity norm, but there is more than just the norm.
Numerically scaling the matrix A may produce a more accurate factorization PDrADc = LU .
The scaling essentially changes the norms on the domain and range. A solution in that scaled
norm may be more accurate, but that is not the user’s requested norm. Many packages,
including Lapack[6], report the condition number of the scaled matrix As = DrADc. This
condition number is slightly deceptive; it relates backward error perturbations to forward
accuracy in the scaled norms and not the user’s norm. Section 3.8 describes how we incorporate
numerical scaling into our refinement algorithm.

Our dense cases used initially for demonstrating dependable refinement in Chapter 4 do
not stress the difference between the scaled and unscaled cases. Some of the real-world sparse
matrices in Chapter 5 are very sensitive to the numerical scaling of A. The conditioning
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Error kind Measure Scaling matrix

Backward DB Normwise Dnberr = diag(‖A‖∞ ‖y‖∞ + ‖b‖∞)

Columnwise Dcolberr = diag((1r max |A|) |y|+ |b|)

Componentwise Dcberr = diag(|A| |y|+ |b|)

Forward DF Normwise Dnferr,x = diag(‖x‖∞)

Componentwise Dcferr,x = diag(|x|)

Table 2.2: Error measures. The backward error measures scale the norm of the residual
r = b−Ay as ‖D−1B r‖∞, and the forward error measures scale the norm of the error e = y−x
as ‖D−1F e‖∞.

changes drastically, which does affect accuracy within the numerical factorization. More
importantly for the final result, numerical scaling alters element growth. We revisit the issue
in the later chapters.

2.6 Summary

Table 2.2 summarizes the different error measures, and Table 2.3 provides the condition
numbers relating the different error measures. In later chapters, we use the columnwise-
normwise condition number Equation (2.3.9) to depict the difficulty of the normwise forward
error and the componentwise-componentwise condition number Equation (2.3.17) for the
difficulty of the componentwise forward error. Chapter 4 finds an approximate relationship
between cond(A−1) and the difficulty of refining the componentwise backward error. Chapter 5
will explore the relationship between conditioning and numerical scaling further.

With these measures of errors and difficulty, we can set up the expectations for a
dependable solver. For each error of interest, the following must hold:

• When delivering a result declared successful for a not-too-ill conditioned system (esti-
mated condition number < 1/εw), the result must be accurate. The error must be at
most a modest multiple of εw.

• Nearly all not-too-ill conditioned systems must produce accurate results.

• Any too-large error must be flagged, regardless of the system’s conditioning.

The behavior of Chapter 4’s refinement algorithm also assists in diagnosing why a large error
occurs.
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Backward error Forward error Condition number

Normwise Normwise κ(A) = ‖A−1‖∞ ‖A‖∞

Componentwise cond(A, x) =
‖|A−1| |A| |x|‖∞

‖x‖∞

Columnwise Normwise colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞

Componentwise
ccolcond(A, x) =∥∥|(AD|x|)−1| · (1r max |AD|x||)

∥∥
∞

Componentwise Normwise cκ(A, x) = ‖(AD|x|)−1‖∞ ‖AD|x|‖∞

Componentwise

ccond(A, x) =∥∥|(AD|x|)−1| · |AD|x||∥∥∞ =
cond(AD|x|)

Table 2.3: Condition numbers relating backward to forward errors. Bold denotes the condition
number used for a forward error’s difficulty in later error plots.
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Chapter 3

Design and analysis of dependable
iterative refinement

3.1 High-level algorithm

Iterative refinement of the square system of n equations Ax = b is a very well-known version
of Newton’s method[18, 103, 76]. Listing 3.1 provides the top-level function implementing
our iterative refinement algorithm in Octave. The remainder of this chapter fills in the
details for the backwards and forward termination and success criteria, check berr criteria and
check ferr criteria respectively. The following questions are addressed:

• What final accuracy can we expect in each error measure?

• Under what conditions can that accuracy be achieved?

• How can we detect a failure to reach the target forward error accuracy?

The short answers are that with extra precision within the residual computation and used
for storing and computing with the intermediate solution, we can achieve accuracy that is a
small multiple of the best possible for the input, working precision. The conditions are that
the system Ax = b not be too ill-conditioned, and we detect that through monitoring the
backward error directly and the step size. The step size serves as an indirect measure of the
forward error.

Section 3.3 establishes the error model used throughout the remaining analysis. Section 3.4
describes the general structure for all the recurrences. The backward and forward errors are
covered by Sections 3.5 and 3.6. Section 3.7 defines the check berr criteria and check ferr criteria

routines we use for extended-precision refinement. Section 3.8 covers numerical scaling
for reducing somewhat artificial problems of measurement. Potential failure modes of our
algorithm wrap up the chapter in Section 3.9.
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function [yout, success] = itref (A, x1, b, MAXITER = 100)
### Function File [xout, success] = itref (A, x1, b[, MAXITER = 100])
### Refine an initial solution x1 to A∗x=b. The result xout contains
### the refined solutions, and success is an opaque structure to be

5 ### queried for the status of xout.
nrhs = dim (x1,2);
xout = zeros (dim (x1, 1), nrhs);
for j = 1:nrhs,

state = initial refinement state ();
10 y{1} = widen (x1(:,j)); # Store solutions to extra precision εx.

for i = 1:MAXITER,
## Compute this step’s residual: ri = b−Ayi+δri.
## Intermediates are computed in extra precision εr.
r{i} = widen intermediates b − A∗y{i};

15

state = check berr criteria (state, i, r, A, y, b);
if all criteria met (state), break; endif

## Compute the increment: (A+δAi)δyi = ri.
20 dy{i} = A \ r{i};

state = check ferr criteria (state, i, y, dy);
if all criteria met (state), break; endif

25 ## Update the solution: yi+1 = yi + dyi+δyi.

y{i+1} = y{i} + dy{i};
endwhile
yout(:,j) = y{i}; # Round to working precision.
success{j} = state success (state);

30 endfor
endfunction

Listing 3.1: Iterative refinement of Ax = b in Octave. This chapter determines how the
criteria functions work. The commands widen and widen intermediates potentially increase the
precision used. The underlined mathematical expressions are the error terms defined in
Section 3.3.2.
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function state = check ferr criteria (state, i, y, dy)
### For Wilkinson’s iterative refinement algorithm.

normdy = norm (dy{i});
if normdy / state.prevnormdy > 0.5 || normdy / norm (y{i}, inf) <= 2∗eps,

5 state.done = 1;
endif
state.prevnormdy = normdy;

endfunction

Listing 3.2: For Wilkinson’s iterative refinement, widen and check berr criteria from Listing 3.1
are empty operations, and check ferr criteria is defined below.

3.2 Related work

(This section is substantially derived from Demmel et al. [35].)
Extra precise iterative refinement was proposed in the 1960s. Bowdler et al. [18] presents

the Algol programs that perform the LU factorization, the triangular solutions, and the
iterative refinement using εr = ε2w. Listing 3.2 defines the support routine check ferr criteria

determining termination in Bowdler et al. [18]’s refinement. Only the incremental step dy
factors into termination in this algorithm.

In Bowdler et al. [18]’s basic solution method for computing the step size Adyi = ri,
Wilkinson uses the Crout algorithm for LU factorization. The inner products are performed
in extra precision. The Crout algorithm cannot easily exploit the memory hierarchy and is
slow on current systems. As noted in Sections 3.5 and 3.6, higher precision inner products in
the LU factorization only affect the rate of convergence and chance for success but not the
limiting accuracy.

There is no error analysis in Bowdler et al. [18]. But Wilkinson [103] analyzes the
convergence of the refinement procedure in the presence of round-off errors from a certain
type of scaled fixed point arithmetic. Moler extends Wilkinson’s analysis to floating point
arithmetic. Moler accounts for the rounding errors in the refinement process when the working
precision is εw and the residual computation is in precision εr, and derives the following error
bound [76, Eq. (11)]:

‖yi − x‖∞
‖x‖∞

≤ [σκ∞(A)εw]i + µ1εw + µ2nκ∞(A)εr ,

where σ, µ1, and µ2 are functions of the problem’s dimension and condition number as well as
refinement’s precisions. Moler comments that “[if] A is not too badly conditioned” (meaning
that 0 < σκ∞(A)εw < 1), the convergence will be dominated by the last two terms, and µ1

and µ2 are usually small. Furthermore, when εr is much smaller than εw (e.g., εr ≤ ε2w), the
limiting accuracy is dominated by the second term. When εr ≤ ε2w, the stopping criterion he
uses is ‖dyi‖∞ ≤ εw‖y1‖∞. As for the maximum number of iterations, he suggests using the
value near − log10 εr ≈ 16.
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The use of higher precision in computing x was first presented as an exercise in Stewart
[96, p. 207-208]. Stewart suggests that if x is accumulated in higher and higher precision, say
in εw, ε

2
w, ε

3
w, . . . precisions, the residual will get progressively smaller. Eventually the iteration

will give a solution with any desired accuracy. Kie lbasiński [66] proposes an algorithm called
binary cascade iterative refinement. In this algorithm, GEPP and the first triangular solve
for y0 are performed in a base precision. Then during iterative refinement, both ri and
yi+1 are computed in increasing precision. Furthermore, the correction dyi is also computed
in increasing precision by using the same increasing-precision iterative refinement process.
Kie lbasiński [66] “cascades” the precisions recursively. Kie lbasiński analyzes the algorithm
and shows that with a prescribed accuracy for x, you can choose a maximum precision
required to stop the iteration. This algorithm requires arbitrary precision arithmetic, often
implemented in software and considered too slow for wide use. We are not aware of any
computer program that implements this algorithm.

A very different approach towards guaranteeing accuracy of a solution is to use interval
arithmetic techniques [92, 93]. Interval techniques provide guaranteed bounds on a solution’s
error. However, intervals alone do not provide a more accurate solution. Intervals indicate
when a solution needs improving and could guide application of extra precision. We will not
consider interval algorithms further, although they are an interesting approach. We do not
have a portable and efficient interval Blas implementation and so cannot fairly compare our
estimates with an interval-based algorithm.

Björck [17] surveys the iterative refinement for linear systems and least-squares problems,
including error estimates using working precision or extra precision in residual computa-
tion. Higham [59] gives a detailed summary of various iterative refinement schemes which
have appeared through history. Higham also provides estimates of the limiting normwise
and componentwise error. The estimates are not intended for computation but rather to
provide intuition on iterative refinement’s behavior. The estimates involve quantities like
‖|A−1| · |A| · |x|‖∞, which we encounter again in Section 3.5.

Until recently, extra precise iterative refinement was not adopted in such standard libraries
as Linpack [41] and later Lapack [6] because there was no portable way to implement extra
precision when the working precision was already the highest precision supported by the
compiler. Therefore, the Lapack expert driver routines xGESVX and support routine xGERFS
provided only the working precision iterative refinement routines (εr = εw). Since iterative
refinement can always ensure backward stability, even in working precision [59, Theorem
12.3], the Lapack refinement routines use the componentwise backward error in the stopping
criteria. Listing 3.3 provides details on Lapack’s working-precision stopping criteria.

Demmel et al. [35] describes Lapack’s newer, extra-precise refinement algorithms,
xGERFSX. The xGERFSX algorithm does not exactly fit into Listing 3.1’s framework. The
logic is more convoluted and separates the normwise (x-state) and componentwise (z-state)
considerations; see Figure 3.1. There is a somewhat artificial “unstable” stage for the compo-
nentwise solution we replace with more well-understood conditions on the backward error for
all forward errors. Also, the xGERFSX routines use extra precision in carrying the solution
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function state = (state, i, r, A, y, b)
### For LAPACK’s xGERFS iterative refinement algorithm.

## Compute the componentwise backward error.
safe1 = (size (A, 1) + 1) ∗ realmin;

5 safe2 = safe1 / eps;
numer = abs (r);
denom = abs (A) ∗ abs (y) + abs (b);
mask = denom < safe2;
denom(mask) += safe1;

10 numer(mask) += safe1;
cberr = max (numer ./ denom);
## Terminate if the error stops decreasing or is tiny.
if cberr / state.prevcberr > 0.5 || cberr <= eps,

state.done = 1;
15 endif

state.prevcberr = cberr;
endfunction

Listing 3.3: For Lapack’s iterative refinement routines xGERFS used in the expert
drivers xGESVX, widen and check ferr criteria from Listing 3.1 are empty operations, and
check berr criteria is defined below.

only when an estimated condition number κs times the ratio of largest to smallest magnitude
entries in the solution is at least 1/nεw.

Our analysis and algorithm below simplify this logic considerably. None of the forward
errors are considered “stable” until the backward error has fallen to O(ε2w). The solution
always is carried to extra precision. The error estimate in Demmel et al. [35] is reduced to
a binary indicator of successfully delivering a small error or not. And the final condition
estimations not shown in Figure 3.1 are replaced the final convergence criteria and a rough
estimate of the worst-case componentwise forward error conditioning. The remainder of this
chapter details the new algorithm.

3.3 Error model

3.3.1 Floating-point error model

The higher-level error model is based on a standard floating-point relative error model as
in Demmel [34], Higham [59]. Each arithmetic operation produces a result that has a small
relative error, for example

a⊕ b = (a+ b)(1 + δ),

where |δ| ≤ ε. Here ε characterizes the precision of the floating-point result. Table 3.1
provides common precision values. We assume that underflow is not a significant contributor
to any results; see further discussion in Section 3.9.
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Iterative Refinement

entry / ‖y1‖∞ = ‖z1‖∞ = final-relnormx = final-relnormz =∞, ρmax,y = ρmax,z = 0.0
κs · maxj |yi(j)|/mink |yi(j)| ≥ 1/nεw (As ·Dy is ill-conditioned) / ↑ incrprec
exit / calculate error estimates

y-state z-state y-scheme

unstable

entry / final-relnormz =∞,
ρmax,z = 0.0

working

do / update ρmax,y

no progress in y / ↑ incrprec
exit / save ρyi in

final-relnormy

working

do / update ρmax,z

no progress in z / ↑ incrprec
exit / save ρzi in

final-relnormz

finished finished

single

double

entry / clear tail yt

incrprec

[zi+1 is small]
[ zi+1

is large]

[
converged or
(no progress

and double)
] [progress

possible]

[
converged or
(no progress

and double)
] [progress

possible]

too many iterations

Figure 3.1: Overall statechart in UML 1.4 notation [79] for the algorithm in Lapack’s
xGERFSX. Here, dzi = dyi/yi with some care to compute 0/0 = 0. The ratios ρx and ρz track
‖dyi‖∞/‖dyi−1‖∞ and ‖dzi‖∞/‖dzi−1‖∞, respectively. If either ratio is above a pre-set value
(0.5 or 0.9), the iteration has stopped making progress. If either value ‖dyi‖∞ or ‖dzi‖∞ falls
below nεw, the iteration has converged. The final-relnorm variables produce an error estimate.
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Name Symbol Value

IEEE-754 single (bin32) εs 2−24 ≈ 6× 10−8

IEEE-754 double (bin64) εd 2−53 ≈ 1.1× 10−15

Intel 80-bit εde 2−64 ≈ 5.4× 10−20

doubled double εdd 2−106 ≈ 1.2× 10−32

IEEE-754 quadruple (bin128) εd 2−113 ≈ 9.6× 10−35

Table 3.1: Common floating-point precisions. Note that the doubled double precision does
not round to the representable number nearest the true result. Modeling the precision as
2−106 suffices for our uses of some precision at most ε2d.

We use subscripts to denote the different precisions in Table 3.1 as well as different uses.
Each of the matrix and vector operations in Listing 3.1 can operate at a different precision
internally. We call the storage format of the input and output solutions the working precision
εw. The solution of Adyi = ri is performed in the factorization precision εf . The residual
ri = b−Ayi is computed internally in precision εr before being stored to εw. The intermediate
solution is carried to precision εx. When appropriate, the entire intermediate solution is used
in the residual calculation and not just the solution rounded to the working precision.

The doubled double precision is a software emulation of a type with precision ≤ ε2d. While
not a good choice for general-purpose computations, doubled double works well within bulk
linear algebra operations like the Blas[43, 42]. See Hida et al. [55] for information about
doubled double and quad double arithmetic.

These precision definitions need to be multiplied by 2
√

2 for complex arithmetic. Otherwise,
all the analysis below holds as well for complex arithmetic as for real arithmetic.

3.3.2 Matrix operation error model

The floating-point implementation of each of the residual, solve, and step increments in
Listing 3.1 incur errors related to the precisions. We rely on the standard error analysis of
each step, with the error terms underlined in Listing 3.1. To recap,

• the ith residual is computed as ri = b− Ayi + δri with error term δri,

• the ith step is computed with backward error (A+ δAi)dyi = ri with error term δAi,
and

• the (i+ 1)st solution is computed as yi+1 = yi + dyi + δyi with error term δyi.
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None of these error terms are new. All are derived in any linear algebra text. Assuming
we solve a dense system Adyi = ri with LU factorization,

|δri| ≤ (1 + nd)εr (|A| |yi|+ |b|) + εw|r|, (3.3.1)

|δAi| ≤ 3nd|L| |U | ≤ p(nd)g1r max |A|, and (3.3.2)

|δyi| ≤ εx|yi|. (3.3.3)

Here p(nd) is a second-degree polynomial in a size parameter nd, and g is the element growth
factor to be described shortly. The element growth is defined against the maximum column
entries to permit matrices with zero entries. Chapter 4 details the changes this relationship
implies.

The nd term is a slight twist on the size of the system, n. In nearly all cases, a factor of n
causes a severe overestimate of the true error. We give ourselves a bit of freedom in picking a
better dimensional estimate. For dense problems, nd =

√
n seems appropriate. For sparse

problems, nd is the square root of the longest operation chain length. The sparse residual
calculation’s nd is one more than the largest number of entries in a row of A (the largest row
degree), limited to at most

√
n. For common implementations of direct solvers for Adyi = ri,

nd is the largest row degree in the sum of the lower- and upper-triangular factors plus the
largest row degree in A, again limited to at most

√
n. This analysis improves the 3n factor

in the traditional version of Equation (3.3.2) to 2n, but both are severe overestimates.
In many ways, the precision ε times a running accumulation of the same operations applied

to their operands’ absolute values would be a much better approximation than simply using
either n or nd [59]. While floating-point operations are “free” on many current processors,
they are not that free. Also, the software infrastructure to support such running error analysis
easily does not exist.

The element growth factor g measures the largest elements combined during the Schur
complements during factorization. We follow common practice and estimate g given the
final factors rather than monitoring g throughout factorization. With partial pivoting as
in Lapack, g is a function of the entries in U and A. For unrestricted partial pivoting, we
consider the improved, column-relative entry growth measure recently adopted by Lapack,

g = max
j

maxi |U(i, j)|
maxi |A(i, j)|

(3.3.4)

computed by comparing the maximum entries per column separately, then the maximum
over all those. For dense problems, this is almost always less than 100. Examples exist with
growth as large as 2n−1, however[44].

When we go looking at oncoming traffic1 and use restricted pivoting in later chapters, we
generalize Equation 3.3.4 to include L. The expression becomes more complex, but still is

1At least one numerical analyst has suggested that someone is likely to be run over by a bus before
encountering an unexpectedly large element growth.
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easily computable:

gc = max
j

(max1≤k≤j maxi |L|(i, k)) · (maxi |U |(i, j))
maxi |A|(i, j)

. (3.3.5)

This generalized element growth factor will indicate potential problems with Chapter 5’s
restricted pivoting strategies.

3.4 General structure of analysis

The analysis of refinement here focuses on what can happen when things go well, while also
collecting the assumptions necessary. We begin with Lapack xGERFS refinement algorithm
and the XBlas/Lapack algorithm in Demmel et al. [37]. These two share a common
recurrence structure we generalize. Later sections apply the recurrence to other quantities.

Lapack’s xGERFS routines monitor a perturbed componentwise backward error. The
xGERFS routines terminate when one of the following conditions hold:

1. the componentwise backward error does not decrease by a factor of two,

2. the same error is at most εw, or

3. a fixed number of steps (five) have passed.

In this section, we are interested in the first condition. We model the first condition by the
recurrence

cberr(yi) ≤ 0.5 · cberr(yi−1) + error in computing cberr(yi). (3.4.1)

We will expand the last error term in Section 3.5. For now, we are interested in the
form of Equation (3.4.1). At each step, components of |ri| are perturbed by an additional
(n + 1)λ(1 + εw) beyond the rounding errors in computing ri to protect against rounding
small entries to zero [34], where λ is the underflow threshold. The source code only adds that
perturbation when it might have an effect, but we can ignore that detail for the immediate
analysis and its effect on block-diagonal systems

Demmel et al. [37] refines the forward error and monitors the per-iteration step sizes
‖D‖y‖∞−1i dyi‖∞ and ‖D|y|−1i dyi‖∞. The routine applies essentially the same criteria as xGERFS
to these quantities, targeting the forward error rather than the backward error. The extra-
precise refinement routine requires that the next relative step sizes decrease to either 0.5 or
0.9 of the current relative step size for the conservative or aggressive settings, respectively.
We model the aggressive, componentwise-relative step size by

‖D|y|−1i dyi+1‖∞ ≤ 0.9 · ‖D|y|−1i dyi‖∞ + error in computing ‖D|y|−1i dyi‖∞, (3.4.2)

with the other settings and norms modeled similarly.
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Each of these refinement algorithms follow a recurrence relationship,

zi+1 ≤ ρizi + ti, (3.4.3)

where zi denotes some measure, ρi is the ratio of (ideally) decrease, and ti is a perturbation
to each step. Additionally, Section 3.6 shows that an upper bound on forward error also
follows this recurrence. This section examines this recurrence relationship to set expectations
and determine assumptions. The goals are to determine the termination criteria related to ti
and dependability criteria from monitoring of measured ρi. We will apply these criteria to
both forward and backward errors.

Later sections will substitute zi with measures of errors and also dyi once Section 3.6.1
relates dyi to the forward error. The ti is an upper bound on the error perturbations, typically
proportional to (n+ 1) · (εx + εr) with a per-iteration measure of ill-scaling. An upper bound
on ρi is related to the problem’s conditioning and measures of ill-scaling.

During refinement, we have zi, zi+1 in hand and can compute the upper bound of ti. We
do not have ρi and wish to avoid the expensive process of estimating the relevant condition
number. Our first assumption is that ρi and ti do not change much between iterations.

We are interested in a bound for zi when rate of decrease slows and also in bounding ρi
as a measure of difficulty. If the error zi reaches an expected small multiple of ti, we will
assume the problem never crossed a region of high difficulty and declare success. This is in
contrast to explicit condition estimation in our prior work [37].

This does induce a failure mode, see Section 3.9, where the error is “accidentally” too
small. For the backward error, the higher-precision computation of the residual r renders
this failure mode exceptionally rare, and even more careful computation can avoid it without
explicitly perturbing the result by the error term in Equation (3.3.1) [34]. When inferring
the forward error from the solution’s change between iterations, however, this could cause
acceptance of a solution with large error. Section 3.9 discusses this and other issues more
thoroughly.

Assume the recurrence terminates with with zi+1 = cizi. Refinement will enforce a bound
on ci by requiring some progress, and will terminate when ci ≥ c. Then

cizi ≤ ρizi + ti,

and

zi ≤
ti

c− ρi
(3.4.4)

We expect zi to converge to a multiple of ti, and want to target small multiples of ti by
controlling ci for a range of expected ρi values. Let ρi ≤ ρ̄ for all i, where we relate ρ̄ to
various condition measures and factorization errors in later sections. Also assume ρ̄ < ci.
Then

zi ≤
ti

ci − ρ̄
,
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Consider Lapack’s default backward error refinement in xGESVX. There zi is the com-
ponentwise backward error. We can roughly model Lapack’s refinement, which targets
c ≥ c = 0.5 and has ti ≈ (n+ 1)εw unless there are tiny components in ri, by

zi /
(n+ 1)εw

0.5− ρ̄
.

For systems with ρ̄ ≤ 0.25, zi ≤ 4(n + 1)εw at termination. An appropriate ρ̄ here is
ρ̄ ≈ p(nd)εwg cond(A, x), so systems not too ill-conditioned, that do not experience too-great
element growth, and are not massive should terminate with a small componentwise backward
error.

If we want zi = ti at convergence, c must be at least one, which opens the door to the
error growing. If zi ≤ 10ti, or within one decimal digit of the perturbation ti, c < 1 for
ρ̄ < 0.9. For one bit, zi ≤ 2ti, and c < 1 for ρ̄ > .5. So there is an expected trade-off between
accuracy we can achieve and the convergence ratio.

Consider the XBlas/Lapack [37] conservative ratio setting (c = 0.5) and factor of 10
safety ratio in conditioning (ρ̄ ≤ .1). Then zi ≤ 2.5ti when refinement stops. Pushing to
c = 0.9, zi ≤ 1.25ti. In that case, zi is a measure of dyi. Section 3.6.1 related this step size to
the forward error. Overall, our recurrence model matches well the results in our related prior
work.

For a lower bound on ρ̄ given quantities we have in-hand,

ρ̂ =
zi+1 − ti

zi
= c− ti

zi
≤ ρ̄. (3.4.5)

Here c is computed directly as zi+1/zi. While a low value of ρ̂ is not a guarantee that ρ̄ itself
is small, a large value before convergence alerts us to potential conditioning and accuracy
problems. This is why larger values of c are considered risky.

3.5 Refining backward error

To establish such a recurrence for the backward error, chain together the effects of one step
of refinement:

r1 = b− Ay1 + δr1,

(A+ δA1)dy1 = r1,

y2 = y1 + dy1 + δy2, and

r2 = b− Ay2 + δr2.

Each step simply shifts the indices, so we drop the step number from the subscripts.
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Expanding r2 yields

r2 = b− Ay2 + δr2

= b− A(y1 + dy1 + δy2) + δr2

= (b− Ay1)− Ady1 + δr2 − Aδy2
= r1 − δr1 − A(A+ δA1)

−1r1 + δr2 − Aδy2
=
(
I − A(A+ δA1)

−1) r1 − δr1 + δr2 − Aδy2
= δA1(A+ δA1)

−1r1 − δr1 + δr2 − Aδy2. (3.5.1)

Let D1 and D2 be the scaling matrices for the backward error of interest. Introducing
these into Equation (3.5.1) relates the steps’ backward errors. Scaling,

D−12 r2 = D−12 δA1(A+ δA1)
−1D1D

−1
1 r1

−D−12 D1D
−1
1 δr1 +D−12 δr2 −D−12 Aδy2.

Taking norms provides a recurrence of the form in Equation (3.4.3),

‖D−12 r2‖∞ ≤ ‖D−12 δA1(A+ δA1)
−1D1‖∞‖D−11 r1‖∞

+‖D−12 D1‖∞‖D−11 δr1‖∞ + ‖D−12 δr2‖∞ + ‖D−12 Aδy2‖∞.

Here ρ1 = ‖D−12 δA1(A+ δA1)
−1D1‖∞ and z1 = ‖D−12 D1‖∞‖D−11 δr1‖∞ + ‖D−12 δr2‖∞ +

‖D−12 Aδy2‖∞.

3.5.1 Establishing a limiting accuracy

The terms involving δr1, δr2, and δy2 form ti in Equation (3.4.3) and establish the lower
bound for the terminal error ‖D−1i ri‖∞. Note that this limiting accuracy is for the solution
carried to precision εx and not the solution returned in precision εw. Rounding to εw forces
a backward error of at least εw, and that is the backward error the calling routine will see.
The possibly extended-precision intermediate solution, however, permits us to achieve better
than expected forward error.

We bound the terms involving δr1 and δr2 using Equation (3.3.1) and that D−11 (|A| |yi|+
|b|) ≤ 1 for all backward errors of interest,

‖D−1i δri‖∞ ≤ ‖D−1i ((nd + 1)εr (|A| |yi|+ |b|) + εw|ri|)‖∞
≤ (nd + 1)εr + εw‖D−1i ri‖∞ (3.5.2)

The term involving the update error δy2 we bound using Equation (3.3.3),

‖D−12 Aδy2‖∞ ≤ εx‖D−12 A|y2|‖∞.
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Because D−12 and |y2| are non-negative, then,

‖D−12 Aδy2‖∞ ≤ εx‖D−12 |A||y2|‖∞.

Using Ay2 = b− r2 + δr2 and Equation (3.5.2) along with ‖D−1i b‖∞ ≤ 1 for our backward
error scaling factors,

‖D−12 Aδy2‖∞ ≤ εx‖D−12 (|b|+ |r2|+ |δr2|)‖∞
≤ εx‖D−12 b‖∞ + εx‖D−12 r2‖∞ + εx‖D−12 δr2‖∞
≤ εx + (nd + 1)εrεx + (εx + εxεw)‖D−12 r2‖∞ (3.5.3)

Expanding the recurrence in Equation (3.4.3),

(1− ε̃)‖D−12 r2‖∞ ≤
(
‖D−12 δA1(A+ δA1)

−1D1‖∞ + εw‖D−12 D1‖∞
)
‖D−11 r1‖∞

+(nd + 1)(1 + ‖D−12 D1‖∞)εr + εx + (nd + 1)εrεx

where ε̃ = εw + εx + εxεw. Using ε̃ ≈ εw + εx, expanding (1 − ε̃)−1 ≈ 1 + ε̃, and ignoring
second-order effects (εxεr) throughout yields the recurrence we will consider,

‖D−12 r2‖∞ /
(
(1 + ε̃)‖D−12 δA1(A+ δA1)

−1D1‖∞ + εw‖D−12 D1‖∞
)
‖D−11 r1‖∞

+(nd + 1)(1 + ‖D−12 D1‖∞)εr + εx
(3.5.4)

We will return to the ratio

ρi = (1 + ε̃)‖D−1i−1δAi(A+ δAi)
−1Di‖∞ + εw‖D−1i−1Di‖∞ (3.5.5)

after examining the terminal backward error when refinement succeeds.
The ti term determining the limiting accuracy then is

ti = (nd + 1)(1 + ‖D−1i−1Di‖∞)εr + εx. (3.5.6)

Only the term ‖D−1i−1Di‖∞ depends on the current iteration. This term is a rough measure
of ill-scaling encountered between iterations. Consider the normwise backward error,

‖D−12 D1‖∞ =
‖E‖∞ ‖y1‖∞ + ‖b‖∞
‖E‖∞ ‖y2‖∞ + ‖b‖∞

≤ ‖y1‖∞
‖y2‖∞

+ 1

/
‖dy2‖∞
‖y2‖∞

+ 2.
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If y2 is somewhat close to a solution, we can expect ‖dy2‖∞ � ‖y2‖∞. The componentwise
and columnwise relationships are similar, so we approximate

ti ≈ 3(nd + 1)εr + εx. (3.5.7)

and monitor ‖D−1i−1Di‖∞ for potential failures. These do not occur in any of our tests,
although they could occur when some component of |A||x|+ |b| is nearly zero.

Thus:
Theorem 3.5.1: For a given c and ρ̄, the terminal backward error satisfies

‖D−1i ri‖∞ ≤ (c− ρ̄)−1 (3(nd + 1)εr + εx)

so long as the following assumptions hold:

1. ‖D−1i−1Di‖∞ ≤ 2, and

2. the ratio ρi in Equation (3.5.5) stays less than one.

The first assumption is measurable and testable without significant computational cost.
Monitoring ‖D−1i−1Di‖∞ requires storing an additional vector per solution the worst case,
however. We infer violations of the second assumption from measuring ci = zi+1/zi during
refinement. So long as ci does not exceed c before zi+1 reaches the expected bound, we accept
the answer. This does open the door to possible failure modes, discussed in Section 3.9.

Table 3.2 shows the backward errors we expect to achieve in our model starting from
single precision and a system of dimension around 100. We assume that the assumptions
of Theorem 3.5.1 hold. Note that both computation of the residual and carrying of the
solution must be done in double precision to achieve a double-precision result. However, the
factorization precision does not enter into the terminal precision. Our results match well
with other results and experience [37, 58, 69], although often still overestimates.

3.5.2 Considering the ratio ρi between iterates

We at best can estimate the ratio from Equation (3.5.5),

ρi = (1 + ε̃)‖D−12 δA1(A+ δA1)
−1D1‖∞ + εw‖D−12 D1‖∞.

The limiting accuracy in Theorem 3.5.1 often is an overestimate, so the ti/zi term in
Equation (3.4.5) will produce an underestimate of ρi. As described previously, we rely on
monitoring ci to infer when ρi becomes unacceptably large.

This section sets up an interpretation to help diagnose why iteration may stop prematurely.
Assuming A is invertible,

‖D−12 δA1(A+ δA1)
−1D1‖∞ = ‖D−12 δA1A

−1(I + δA1A
−1)−1D1‖∞

= ‖D−12 δA1A
−1D2D

−1
2 D1D

−1
1 (I + δA1A

−1)−1D1‖∞
≤ ‖D−12 δA1A

−1D2‖∞‖D−12 D1‖∞‖(I +D−11 δA1A
−1D−11 )−1‖∞.
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Description εr εx c ρ̄ Bound

Single-precision εs εs 0.5 0.1 85εs ≈ 5.1e-6
εs εs 0.9 0.1 42.5εs ≈ 2.5e-6

Double residual εd εs 0.5 0.1 2.5εs ≈ 1.5e-7
εd εs 0.9 0.1 1.25εs ≈ 7.5e-8

Double both εd εd 0.5 0.1 85εd ≈ 9.4e-15
εd εd 0.9 0.1 42.5εd ≈ 4.7e-15

Table 3.2: Terminal precisions with nd = 10 (so a system of dimension ≈ 100). Note that both
εr ≤ ε2w and εx ≤ ε2w to achieve double precision: the residual must be computed in double
precision, and the solution must be carried to double precision. The factorization precision
does not directly influence the limiting accuracy but rather the conditions for reaching this
limit.

We relate this to the problem’s conditioning by using |δA1| ≤ p(nd)gεf1r max |A| and ignoring
second-order effects in εf . Then

‖D−12 δA1(A+ δA1)
−1D1‖∞ / ‖D−12 D1‖∞ · p(nd)gεf ccolcond(A−1, diagD2). (3.5.8)

With additional manipulation, we can replace the column-wise condition number ccolcond
with others and absorb a factor of two to replace the c-prefixed condition numbers with their
single-argument counterparts.

Ultimately, Equation (3.5.8) provides a few possible explanations when refinement fails
to converge:

• The problem is too ill-conditioned around the current iterate.

• The factorization encounters large element growth.

• The backward error measure changes too drastically between iterations.

• The system is too large for the factorization precision.

The second and third reasons can be monitored, but failure can occur through a combination
of all four reasons.

3.6 Refining forward error

The backward error is computable, but the forward error requires the unknown true solution
and is not. This section shows that dyi tracks an upper bound for the forward error. Then dyi
follows a recurrence we can analyze as in Section 3.4. Here Di refers to the scale measuring the
forward error. And unlike the backward error, the errors in the factorization, Equation (3.3.2),
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will enter into the forward error. The bound from Equation (3.3.2) influences even the limiting
accuracy.

Assuming convergence to a single solution given enough time,

‖D−1i ei‖∞ = ‖D−1i (yi − x)‖∞ = ‖D−1i
∞∑
j=i

dyj‖∞ ≤
∞∑
j=i

‖D−1i dyj‖∞

If ‖D−1i dyj‖∞ decreases with ratio ρ,

‖D−1i ei‖∞ ≤
1

1− ρ
‖D−1i dyi‖∞, (3.6.1)

so we expect that ‖D−1i dyi‖∞ does track ‖D−1i ei‖∞.
A different analysis by Demmel et al. [35] infers that both decrease by nearly the same

ratio, considering that

‖D−12 e2‖∞ ≤ ‖D−12 (A+ δA2)δA2D1‖∞‖D−11 e1‖∞ + ..., and

‖D−12 dy2‖∞ ≤ ‖D−12 (A+ δA1)δA2D1‖∞‖D−11 dy1‖∞ + ...

differ only by the perturbation to A.

3.6.1 Tracking the forward error by the step size

The error and step size are related through Equation (3.3.2) and a re-expression of Equa-
tion (3.3.1),

r1 = b− Ay1 + δr1 = Ax− Ay1 + δr1 = −Ae1 + δr1, and

r1 = (A+ δA1)dy1.

Combining these,
e1 = −A−1(A+ δA1)dy1 + A−1δr1.

Scaling and taking norms,

‖D−11 e1‖∞ ≤ (1 + ‖D−11 A−1δA1D1‖∞)‖D−11 dy1‖∞ + ‖D−11 A−1δr1‖∞. (3.6.2)

By Equation (3.6.2), the error is related to the step by a (hopefully small) multiplicative
factor and an additive perturbation. The additive term satisfies

‖D−11 A−1δr1‖∞ ≤
∥∥D−11 A−1 ((nd + 1)εr(|A| |y1|+ |b|) + εw|r1|)

∥∥
∞

≤ (nd + 1)εr
∥∥D−11 |A−1| (|A| |y1|+ |b|)

∥∥
∞

+ εw‖D−11 A−1DB1‖∞‖DB
−1
1 r1‖∞

≤ (nd + 1)εr ccond(A, y1, b) + εw · cond · berr, (3.6.3)
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where cond and berr are determined by the arbitrary scaling DB1.
The second term in Equation (3.6.3) should be at most εw if the backward error converges.

This provides one of our tests for relying on estimating the forward error through the step
size. The first term also should be at most εw unless the system is too ill-conditioned or too
large.

For LU , |δA1| ≤ p(nd)gεf1r max |A|, and the ratio

‖D−11 A−1δA1D1‖∞ ≤ p(n2)gεf colcond(A)

If p(nd)gεf colcond(A) ≤ c/εw, then

‖D−11 e1‖∞ / (1 + c)‖D−11 dy1‖∞ + 2εw (3.6.4)

most likely is a large overestimate of ‖D−11 e1‖∞. Equation (3.6.4) shows that unless the
problem is too ill-conditioned, ‖D−1i dyi‖∞ tracks ‖D−1i ei‖∞. If the step dy converges to c′εw,
then the forward error converges to a slightly larger (c′(1 + c) + 2)εw.

3.6.2 Step size

Assuming the step size tracks the error well enough, we expand across iterations to link dy2
to dy1. The end result will not be as straight-forward as Theorem 3.5.1 and relies on A being
invertible. Although the result could be phrased similarly, approximating for a few specific
cases is more useful. We consider the following precision settings:

• fixed-precision refinement with εw = εf = εx = εr;

• extended-precision refinement with εw = εf , εx, εr ≤ ε2w, and

• refinement after a reduced-precision factorization with εf > εw.

Expanding dy2 yields

dy2 = (A+ δA2)
−1r2

= (A+ δA2)
−1(b− Ay2 + δr2)

= (A+ δA2)
−1(b− A(y1 + dy1 + δy2) + δr2)

= (A+ δA2)
−1(b− Ay1 − Ady1 − Aδy2 + δr2)

= (A+ δA2)
−1(r1 − δr1 − Ady1 − Aδy2 + δr2)

= (A+ δA2)
−1((A+ δA1)dy1 − Ady1 − Aδy2 − δr1 + δr2)

= (A+ δA2)
−1δA1dy1 − (A+ δA2)

−1(Aδy2 + δr2 − δr1).

Following the now-common pattern, scaling by the appropriate error measure produces

D−12 dy2 = D−12 (A+ δA2)
−1δA1D2D

−1
2 D1D

−1
1 dy1−

D−12 (A+ δA2)
−1(Aδy2 + δr2 − δr1).
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Note that we introduce a factor of D−12 D1 to relate D−12 dy2 to D−11 dy1. Taking norms,

‖D−12 dy2‖∞ = ‖D−12 (A+ δA2)
−1δA1D2‖∞‖D−12 D1‖∞‖D−11 dy1‖∞+

‖D−12 (A+ δA2)
−1Aδy2‖∞+

‖D−12 (A+ δA2)
−1δr2‖∞ + ‖D−12 (A+ δA2)

−1δr1‖∞.
(3.6.5)

Again, we consider the additive perturbations to determine ti. First consider the contri-
bution of δy2,

‖D−12 (A+ δA2)
−1Aδy2‖∞ = ‖D−12 (A+ δA2)

−1AD2D
−1
2 δy2‖∞

≤ ‖D−12 (A+ δA2)
−1AD2‖∞‖D−12 δy2‖∞

≤ ‖D−12 (A+ δA2)
−1AD2‖∞ · εx.

For the first term,

D−12 (A+ δA2)
−1AD2 = D−12 (I + A−1δA2)

−1D2

= (I +D−12 A−1δA2D2)
−1.

Now we assume D−12 A−1δA2D2 is relatively small. Similar to the analysis in Higham [59, 58],
let there be some matrix F2 such that |F2| ≤ εfp(nd)g|A−1| |A| and (I +A−1δA2)

−1 = I +F2.
Then

‖D−12 (A+ δA2)
−1AD2‖∞ ≤ 1 + εfp(nd)g cond(A, y2).

Ultimately, the contribution of δy2 is bounded by

‖D−12 (A+ δA2)
−1Aδy2‖∞ ≤ (1 + εfp(nd)g cond(A, y2))εx. (3.6.6)

One interpretation of Equation (3.6.6) is that carrying the solution to extra precision εx may
help with forward accuracy when the system is ill-conditioned beyond the expected limits of
εf .

The term depending on δr2 is

‖D−12 (A+ δA2)
−1δr2‖∞ = ‖D−12 (I + A−1δA2)

−1A−1δr2‖∞
= ‖(I +D−12 A−1δA2D2)

−1D−12 A−1δr2‖∞
/ (1 + ‖D−12 A−1δA2D2‖∞)‖D−12 A−1δr2‖∞
≤ (1 + ‖D−12 A−1δA2D2‖∞)·∥∥D−12 A−1 ((nd + 1)εr(|A| |y2|+ |b|) + εw|r2|)

∥∥
∞

≤ (1 + ‖D−12 A−1δA2D2‖∞) ((nd + 1)εr ccond(A, y2)

+εw · cond2 · berr2) .

≤ (1 + εfp(nd)g cond(A, y2)) ((nd + 1)εr ccond(A, y2)

+εw · cond2 · berr2) . (3.6.7)
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The condition number and backward error can be chosen arbitrarily as in Equation (3.6.3).
When considering the normwise forward relative error, ccond(A, y2) can be replaced by
cκ(A, y2) by using normwise bounds for δr2. The contribution of εw · cond2 · berr2 should be
small if the backward error converges below εw as discussed above. However, that leaves two
precisions with balancing condition numbers. If we assume εr ≤ ε2w and the condition numbers
are ≤ 1/εw, then this contribution is ≈ (1 + εf/εw) · εw. If εf ≈

√
εw for a low-precision

factorization as in Langou et al. [69], this forward error bound still will be limited to around√
εw. For that case, condition estimation combined with the backward error will provide

better evidence of success.
The contribution of δr1 is similar with an additional scaling by ‖D−12 D1‖∞,

‖D−12 (A+ δA2)
−1δr1‖∞ ≤ ‖D−12 D1‖∞(1 + εfp(nd)g cond(A, y2)) ((nd + 1)εr ccond(A, y1)

+εw · cond1 · berr1) .

(3.6.8)

The interpretation here is similar.
Altogether, the ti term for dyi is the expression

ti = [1 + εfp(nd)g cond(A, y2)] [εx + εw(cond2berr2

+‖D−12 D1‖∞cond1berr1) + (nd + 1)εr(ccond(A, y2)+

‖D−12 D1‖∞ ccond(A, y1))
]
.

(3.6.9)

Assume that condiberri ≤ 1 by the backward error’s convergence, and that ‖D−12 D1‖∞ ≈ 1
by stability near convergence of the solution2 which can be monitored. Then terminal error
depends on the largest of εx, εw, and εr · ccond(A, yi), multiplied by an accuracy measure of
the factorization. To understand the terminal forward error, consider a few possible precision
settings.

3.6.3 Fixed-precision refinement in double precision

For typical fixed-precision refinement in double precision, εf = εr = εx = εw = εd. Section 3.5
established that we expect the backward error to converge to a multiple of εd. So we do not
expect to achieve results better than εd cond(A, x). Optimistically dropping all second-order
effects, assuming stability of ‖D−12 D1‖∞, and keeping enough terms to interpret, we find the
expected expression

(c− ρ̄)‖D−1i dyi‖∞ / 2(3εd + 2(nd + 1)εd ccond(A, yi)), (3.6.10)

where c and ρ̄ are as defined in Section 3.4. By Equation (3.6.4),

(c− ρ̄)‖D−1i ei‖∞ / 2(5 + 2(nd + 1) ccond(A, yi))εd.

2In this case, we let 0/0 = 1 as opposed to the zero used elsewhere.
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The step size bound and forward error bound increase linearly with the conditioning of
the system. This bound is not an improvement on the standard bounds in Demmel [34] or
Higham [59], but the similar form helps validate our analysis.

3.6.4 Extended and slightly extended precision refinement

Using double-extended precision of the Intel style3, consider slightly extended-precision
refinement with εf = εw = εd and εr = εx = εde = 2−10εd. Then

(c− ρ̄)‖D−1i dyi‖∞ / 2((2 + 2−10)εd + 2−9(nd + 1)εd ccond(A, yi)), (3.6.11)

and
(c− ρ̄)‖D−1i ei‖∞ / 2((4 + 2−10) + 2−9(nd + 1) ccond(A, yi))εd.

This is not appreciably different than the fixed-precision result beyond the factor of 2−9

before the condition number. That factor shifts the error growth slightly with respect
to conditioning. For some applications, this may have been useful when double-extended
precision ran at approximately the same speed (or faster!) than double precision. On current
high-performance Intel and AMD architectures, however, double precision vector operations
run 2×-4× faster than the scalar floating-point operations and require less memory traffic.

The shift in the condition number is far more dramatic when εx ≤ ε2d, as in Demmel et al.
[37, 35]. Then

(c− ρ̄)‖D−1i dyi‖∞ / 2((2 + εd)εd + (nd + 1)ε2d ccond(A, yi)),

and
(c− ρ̄)‖D−1i ei‖∞ / 2((4 + εd) + (nd + 1)εd ccond(A, yi))εd.

If ccond(A, yi) ≤ 1/(ρ̄εd),

‖D−1i ei‖∞ / 2(4 + ρ̄(nd + 1))εd · (c− ρ̄)−1, (3.6.12)

matching well the experimental results achieved in Demmel et al. [37, 35] with nd =
√
n,

c = 0.5, and a safety factor or ρ̄ = 0.1/2 = 0.05 (explained below).
The primary benefit to extending the precision lies in driving the backward error below ε2w

when the system is not too ill-conditioned (O(1/εw)). Then the forward error is at most O(εw)
regardless of other considerations. Telescoping the precision as in Kie lbasiński [66] requires
also extending the working precision along with the other precisions. Nguyen and Revol [78]
examine refinement carrying both to double precision in the context of verifiable computation.
Their verification encounters similar issues with extremely ill-conditioned systems and fails
to validate the solution in that regime.

3Deprecated in future architectures, alas.
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3.6.5 Lower-precision and perturbed factorizations

The rise of fast, single-precision computation in GPUs returned interest in iterative refinement
for providing double-precision backward error from a single-precision factorization [69]. Similar
techniques have been applied to out-of-core sparse matrix factorizations [63]. Perturbing a
factorization to avoid tiny pivots [82, 60, 71, 48, 95, 53] similarly reduces the precision, and
threshold pivot choices to maintain sparsity increase element growth [72, 61].

For a single-precision factorization as in Langou et al. [69], εf = εs and εw = εx = εr = εd.
Assuming that condi · berri ≤ 1 and εd ccond(A, y2) ≤ 1,

‖D−1i dyi‖∞ / (1 + εsp(nd)g cond(A, yi)) (2 + 2nd)εd.

So the bound on dy, and hence ei, is a small multiple of εd until p(nd)g cond(A, yi) grows be-
yond 1/εs. Requiring convergence similar to Equations (3.6.10) and (3.6.11) likely will succeed
only when p(nd)g cond(A, yi) < 1/εs. Beyond that point, we should not expect a double-
precision forward error. Extending the other precisions does not affect the εsp(nd)g cond(A, yi)
term but does lower the 2+2nd term. This analysis does not support double-precision forward
error with extended precision when the factorization is of lower precision and the system is
even moderately well-conditioned.

Threshold pivoting for sparse matrix factorization [49] may cause a similar effect even with
εf = εd by inflating the element growth term g. The growth shifts the effective conditioning of
the system, p(nd)g cond(A, y2), making double-precision forward error less likely. Perturbing
a factorization to preserve sparsity effectively reduces the precision and increases εf by an
amount proportional to the perturbation and again may affect the forward error adversely.
Chapter 5 discusses these mechanisms in more detail and provides numerical results.

3.6.6 Ratio of decrease in dy

As with the backward error, we rely on the decrease in dy to accept or reject the results.
Taking the first term of Equation (3.6.5)’s ratio,

‖D−12 (A+ δA2)
−1δA1D2‖∞ = ‖D−12 (I + A−1δA2)

−1A−1δA1D2‖∞
≤ ‖D−12 (I + A−1δA2)

−1D2‖∞‖D−12 A−1δA1D2‖∞
/ (1 + p(nd)gεf ccond(A, y2)) · p(nd)gεf ccond(A, y2)

using the same techniques as with the backward error decrease. Then

ρ2 / (1 + p(nd)gεf ccond(A, y2)) · p(nd)gεf ccond(A, y2)‖D−12 D1‖∞

in the general recurrence (Equation (3.4.3)). Assuming p(nd)g ccond(A, yi) ≤ 1/εf in the
first term, and assuming ‖D−12 D1‖∞ ≈ 1,

ρi / 2p(nd)gεf ccond(A, yi).
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Targeting ρ̄ = 0.05 should accept systems within a factor of 10 of the “ill-conditioned”
boundary p(nd)g ccond(A, yi) ≤ 1/εf as in Demmel et al. [37, 35]. With c = 0.5, the factor
of (c− ρ̄)−1 in bounds above is less than 2.25. With the aggressive c = 0.9, the factor is less
than 1.25.

3.7 Defining the termination and success criteria

Given the above analysis, we define check berr criteria and check ferr criteria routines in List-
ings 3.4 and 3.5, respectively. These routines assume extended precision for both the internal
solution (εx ≤ ε2w) and residual computation (εr ≤ ε2w). In each, we assume only a single
definition of forward or backward error from Table 2.2 is targeted. Supporting multiple errors
is straight-forward within each routine. We also must choose which backward error to use for
stability in Listing 3.5 For all our later experiments, we base stability off the columnwise
backward error in Equation (2.2.6).

The backward error is available by direct computation. For estimating the forward
error on success, we over-estimate the relationship between the error and step size implied
by Equation (3.6.12). The error estimate is the bound from Equation (3.6.9) doubled to
conservatively over-estimate Equation (3.6.4)’s relationship. On success, this is always a
small multiple of the working precision, so an error estimate may be uninteresting. [37, 35]
track the ratios ci and use the geometric assumption in Equation (3.6.1). However, the error
estimate is only considered trust-worthy if the system is not too ill-conditioned, and the error
in that case always is small. We avoid the issues related to starting and stopping tracking
the ratio but give up error estimates that worked surprisingly well even for ill-conditioned
systems.

As a substitute for monitoring ‖D−1i−1Di‖∞ during the iteration for the forward errors
to catch wide swings in magnitude, we check that minj |Di(j,j)|/maxj |Di(j,j)| ≥ εfci afterward.
Checking once afterward avoids O(n) expense per iteration and, more importantly, O(n)
extra storage. This check is trivial for the normwise forward error but provides a rough-
enough estimate of the componentwise forward error’s difficulty from ccond(A, x) ≤ cond(A) ·
max |x|/min |x|. This will forgo some successes but suffices to prevent missing errors in small
components. Solutions with zero components always report componentwise failure, which
may be inappropriate for block-structured matrices. Future work may investigate limiting
the check to non-zero solution components, but our conservative approach is safe.

3.8 Incorporating numerical scaling

Systems Ax = b passed to solving software often are constructed such that different compo-
nents have different measurement scales. For example, a large chemical vat may be connected
to a small valve. The vastly different scales confuse many error measures and condition
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function state = check berr criteria (state, i, r, A, y, b)
### Check the backward error criteria for the error computed by
### compute berr. Assumes the measure does not change drastically,
### ‖D−1i−1Di‖∞ ≈ 1, and that refinement uses εx ≤ ε2w and εr ≤ ε2w.

5 c lower = 0.9; # Aggressive progress setting.
rho upper = 0.1; # Factor of 10 safety bound.
n d = sqrt (size (A, 1));

r = r{i};
10 S = state.berr;

if isfield (S, ”success”),
return; # Already finished.

endif
15

if isdouble (A),
rprec = 2∗∗−106;
xprec = 2∗∗−106;

else
20 rprec = 2∗∗−53;

xprec = 2∗∗−53;
endif
berr bnd = (c lower − rho upper)∗∗−1 ∗ (3 ∗ (n d + 1) ∗ rprec + xprec);

25

berr = compute berr (r, A, y, b);
## Computes:
## − norm (abs(r) ./ (abs(A) ∗ abs(y) + abs(b)), inf) for componentwise,
## − norm(r, inf) / (norm(A,inf) ∗ norm(y,inf) + norm(b,inf)) for normwise, or

30 ## − norm (abs(r) ./ (max(A) ∗ abs(y) + abs(b))) for columnwise.
if berr <= berr bnd,

S.success = 1;
else

prev berr = state.berr;
35 c = berr / prev berr;

if c >= c lower,
S.success = 0;

endif
endif

40 S.berr = berr;
endfunction

Listing 3.4: Backward error termination criteria.
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function state = check ferr criteria (state, i, y, dy)
### Check the forward error criteria using the step size from
### compute step size (y, dy). Assumes the measure does not change
### drastically, ‖D−1i−1Di‖∞ ≈ 1, and that refinement uses εx ≤ ε2w and

5 ### εr ≤ ε2w. Also assumes the system is not too ill−conditioned by
### requiring that the backward error converge.

c lower = 0.9; # Aggressive progress setting.
rho upper = 0.1; # Factor of 10 safety bound.
n d = sqrt (size (A, 1));

10

if !isfield (state.berr, ”success”),
return; # Backward error has not converged.

endif
15 dy = dy{i};

S = state.step;

if isfield (S, ”success”),
return; # Already finished.

20 endif
if isdouble (A),

wprec = 2∗∗−53;
else

25 wprec = 2∗∗−24;
endif
step bnd = (c lower − rho upper)∗∗−1 ∗ 2 ∗ (2 + rho upper ∗ (n d + 1)) ∗ wprec;
step = compute step size (y, dy);

30 ## For normwise error, step = norm(dy,inf)/norm(y,inf).
## For componentwise error, step = norm(dy./y, inf), with some
## care for 0/0 = 0.

prev step = state.step;
35 c = step / prev step;

if step <= step bnd,
## As a substitute for monitoring ‖D−1i−1Di‖∞ ≈ 1,
## check min diagDi/max diagDi ≥ εf · c.

40 ## Note: The check is trivial for the normwise forward error.
S.success = check relative size (y);
S.ferr est = 2 ∗ step bnd;

elseif c >= c lower,
S.success = 0;

45 endif
S.step = step;

endfunction

Listing 3.5: Forward error termination criteria. The forward error on success is estimated as
twice the larger of the step and the working precision, similar to Equation (3.6.12).
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numbers. A single millimeter error in the vat may go without notice, while a millimeter error
in the valve may be critical. A normwise error would treat all millimeter errors as the same.
Measuring the valve in millimeters and the vat in meters would ameliorate the issue, but
that might cause problems for the user-interface up in the software stack.

Software can cope with some of these problems through numerical scaling. The system
Ax = b is scaled to Asxs = bs using diagonal scaling factors R and C by As = RAC, bs = Rb,
and xs = C−1x. This effectively scales the range and domain norms.

Conditioning in the unscaled system Ax = b is never changed by such numerical scaling,
so the limiting precisions for refinement do not change significantly. The quality of the
factorization, and hence rate of decrease and success rate, can be improved greatly when
working with As. The linear solves inside factorization may work with a more well-conditioned
system, and scaling often reduces element growth. Reducing element growth will prove pivotal4

with static pivoting.
Our different error and step measurements have different levels of invariance to these

scaling factors. Componentwise measures are scale-invariant and need not change at all.
Normwise measures must be measured in the user’s original norms and require slight changes
to the refinement algorithm. Listings 3.6, 3.7, and 3.8 update Listings 3.1, 3.4, and 3.5,
respectively, to incorporate scaling. The values used within the iteration are kept in the
scaled space.

We assume the scaling does not cause new, harmful underflow or overflow. Such cases
can be detected and handled with care if necessary, but doing so significantly complicates
the presentation. Computations of the backward errors compensating for underflow while
recognizing the exact zeros that occur in block matrices become quite baroque.

The simple numerical strategy implemented in Lapack’s xyyEQUB works well for little
cost. First, the column scaling C is computed such that the largest entry in magnitude of
each column in AC is one. Then the rows of AC are scaled such that the largest magnitude
of each is one. That suffices to avoid overflow in many situations and often reduces the entry
growth. This equilibration does not fix all cases of ill-scaling. Consider the ill-scaled matrix0 G G

G g 0
G 0 g

 ,
where G is extremely large and g extremely small. Our equilibration retains this matrix’s
ill-scaling and ill-conditioning, while scaling1/G

1/g
1/g

0 G G
G g 0
G 0 g

1/G
1

1

 =

0 1 1
1 1 0
1 0 1


would remove all numerical issues.

4Pun intended.
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function [yout, success] = itref scaled (R, As, C, x1, bs, MAXITER = 100)
### Function File [xout, success] = itref (A, x1, b[, MAXITER = 100])
### Refine an initial solution x1 to A∗x=b. The result xout contains
### the refined solutions, and success is an opaque structure to be

5 ### queried for the status of xout. The SCALED system As xs = bs is
### used internally, but all termination decisions are made in the user’s
### original norm.

nrhs = dim (x1,2);
xout = zeros (dim (x1, 1), nrhs);

10 for j = 1:nrhs,
state = initial refinement state ();
y{1} = C \ widen(x1); # Store solutions to extra precision εx.
i = 1;
while i < MAXITER,

15 ## Compute this step’s residual: ri = b−Ayi+δri.
## Intermediates are computed in extra precision εr.
r{i} = widen intermediates b − A∗y{i};
state = check berr criteria sc (state, i, rs, R, As, C, y, bs);

20 if all criteria met (state), break; endif

## Compute the increment: (A+δAi)δyi = ri.
dy{i} = A \ r{i};

25 state = check ferr criteria sc (state, i, y, dy, C);
if all criteria met (state), break; endif

## Update the solution: yi+1 = yi + dyi+δyi.

y{i+1} = y{i} + dy{i};
30 i += 1;

endwhile
yout(:,j) = C ∗ y{i}; # Round to working precision.
success{j} = state success (state);

endfor
35 endfunction

Listing 3.6: Iterative refinement of Ax = b in Octave incorporating numerical scaling
RAC = As, Rb = bs. The scaled system Asxs = bs is used internally, but the termination
criteria and error estimates are computed in the user’s original norm.
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function state = check berr criteria sc (state, i, rs, R, As, C, y, bs)
### Check the SCALED backward error criteria for the error computed by
### compute berr sc. Assumes the measure does not change drastically,
### ‖D−1i−1Di‖∞ ≈ 1, and that refinement uses εx ≤ ε2w and εr ≤ ε2w.

5 c lower = 0.9; # Aggressive progress setting.
rho upper = 0.1; # Factor of 10 safety bound.
n d = sqrt (size (A, 1));

rs = rs{i};
10 S = state.berr;

if isfield (S, ”success”),
return; # Already finished.

endif
15

if isdouble (A),
rprec = 2∗∗−106;
xprec = 2∗∗−106;

else
20 rprec = 2∗∗−53;

xprec = 2∗∗−53;
endif
berr bnd = (c lower − rho upper)∗∗−1 ∗ (3 ∗ (n d + 1) ∗ rprec + xprec);

25

berr = compute berr sc (rs, R, As, C, y, bs);
## Computes:
## − norm (abs(rs) ./ (abs(As) ∗ abs(ys) + abs(bs)), inf) for componentwise,
## − norm(R\rs, inf) / (norm(R\As/C,inf) ∗ norm(C∗y,inf) + norm(R\bs,inf)) for normwise, or

30 ## − norm (abs(R\rs) ./ (max(R\A) ∗ abs(y) + abs(R\bs))) for columnwise.
if berr <= berr bnd,

S.success = 1;
else

prev berr = state.berr;
35 c = berr / prev berr;

if c >= c lower,
S.success = 0;

endif
endif

40 S.berr = berr;
endfunction

Listing 3.7: Scaled backward error termination criteria.
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function state = check ferr criteria sc (state, i, y, dy, C)
### Check the SCALED forward error criteria using the step size from
### compute step size sc (y, dy). Assumes the measure does not change
### drastically, ‖D−1i−1Di‖∞ ≈ 1, and that refinement uses εx ≤ ε2w and

5 ### εr ≤ ε2w. Also assumes the system is not too ill−conditioned by
### requiring that the backward error converge.

c lower = 0.9; # Aggressive progress setting.
rho upper = 0.1; # Factor of 10 safety bound.
n d = sqrt (size (A, 1));

10

if !isfield (state.berr, ”success”),
return; # Backward error has not converged.

endif
15 dy = dy{i};

S = state.step;

if isfield (S, ”success”),
return; # Already finished.

20 endif
if isdouble (A),

wprec = 2∗∗−53;
else

25 wprec = 2∗∗−24;
endif
step bnd = (c lower − rho upper)∗∗−1 ∗ 2 ∗ (2 + rho upper ∗ (n d + 1)) ∗ wprec;
step = compute step size sc (y, dy, C);

30 ## For normwise error, step = norm(C∗dy,inf)/norm(C∗y,inf).
## For componentwise error, step = norm(dy./y, inf), with some
## care for 0/0 = 0.

if step <= step bnd,
35 S.success = check relative size (C∗y);

S.ferr est = 2 ∗ max (step, wprec);
else

prev step = state.step;
c = step / prev step;

40 if c >= c lower,
S.success = 0;

endif
endif
S.step = step;

45 endfunction

Listing 3.8: Scaled forward error termination criteria.
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3.9 Potential for failure and diagnostics

In this section, we collect all the assumptions made in our refinement routine. Each assumption
brings with it the potential for failure. Some failure modes can be monitored and reported.
Others, like those related to conditioning, can be at best estimated within reasonable
computational limits.

We make the following over-all assumptions about refinement:

• Underflow is ignorable.

• A related assumption is that the residual is computed accurately enough that accidental
cancellation can be ignored.

• The recurrence terms ρi and ti change little between each iteration.

• The scaling factors defining error measure change little between each iteration,

‖D−1i−1Di‖∞ ≈ 1.

• True zero components converge to zero often enough that we can define 0/0 = 0 where
necessary and suffer infinities from rare failures.

These assumptions affect both the backward and forward error.
If the input is within the range of normalized floating-point numbers, Demmel [32] shows

that underflow does not contribute substantially to the typical error bounds for solving
Ax = b. Underflow could affect refinement by causing a too-small residual scaled back up by
a tiny denominator. With extra precision, the former is unlikely. With numerical scaling, the
latter is extremely unlikely. By not considering underflow in the residual, we avoid issues with
block matrices and zero solution components that caused arbitrarily large backward errors in
earlier versions of Lapack. The extra precision also renders accidental cancellation unlikely.
Using an accurate dot product like the one in Ogita et al. [81] eliminates the problem of
cancellation altogether.

The assumptions about slow changes in the various terms are perhaps the most dangerous.
The changes in ‖D−1i−1D−1i ‖∞ can be monitored, although at O(N) storage cost. Monitoring
that change would also handle changes in the ti terms. Enforcing an upper bound on the
permitted ratio ci should keep fluctuations in ρi under control. Our experiments do not
monitor these changes and do not seem worse for that lack.

True solutions to linear systems may have exact zero components. These appear in
optimization applications when solving for directional derivatives at optimal or saddle points,
in physical models where forces or currents are balanced, etc. Consider the exact zero
solution to Ax = 0. If factorization of As succeeds, the initial solve calculates y = 0 exactly.
The first residual r1 = 0, so the step dy1 = 0. When calculating divisions like |dyi|/|yi|, our
implementation tests for zeros and substitutes the result 0/0 = 0. Ax = b where A is the
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identity matrix and b = [100]T is a sparse right-hand side. The initial solution y1 = b. Again,
r1 = 0 and dy1 = 0. The divisions |dy1(1)|/|y1(1)| = 0/1 = 0 and |dy1(2)|/|y1(3)| = 0/0 ≡ 0 lead to
immediate convergence.

Beyond these, we also make assumptions about the forward error.

• There is a single solution to Ax = b, or equivalently that A is invertible.

• If the backward error converges, the system is stable enough for forward error to make
progress or fail when appropriate.

• The system solved at each iteration is never so ill-conditioned that the step size is too
large compared to the forward error.

• The errors in factorization are relatively small, so (I − AδA)−1 = I + F results in a
relatively small F .

A need not be invertible for the backward error to fall to zero. In that case, we have some
vector in the null space. A must be invertible to find a solution with known forward error.
Lapack’s xyySVX drivers compute κ(As), the normwise condition number of the numerically
scaled matrix, to check that A is invertible. Our non-perturbed test cases are invertible by
construction. Our singular but perturbed sparse systems do not converge to a successful
forward error, but we recommend testing at least κ(As) when using intentionally perturbed
factorizations. That adds five to ten matrix-vector products and system solutions to the total
solution time, however. We find this extra check unnecessary in our partial pivoting test
cases.

When faced with Rump’s outrageously ill-conditioned matrices [91] and random x, our
algorithm either successfully solved the systems (O(εw) errors and bounds) or correctly
reported failure. Consider also Example 2.6 from Demmel [34], modified for single-precision
IEEE754 arithmetic. The example involves the exactly singular matrix

A =

3 · 27 −27 27

2−7 2−7 0
2−7 −3 · 2−7 2−7

 .
We compute and store b = A · [1, 1 + εw, 1]T as single-precision data. Factorization succeeds in
single precision without equilibration, and refinement produces a result with small backward
error. However, the step size never becomes small enough for the forward error to be accepted.

If the step size is large even when the error is small, we may fail to recognize a successful
solution and orbit around that solution. This is a failure of opportunity, but not one of
accepting an incorrect result. Large factorization errors can cause this phenomenon as well.
Our later sparse systems simply fail outright when the perturbations or element growth are
too large.
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3.9.1 Diagnostics

What occurs when the algorithm fails to produce successful errors? The possible failure modes
in this section combined with the assumptions in Sections 3.5 and 3.6 provide a short list of
diagnostics about why refinement failed. Here we briefly discuss the diagnostics. A simple
and useful method for providing these diagnostics to routines and users is outside our scope.
Developing such methods for different users is a problem worthy of future investigation.

The following are non-exclusive causes of failure to converge:

• the system is ill-conditioned,

• the factorization is poor,

• the solution has relatively tiny components (for componentwise forward error), or

• the maximum number of iterations is exhausted.

If refinement terminates because the per-step ratio c > c, we assume one of the first two
reasons applies. If the element growth is substantially large, say 1/

√
εf , some diagnostic

about the factorization quality should be triggered. Otherwise some diagnostic tool should
assume ill-conditioning but possibly a good factorization.

If iteration terminates without converging or declaring a lack of progress, we also can
assume some moderate ill-conditioning. The element growth again helps identify likely poor
factorizations.

Checking if the solution has relatively tiny components is straight-forward and indicates
possible poor column scaling.
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Chapter 4

Iterative refinement for dense, square
linear systems

4.1 Generating dense test systems

We validate our iterative refinement algorithm from Chapter 3 against actual (although
artificial) test systems Ax = b.1 This section expands the test generator in Demmel et al.
[35, 37] for complex systems and double precision. The generator was implemented with
the other authors; this section serves as reference and does not discuss new material. This
section can be skipped if you trust us to test a reasonable range of problems from “easy” or
well-conditioned to “difficult” or ill-conditioned. Section 4.2 presents the results on 30× 30
systems.

4.1.1 Generating dense test systems

The generated dense test systems are spread across a range from very “easy” systems to very
“difficult” ones. The easy systems have reliably accurate factorizations of A and evenly scaled
solutions x. The difficult systems combine a matrix A that is nearly singular for the working
precision with a solution x containing entries of vastly different magnitude. Testing with
nearly singular matrices demonstrates that our refinement algorithm does not flag incorrect
solutions as correct. And testing solutions with relatively tiny entries demonstrates that
refinement achieves componentwise accuracy.

The method for generating these test systems is somewhat ornate. Listing 4.1 provides an
Octave version of the top-level routine. The gen dense test sys routine generates the matrix
A with Listing 4.3’s gen dense test mat. The resulting matrix may be horribly ill-conditioned
and difficult to solve accurately for a true solution. With a possibly ill-conditioned matrix A

1The driver codes and some analysis codes are available through the git meta-project currently at
http://lovesgoodfood.com/jason/cgit/index.cgi/thesis-dist/ .

http://lovesgoodfood.com/jason/cgit/index.cgi/thesis-dist/
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function [A,x,b,xt] = gen dense test sys (assingle=true, asreal=true, \
N=30, nrhs = 4, \
nrandx = 2)

### Function File [A,x,b] = gen dense test sys (assingle, asreal, N, nrhs, nrandx)
5 ### Generate a dense test system A∗x = b. Default values: N = 30,

### nrhs = 4, nrandx = 2, assingle = true, and asreal = true.
### See also: gen dense mat

if (N < 3), error (”Only N>=3 supported.”); endif

10 A = gen dense test mat (N, assingle, asreal);
Amax = max(max(abs(A)));

if isempty (nrandx), nrandx = nrhs; endif

15 b = gen dense test rhs (A, assingle, asreal, nrhs, nrandx);

## We assume the only error in accurate solve() is the
## final rounding to the output precision.
try

20 [x, xt] = accurate solve (A, b);
catch

x = []; xt = [];
warning (lasterr);

end try catch
25 endfunction

Listing 4.1: Generating dense test systems Ax = b. The real accurate solve factors A with at
least quadruple precision and applies refinement with at least octuple-precision residuals and
intermediate solutions.
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function b = gen dense test rhs (A, assingle=true, asreal=true, \
nrhs = 4, nrandx = 2)

N = size (A, 1);
5 if assingle, logcond max = 24; else logcond max = 53; endif

b = zeros (N, nrhs);
if assingle, b = single (b); endif

10 for k = 1:nrhs,
if k <= nrandx,

## Pick a random target solution ”condition” number.
target xcond = 2ˆ(logcond max ∗ rand ()ˆ2);

15 ## Generate an initial random x
xmode = 1 + floor (5 ∗ rand ());
x = xLATM1 (xmode, target xcond, rand () < .5, N,

assingle, asreal);
if xmode <= 4,

20 ## The largest entry is 1 in these modes. That is a
## rather artificial value and may be ”too easy” for
## normwise convergence. Multiply x by a random
## number in (1/2, 3/2) to fill out the number.
x ∗= .5 + rand ();

25 endif
## Generate b with the temporary x.
b(:,k) = A ∗ x;

else
30 ## Generate a random b, possibly with small entries.

target bcond = 2ˆ(logcond max ∗ rand ()ˆ2);
## The mode is fixed; entries are in (1/target bcond,
## 1) with uniformly distributed logarithms.
b(:, k) = xLATM1 (5, target bcond, rand () < .5, N, \

35 assingle, asreal);
endif

endfor
endfunction

Listing 4.2: Generating dense test right-hand sides b for Ax = b.

in hand, gen dense test sys calls gen dense test rhs to generate right-hand sides b. Two different
styles are included. One generates b randomly, and the other generates a random x and
computes b = Ax. The former may produce larger or more ill-scaled solutions x than the
latter. The latter, generating a temporary x, will be projected against any near-null space of
A and test smaller solutions.

We then rely on accurate solve to produce x from A and b. The x, stored in x and xt,
is provided doubled-double. The accurate solve routine signals an error if A is numerically
singular to at least twice the working precision. The low-level test generator solves Ax = b
with quad-double [55] precision.

The matrix-generating routine gen dense test mat in Listing 4.3 begins by chosing a random
target difficulty (2-norm condition number) with a uniformly distributed base-2 logarithm in
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function A = gen dense test mat (N=100, assingle=true, asreal=true)
### Function File A = gen dense test mat (N, assingle, asreal)
### Generate a dense test matrix for testing A∗x = b solvers.
### Default values: N = 100, assingle = true, asreal = true

5 ### See also: gen dense sys
if (N < 3), error (”Only N>=3 supported.”); endif

## Pick a random target condition number.
if assingle, logcond2 max = 26; else logcond2 max = 56; endif

10 target cond2 = 2ˆ(logcond2 max ∗ rand ());

## Generate a diagonal from one of four modes.
mode = 1 + floor (4 ∗ rand ());
D = xLATM1 (mode, target cond2, rand () < .5, N,

15 assingle, asreal);

## Force a leading section of the matrix to be ill−conditioned.
piv = 3∗rand ();
if piv < 1,

20 piv = 3;
elseif piv < 2,

piv = floor (N/2);
else

piv = N;
25 endif

## There is only one large singular value in mode 1
if mode != 1 && piv > 1 && piv < N,

[ignore, idx] = sort (abs (D), ”descend”);
k = idx(1);

30 if k > 1,
tmp = D(k); D(k) = D(1); D(1) = tmp;
## In case the switch impacts the later switches...
idx(idx == 1) = k;

endif
35 k = idx(N);

if k > 2,
tmp = D(k); D(k) = D(2); D(2) = tmp;
idx(idx == 2) = k;

endif
40 k = idx(2);

if k > 2,
tmp = D(k); D(k) = D(piv); D(piv) = tmp;

endif
endif

45

A = full (diag (D));
if assingle, A = single (A); endif
## Multiply the leading block by a random unitary mtx. on the right
A(1:piv,1:piv) = A(1:piv,1:piv) ∗ gen rand Q (piv, assingle, asreal);

50 ## Multiply the trailing block by a random unitary mtx. on the right
A(piv+1:N,piv+1:N) = A(piv+1:N,piv+1:N) ∗ gen rand Q (N−piv, assingle, asreal);
## Multiply all of A a random unitary mtx. on the left
A = gen rand Q (N, assingle, asreal)’ ∗ A;

endfunction

Listing 4.3: Generating dense test matrices for Ax = b.
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(1, 226) for single precision and (1, 256) for double precision. The testing code then generates
a vector using Lapack’s xLATM1, translated to Octave in Listing 4.4. xLATM1 produces a
vector with different patterns of large and small entries depending on the input mode, which
gen dense test mat randomizes. xLATM1 also can randomly switch real entries’ signs or rotate
complex entries around a random angle according to targetsign.

After generating the random vector, gen dense test mat swaps the largest and smallest
magnitude entries into the first two positions and swap the second-largest magnitude entry
into the piv entry where piv is randomly chosen from 3, bn/2c, and n. This will produce an A
such that the leading 1:piv columns are ill-conditioned and the trailing 1+piv:N columns are
not entirely negligible.

To generate a full matrix while preserving both the difficulty (2-norm condition number)
as well as the column split at piv, gen dense test mat finishes by converting the vector to a
diagonal matrix and then applying unitary transforms on the left and right. The transforms
take the form

A = QL
HD

[
QR1 0

0 QR2

]
.

The right unitary transform is split into two diagonal blocks, QR1 for the leading piv columns
and QR2 for the trailing N−piv columns.

4.1.2 The generated dense test systems

Figures 4.1, 4.2, and 4.3 show histograms of our test systems’ difficulties by different measures.
There are one million systems generated for each working precision, single and double, and
each entry type, real and complex.

The value of κ∞(A) plotted in Figure 4.1 is roughly the inverse of the normwise distance
from A to the nearest singular matrix [33]. Figure 4.1 shows that the tests include from 7% to
15% of matrices that are “numerically singular” to working precision. Using extra precision,
the test generator’s accurate solver indicates these matrices actually are not singular. They
do, however, produce a few factorization failures in working precision, and those failures are
useful for testing.

Figure 4.2 reflects the expected difficulty of solving Ax = b for a normwise accurate x
when provided a backward-stable method. Similarly, Figure 4.3 reflects the expected difficulty
of solving Ax = b for an x accurate in every component in the same situation.

The skew towards difficult componentwise problems in Figure 4.3 is expected. Our
tests’ x0-generation is designed to make obtaining componentwise accuracy more difficult.
Generating x0 from xLATM1 produces solutions with varying magnitudes.

Table 4.1 provides the percentage of “difficult” cases in each precision.



CHAPTER 4. REFINEMENT FOR DENSE SYSTEMS 62

function D = xLATM1 (mode, targetcond, togglesign, N, assingle, asreal)
### Function File D = xLATM1 (mode, targetcond, togglesign, N, assingle, asreal)
### Emulate LAPACK’s xLATM1 vector generators.

5 D = zeros(N,1);

## Generate D according to the mode.
switch abs(mode)

case {1}
10 D(1) = 1; D(2:N) = 1/targetcond;

case {2}
D(1:N−1) = 1; D(N) = 1/targetcond;

case {3}
D = targetcond.ˆ(−(0:N−1)/(N−1));

15 case {4}
D = 1 − (0:N−1)/(N−1) ∗ (1 − 1/targetcond);

case {5}
## Randomly in (1/targetcond, 1) with uniformly
## distributed logarithms.

20 D = targetcond.ˆ−rand (N,1);
case {6}

error (”Unused in our tester.”);
otherwise

error (”Unrecognized mode value.”);
25 endswitch

## Force into a column vector, and cast the diagonal to single if
## necessary.
D = D(:);

30 if assingle, D = single (D); endif

## Randomly toggle the signs / spin complex entries
if togglesign,

if asreal,
35 D .∗= 1 − 2∗floor (rand (N,1));

else
args = 2∗pi∗rand (N,1);
D .∗= cos (args) + i∗sin (args);

endif
40 endif

## If the mode is negative, reverse D.
if mode < 0, D = D(N:−1:1); endif

endfunction

Listing 4.4: Generate a random vector with certain value distributions, equivalent to Lapack’s
xLATM1 test routines.
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Figure 4.1: The generated systems Ax = b include 7% to 15% nearly-singular matrices
as shown by this histogram of κ∞(A) for 1 million generated tests, computed in working
precision. The blue line, κ∞(A) = εw, is the boundary where matrices to the right could
be perturbed to singular by a εw-sized perturbation (normwise). The percentages give the
fraction on either side of that line.
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Figure 4.2: This histogram of κ(A, x, b) for 1 million generated tests, computed in working
precision, shows that 10% to 21% of generated systems are “difficult” to solve for an accurate x
normwise. Solving Ax = b with a backwards-stable method implies nothing about the error in
the largest component of x for systems to the right of the vertical blue line, κ(A, x, b) ≥ 1/εw.
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Figure 4.3: Our test generator is skewed strongly towards producing difficult componentwise
problems as shown by the histogram of ccond(A, x, b) for 1 million generated tests, computed in
working precision. Componentwise accuracy requires that every component of the computed
solution is accurate. Generating x0 from xLATM1 systems with relatively small solution
components and skews the data towards difficult. The vertical blue line separates well- from
ill-conditioned, or ccond(A, x, b) ≥ 1/εw. From 20% to 30% are “difficult” to solve with high
componentwise accuracy.
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Precision Kind % Difficult

Single “Numerically singular” 18.7%
Normwise forward error 12.5%

Componentwise forward error 29.5%
Complex “Numerically singular” 20.3%

Normwise forward error 15.0%
Componentwise forward error 29.4%

Double “Numerically singular” 10.0%
Normwise forward error 7.0%

Componentwise forward error 21.2%
Double Complex “Numerically singular” 11.1%

Normwise forward error 8.7%
Componentwise forward error 21.7%

Table 4.1: Percentage of “difficult” cases in our generated dense test suite. The forward error
difficulties depend on the entire system, and our generator produces some right-hand sides
that push the relevant condition number just below the 1/εf threshold.

4.2 Results

The shortened results: Using extra precision within iterative refinement provides a dependable
solution. The real question is how long you must wait for that solution. For large systems
solved only a few times, the cost is utterly dominated by the factorization’s O(N3) growth.
A dependable solution is practically free by using targeted extra precision. For smaller
systems, pre-factored systems, and systems solved many times, limiting the iteration counts
to small numbers (Table 4.2) and removing Demmel et al. [37]’s condition estimators makes
dependable solutions quite inexpensive.

In more detail, we applied Chapter 3’s algorithm without scaling as given in Listing 3.1
to Section 4.1’s test systems. Refinement targeted the most ambitious result, a small
componentwise forward error. The generated test matrices already are well-scaled compared
to practical matrices. Including numerical scaling here does not affect results significantly,
and leaving out numerical scaling provides more stress on the basic refinement algorithm.
Chapter 5’s sparse results do include simple numerical scaling.

Reducing the backward error from εw to ε2w with the slowest decrease permitted (a factor
of 0.9) requires dlog0.9 2−24e = 158 iterations for single precision and dlog0.9 2−53e = 349 for
double precision. This is far too high a limit for practical use. The first batch of results in
Section 4.2.1 permits up to n iterations, where n = 30 is the dimension of the generated
test system. This also is too high a limit to be practical because it increases the asymptotic
complexity of refinement to O(n3). This large limit shows that experiments to 158 or 349
iterations are not necessary. Section 4.2.2 limits the number of iterations to 5 for single



CHAPTER 4. REFINEMENT FOR DENSE SYSTEMS 67

Precision Limit

single 5
double 10

single complex 7
double complex 15

Table 4.2: Imposed iteration limits per precision

precision and 7 for single complex. Doubling the precision roughly doubles the number of
steps necessary in the worst case, so Section 4.2.2 limits double precision to 10 iterations and
double complex to 15. Table 4.2 summarizes the imposed limits.

We do not include results from larger systems, but the iteration limits applied in Sec-
tion 4.2.2 appear sufficient for n up to 1000 at least. As the dimension increases, sampling
truly difficult systems becomes vastly more expensive.

Each estimated condition number requires at least two solutions with A and two with
AT . Estimating normwise and componentwise forward error condition numbers for each
right-hand side would add at least eight solutions of a linear system to the cost. For dense
matrices, this may equate to two to four refinement steps including the cost of the extended
residual. Even for double complex, a significant number of 30 × 30 systems are solved in
fewer than four steps, and condition estimates can double the running time of refinement.
As the dimension increases, the cost is dominated by factorization, but parallel and sparse
implementations benefit from not solving by AT and keeping solve steps to a minimum.

Eliminating all conditioning considerations appears impossible. Testing that

minj |Di(j, j)|
maxj |Di(j, j)|

≥ εfci

is crucial for rendering a dependable componentwise solution. Without that test, some
ill-conditioned systems produced componentwise errors above Equation (3.6.12)’s bound but
were flagged as accurate.

4.2.1 Permitting up to n iterations

Figure 4.4 provides the error results for single precision when refinement targets the com-
ponentwise forward error. Each box in the plot corresponds to a termination state for the
componentwise forward error (right label) and an error measure (top label). The termination
states are explained in Table 4.3, and the error measures are described in Table 4.4. Only the
“Converged” state is accepted as an accurate componentwise forward error; the other states
are flagged as potentially inaccurate for the componentwise forward error measure. “Iteration
Limit” applies when the system still is making progress at the large iteration limit (30).
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State Description

Converged Here ‖D−1i dyi‖∞ ≤ Equation (3.6.4)’s bound
and the solution is accepted as having tiny
componentwise forward error.

No Progress The system has not converged and
‖dyi/dyi+1‖∞ > c = 0.9.

Unstable The componentwise backward error did not
achieve Equation (3.5.7)’s limit before the iter-
ation limit.

Iteration Limit None of the above applied at the iteration limit,
so the system was still making slow progress.

Table 4.3: Description of the termination state labels along the right of the error plots.

Error Measure Description Difficulty

nberr Normwise backward error computed
with Equation (2.2.2) using the doubled-
precision solution.

gκ(A, x)

colberr Columnwise backward error computed
with Equation (2.2.6) using the doubled-
precision solution.

gκ(A, x)

cberr Componentwise backward error computed
with Equation (2.2.5) using the doubled-
precision solution.

gκ(A, x)

nferr Normwise forward error computed with
Equation (2.2.7) using the true solution
computed by Section 4.1.1’s generator.

g colcond(A, x)

nferrx Normwise forward error relative computed
by Equation (2.2.8), measured relative to
the refined result rather than the typically
unknown true solution.

g colcond(A, x)

cferr Componentwise forward error from Equa-
tion (2.2.9).

g ccond(A, x)

cferrx Componentwise forward error from Equa-
tion (2.2.10), relative to the refined solu-
tion.

g ccond(A, x)

Table 4.4: Description of the error labels along the top of the error plots. The difficulties are
the product of Equation (3.3.5)’s growth factor g and the condition numbers from Table 2.3.
We use κ(A, x) rather than ccolcond(A−1, x) for the backward errors.
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Precision Accepted > 30 iterations Unstable No progress

Single 94.17% 1.97% 3.60% 0.25%
Single complex 95.27% 1.30% 3.05% 0.37%
Double 95.27% 1.02% 2.27% 1.45%
Double complex 96.94% 0.43% 1.86% 0.77%

Table 4.5: Population breakdown for refinement termination when iteration is permitted
up to n steps and the algorithm considers cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for

convergence. All accepted solutions have error below the forward componentwise error bound.

Precision Accepted > 30 iterations Unstable No progress
well ill well ill well ill well ill

Single 79.21% 14.96% 0.17% 1.80% 0.95% 2.66% 0.02% 0.23%
Single complex 76.45% 18.82% 0.01% 1.30% 0.71% 2.34% 0.00% 0.37%
Double 86.66% 8.60% 0.06% 0.95% 0.43% 1.84% 0.54% 0.91%
Double complex 85.48% 11.46% 0.00% 0.43% 0.36% 1.50% 0.05% 0.72%

Table 4.6: Population breakdown for refinement termination against conditioning when
iteration is permitted up to n steps and the algorithm considers cberr(A, yi, b) for stability
and ‖D|y|−1i dyi‖∞ for convergence. All accepted solutions have error below the forward
componentwise error bound. A column is labeled “well” when the product of the element

growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the dimensional factor
√
n, and the condi-

tion number for the componentwise forward error ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞ is

below 1/εf . Here εf = 2−24 for single precision,
√

2 · 2−24 for single complex precision, 2−53 for
double precision, and

√
2 · 2−53 for double complex precision. The first bold column shows

the population of samples we gain over Demmel et al. [37] by using the convergence criteria
rather than a condition estimator. The later bold columns are the populations we lose by
not accepting only because the estimated difficulty is small.
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The boxes in each error plot show a two-dimensional histogram of the error measure
against the corresponding difficulty. The population counts within the histogram are a
function of our test generator. The boundaries of the populated regions are more useful
to verify that refinement works. The horizontal red line shows Chapter 3’s bound for each
error measure. There must be no points above that line in the “Converged” state for the
target error measures. The horizontal blue lines denote precisions, the residual computation
precision εr for the backward errors and the returned result precision εw for the forward error.
Note that the backward errors are computed from the doubled-precision solution maintained
during refinement and not the returned, working-precision solution. The vertical blue line
denotes 1/εf , the difficulty at which the factorization may break down.

Table 4.4 provides the difficulty measure for each error measure; the difficulty multiplies
the growth factor from Equation (3.3.5) by the condition number corresponding to the error
measure. We use κ(A, x) rather than Equation (3.5.8)’s ccolcond(A−1, x) for the backward
errors because estimating the former on Chapter 5’s sparse tests is more tractable. The boxes
show all the samples within a given convergence category. So a box with the top label “nberr”
and right label “No Progress” shows the normwise backward error for all those systems that
failed to converge to a tiny componentwise forward error due to lack of progress.

Table 4.5 breaks down the later figures into population percentages. Each entry provides
the percentage of our test cases for the given precision that terminate in the top state. Over
94% are accepted and have small componentwise forward error. Table 4.6 further breaks
down the results by the estimated difficulty used in [37] to determine acceptance. We gain
more than 8% of the population in additional (and correct) acceptance, while losing less than
1%.

Interpreting Figure 4.5, we see that refining the doubled-precision solution drives the
backward errors to their limit of nearly εr ≤ ε2w, and hence the forward error for sufficiently
well-conditioned problems remains below the forward error limit. Basing acceptance on the
final state rather than condition estimation provides a good solution to some systems that
appear ill-conditioned. The componentwise forward errors do approach dangerously close to
their limit.

The systems that are not-too-ill-conditioned and fail to make progress have relatively
small components in the solution. They were generated by choosing a random b vector rather
than a random x and were not in Demmel et al. [37]’s test suite. All those declared unstable
or hit the iteration limit are within a factor of 10 of being considered ill-conditioned.

Single-precision complex results are summarized in Figure 4.5. None of the systems fail
to make progress, possibly because of the slightly looser convergence bound. The precisions
used in complex bounds are larger than the corresponding real precisions by a factor of

√
2

to account for the extra operations. Another possibility is that the test generator simply
does not hit those “difficult” cases and only “easy” or “catastrophic” cases. In some ways,
complex systems are equivalent to real systems of twice the dimension. Sampling difficult
cases is more difficult.

Figure 4.6 shows double precision and Figure 4.7 shows double complex precision results.
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All validate the method across multiple precisions. Tests with larger systems are time-
consuming and present less interesting results; the test generator does not sample enough
difficult larger systems.

4.2.2 Limiting the number of iterations

Figures 4.8, 4.9, 4.10, and 4.11 take a similar form to the error plots but summarize the
number of iterations required for reaching different error targets. In these plots, each column
of boxes is independent. The two-dimensional histograms count the final number of iterations
for each system targeting the error measure along the top and terminating in the state on
the right. The horizontal red line shows our eventual iteration limits (Table 4.2).

Figure 4.9 for single-precision complex results shows an oddity in the normwise forward
error. The “easy” systems that converged but take longer than expected terminate as unstable
when targeting the componentwise forward error. Similar issues appear in Figure 4.11 for
double-precision complex systems. The tiny handful of systems (around 10) in each that fail
to converge within our limits are worth further consideration but might not present a strong
argument for raising the limit.

Given these error limits, Figures 4.12, 4.14, 4.13, and 4.15 show the effects enforcing the
iteration limit. More systems hit the iteration limit, but none are accepted with componentwise
forward error larger than the bound.



CHAPTER 4. REFINEMENT FOR DENSE SYSTEMS 72

Difficulty

E
rr

o
r

2
−60

2
−50

2
−40

2
−30

2
−20

2
−10

2
0

2
−60

2
−50

2
−40

2
−30

2
−20

2
−10

2
0

2
−60

2
−50

2
−40

2
−30

2
−20

2
−10

2
0

2
−60

2
−50

2
−40

2
−30

2
−20

2
−10

2
0

nberr

2
0

2
10

2
20

2
30

2
40

colberr

2
0

2
10

2
20

2
30

2
40

cberr

2
0

2
10

2
20

2
30

2
40

nferr

2
0

2
10

2
20

2
30

2
40

nferrx

2
0

2
10

2
20

2
30

2
40

cferr

2
0

2
10

2
20

2
30

2
40

cferrx

2
0

2
10

2
20

2
30

2
40

C
o
n
ve

rg
e
d

N
o
 P

ro
g
re

s
s

U
n
s
ta

b
le

Ite
ra

tio
n
 L

im
it

% of systems

0.00%

0.01%

0.10%

1.00%

Figure 4.4: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in single precision when iteration is permitted up to n steps and the algorithm considers
cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right show the
convergence status for the componentwise forward error. The labels on the top denote the error
metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr = 2−53 for backward errors, εw = 2−24 for forward errors). Horizontal red lines indicate bounds.
The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.
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Figure 4.5: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in single complex precision when iteration is permitted up to n steps and the algorithm
considers cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right
show the convergence status for the componentwise forward error. The labels on the top denote the
error metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr =
√

2 · 2−53 for backward errors, εw =
√

2 · 2−24 for forward errors). Horizontal red lines indicate
bounds. The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.
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Figure 4.6: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in double precision when iteration is permitted up to n steps and the algorithm considers
cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right show the
convergence status for the componentwise forward error. The labels on the top denote the error
metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr = 2−106 for backward errors, εw = 2−53 for forward errors). Horizontal red lines indicate bounds.
The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.
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Figure 4.7: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in double complex precision when iteration is permitted up to n steps and the algorithm
considers cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right
show the convergence status for the componentwise forward error. The labels on the top denote the
error metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr =
√

2 ·2−106 for backward errors, εw =
√

2 ·2−53 for forward errors). Horizontal red lines indicate
bounds. The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.
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Figure 4.8: Two-dimensional histograms showing the iteration counts relative to the system’s
difficulty in single precision when iteration is permitted up to n steps. The box labels on the
right show the convergence status for the componentwise forward error. The labels on the top
denote the metric being monitored; each column can be considered a separate run of refinement
targeting convergence of the top label. Here, “ndx” implies monitoring ‖dyi‖∞/‖yi‖∞ and “cdx”
implies monitoring ‖dyi/yi‖∞. The difficulty for each column is the product of the element growth

gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the dimensional factor
√
n, and the relevant condition

number. The condition number used for all the backward errors here is κ∞(A−1) = κ∞(A). The

condition number for the normwise forward error is colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the

condition number for the componentwise forward error is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞.

The horizontal red line in the lower plot shows where the iteration will be cut in Section 4.2.2. The
vertical blue line denotes 1/εw = 1/εf , where εf = 2−24 is the precision used to factor A.
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Figure 4.9: Two-dimensional histograms showing the iteration counts relative to the system’s
difficulty in single complex precision when iteration is permitted up to n steps. The box labels on
the right show the convergence status for the componentwise forward error. The labels on the top
denote the metric being monitored; each column can be considered a separate run of refinement
targeting convergence of the top label. Here, “ndx” implies monitoring ‖dyi‖∞/‖yi‖∞ and “cdx”
implies monitoring ‖dyi/yi‖∞. The difficulty for each column is the product of the element growth

gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the dimensional factor
√
n, and the relevant condition

number. The condition number used for all the backward errors here is κ∞(A−1) = κ∞(A). The

condition number for the normwise forward error is colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the

condition number for the componentwise forward error is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞.

The horizontal red line in the lower plot shows where the iteration will be cut in Section 4.2.2. The
vertical blue line denotes 1/εw = 1/εf , where εf =

√
2 · 2−24 is the precision used to factor A.



CHAPTER 4. REFINEMENT FOR DENSE SYSTEMS 78

Difficulty

#
 I
te

ra
ti
o
n
s

5

10

15

20

25

30

5

10

15

20

25

30

5

10

15

20

25

30

5

10

15

20

25

30

nberr

2
0

2
20

2
40

2
60

colberr

2
0

2
20

2
40

2
60

cberr

2
0

2
20

2
40

2
60

ndx

2
0

2
20

2
40

2
60

cdx

2
0

2
20

2
40

2
60

C
o
n
ve

rg
e
d

N
o
 P

ro
g
re

s
s

U
n
s
ta

b
le

Ite
ra

tio
n
 L

im
it

% of systems

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Figure 4.10: Two-dimensional histograms showing the iteration counts relative to the system’s
difficulty in double precision when iteration is permitted up to n steps. The box labels on the
right show the convergence status for the componentwise forward error. The labels on the top
denote the metric being monitored; each column can be considered a separate run of refinement
targeting convergence of the top label. Here, “ndx” implies monitoring ‖dyi‖∞/‖yi‖∞ and “cdx”
implies monitoring ‖dyi/yi‖∞. The difficulty for each column is the product of the element growth

gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the dimensional factor
√
n, and the relevant condition

number. The condition number used for all the backward errors here is κ∞(A−1) = κ∞(A). The

condition number for the normwise forward error is colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the

condition number for the componentwise forward error is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞.

The horizontal red line in the lower plot shows where the iteration will be cut in Section 4.2.2. The
vertical blue line denotes 1/εw = 1/εf , where εf = 2−53 is the precision used to factor A.



CHAPTER 4. REFINEMENT FOR DENSE SYSTEMS 79

Difficulty

#
 I
te

ra
ti
o
n
s

5

10

15

20

25

30

5

10

15

20

25

30

5

10

15

20

25

30

5

10

15

20

25

30

nberr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

colberr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

cberr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

ndx

2
0
2

10
2

20
2

30
2

40
2

50
2

60

cdx

2
0
2

10
2

20
2

30
2

40
2

50
2

60

C
o
n
ve

rg
e
d

N
o
 P

ro
g
re

s
s

U
n
s
ta

b
le

Ite
ra

tio
n
 L

im
it

% of systems

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Figure 4.11: Two-dimensional histograms showing the iteration counts relative to the system’s
difficulty in double complex precision when iteration is permitted up to n steps. The box labels on
the right show the convergence status for the componentwise forward error. The labels on the top
denote the metric being monitored; each column can be considered a separate run of refinement
targeting convergence of the top label. Here, “ndx” implies monitoring ‖dyi‖∞/‖yi‖∞ and “cdx”
implies monitoring ‖dyi/yi‖∞. The difficulty for each column is the product of the element growth

gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the dimensional factor
√
n, and the relevant condition

number. The condition number used for all the backward errors here is κ∞(A−1) = κ∞(A). The

condition number for the normwise forward error is colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the

condition number for the componentwise forward error is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞.

The horizontal red line in the lower plot shows where the iteration will be cut in Section 4.2.2. The
vertical blue line denotes 1/εw = 1/εf , where εf =

√
2 · 2−53 is the precision used to factor A.
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Figure 4.12: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in single precision when iteration is permitted up to five steps and the algorithm considers
cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right show the
convergence status for the componentwise forward error. The labels on the top denote the error
metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr = 2−53 for backward errors, εw = 2−24 for forward errors). Horizontal red lines indicate bounds.
The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.
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Figure 4.13: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in single complex precision when iteration is permitted up to seven steps and the algorithm
considers cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right
show the convergence status for the componentwise forward error. The labels on the top denote the
error metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr =
√

2 · 2−53 for backward errors, εw =
√

2 · 2−24 for forward errors). Horizontal red lines indicate
bounds. The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.
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Figure 4.14: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in double precision when iteration is permitted up to ten steps and the algorithm considers
cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right show the
convergence status for the componentwise forward error. The labels on the top denote the error
metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr = 2−106 for backward errors, εw = 2−53 for forward errors). Horizontal red lines indicate bounds.
The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.
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Figure 4.15: Two-dimensional histograms showing the error populations relative to the system’s
difficulty in double complex precision when iteration is permitted up to 15 steps and the algorithm
considers cberr(A, yi, b) for stability and ‖D|y|−1i dyi‖∞ for convergence. The box labels on the right
show the convergence status for the componentwise forward error. The labels on the top denote the
error metric. A system appears in every box across a row but only once per column. The difficulty for

each column is the product of the element growth gc = maxj
(max1≤k≤j maxi |L|(i,k))·(maxi |U |(i,j))

maxi |A|(i,j) , the

dimensional factor
√
n, and the relevant condition number. The condition number used for all the

backward errors here is κ∞(A−1) = κ∞(A). The condition number for the normwise forward error is

colcond(A, x) =
‖A−1·(1r max |A|) |x|‖∞

‖x‖∞ , and the condition number for the componentwise forward error

is ccond(A, x) =
∥∥|(AD|x|)−1| · |AD|x||∥∥∞. The horizontal blue lines denote the relevant precision

(εr =
√

2 ·2−106 for backward errors, εw =
√

2 ·2−53 for forward errors). Horizontal red lines indicate
bounds. The vertical blue line denotes 1/εw = 1/εf , where εf is the precision used to factor A.



84

Chapter 5

Considerations for sparse systems

5.1 Introduction

One of the primary contributions in Chapter 4 is removing the condition estimators from
Demmel et al. [37]’s iterative refinement algorithm. This is important for solving with sparse
matrices, particularly on distributed memory machines. The second dominant cost after
factorization is solution with triangular matrices[3]. Because of fill-in, numerical entries
required to express L and U but are not in the sparse input matrix A, computing solutions
naturally is more expensive than computing the residual. Common data structures used in
distributed, unsymmetric factorization are not amenable to solving with a matrix’s transpose.
Condition estimation algorithms like Higham and Tisseur [62] rely on solving with A and AT .

This chapter applies our refinement algorithm to sparse test systems. Section 5.2 lists the
matrices chosen from Davis [29] and describes how the systems are generated. Section 5.3
applies the refinement algorithm including numerical scaling from Section 3.8 to sparse
systems solved using unrestricted partial pivoting as well as threshold partial pivoting often
used to reduce fill-in. Section 5.4 uses refinement to clean up after a much more aggressive
pivoting scheme, static pivoting, that chooses pivots before factorization and perturbs the
matrix should a pivot be too small. Static pivoting decouples the symbolic and numeric work
in unsymmetric sparse LU factorization.

The end results:

• Iterative refinement remains dependable. All failures are caught.

• The growth factor (Equation (3.3.5)) plays an important role in a problem’s difficulty.

• When threshold pivoting and static pivoting do not incur a large growth factor, iterative
refinement produces the expected small errors.

• A column-relative static pivoting heuristic performs better than the default heuristic in
SuperLU[71].
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5.2 Generating sparse test systems

Table 5.1 lists the sparse matrices used for testing our refinement algorithm. These matrices
were selected from existing publications comparing factorization accuracy [3, 71, 4] and were
obtained from the UF Sparse Matrix Collection[29]. The sizes range from tiny (gre 115
has 115 rows) to moderately large (pre2 has over 650 000 rows). The majority are fully
unsymmetric but there are eight symmetric and three structurally symmetric but numerically
unsymmetric cases. A few matrices that differ only by scaling are included to test the
numerical scaling.

Table 5.1: Sparse systems used for testing iterative refinement.
Bold matrices are symmetric, Bold, italicized entries are struc-
turally symmetric but not numerically symmetric. A ‡ marks the
two matrices that have sample right-hand sides.

Group Name Dim NENT kind

Zitney hydr1 5308 22680 chemical process simulation prob-
lem

Zitney rdist1 4134 94408 chemical process simulation prob-
lem

Zitney extr1 2837 10967 chemical process simulation prob-
lem

Zitney rdist3a 2398 61896 chemical process simulation prob-
lem

Zitney rdist2 3198 56834 chemical process simulation prob-
lem

Zitney hydr1c 5308 22592 chemical process simulation prob-
lem sequence

Zitney extr1b 2836 10965 chemical process simulation prob-
lem sequence

Zitney radfr1 1048 13299 chemical process simulation prob-
lem

Hollinger g7jac200 59310 717620 economic problem
Hollinger mark3jac140sc 64089 376395 economic problem
Hollinger g7jac200sc 59310 717620 economic problem
GHS indef bmw3 2 227362 11288630 structural problem
FIDAP ex11 16614 1096948 computational fluid dynamics

problem
FIDAP ex19 12005 259577 computational fluid dynamics

problem
Sanghavi ecl32 51993 380415 semiconductor device problem
Wang wang4 26068 177196 semiconductor device problem
GHS psdef bmwcra 1 148770 10641602 structural problem
GHS psdef hood 220542 9895422 structural problem
Norris stomach 213360 3021648 2D/3D problem
Norris torso1 116158 8516500 2D/3D problem

Continued on next page
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Table 5.1: Sparse systems used for testing iterative refinement.
Bold matrices are symmetric, Bold, italicized entries are struc-
turally symmetric but not numerically symmetric. A ‡ marks the
two matrices that have sample right-hand sides.

Group Name Dim NENT kind

HB jpwh 991 991 6027 semiconductor device problem
HB gemat11 4929 33108 power network problem sequence
HB lnsp3937 3937 25407 computational fluid dynamics

problem
HB lns 131 131 536 computational fluid dynamics

problem
HB orsreg 1 2205 14133 computational fluid dynamics

problem
HB lnsp 131 131 536 computational fluid dynamics

problem
HB fs 541 2 541 4282 subsequent 2D/3D problem
HB mcfe 765 24382 2D/3D problem
HB lns 511 511 2796 computational fluid dynamics

problem
HB lns 3937 3937 25407 computational fluid dynamics

problem
HB psmigr 2 3140 540022 economic problem
HB pores 2 1224 9613 computational fluid dynamics

problem
HB gre 115 115 421 directed weighted graph
HB psmigr 3 3140 543160 economic problem
HB mahindas‡ 1258 7682 economic problem
HB gre 1107 1107 5664 directed weighted graph
HB orani678‡ 2529 90158 economic problem
HB psmigr 1 3140 543160 economic problem
HB saylr4 3564 22316 computational fluid dynamics

problem
HB lnsp 511 511 2796 computational fluid dynamics

problem
HB west2021 2021 7310 chemical process simulation prob-

lem
Garon garon2 13535 373235 computational fluid dynamics

problem
Goodwin goodwin 7320 324772 computational fluid dynamics

problem
Vavasis av41092 41092 1683902 2D/3D problem
Bai tols4000 4000 8784 computational fluid dynamics

problem
Bai olm5000 5000 19996 computational fluid dynamics

problem
Bai dw8192 8192 41746 electromagnetics problem

Continued on next page
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Table 5.1: Sparse systems used for testing iterative refinement.
Bold matrices are symmetric, Bold, italicized entries are struc-
turally symmetric but not numerically symmetric. A ‡ marks the
two matrices that have sample right-hand sides.

Group Name Dim NENT kind

Bai af23560 23560 460598 computational fluid dynamics
problem

DNVS ship 003 121728 3777036 structural problem
Graham graham1 9035 335472 computational fluid dynamics

problem
ATandT onetone1 36057 335552 frequency-domain circuit simula-

tion problem
ATandT pre2 659033 5834044 frequency-domain circuit simula-

tion problem
ATandT twotone 120750 1206265 frequency-domain circuit simula-

tion problem
ATandT onetone2 36057 222596 frequency-domain circuit simula-

tion problem
Grund bayer01 57735 275094 chemical process simulation prob-

lem
Mallya lhr71c 70304 1528092 chemical process simulation prob-

lem
Shyy shyy161 76480 329762 computational fluid dynamics

problem

Given a matrix A from Table 5.1, we generate four random right-hand sides b as in
Section 4.1.1. Two of the right-hand sides are generated randomly, and two are generated by
multiplying a random vector by A. Two test systems, orani678 and mahindas, come with
problem-specific sparse right-hand sides. We randomly select two of these right-hand sides
for each of the two systems and include them in our results.

True solutions are generated with partial pivoting in Toledo and Uchitel [98]’s out-of-core
TAUCS code modified to use the author’s dn-arith package.1 The dn-arith package uses
doubled arithmetic on top of the long double type in Standard C[2]. On Intel and AMD
hardware and typical platform settings2, the long double type is an 80-bit-wide format
implementing an IEEE754[64] double-extended format. Doubled long double arithmetic
has at 15 bits of range and least 128 bits of precision, giving better than quadruple precision
accuracy up to the issues of doubled precision discussed earlier.

All matrix factorizations are ordered by Davis et al. [30]’s column approximate minimum
degree ordering. This is not always the best ordering for sparsity, but it suffices to demonstrate
that refinement remains dependable. The systems also are scaled numerically as in Lapack’s
xGEQUB before computing the true solution. Detailed in listing 5.1, the scaling first divides

1Available from the author, currently at http://lovesgoodfood.com/jason/cgit/index.cgi/

dn-arith/ .
2Notably not Windows, which restricts the use of hardware precision.

http://lovesgoodfood.com/jason/cgit/index.cgi/dn-arith/
http://lovesgoodfood.com/jason/cgit/index.cgi/dn-arith/
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function [Sr, As, Sc] = xGEEQUB (A)
### Function File A = xGEEQUB (A)
### Scale an input matrix A by powers of two along the rows
### and columns. The rows first are divided by the largest

5 ### power of two no larger than the largest entry’s magnitude.
### The columns then are scaled similarly. The output
### satisfies Sr ∗ A ∗ Sc = As.

Sr = diag (2.ˆ−floor (log2 (full (max (abs(A))))));
As = Sr ∗ A;

10 Sc = diag (2.ˆ−floor (log2 (full (max (abs(A), [], 2)))));
As = As ∗ Sc;

endfunction

Listing 5.1: Numerical scaling as in Lapack’s xGEQUB.

each row by its largest magnitude entry rounded down to a power of two, and then divides
each column by its largest magnitude entry also rounded down to a power of two. The largest
magnitude value in each row and column is between 1/2 and 2.

The sparse test systems are spread across the difficulty range with respect to both
normwise (Figure 5.1) and componentwise (Figure 5.2) forward error results.

5.3 Refinement after partial and threshold partial piv-

oting

Partial pivoting selects the largest magnitude element remaining in the factored column as the
pivot. Threshold partial pivoting[72] loosens the requirement and selects a sparsity-preserving
pivot (least Markowitz cost[73]) with magnitude within a threshold factor of the largest
magnitude. Partial pivoting can be considered threshold partial pivoting with a threshold of
one. Partial pivoting almost always produces factors with moderate element growth, while
threshold partial pivoting risks inducing larger growth.

Using UMFPACK[28] via GNU Octave[51] followed by extra-precise iterative refinement,
we achieve dependable solutions and accurate solutions for all systems that are not too
ill-conditioned and which do not suffer extreme element growth.3

Including partial pivoting, we experiment with four thresholds: 1.0, 0.9, 0.5, and 0.1.

5.4 Cleaning up after static pivoting

Static pivoting is a very aggressive form of pivoting used to decouple highly parallel numerical
factorization from the symbolic work[71]. Static pivoting with perturbations has been used
for maintaining symmetry in indefinite sparse matrix factorizations[95, 53], proposed as a

3UMFPACK supports threshold partial pivoting and is the default solver in GNU Octave.
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Figure 5.1: This histogram of κ(A, x, b) summarizes the normwise sensitivity of the 232 sparse
test systems to perturbations. We expect good solutions for systems to the left of the vertical
blue line, κ(A, x, b) ≥ 1/εw = 253, so long as the factorization does not incur large element
growth. There are 12 extreme systems with condition numbers beyond the plot to the right.
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Figure 5.2: This histogram of ccond(A, x, b) summarizes the componentwise sensitivity of the
232 sparse test systems to perturbations. We expect good solutions for systems to the left of
the vertical blue line, ccond(A, x, b) ≥ 1/εw = 253, so long as the factorization does not incur
large element growth. There are 16 extreme systems with condition numbers beyond the plot
to the right.
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Figure 5.3: Initial errors by pivoting threshold after solving by sparse LU factorization. A
threshold of one means unrestricted partial pivoting. A threshold of 0.5 means factorization
chooses a pivot with least row degree having magnitude at least 0.5 of the column’s largest
magnitude.
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Figure 5.4: Errors in accepted solutions after refinement by pivoting threshold after solving
by sparse LU factorization. A solution can be accepted normwise when the componentwise
result is not trusted or accepted for both when both are trusted. Note that all solutions
are accepted at least normwise. A threshold of one means unrestricted partial pivoting. A
threshold of 0.5 means factorization chooses a pivot with least row degree having magnitude
at least 0.5 of the column’s largest magnitude.
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Figure 5.6: Iterations required by refinement by threshold
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general pivoting scheme[82], and even included as a textbook exercise[96]. The symbolic
ordering and factorization is more difficult to implement in parallel, but it also requires
less memory and often runs more quickly than the numerical factorization[3, 71]. At the
time of writing, machines with over 40 GiB of main memory can be rented on-demand from
Amazon[65] for $1.50 an hour, and that amount of memory is sufficient for the symbolic
factorization of every matrix in the UF Collection with sufficient care.

Static pivoting selects large elements to use as pivots ahead of time, before any numerical
factorization occurs. Part II investigates one method for choosing pivots that we take as
a given here. If some pivot is found to be too small and hence likely to cause intolerable
element growth, the pivot is perturbed by adding a quantity small relative to the expected
backward error. Ideally, preserving sparsity also limits the number of arithmetic operations
affecting each matrix element, so the large magnitude diagonal entries should remain large.

The perturbation strategy we use increases a tiny pivots’ magnitude to the threshold of
tininess while maintaining its sign. We use three different definitions of tininess for a matrix
A and precision parameter γ:

• SuperLU: ‖A‖1 · γ,

• column-relative: maxi |A(i, j)| · γ,

• diagonal-relative: |A(j, j)| · γ.

The SuperLU heuristic perturbs by an amount relative to the expected backward error. Li
and Demmel [71] take γ =

√
εf =

√
2−53, resulting in a half-precision factorization in the

worst case (see Section 3.6.5 for implications). The author’s experiments with γ = 2−10
√
εf

[86] performed better primarily by reducing the number of perturbations.
To validate dependable iterative refinement, we use three different settings for γ, 2−26 ≈√
εf , 2−38, and 2−43 = 210εf . Each test case is scaled numerically according to Listing 5.1.

We factor using a version of TAUCS modified to support static pivoting. Figures 5.7,
5.14, and 5.21 show the initial errors after factoring with the SuperLU, column-relative,
and diagonal-relative heuristics respectively. The column- and diagonal-relative heuristics
perform fewer and smaller perturbations, and that appears in better initial results. Table 5.2
shows that the diagonal- and column-relative perturbation heuristics provide more successful
solutions than SuperLU’s default heuristic. Figures 5.8, 5.9, and 5.10 show the results after
refining for the componentwise forward error using the SuperLU perturbation heuristic for
different levels of γ. Figures 5.15, 5.16, and 5.17 show the results after refining for the
componentwise forward error using the column-relative perturbation heuristic for different
levels of γ. Figures 5.22, 5.23, and 5.24 show the results after refining for the componentwise
forward error using the diagonal-relative perturbation heuristic for different levels of γ. All
accepted results are below the error threshold. The only “well-enough” conditioned matrices
that fail suffer large element growth from the static pivot selection except for the cases with
sparse right-hand sides. These cases give up on the componentwise backward error nearly
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Level and heuristic Result
Trust both Trust nwise Reject

2−43 = 210 · εf
SuperLU 42.9% 8.0% 49.0%
Column-relative 55.7% 5.7% 38.6%
Diagonal-relative 55.8% 5.9% 38.3%

2−38 =≈ 2−12 · √εf
SuperLU 36.6% 6.7% 56.6%
Column-relative 52.4% 6.5% 41.2%
Diagonal-relative 53.7% 7.2% 39.1%

2−26 ≈ √εf
SuperLU 32.4% 4.0% 63.6%
Column-relative 42.2% 4.2% 53.6%
Diagonal-relative 47.4% 4.7% 47.9%

Table 5.2: Success rates regardless of difficulty for each perturbation level and heuristic show
that both the column- and diagonal-relative heuristics perform better than the SuperLU
heuristic. Smaller perturbations perform better than larger, although the payoff appears
to level off shortly below

√
εf . Plots show that almost all of the rejections are appropri-

ate; rejected systems are “too difficult” relative to the factorization precision εf and the
perturbation size. Smaller perturbations accept a wider range of difficulties.

immediately. Using the column-relative backward error should fix these cases. Figures 5.11,
5.12, and 5.13 show the sometimes large iteration counts using the SuperLU heuristic with
different γ settings. Figures 5.18, 5.19, and 5.20 show the sometimes large iteration counts
using the column-relative heuristic with different γ settings. Figures 5.25, 5.26, and 5.27
show the sometimes large iteration counts using the diagonal-relative heuristic with different
γ settings. These are iteration counts for the componentwise forward error. Users wishing
only a normwise backward error near εw need wait only two to four iterations.



CHAPTER 5. CONSIDERATIONS FOR SPARSE SYSTEMS 96

Difficulty

E
rr

o
r 

/ 
s
q
rt

(m
a
x
 r

o
w

 d
e
g
.)

2
−60

2
−50

2
−40

2
−30

2
−20

2
−10

2
0

2
−60

2
−50

2
−40

2
−30

2
−20

2
−10

2
0

2
−60

2
−50

2
−40

2
−30

2
−20

2
−10

2
0

nberr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

colberr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

cberr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

nferr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

nferrx

2
0
2

10
2

20
2

30
2

40
2

50
2

60

cferr

2
0
2

10
2

20
2

30
2

40
2

50
2

60

cferrx

2
0
2

10
2

20
2

30
2

40
2

50
2

60

2
^1

0
 * e

p
s

2
^−

1
2
 * s

q
rt(e

p
s
)

s
q
rt(e

p
s
)

% of systems

0.1%

0.3%

1.0%

3.2%

Figure 5.7: Initial errors by γ for the SuperLU heuristic. Here γ denotes a multiple of ‖A‖1
below which pivots are perturbed until their magnitude reaches γ‖A‖1, and eps denotes the
double-precision factorization (eps = 2−53). The label sqrt(eps) denotes 2−26 ≈
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Figure 5.8: Errors after refinement for perturbations of size up to γ = 210εf = 2−43 for the
SuperLU heuristic show that refinement renders static pivoting dependable. The errors are
scaled by the square-root of the maximum row degree in L+ U to normalize by the size cN .
The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.9: Errors after refinement for perturbations of size up to γ = 2−38 for the SuperLU
heuristic show that refinement renders static pivoting dependable. The errors are scaled
by the square-root of the maximum row degree in L+ U to normalize by the size cN . The
vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.10: Errors after refinement for perturbations of size up to γ = 2−26 ≈ √εf for the
SuperLU heuristic show that refinement renders static pivoting dependable. The errors are
scaled by the square-root of the maximum row degree in L+ U to normalize by the size cN .
The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.11: Iterations required by refinement for γ = 210εf = 2−43 for the SuperLU heuristic.
The right-hand label is the final status of the solution.
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Figure 5.12: Iterations required by refinement by γ = 2−38 for the SuperLU heuristic. The
right-hand label is the final status of the solution.
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Figure 5.13: Iterations required by refinement by γ = 2−26 ≈ √εf for the SuperLU heuristic.

The right-hand label is the final status of the solution.
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Figure 5.14: Initial errors by γ for the column-relative heuristic. Here γ denotes a multiple
of ‖A‖1, and eps denotes the double-precision factorization (eps = 2−53). The label sqrt(eps)
denotes 2−26 ≈
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2−53.
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Figure 5.15: Errors after refinement for perturbations of size up to γ = 210εf = 2−43 for the
column-relative heuristic show that refinement renders static pivoting dependable. The errors
are scaled by the square-root of the maximum row degree in L+ U to normalize by the size
cN . The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.16: Errors after refinement for perturbations of size up to γ = 2−38 for the column-
relative heuristic show that refinement renders static pivoting dependable. The errors are
scaled by the square-root of the maximum row degree in L+ U to normalize by the size cN .
The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.17: Errors after refinement for perturbations of size up to γ = 2−26 ≈ √εf for the
column-relative heuristic show that refinement renders static pivoting dependable. The errors
are scaled by the square-root of the maximum row degree in L+ U to normalize by the size
cN . The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.18: Iterations required by refinement for γ = 210εf = 2−43 for the column-relative
heuristic. The right-hand label is the final status of the solution.
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Figure 5.19: Iterations required by refinement by γ = 2−38 for the column-relative heuristic.
The right-hand label is the final status of the solution.
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Figure 5.20: Iterations required by refinement by γ = 2−26 ≈ √εf for the column-relative

heuristic. The right-hand label is the final status of the solution.
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Figure 5.21: Initial errors by γ for the diagonal-relative heuristic. Here γ denotes a multiple
of ‖A‖1, and eps denotes the double-precision factorization (eps = 2−53). The label sqrt(eps)
denotes 2−26 ≈

√
2−53.
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Figure 5.22: Errors after refinement for perturbations of size up to γ = 210εf = 2−43 for the
diagonal-relative heuristic show that refinement renders static pivoting dependable. The
errors are scaled by the square-root of the maximum row degree in L+ U to normalize by
the size cN . The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.23: Errors after refinement for perturbations of size up to γ = 2−38 for the diagonal-
relative heuristic show that refinement renders static pivoting dependable. The errors are
scaled by the square-root of the maximum row degree in L+ U to normalize by the size cN .
The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.24: Errors after refinement for perturbations of size up to γ = 2−26 ≈ √εf for the
diagonal-relative heuristic show that refinement renders static pivoting dependable. The
errors are scaled by the square-root of the maximum row degree in L+ U to normalize by
the size cN . The vertical blue line is 1/εf = 253, and the vertical red line is 1/γ.
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Figure 5.25: Iterations required by refinement for γ = 210εf = 2−43 for the diagonal-relative
heuristic. The right-hand label is the final status of the solution.
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Figure 5.26: Iterations required by refinement by γ = 2−38 for the diagonal-relative heuristic.
The right-hand label is the final status of the solution.
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Figure 5.27: Iterations required by refinement by γ = 2−26 ≈ √εf for the diagonal-relative

heuristic. The right-hand label is the final status of the solution.
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Part II

Scalability: Distributed Bipartite
Matching for Static Pivoting
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Chapter 6

Matching and linear assignment
problems for static pivot selection

6.1 Introduction

Scientific computing applies computational tools to scientific investigations. The tools generate
data from models and then analyze data for conclusions. Many of these computational tools
are numerical. In other words, the majority of the computer work consists of arithmetic
operations on floating-point numbers. And many of these numerical tools can take advantage
of large parallel computers for solving large problems. In general, the more numerical the
tool, the more likely someone has used parallel computers to attack large problems.

But some large problems require less numerical arithmetic and more symbolic data
manipulation. For example, searching protein databases for alignment matches interleaves
bursts of calculation with large amounts of data manipulation[23]. Problems which involve
searching for structures often have irregular structure themselves, and following the irregular
structure requires symbolic work. Routines which support numerical computations, like
those which assign processors to tasks [21], are highly symbolic. And within linear algebra,
manipulations on general sparse matrices require significant efficient, irregular, and symbolic
work to make sparsity worth-while [3].

The irregular symbolic calculations need to run in the same parallel and distributed
environment as the numerical work does. Our goal herein is to examine one highly symbolic
kernel from sparse matrix algorithms, to provide a parallel implementation, and to analyze
its parallel performance. Weighted bipartite matching is used to pre-process matrices for
parallel factorization [71], find appropriate basis vectors for optimization [83], and permute
sparse matrices to block-triangular form [84]. More generally, weighted bipartite matching
applies to many of the searching problems above. It also provides a central building-block for
approximation algorithms related to many NP-complete problems.

Our central goal is to provide a distributed memory algorithm and implementation for
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weighted bipartite matching. The matching will be used in SuperLU[71] for selecting static
pivots. Section 5.4 demonstrates that we can produce dependable solutions with static
pivoting. This part demonstrates a memory-scalable algorithm for choosing those pivots.

Previous work on parallel matching algorithms have found at most moderate speed-ups,
and the algorithms assume that the entire graph is available on all processors. We generalize
and implement the auction algorithm[12] for distributed computation. This algorithm gives
an implementor a wide range of options for splitting up the computation, and we take full
advantage to hide latencies and avoid synchronization. In the end, we find moderate speed-ups
for many sparse problems, although the algorithm is plagued by horrible and unpredictable
slow-downs on some problems.

6.2 Bipartite graphs and matrices

Throughout, let G = {R, C; E} be a bipartite graph with vertex sets R and C and edge set
E ⊂ R× C. The vertices are separately enumerated, and we refer to them by number. So
R = {0, 1, . . . ,m − 1} and C = {0, 1, . . . , n − 1} with cardinalities |R| = m and |C| = n.
Unless otherwise noted, bipartite graphs are ‘square’, and |R| = |C| = n. We can assume
non-square graphs have n < m by transposing (swapping R and C) if necessary.

All graphs we consider will have the same R and C as vertex sets. We abbreviate edges:
ij ∈ E with i ∈ R and j ∈ C. We say ij covers vertices i and j, and that i and j are adjacent
to ij and each other. Also, we say i is in E if any edge in E covers i. Vertices with names
based off i (e.g. i1, i

′) will always be in R, and j in C. Because we use the same vertex sets
for all graphs, an edge set S ⊂ R× C often will be referred to as a graph itself, meaning the
graph {R, C;S}.

With any edge set (graph) E on R and C we associate a {0, 1}-matrix A(E), a specialized
adjacency matrix. A standard adjacency matrix would have dimension 2n×2n, but a bipartite
graph admits a compressed, n × n representation. Vertices from the set R correspond to
rows, and those from C to columns. We will often refer to vertex i as a row and vertex j as a
column. Let A = A(E) be the adjacency representation of G. The entry at the ith row and
jth column of A is denoted A(i, j), and the adjacency representation of E is

A(i, j) =

{
1 if ij ∈ E , and

0 otherwise.

We will often conflate a graph, its edge set, and its adjacency matrix. Given a matrix A from
edge set E , saying ij ∈ A is equivalent to A(i, j) = 1 and ij ∈ E .

Given a graph G = {R, C; E}, a matching on G is an edge set M ⊂ E such that any
vertex in G is covered by at most one edge in M. If ij ∈ M, then no other ij′ or i′j is in
M. If |M| ≡ min{|R|, |C|} = min{m,n}, we call M complete. A complete matching on a
square graph is also called perfect. A matching that is not complete is partial, although we
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may refer also to a matching as partial to indicate that we do not know if it is complete or
not. A vertex appearing in M is considered covered or matched by M. A vertex not in M
is uncovered or exposed.

The matrix representation M = A(M) has additional structure beyond that of a general
edge set’s representation. Because M is a matching, any unit entry is the only unit entry
on its row or column. If M is a perfect matching, then |M| = n and M has exactly n unit
entries, one per row and one per column. M is thus a permutation matrix. If B is some
matrix with rows from R and columns from C, then the action MTB serves to relabel the
rows to match the columns. If ij ∈M , the jth diagonal entry of MTB is B(i, j).

If 1r is an m-long column vector of unit entries, and 1c is a similar n-long column vector,
then the vectors M1c and MT1r for a general matching M are {0, 1}-vectors. If M is a
perfect matching, then

M1c = 1r, and

MT1r = 1c.

We use the subscripts to denote the vertex set from which the vector indices are drawn. So
vr = M1c implies that ∀i ∈ R, vr(i) =

∑
j∈CM(i, j)1c(j) ∈ {0, 1}. An expression like 1Tr 1c is

ill-formed with this convention; we would be conflating vertices from R and C. However, 1r1
T
c

is a perfectly acceptable matrix of all ones with rows drawn from R and columns from C.

6.3 Maximum cardinality matchings

How do we know if a bipartite graph G admits a complete matching? There is a classical
theorem of Hall [40] stating that every set of vertices on one side having at least as many
neighbors on the other is necessary and sufficient. But rather than forming every possible set
and testing its neighbors, we will use another classical result relating matchings and certain
paths in G.

First, we construct a partial matching X with the simple, greedy algorithm in Listing 6.1.
Listings use the programming language Python [99] as an executable pseudocode. Arrays are
from Numeric Python [45] and are passed by reference. Data structures and non-obvious
syntax will be explained in code comments, lines beginning with #, or the quoted strings
after definitions.

Given a partial matching, we extend its cardinality through augmenting paths. An
alternating path is a path in G which starts at any unmatched vertex and which alternates
non-matching and matching edges. Alternating paths are cycle-free. An augmenting path
is an alternating path which ends at an unmatched vertex. Another classical result relates
augmenting paths to matchings.
Theorem 6.3.1 (Berge, Norman and Rabin): A matching X is maximum if and only if it
admits no augmenting paths. [70]
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def greedy matching (A):
”””Construct a partial matching for the bipartite
graph represented by A. A is a sparse matrix; the
explicitly stored entries are the edges of the graph.

5

Returns an A.nrows()−long array X r, where j == X r[i]
means ij is a matching edge. If X r[i] == −1, then i
has no match.
”””

10 m = A.ncols()
# fill X r with −1
X r = −ones( A.nrows() )
# iterate over j in [0,m), excluding m
for j in range(m):

15 # iterate over tuples of (i, A(i,j)) in the
# jth column of A
for (i, ) in A.col(j):

if X r[i] < 0:
X r[i] = j

20 break
return X r

Listing 6.1: Greedy bipartite matching

If an augmenting path begins at a j ∈ C, it must end at some i ∈ R. Given an augmenting
path P , we can increase the size of the matching X by one. To do so, remove from X each of
the matching edges in P and add the non-matching edges, as shown in Listing 6.2.

So to find a maximum cardinality matching, we take some partial matching and find and
apply a sequence of augmenting paths. Finding an augmenting path is easy. Starting from
any unmatched j ∈ C, look at all its neighbors in R. If any such i is unmatched, we have a
trivial augmenting path. If all such i are matched, pick one and let j′ be its match. We can
consider (j, i, j′) a potential two steps of an augmenting path. Adding ij and removing ij′

from X would leave j′ free, so continue searching as if j′ were free. One algorithm following
these ideas is Duff’s Mc21 [46].

This algorithm has a worst-case complexity of O(n|E|), so O(n3) if E = R×C. Practically,
sparse graphs, those with |E| = O(n) see linear run times. More complicated algorithms apply
flow-based ideas to maximum cardinality matching. The best such algorithm, by Edmonds
and Karp [52], runs in O(

√
n|E|) time.

Note that applying the first two steps along an augmenting path, adding the first edge
and (implicitly) removing the second, leaves a matching and a shorter augmenting path. So
long as we know that (j, i, j′) appear along some augmenting path, we can remove ij′ from
and add ij to X before knowing the rest of the path. This property, that an augmenting
path can be partially applied, appears again in the auction algorithm.
Theorem 6.3.2: Let M be a matching which admits an augmenting path P starting from
some j ∈ C. Let the first steps of P be (j, i, j′). Augmenting M with these steps and removing
them from P produces a new matching M ′ and path P ′. Then P ′ is an augmenting path for
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def augment path (X r, j, i list):
”””Augment the matching X r. The augmenting path
begins at column j. The rows are given in i list;
the last row must be unmatched.

5 ”””
for i in i list:

# j should be −1 only at termination
assert −1 != j
nextj = X r[i]

10 X r[i] = j
j = nextj

# the last i should be unmatched
assert −1 == j

15 def r augment path (X r, j, i list):
”””Recursive version of augment path for exposition.
After a single augmentation, X r is still a matching,
and the tail of i list, i list[1:], is again an
augmenting path.

20 ”””
if −1 == j or i list.empty(): return
i = i list[0]
nextj = X r[i]
X r[i] = j

25 return r augment path (X r, nextj, i list[1:])

Listing 6.2: Augment a matching

M ′ starting from j′ ∈ C.

6.4 From combinatorics to linear optimization

So far, we have approached matching problems from a traditional, combinatorial view. This
view is sufficient for finding maximum cardinality matchings. To find weighted matchings,
we need machinery from a more general mathematical optimization framework.

As noted in the previous section, if X is a perfect matching, it satisfies the following
constraints:

X1c = 1r, (6.4.1)

XT1r = 1c, and (6.4.2)

X ≥ 0, (6.4.3)

where the inequality is applied element-wise. These constraints define the assignment polytope.
Bipartite matching problems will be stated as optimization problems over this polytope.

To support these optimization problems, we introduce two classical results:
Theorem 6.4.4 (Birkhoff): The vertices of the assignment polytope are the n×n permutation
matrices. [16, 100, 50]
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def maxcard mc21 (A):
”””Find a maximum cardinality matching on A.
Algorithm due to Duff, 1981.
”””

5 (m,n) = A.dims()
X r = −ones( (m) )
# mark which vertices have been seen so far. If
# seen[i] >= seen phase, we’ve seen i in this pass.
seen = zeros( (m) )

10 seen phase = 0

def recurse (j):
# Look for an unmatched i first.
for i in A.colind(j):

15 if X r[i] < 0:
X r[i] = j
return 1

# If all i are matched, recurse along their
20 # match edges.

for i in A.colind(j):
if seen[i] >= seen phase: continue
seen[i] = seen phase

25 jnew = X r[i]
if recurse (jnew):

# toggle along the augmenting path
X r[i] = j
return 1

30

for j0 in xrange(n):
# essentially, clear the seen flags
seen phase += 1

35 recurse (j)
return X r

Listing 6.3: Maximum cardinality matching: MC21
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Theorem 6.4.5: Extreme values of a linear optimization problem occur at the vertices of
the constraint polytope. [19]

Together, these theorems state that any linear objective over the constraints (6.4.1)–
(6.4.3) will achieve its extreme value at a permutation matrix. If the unit entries in the
permutation matrix correspond to edges in G, then we have a perfect matching optimizing
the objective.

With X = A(M) representing a matching M on G, and A representing G itself, the
number of edges in M is

|M| =
∑
ij∈E

X(i, j) = TrATX.

This function is linear in X, suggesting the following optimization problem:

Optimization Problem 6.4.6 (Maximum Cardinality Matching). Let A
be the n× n matrix representing G = {R, C; E} with A(i, j) = 1 if ij ∈ E
and 0 otherwise. Then the maximum cardinality matching problem is to

maximize
X∈<n×n

TrATX (6.4.6a)

subject to X1c = 1r, (6.4.6b)

XT1r = 1c, and (6.4.6c)

X ≥ 0. (6.4.6d)

By Theorem 6.4.5, the maximum occurs at a vertex. And Theorem 6.4.4 states that the
vertex is a permutation matrix. But is X necessarily a complete matching on G? Not if G
has no complete matching. Consider a graph with no edges, E = ∅. Then any permutation
matrix achieves the maximum of (6.4.6a), which happens to be zero. The maximum is indeed
the size of the maximum cardinality matching, and we can find that matching by defining
M = {ij | ij ∈ X and ij ∈ E}.

6.5 Related work

We are not the first to tackle parallel weighted bipartite matching, also known as the
linear assignment problem. Parallel approaches exist even for the auction algorithm we
implement[11, 15, 101], but none run on modern, distributed-memory computers. The only
distributed memory auction algorithm we can find[22] has been tested only on artificial
examples yet still suffers the same performance issues we find in Chapter 8.5. That algorithm
also does not consider approximating the solution.

The auction algorithm we choose is not the only approach, either. The first proposed
algorithm in von Neumann [100] required exponential time. The first polynomial-time
algorithm is the Kuhn-Munkres Hungarian algorithm[67], noted to be O(n4) on dense instances
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by Munkres [77], later tuned to O(n3) by Edmonds and Karp [52]. For dense instances, this
remains an excellent method although as expensive asymptotically as matrix factorization.
Amestoy et al. [5] attempt to short-cut the Kuhn-Munkres algorithm by determining feasible
dual variables through numerical equilibration algorithms[90] then checking if there exists a
greedy matching. The approach has some success but is not universal.

The Hungarian algorithm is a dual-based algorithm (see the optimization framework
in Section 6.4) that works by extending augmenting paths. Working more directly with
augmenting paths while manipulating the primal and dual leads to algorithms like those in
MC64[47]. Parallel augmenting path approaches for older architectures also exist[104].

Flipping the problem into an equivalent flow- or circulation-based problem opens the door
to parallel flow methods. Some have been published for shared memory machines[7], but
distributed memory approaches for weighted (capacitated in the flow terminology) problems
seem non-existent. More recent approaches to the unweighted problem deploy interesting
heuristics to balance the communication and computation time[68], but it is unclear if the
method can adapt to the weighted case.

Burkard and Çela [20] surveys the wide, wide variety of algorithms. We cannot cover
every method here, but we do note that simplex methods tend to perform very poorly
on weighted bipartite matching problems. Interior point algorithms are interesting and a
potential route for the future, but converting fractional solutions into the integer solutions
we need is challenging[10].

6.6 The benefit matrix

If the maximum value achieved by Problem 6.4.6 is not n, then we know that G has no
perfect matching. If the non-zero entries of A were arbitrary real-valued weights rather than
ones, the result would not be as clear-cut. Anticipating our problems, consider a matrix B
defined with entries

B(i, j) =

{
1 if ij ∈ E , and

−∞ otherwise.

The product BTX involves 0 · −∞, and so is generally undefined. However, X represents an
edge set. We define TrBTX =

∑
ij∈X B(i, j) to avoid the problems with 0·−∞. Alternatively,

a non-existent edge does not contribute to a weight, so we could simply define 0 · −∞ = 0.
This definition will be consistent with all our uses.

Consider maximizing TrBTX over the assignment polytope. By construction, the maxi-
mum is −∞ if and only if G has no perfect matching. This is true so long as all the entries
in B corresponding to edges in E are finite.

Assume we are given a real valued weighting function b(i, j) defined on the edges in E .
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Then the benefit matrix is

B(i, j) =

{
b(i, j) if ij ∈ E , and

−∞ otherwise.
(6.6.1)

This is equivalent to extending b’s domain to all R× C by setting b(i, j) = −∞ when ij 6∈ E .
Note that we can allow b(i, j) = −∞ if ij ∈ E , ‘deleting’ the edge ij, refusing to permit ij

in the final matching. This can be quite useful for implementations. To simplify discussions,
we assume that b(i, j) is always finite when ij ∈ E . However, setting b(i, j) = ∞ does not
force (i, j) to be in a complete matching. The edge ij may not occur in any complete matching
on G. Setting b(i, j) =∞ also hides the benefits of other edges, as TrBTX =∞ whenever
ij ∈M. The auction algorithm in Chapter 7 instead uses an infinite dual variable to force
an edge into a matching.

6.7 The linear assignment problem

We want to find a ‘best’ matching on a bipartite graph G. To find a ‘best’ matching, we
need a way to rate matchings. We choose a simple weighting: the sum of benefits b(i, j) for
each ij ∈ M. This benefit function b provides a real-valued weight for each edge ij ∈ E .
Representing a complete matching as a permutation matrix X (Section 6.2) and defining a
benefit matrix from b and G (Section 6.6) leads to a well-known linear optimization problem,
the linear assignment problem. Notationally this problem is a slight change to Problem 6.4.6,
replacing the 0-1 adjacency matrix A with a real-valued benefit matrix B.

Optimization Problem 6.7.1 (The Linear Assignment Problem, LAP).
Let B be an n× n matrix with entries in < ∪ {−∞}, and let 1r and 1c be
n-long column vectors with unit entries. The linear assignment problem,
or LAP, is to

maximize
X∈<n×n

TrBTX (6.7.1a)

subject to X1c = 1r, (6.7.1b)

XT1r = 1c, and (6.7.1c)

X ≥ 0. (6.7.1d)

As stated, the lap is always feasible, even when G has no complete matchings. We define
B in Section 6.6 so that TrBTX = −∞ when G has no complete matching, and we will
call this an insoluble problem rather than an infeasible one. Every solution to the lap is a
permutation matrix, but not every permutation matrix corresponds to a matching on G.
Theorem 6.7.2: Let B be defined from G and b in Section 6.6, let X∗ be a solution to the
lap. Then X∗ represents a complete matching on G if and only if TrBTX∗ > −∞.
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Proof. By Theorems 6.4.5 and 6.4.4, the solution X∗ is a permutation matrix. We first
demonstrate that TrBTX∗ > −∞ implies that X∗ represents a complete matching.

Treat BTX∗ as a relabeling (or equivalently let 0 · −∞ = 0). The jth diagonal entry of
BTX∗ is B(i, j) where X∗(i, j) = 1. The sum of the diagonal entries is > −∞ if and only
if each B(i, j) > −∞. By construction, this only occurs when b(i, j) is defined, and hence
ij ∈ E . So the n unit entries in the permutation matrix X∗ coincide with edges of E , and X∗
represents a complete matching.

Now let X∗ be a solution to the lap that also represents a complete matching M.
Then TrBTX∗ =

∑
ij∈M b(i, j). M ⊂ E , so each of the b(i, j) with ij ∈ M is finite and

TrBTX∗ > −∞.

We know that the lap is always feasible, so by strong duality there is a dual problem
with the same extreme value [19]. We derive the dual and two equivalent dual problems in
Section 6.8. We want to re-use results from linear optimization theory, so in Section 6.9 we
rephrase the lap and its dual in standard form.

Given a permutation matrix X with TrBTX > −∞, how do we know if X is a solution to
the linear assignment problem? Unweighted bipartite matching shows optimality through the
lack of augmenting paths, but here we are given a complete matching and need to determine
if it is a ‘best’ matching. Linear optimization theory provides the Karush-Kuhn-Tucker
conditions [19], and Section 6.10 applies these conditions to our problem.

The lap also permits a useful relaxation. Allowing the dual variables to deviate from
the best possible by an additive factor of µ leads to matchings within an additive factor of
µ(n− 1) from the lap optimum. Section 6.11 describes a relaxed optimality condition for
testing a matching and its dual variables. The section also presents the relaxed problem as
a barrier function form of the lap, so a solution to the relaxed problem is along the lap’s
central path.

Finally, section 6.12 applies augmenting paths to show that a soluble problem has bounded
dual variables. The optimality conditions and boundedness will be useful in showing auction
algorithm termination in Section 7.4.

6.8 The dual problem

The lap is a feasible, linear optimization problem, and so it has a feasible, linear dual prob-
lem [19]. The dual problem is a new linear optimization problem with variables corresponding
to the original, primal problem’s constraints. In our case, the dual problem will not have
tight equality constraints like (6.7.1b) and (6.7.1c), and so the dual variables will be easier
for algorithms to manipulate.

The dual variables are the multipliers in the Lagrangian formulation of Problem 6.7.1.
Let πc and pr be n-long column vectors, and let K be an n × n matrix. Then the lap’s
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Lagrangian is

L(X, πc, pr, K) = TrBTX − pTr (X1c − 1r)− πTc (XT1r − 1c) + TrKTX

= Tr
(
B − pr1Tc − 1rπ

T
c +K

)T
X + 1Tr pr + 1Tc πc.

The assignment problem is linear and feasible. If X∗ achieves the optimum value, then

TrBTX∗ = min
πc,pr,K

max
X
L(X, πc, pr, K)

Maximizing over the primal variable X produces a function of πc, pr, and K that is < ∞
only under strict conditions. Because we know the optimum is < ∞, the conditions must
hold. The maximization produces

sup
X
L(X, πc, pr, K) =

{
1Tc πc + 1Tr pr when B − pr1Tc − 1rπ

T
c +K = 0, and

∞ otherwise.

This maximization removes X from the problem, leaving the dual variables. We know
the primal (the lap) is feasible and achieves its optimum value, so the dual must as well. To
find the optimum objective value, minimize over the Lagrangian dual variables. We state the
minimization as another linear optimization problem.

Optimization Problem 6.8.1 (Full Dual Problem). Given an assignment
problem 6.7.1, its full dual problem is to

minimize
pr,πc,K

1Tr pr + 1Tc πc (6.8.1a)

subject to pr1
T
c + 1rπ

T
c = B +K and (6.8.1b)

K ≥ 0. (6.8.1c)

The full dual above will be useful for putting the problem into standard form and for
obtaining the optimality conditions. The n× n matrix K is unnecessary for computation.
Additionally, as we will see in Section 6.10 below, K is dense, so maintaining K would be
expensive. K ≥ 0, so pr1

T
c + 1rπ

T
c = B +K is equivalent to pr1

T
c + 1rπ

T
c ≥ B, eliminating

a variable and a constraint. By a traditional abuse of terminology, we refer to this simpler
problem as the dual for the lap.

Optimization Problem 6.8.2 (The Dual Problem). The following prob-
lem is called the dual problem for the linear assignment problem 6.7.1 on
page 126:

minimize
pr,πc

1Tr pr + 1Tc πc (6.8.2a)

subject to pr1
T
c + 1rπ

T
c ≥ B. (6.8.2b)

This problem is equivalent to 6.8.1.
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We can remove the variable πc, as well. By the constraint (6.8.2b), we have that
πc(j) ≥ B(i, j) − pr(i) for all i ∈ R. Minimizing πc(j) for each j also minimizes 1Tc πc
and hence the dual’s objective. The least possible πc(j) is

πc(j) = max
i∈R

B(i, j)− pr(i). (6.8.3)

Incorporating this directly into the objective gives an unconstrained problem.

Optimization Problem 6.8.4 (Unconstrained Dual Problem). The un-
constrained optimization problem

minimize
pr

1Tr pr +
∑
j∈C

max
i∈R

(B(i, j)− pr(j)) (6.8.4a)

is dual to the lap, and also equivalent to both 6.8.1 and 6.8.2.

This problem no longer appears linear, but defining πc implicitly with (6.8.3) will be
useful algorithmically. We will only need to store pr, and the constraint (6.8.2b) in the dual
will always be satisfied exactly regardless of arithmetic accuracy.

6.9 Standard form

Results from linear optimization theory apply to one of many standard forms. We use the
same standard form as Boyd and Vandenberghe [19], Arbel [8], and others. The standard
form problem is a minimization problem over a vector variable x̃ subject to a linear equality
and positivity constraints.

Optimization Problem 6.9.1 (Standard Form). A linear optimization
problem in standard form is to

min
x̃

c̃T x̃ (6.9.1a)

subject to Ãx̃ = b̃, and (6.9.1b)

x̃ ≥ 0. (6.9.1c)

The lap, however, is a maximization problem over a matrix variable X. Two operations
help map the lap into standard form: the Kronecker product and vec. The vec operation
maps n × n matrices onto n2-long column vectors by stacking the columns. If v = vecV ,
then v((j − 1) ∗ n+ i) = V (i, j). The Kronecker product of two matrices A and B is

A⊗B =

a(1, 1)B a(1, 2)B · · ·
a(2, 1)B a(2, 2)B

...

 .
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Equating the lap’s objective (6.7.1a) with the standard problem’s objective, we have
TrBTX = c̃T x̃, so

c̃ = vecB, and

x̃ = vecX.

The positivity constraint translates immediately.
We now combine the remaining two equality constraints, X1c = 1r and XT1r = 1c, into a

single, linear constraint Ãx̃ = b̃. Expanding the constraints in terms of x̃ gives∑
j

x̃(n · (j − 1) + i) = 1, ∀i ∈ R and∑
i

x̃(n · (j − 1) + i) = 1 ∀j ∈ C.

If we set b̃ = [1Tr , 1
T
c ]T and

Ã =

(
1Tc ⊗ In
In ⊗ 1Tr ,

)
then the constraint becomes Ãx̃ = b̃, and we have the problem in standard form. The
constraint matrix Ã has rank n− 1, which is appropriate because a permutation on n items
has n− 1 degrees of freedom. Note that Ã is also the vertex-edge matrix representation of
a complete bipartite graph on R and C. The first n rows correspond to vertices in C, the
second to R, and the n2 columns to the edges between them.

The standard form primal has a dual.

Optimization Problem 6.9.2 (Standard Form Dual). The standard
form dual to 6.9.1 is to

max
ỹ,k̃
− 1T ỹ (6.9.2a)

subject to ÃT ỹ − k̃ + c̃ = 0, and (6.9.2b)

k̃ ≥ 0. (6.9.2c)

Associating variables, we see that

ỹ = [−pTr ,−πTc ]T , and

k̃ = vecK.

6.10 Optimality conditions

To be an optimal solution for the primal and dual problems 6.7.1 and 6.8.2, a point (X, pr, πc)
must satisfy a set of conditions known as the the Karush-Kuhn-Tucker conditions [19, 8].
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The simplest of these conditions state that the solution must be feasible in both primal and
dual, and that the Lagrangian’s gradient must vanish at the solution. These conditions are
trivial to satisfy for the lap. The remaining condition, complementary slackness, is more
interesting.

Complementary slackness states that at each coordinate either the dual or primal inequality
is tight. In the standard form primal and dual, we have that x̃ � k̃ = 0, where � denotes
the element-wise or Hadamard product. Translating this back to our original problems,
complementary slackness holds X �K = 0 for an optimal solution, . Substituting for K
gives the CS condition

X � (pr1
T
c + 1rπ

T
c −B) = 0. (6.10.1)

One consequence of Equation (6.10.1) is that an optimal K may have up to n2 − n non-zero
entries, which is why we prefer the dual problem 6.8.2 without K.

With the implicit πc defined in Equation (6.8.3), πc(j) = maxiB(i, j)− pr(i), we see an
edge ij is in an optimum matching only when i achieves that maximum. If we call pr(i) the
price of i, then πc(j) the profit of j and a matching edge must maximize j’s profit. This
observation becomes an important heuristic in Chapter 7’s auction algorithm.

6.11 A relaxed assignment problem

If X represents some complete matching with dual variables pr and πc, how far is TrBTX
from the optimum TrBTX∗? The primal approaches its maximum from below, and the dual
its minimum from above, so we have

TrBTX ≤ TrBTX∗ = 1Tr p
∗
r + 1Tc π

∗
c ≤ 1Tr pr + 1Tc πc.

Now say X satisfies the relaxed complementary slackness condition for positive real µ,

X �
(
(pr − µ1r)1

T
c + 1rπ

T
c −B

)
≤ 0.

In other words, pr(i) exceeds the ‘best’ by up to µ. This implies that the inner product is
non-positive, or

Tr(pr1
T
c + 1rπ

T
c − µ1r1

T
c −B)TX ≤ 0.

Separating terms and rearranging gives

Tr(pr1
T
c + 1rπ

T
c − µ1r1

T
c )TX ≤ TrBTX.

The lap equality constraints simplify the left side. We have

Tr(pr1
T
c )TX = pTrX1c = pTr 1r,

Tr(1rπ
T
c )TX = 1TrXπc = 1Tc πc, and

−µTr(1r1
T
c )TX = −µ1TrX1c = −nµ.
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And hence
1Tr pr + 1Tc πc ≤ TrBTX + nµ. (6.11.1)

Theorem 6.11.2: If a matching X satisfies the relaxed cs condition

X �
(
(pr − µ1r)1

T
c + 1rπ

T
c −B

)
≤ 0, (6.11.3)

then TrBTX is within an additive factor nµ of the lap optimum value.

Proof. Combining the above, we have

TrBTX ≤ BTX∗ ≤ 1Tr p
∗
r + 1Tc π

∗
c ≤ 1Tr pr + 1Tc πc ≤ TrBTX + nµ.

We can sharpen the bound to (n− 1)µ either through examining the auction algorithm of
Bertsekas [13] or by noting a relationship to a barrier function form. We informally follow
the latter. First note that because X(i, j) ∈ {0, 1}, µ can move to the right of the relaxed cs
condition,

X �
(
pr1

T
c + 1rπ

T
c −B

)
≤ µ1r1

T
c .

Now we replace the matrix inequality in the lap with a barrier function, an approximation
to the indicator function for X ≥ 0. Let [logX] be the matrix produced by applying log
element-wise to X, and extend log x = −∞ when x = 0. Given a positive, real parameter µ,
we use µ[logX] as a barrier function.

Optimization Problem 6.11.4 (Barrier Function LAP). For a given
barrier parameter µ > 0, the barrier function lap is to

maximize
X∈<n×n

TrBTX + µ
∑

i∈R,j∈C

[logX](i, j) (6.11.4a)

subject to X1c = 1r, and (6.11.4b)

XT1r = 1c. (6.11.4c)

The objective is nonlinear, but the barrier problem is still a convex optimization problem.
Casting the problem into a standard form and applying the existing theory [8] gives the
following cs condition for the barrier problem:

X �
(
pr1

T
c + 1rπ

T
c −B

)
= µ1r1

T
c .

Any X satisfying this barrier cs condition lies on the central path and is off the optimum
value of the non-barrier problem by at most an additive factor of rank(Ã)µ = µ(n− 1). A
solution satisfying the relaxed cs of Equation (6.11.3) is closer to optimum, hence also within
µ(n− 1).
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6.12 A soluble problem has bounded dual variables

A soluble problem has a finite optimal value, so it’s reasonable to believe that the dual
variables pr and πc are also finite. This result will be useful in proving termination and
bounding the complexity of various algorithms.

To find a bound, we need the concept of an alternating path from a j ∈ C in a partial
matching M. An alternating path as defined in Chapter 6.3 is a walk of adjacent edges
starting from some unmatched vertex j and terminating at an unmatched vertex i ∈ R. The
walk crosses unmatched and matched edges alternately. The first edge is not in M, the
second is a matching edge in M, the third is not, and so on.

If G has a complete matching, any incomplete matching M has an alternating path [40].
Flipping the edges along an alternating path increases |M| by 1 and keepsM a matching. We
use this property to show that if an incomplete matchingM represented by X has alternating
paths, then the prices pr(i) of matched vertices i ∈ R are bounded. The bound is a function
of the range of B’s entries, the parameter µ, and the size of the problem. Some algorithms
start from an arbitrary initial pr, so we also incorporate the prices of the unmatched i.
Theorem 6.12.1: Let X be an incomplete matching on G with the associated dual variable
pr that satisfies the relaxed cs condition (6.11.3). If G has a complete matching, then

pr(i) ≤ p̄r + (n− 1)(µ+ B̄)

for any i starting an augmenting path in X. Here B̄ = |maxi,j B(i, j)−mini,j B(i, j)| is the
range of B’s entries and p̄r = maxunmatched i pr(i) is the largest price of an unmatched vertex
i ∈ R.

Proof. If X is incomplete and G has a complete matching, then there is an augmenting path
from any unmatched j ∈ C to an unmatched i ∈ R[40]. Let (j1, i1, j2, i2, . . . , jt, it) be such
a path, with edges ikjk+1 ∈ X. We bound pr(i1) and then apply this bound to all possible
augmenting paths.

By the relaxed cs condition, the matching edges satisfy

pr(ik)− µ+ πc(jk+1)−B(ik, jk+1) ≤ 0.

The dual feasibility constraint (6.8.2b) bounds the unmatched edges by

B(ik+1, jk+1) ≤ pr(ik+1) + πc(jk+1).

Adding the two inequalities and rearranging to bound pr(ik), we have

pr(ik) ≤ pr(ik+1) + µ+B(ik, jk+1)−B(ik+1, jk+1).

Adding all such inequalities over the entire path gives

pr(i1) ≤ p̄r + t
(
µ+ B̄

)
.
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The path can be at most n− 1 steps long, so this in turn is bounded by

pr(i1) ≤ p̄r + (n− 1)
(
µ+ B̄

)
.

The augmenting path was chosen arbitrarily, so this bound applies to all augmenting paths.

6.13 Manipulating the benefit matrix

The linear assignment problem’s structure allows some manipulations of the benefit matrix
without changing the optimizing permutations. The first polynomial-time assignment algo-
rithm, the Hungarian algorithm defined in Kuhn [67], relies on basic manipulations. Other
algorithms’ performance depend on the benefit matrix’s range; transformations to reduce
that range are beneficial.

Clearly, any positive scalar multiple αB of the benefit matrix will have the solution with
a similarly scaled objective value. Rank-1 perturbations of B that changes all columns or all
rows equally just shift the objective function without moving the maximum permutation:
Theorem 6.13.1: Given two n-vectors u and v, the same permutation matrices maximize
the linear assignment problem for benefit matrices B ∈ <n×n and B + u1Tc + 1rv

T .

Proof. Adding a constant to the objective function does not alter the points where it is
maximized, so the theorem is equivalent to demonstrating that the additional u1Tc + 1rv

T

terms shift the objective by a constant.
Expanding the objective function with cost matrix B + u1Tc + 1rv

T yields

Tr(B + u1Tc + 1rv
T )TX = TrBTX + Tr 1cu

TX + Tr v(1TrX)

= TrBTX + TruTX1c + Tr v(XT1r)
T

= TrBTX + uT (X1c) + Tr(XT1r)v
T .

X is doubly stochastic, so X1c = 1r and XT1r = 1c. The expanded objective function is

Tr(B + u1Tc + 1rv
T )TX = TrBTX + uT1r + vT1c.

The term uT1r + vT1c is constant with respect to X.

This result holds only for square assignment problems. Non-square problems with n < m
permit only the 1c term. If cm is the smallest finite entry of B, then B − cm1r1

T
c ≥ 0 for

ij ∈ E , so we can assume the finite benefits are non-negative.



135

Chapter 7

The auction algorithm

7.1 Introduction

To make the linear assignment problem 6.7.1 on page 126 more concrete, we turn to an
algorithm for solving it. Dimitri Bertsekas’s auction algorithm [12] finds an optimum complete
matching through a competitive bidding process. Unmatched vertices j ∈ C corresponding
to columns in B look through their adjacent rows i ∈ B. col(j) to find the most profitable
match given current prices in pr. The auction algorithm performs well in practice and can
be generalized to asynchronous, parallel environments. This chapter explains the basic,
sequential auction algorithm.

The basic auction algorithm is given in Listings 7.1 through 7.3, again using Python [99]
as executable pseudocode. It takes as input a benefit matrix B constructed as in Section 6.6,
holding information about the weights b(i, j) and the connectivity of the bipartite graph G.
The auction algorithm also takes an optimality parameter µ, and the algorithm delivers a
matching within µ(n− 1) of the optimum matching.

To summarize, the auction algorithm takes an unmatched j ∈ C, finds a bid that will
match j to some i ∈ R, and then records the bid. Vertex j wins i by raising the price above
that bid by any previously matched j′, if one exists. The old match j′ is now gathered with
the remaining unmatched vertices, and the algorithm repeats until all vertices are matched
through a winning bid. The algorithm can also terminate because the dual variable pr, stored
in the variable price, exceeds the bound in Theorem 6.12.1.

This chapter explains the auction algorithm, starting in Section 7.2 with the bid finding
process. Infinite prices and nodes with only one adjacent edge require some care as explained
in Section 7.3. Optimality and termination are proven in Section 7.4. We exploit the
relationship with barrier methods in Section 7.5 to find a µ-scaling variation which should be
more efficient. A basic algorithmic complexity result is provided in Section 7.6, and more
ornate results from the literature are described. Then we present auction variations. The first
is a combined forward-reverse auction which will perform well sequentially. Then Section 7.8



CHAPTER 7. THE AUCTION ALGORITHM 136

exploits the auction algorithm’s freedom to find blocked auctions. Section 7.9 extends the
block auctions to distributed parallel auctions, including restrictions on how the input graph
is distributed.

7.2 Finding and placing bids

To find a bid from the vertices adjacent to j, we give to each such k a value v(k) =
B(k, j)− pr(j). If v(i) = maxk v(k), then ij would satisfy the cs condition (6.10.1), as well
as the relaxed condition (6.11.3). The bid will match j to some such i (there may be many).
Let v(i′) be the second-largest value. Then incrementing the price by up to v(i)− v(i′) will
leave i the best choice for j, and an additional increment of µ ensures that the algorithm
avoids infinite loops. The new price for row i is

pr(i) := pr(i) + v(i)− v(i′) + µ

= pr(i) +B(i, j)− pr(i)− v(i′) + µ

= B(i, j)− v(i′) + µ.

The remainder of this section explains why this bidding process works.
Bidding serves two purposes: entering new R vertices into the matching and driving down

the dual objective. In either case, the new edge ij satisfies the relaxed cs condition, so i is
the most profitable item for j. The algorithm never unmatches vertices from R, so entering
a new vertex i into X is forward progress.

The most profitable i may be matched to some j′ already. Removing ij′ and adding ij
does not change the size of the partial matching. The new edge may not even increase the
primal objective TrBTX or decrease the dual objective. The new edge does progress towards
a solution, however.

Consider the implicit dual objective (6.8.4a):

minimize
pr

1Tr pr +
∑
j∈C

max
k∈R

(B(k, j)− pr(k))

The bidding process chose i to have the largest profit. Hence, if a bid from j increases pr(i)
by δ, it also decreases the profit maxk B(k, j)− pr(k) by δ. The change in contributions to
the dual objective from i and j cancel.

It is very important that µ > 0. When j and j′ share two common neighbors i and i′

with all corresponding entries in B equal, µ = 0 could lead to an infinite loop.
If adding the edge ij required removing ij′, then i had achieved maxk B(k, j′)− pr(k) =

B(i, j′)− pr(i) for j′. If increasing pr(i) decreases this maximum, then we have made progress
towards minimizing the dual. If increasing pr(i) does not decrease maxk B(k, j′)−pr(k), then
there is some other node i′ ∈ R which also achieved that maximum and is just as profitable
for j′ as i′ was.
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def match unmatched (B, mu, unmatched, X r, price r,
soluble bound):

”””Find a matching X on the bipartite graph represented
by B. On unexceptional termination, all columns listed in

5 unmatched are matched in X. The matching maximizes
$\Tr BˆT X$ to within an additive factor of mu ∗ (B.ncols()−1).
”””
for j in unmatched:

bid = find bid (B, j, price r)
10 # Make (i,j) satisfy the relaxed CS condition,

# ensuring progress.
bid.price += mu
if bid.price > soluble bound and finite(bid.price):

raise Exception(”Insoluble problem”)
15

old match j = record bid (j, bid, X r, price r)
# add vertex(−1) is a no−op
unmatched.add vertex (old match j)

20 def auction (B, mu = −1):
”””Run an auction to produce a maximum weight, complete matching
of B. Returns (X r, price r). If X r[i] = j, then ij is in the
matching. Optional parameter mu determines the quality of the
matching; the matching is within an additive factor of

25 mu∗(B.ncols()−1) of the maximum weight matching.

Raises ”Insoluble problem” if there is no complete matching on B.
”””
assert B.ncols() == B.nrows()

30 n = B.ncols()
if mu <= 0:

# This mu ensures that we find the optimal for
# an integer−valued B
mu = 1.0/n

35

#Place all n columns into the unmatched list
unmatched = UnmatchedList(n)
# Initialize to zero prices and an empty matching
price r = zeros((n))

40 X r = −ones((n))
soluble bound = (n−1) ∗ (mu + B.entry range())

match unmatched (B, mu, unmatched, X r, price ,
soluble bound)

45 return (X r, price r)

Listing 7.1: The basic auction algorithm
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def find bid (B, j, price):
”Find a match for column j in B”
bc = Collector()
# A collector tracks the top two values seen,

5 # along with the index and entry of the best
# value.
for (i, ent) in B.col(j):

v = ent − price[i]
bc.collect (v, i, ent)

10 # bc.ent is the bid edge’s entry in B, bc.v2nd
# the second−best value, and bc.i the bid vertex i.
return Bid( price = bc.ent − bc.v2nd, i = bc.i )

Listing 7.2: Finding a bid

def record bid (j, bid, price, matching):
”Update the matching and prices with the bid”
assert bid.price > price[bid.i]
old match = matching[bid.i]

5 matching[bid.i] = j
price[bid.i] = bid.price
return old match

Listing 7.3: Recording a bid

Removing ij′ from the matching makes j′ eligible to bid for this i′. When i′ is unmatched,
then we have a short augmenting path which increases the size of the matching. A matched i′

implies that (j, i, j′, i′) is the head of an alternating path. If G admits a complete matching,
then this is also the head of an augmenting path. The bidding process applies (j, i, j′), which
by Theorem 6.3.2 leaves a matching which also contains an augmenting path starting from j′.
Essentially, the bid applies the head of an augmenting path before finding the entire path.

Augmenting paths may collide, in which case the more profitable wins. Rather than
formalizing what happens when paths collide, we turn to the dual variables bounds from
Section 6.12 to show termination. Termination is discussed in Section 7.4.

7.3 Infinite prices and required edges

Some edges in a graph may be present in every complete matching. If a vertex is adjacent to
only one edge, then that edge must be in all complete matchings. Call the vertices adjacent
to such a required edge stubborn. This requirement can cascade. If all but one of the vertices
adjacent to a vertex j are stubborn, then the edge leading to that one edge is required.

Examining how stubborn vertices interact with the auction algorithm is useful not only
because they arise in practice, but also because we may want to find a maximizing matching
which includes a particular edge. Section 6.6 pointed out that we cannot set B(i, j) =∞ to
force ij into a matching, but we can set an infinite price pr(i) to keep any other vertices from
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matching to i.
An infinite price also occurs on stubborn vertices in R. Say i is the only vertex adjacent

to j. In this case, the second best value is −∞, so the new price is B(i, j)−−∞ =∞. The
infinite prices can cascade through a graph.

Mechanically calculating the resulting profit πc(j) = B(i, j) − pr(i) = −∞ appears to
yield an undefined dual objective

∑
i pr(i) +

∑
j πc(j). However, pr(i) = ∞ just encodes

the information that ij cannot be removed from the matching. Because the edge is in the
matching, we know that pr(i) + πc(j) = B(i, j) no matter what pr(i) and πc(j) are. Hence,
their contribution to the dual objective is always B(i, j), and the dual remains well-defined.

The infinite price is naturally larger than the solubility bound. The finiteness test in line
13 of match unmatched() in Listing 7.1 prevents the special price from artificially triggering the
insolubility condition. If all the vertices adjacent to some unmatched j have infinite prices,
then the problem is indeed insoluble. The strict inequalities in the bid finding procedure
catch this case, as −∞ value will never change the best i. This will be important in merging
bids for the parallel algorithm, as well.

7.4 Optimality and termination

The auction algorithm terminates from one of two conditions: Either the algorithm found a
complete matching X with associated prices pr, or a price rose beyond a bound. In the first
case, X satisfies the relaxed cs condition 6.11.3 on page 132 with its dual variables. So by
Theorem 6.11.2, the matching is within an additive factor of µ(n− 1) of the optimum lap
value.

Now if the algorithm has terminated because a price in pr has increased beyond the bound
of Theorem 6.12.1, then we know the matching X has no alternating paths. We terminate
because of a bounds violation only when X is incomplete, so we have a matching in G with
no augmenting paths. Hence G has no complete matching.

We have established the following result:
Theorem 7.4.1: The auction algorithm 7.1 on page 137 applied to a bipartite graph G
always terminates. If it terminates with a complete matching X, then TrBTX ≤ TrBTX∗ ≤
µ(n− 1) + TrBTX, where X∗ achieves the optimum for the linear assignment problem 6.7.1
on page 126. Otherwise, G has no complete matching.

Theorem 7.4.1 essentially is equivalent to the result of Bertsekas [12] but with a factor of
n− 1 rather than n.

7.5 µ-Scaling

The prices in Listing 7.1 need not start at zero. If the prices start closer to their optimum
values, we would hope that the algorithm would minimize the dual, and hence terminate,
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more quickly. And the larger µ, the more perfect matchings satisfy the relaxed cs condition,
and the more quickly the algorithm terminates. If there is no perfect matching, then a larger
µ increases prices towards the insolubility bound more quickly as well.

This suggests solving a sequence of problems with each problem’s µk approaching our
final µ. Going back to the barrier formulation in Section 6.11, this is equivalent to following
the central path towards a solution, a key ingredient in interior-point algorithms. Choosing
the sequence of µk is problem-dependent, but we choose a simple, general method. After each
µk matching, we compute the primal and dual values, then lower µk to match the achieved
gap. We then scale to a target µk+1 = µ/4. Reducing the current µk to the gap actually
achieved skips many µ steps for “easy” problems.

We need to exercise some care if we use pr(i) = ∞ to denote an only-choice vertex.
Clearing the match of i without clearing the price pr(i) could produce an insoluble situation.
So whenever pr(i) =∞, the match of i should not be cleared or placed into the unmatched
list.

Using the terminal µ as a tunable approximation factor as in Optimization Problem 6.11.4
can accelerate performance significantly even while returning a matching very near maximum
weight, see Section 8.3.
Definition 7.5.1: We define the relative gap as

relgap ≡ 1Tr pr + 1Tc πc − TrBTX

TrBTX
.

By Theorem 6.11.2, the relative gap relgap ≤ nµ at solution, and TrBTX is within an
additive factor of nµ of the maximum weight matching.

We can select a terminal µ with an allowable approximation factor in mind.

7.6 Algorithmic complexity

Any individual price requires O(B̄/µ) increments by µ to surpass the solubility threshold,
and so no i receives more than O(B̄/µ) bids. Also, once all n vertices in R receives a bid,
the algorithm will terminate. This places an upper bound of O(nB̄/µ) on the total number
of bids placed. If d is the largest degree of a vertex in G, the most edges adjacent to any
vertex, then each bid requires O(d) work. This gives a basic complexity without µ-scaling of

O(ndB̄/µ).

We know that the algorithm may fail to terminate when µ = 0, and the complexity diverges
to ∞ appropriately. For ‘dense’ graphs, where E = R×C, the bound is O(n2B̄/µ), matching
published results[12].

Note that the analysis does not impose requirements on the bidding order. There is a
complex analysis by Bertsekas and Eckstein [14] which relates the auction algorithm with
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a relaxed flow problem and imposes a particular ordering on the bids. The complexity of
auction algorithms is a corollary from a much longer exposition, so we simply provide the
results. For details, see [14]. This analysis finds a theoretical complexity of

O
(
nτ log(nB̄)

)
(7.6.1)

for the µ-scaling auction, where τ = |E|. This author does not know of a proof for (7.6.1)
that does not rely on a flow problem. Difficulties arise in relating solutions for different µk.

For instances of combinatorial optimization problems, the worst-case algorithmic com-
plexity is often a very loose upper bound. The best cases are much faster, but the variability
between different formats even of the same input make modeling performance difficult
(Chapter 8).

7.7 Forward and reverse auctions

Consider the bipartite graph GT = {C,R; ET}, where ji ∈ ET ⇔ ij ∈ E . We can apply the
auction algorithm just as well to GT as to G. This is generally called a reverse auction. More
interestingly, we can swap graphs during the auction algorithm for a combined forward-reverse
auction.

Combined auctions do not have a single, monotonically increasing price vector pr, so
under what conditions will a combined auction terminate? Requiring an edge to be added to
the matching before switching suffices. Auctions never decrease the number of edges in a
matching. If no edge is ever added, then we stick with one direction and its dual variable. The
bidding process in that direction will eventually drive that dual variable above the solubility
bound calculated when entering that direction.

An implementation can choose between always maintaining the forward and reverse
variables or converting the variables before switching. An algorithm to convert the variables
is given in Listing 7.4.

Both directions maintain the relaxed cs condition (6.11.3), so a matching produced from
either direction is µ-optimal. Some studies have indicated that the combined auction is less
sensitive to the range of B and does not need µ-scaling for speed.

Rather than apply a full forward-reverse matching, we run a single price-shrinking pass on
each µ phase. This occasionally helps shorten the long tail when chasing the final matching
edge.

7.8 Blocked auctions

The algorithm in 7.1 dispatched bids one at a time. Consider the other extreme, where
every unmatched column bids simultaneously. This variation of match unmatched is shown in
Listing 7.5. In the literature, this is referred to as a Jacobi auction, and single-bid variant as
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def forw to rev (X r, price r, X c = None, profit c = None):
”””Convert the forward matching X r and dual
variable price r on rows to the reverse matching
X c and dual profit c on columns. Returns

5 arrays X c and profit c, which may be input as
optional arguments.
This could be implemented in−place at a
significant cost to the complexity constant.
”””

10 n = len(X r)
if X c is None: X c = −ones(n)
if profit c is None: profit c = array(n)
# Find the profits.
for j in range(n):

15 profit = −infinity
for (i, ent) in A.col(j):

profit = max(profit, ent − price r[i])
profit c[j] = profit

# Invert the matching.
20 for i in range(n):

j = X r[i]
if j >= 0:

X c[j] = i
return (X c, profit c)

Listing 7.4: Converting between forward and reverse auctions

a Gauss-Seidel auction [12]. Sequential simultaneous bidding is inefficient, but it provides a
step towards a parallel auction.

The simultaneous bids need resolved before being committed to X and pr. Lines 22–24
check that a new bid increases the price before committing it. In the case of a tie, the
matching column with lesser index wins the bid. The tie breaking rule is arbitrary, but it
must be consistent. This particular tie breaking rule is independent of the bid order, a very
useful fact for debugging implementations. The single-bid auction found a bid which always
passed this test, and so the price check is not included in Listing 7.1.

Before progressing to parallel auctions, we investigate a blocked auction. The blocked
auction makes a parallel algorithm obvious but allows reasoning in a sequential environment.
We partition the vertices of C and call each partition a block. Each block C(k) is responsible
for matching its vertices on the subgraph induced by removing all j 6∈ C(k) from G. Call this
restricted graph G(k). We run a full auction on each block, producing a complete matching for
each G(k). These complete matchings are not necessarily optimal for the non-square problem.

If the matchings X(k) on each block are completely disjoint, then the union of these
matchings is a perfect matching on the original graph G. Does this mean the matching
X = ∪kX(k) solves the lap? If each block begins with the same prices, then yes, it does. Any
i matched in any of the blocks remains matched throughout the auction algorithm. So if the
matchings X(k) are each complete and distinct, then they have never bid for the same i, and
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def match unmatched simultaneously (B, mu, unmatched,
matching, price,
soluble bound):

”””Find a matching X on the bipartite graph represented
5 by B. On unexceptional termination, all columns listed in

unmatched are matched in X. The matching maximizes
$\Tr BˆT X$ to within an additive factor of mu ∗ (B.ncols()−1).
”””
bid = []

10 for j in unmatched:
bid.append( find bid (B, j, price) )

for k in range(len(unmatched)):
bid[k].price += mu
if bid[k].price > soluble bound and finite(bid.price):

15 raise Exception(”Insoluble problem”)

j = unmatched[k]
old match = matching[bid[k].i]

20 # no longer have bid[k].price > price[bid[k].i]

if bid[k].price > price[bid[k].i] \
or (bid[k].price == price[bid[k].i] \

and j < old match):
25 matching[bid[k].i] = j

price[bid[k].i] = bid[k].price
unmatched.add vertex (old match j)

Listing 7.5: An auction with simultaneous bids
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def merge vars (X1 r, price1 r, X2 r, price2 r, unmatchedlists):
”””Merge the primal and dual variables. Break ties by the bid’s
column index. The earlier columns win. Because the tie breaking
rule is independent of the order of arguments, merge vars is both

5 associative and commutative.
Returns the winning bids. Unmatched columns are returned to the
unmatched lists.
Note that every i matched in either X1 or X2 remains matched in
one of X1 and X2.

10 ”””
n = len(X r)
for i in range(n):

if price2 r[i] > price1 r[i] or \
(price2 r[i] == price1 r[i] and X2 r[i] > X1 r[i]):

15 pricewin r = price2 r
(Xlose r, pricelose r) = (X1 r, price1 r)

else:
pricewin r = price1 r
(Xlose r, pricelose r) = (X2 r, price2 r)

20

pricelose r[i] = pricewin r[i]

old match = Xlose r[i]
Xlose r[i] = −1

25 if old match >= 0:
unmatchedlists.add vertex(old match)

Listing 7.6: Merging block variables

the price changes also do not overlap. So the union matching X satisfies the cs conditions
and solves the lap.

We can also consider each matching X(k) with its corresponding dual p
(k)
r as a sequence

of bids. If ij ∈ X(k), then j bids for i with price p
(k)
r (i). If no i appears in more than one

X(k), then each bid wins, showing again that the union X solves the lap. But if some i does
appear multiple times, then one bid must lose.

The losing bid is placed back into an unmatched list, just as for the single-bid auction, and
the blocked auction is repeated until no unmatched columns remain. Listing 7.6 implements
this merging by scanning the entire matching. A more efficient version need scan only the
changes, tracked through a common scatter-gather mechanism.

Note that Listing 7.6 does not specify in which block an unmatched column old match is
placed. With the merging operator, we can define a blocked auction algorithm.

The sequential all-to-all reduction reduce vars() can be specified as in Listing 7.8. The
tie-breaking tests result in an idempotent operator. Also, because the tie breaking rule does
not depend on the argument order, the merging operation is commutative. Merging blocks k
and k′ will produce the same result regardless of the order they are presented to Listing 7.6.

Once all the unmatched lists are empty, there must be no conflicting bids. Listing 7.9
constructs the final answer, including relevant tests as assertions.
Theorem 7.8.1: Listing 7.7 computes a solution to the lap when a perfect matching exists
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def blocked auction (B, mu = −1):
”””Run an auction to produce a maximum weight, complete
matching of B. Returns (matching, price). If
X r[i] = j, then ij is in the matching. Optional

5 parameter mu determines the quality of the matching; the
matching is within an additive factor of mu∗(B.ncols()−1)
of the maximum weight matching.

Raises ”Insoluble problem” if there is no complete matching on B.
10 ”””

assert B.ncols() == B.nrows()
n = B.ncols()
if mu <= 0:

# This mu ensures that we find the optimal for
15 # an integer−valued B

mu = 1.0/n

# Place all n columns into unmatched lists, blocked
# according to the implementation

20 unmatchedlists = UnmatchedLists(n)
n blocks = len(unmatchedlists)

# Initialize to zero prices and an empty matching
price rs = []; X rs = []

25 for k in range(n blocks):
price rs.append( zeros(n) )
X rs.append ( −ones(n) )

soluble bound = (n−1) ∗ (mu + B.entry range())

30 X r = None
price r = None
while not all empty (unmatchedlists):

for k in range(n blocks):
match unmatched (B, mu, unmatchedlists[k],

35 X rs[k], price rs[k],
soluble bound)

(X r, price r) = union merge (X rs, price rs)

# Perform an all−to−all reduction across the
40 # blocks. The reduction operator is merge vars,

# an associative and commutative operation.
reduce vars (X rs, price rs, unmatchedlists)

return final merge(X rs, price rs)

Listing 7.7: A blocked auction algorithm
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def reduce vars (X rs, price rs, unmatchedlists):
”””Sequentially perform an all−to−all merge between the
matchings and dual variables.f
”””

5 n blocks = len(X rs)
n = len(X rs[0])
for k in range(1,n blocks):

merge vars (X rs[0], price rs[0], X rs[k], price rs[k],
unmatchedlists)

10 for k in range(1,n blocks):
merge vars (X rs[0], price rs[0], X rs[k], price rs[k],

unmatchedlists)

Listing 7.8: Sequential reduction of auction variables

def union merge (X rs, price rs, X r = None, price r = None):
”””Produce the union matching and price. Conflicting
bids yield an AssertionError, as does an incomplete
matching.

5 ”””
n blocks = len(X rs)
n = len(X rs[0])

# Explicitly copy the first vars.
10 X r = array(X rs[0])

price r = array(price rs[0])

for k in range(1,n blocks):
for i in range(n):

15 if X rs[k][i] >= 0:
assert X r[i] == −1
X r[i] = X rs[k][i]
price r[i] = price rs[k][i]

assert −1 not in X r
20

return (X r, price r)

Listing 7.9: The blocked auction’s final merge
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and signals a problem insoluble otherwise.

Proof. Treat the result of each auction on a block as a sequence of bids. The merge operation
in Listing 7.6 merges two sequences of bids by playing them against each other. The tie-
breaking rule is equivalent to placing bids in increasing j-order, and a bid must increase a
price to be accepted.

So running auctions on blocks and merging their results is equivalent to producing a
partial matching through a sequence of price-increasing bids. The partial matching satisfies
the cs condition (6.10.1). If no columns are left unmatched, then we have a perfect matching
that satisfies cs and hence a solution of the lap. All successful bids increase prices, so if
there is no perfect matching, a price will increase beyond the bound of Theorem 6.12.1 and
the algorithm will signal that the problem is insoluble.

7.9 Parallel auctions

In the blocked auction of Listing 7.7 on page 145, the blocks do not interact until their
variables are merged. Hence each block auction can run in parallel. The overall parallel
algorithm is as follows:

1. Repeat:

(a) Run a blocked local auction.

(b) Collect all changed prices as global bids.

(c) Collectively synchronize global bids.

(d) If another processor out-bids the local processor for a row, place the column
back on the local unmatched list. (Ties are broken arbitrarily by preferring the
lower-ranked processor.)

2. Until there are no global bids outstanding.

Unlike most previous parallel algorithms, a parallel auction works with a distributed
matrix B. Each block auction accesses only the columns within its unmatched list. If columns
are placed back on the same list as they are unmatched, then we distribute B across processors
by column according to the initial unmatched list partitioning. No processor needs the entire
matrix.

Splitting B by columns allows a good amount of freedom in distributing B. Distributing
B by explicitly stored entries appears even more attractive. However, the auction algorithm
does need the best and second-best value from the entire column of B. Finding a bid in a
subset of the column could pick the wrong target, starting along an alternating path which is
not augmenting. Because having multiple processors finding a single bid involves frequent
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communication within an inner loop, we will not explore that option even though two-
dimensional, hypergraph partitioning[24] holds potential for minimizing that communication.

By not collaborating on individual bids, all communication is encapsulated in the merge
operation. Essentially, each processor poses its changed prices as global bids. Those bids are
sent to other processors that share the same rows, either individually or through a collective
reduction or gather. For processor counts small enough such that each processor holds a
significant portion of the matrix (a few thousand columns), packing outgoing bids into a
buffer and applying a simple MPI Alltoallv all-to-all collective operation[75] suffices to
achieve memory scalability. In our current implementation, however, we use O(N) data per
node and call MPI Allgatherv to collect all prices and current matches from every process.
For the parallel system sizes of interest, this performs better than other MPI-provided or
hand-written collectives.

Optimizing for pure message passing across a massive number of nodes is feasible but of
decreasing interest. Current parallel systems are built with a large amount of memory per
node shared among multiple processors. The number of pathways to the shared memory is a
more important constraint than the amount of memory used. Also, current interconnection
networks are moving towards supporting more fine-grained global access. Future work will
investigate using PGAS languages like UPC[26] or X10[94] rather than pushing MPI into
unnatural corners.
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Chapter 8

Auction performance

8.1 Summary

Ultimately, the performance of auction algorithm implementations is highly unpredictable
and not directly correlated to dimension or number of matrix entries. The augmenting path
implementation MC64[47] shows similar sequential variability. Parallel performance can drop
off a cliff when the algorithm forms an almost completely wrong partial matching and rebuilds
the matching one parallel phase at a time.

Section 8.2 discusses basic sequential performance and demonstrates high variability
depending on the input format for the same data. Section 8.3 loosens the approximation
factor for the matching’s weight and sees drastically improved sequential performance for
little weight loss. Section 8.5 discusses parallel performance with all its warts.

All our auction results use a C implementation of the algorithms presented earlier. Duff
and Koster [47]’s MC64 is written in Fortran but is driven by the same C driver as our
implementations. The implementations are available from the author1.

8.2 Sequential performance

We test the performance of our sequential auction implementation on computing a permutation
that makes the matrix’s diagonal’s product as large in magnitude as possible. The input
matrix A is transformed to a benefit matrix B by B(i, j) = log2 |A(i, j)|. Zero entries in A
become −∞ edges in B and are never chosen.

All of the presented times report the least of three randomly scheduled runs. The
performance was timed on a 2.66 GHz Intel Xeon X5550 after compilation with gcc and
gfortran 4.42. The matrices in Table 8.1 were chosen while collaborating with Bora Uçar while

1Currently at http://lovesgoodfood.com/jason/cgit/index.cgi/matchpres/ .
2http://gcc.gnu.org

http://lovesgoodfood.com/jason/cgit/index.cgi/matchpres/
http://gcc.gnu.org
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Group Name Dimension # entries

Bai af23560 23560 460598
FEMLAB poisson3Db 85623 2374949

FIDAP ex11 16614 1096948
GHS indef cont-300 180895 988195
GHS indef ncvxqp5 62500 424966

Hamm scircuit 170998 958936
Hollinger g7jac200 59310 717620
Hollinger g7jac200sc 59310 717620
Mallya lhr14 14270 305750
Mallya lhr14c 14270 307858

Schenk IBMSDS 3D 51448 3D 51448 537038
Schenk IBMSDS ibm matrix 2 51448 537038
Schenk IBMSDS matrix 9 103430 1205518

Schenk ISEI barrier2-4 113076 2129496
Vavasis av41092 41092 1683902
Zhao Zhao2 33861 166453

Table 8.1: Test matrices for sequential auction and MC64 performance comparisons. Chosen
to match Riedy [87], work in consultation with Bora Uçar. “Group” refers to the directory
within the UF Sparse Matrix Collection, and “Name” is the base file name.

visiting CERFACS[87]. They were chosen to illustrate problems with each of the outstanding
methods.

Table 8.2 shows overall performance on our matrix testbed running with algorithm
defaults and comparing to MC64. Both MC64 and the auction algorithm are provided the
input in column-major (compressed sparse column) format. MC64 works with the input
and its transpose, while the auction algorithm works only with the input. Both of these
implementations run relatively quickly, but neither dominates the other in performance.

Table 8.3 shows the first strange variability. Simply transposing the input matrix can
change the running time by an order of magnitude. Such large variability makes predicting
the running time difficult and befuddles obvious performance modeling attempts.

Table 8.4 shows less variability when rounding the input benefit matrix from log2 |A(i, j)|
to blog2 |A(i, j)|c. This affects the matching itself little. Reducing the benefit matrix to
smaller integers may reduce memory pressure and balance CPU functional unit usage.

8.3 Approximations for faster matching

One benefit of the auction algorithm over other currently implemented algorithms is in tuning
the quality of the output matching. We can return a less-than-maximum weight matching
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Group Name Auction time (s) MC64 time (s) MC64/Auction

Bai af23560 0.025 0.017 0.68
FEMLAB poisson3Db 0.014 0.040 2.74

FIDAP ex11 0.060 0.015 0.26
GHS indef cont-300 0.007 0.019 2.89
GHS indef ncvxqp5 0.338 0.794 2.35

Hamm scircuit 0.048 0.024 0.50
Hollinger g7jac200 0.355 0.817 2.30
Hollinger g7jac200sc 0.304 0.678 2.23
Mallya lhr14 0.044 0.026 0.60
Mallya lhr14c 0.089 0.054 0.61

Schenk IBMSDS 3D 51448 3D 0.031 0.010 0.33
Schenk IBMSDS ibm matrix 2 0.031 0.008 0.27
Schenk IBMSDS matrix 9 0.074 0.024 0.33

Schenk ISEI barrier2-4 0.291 0.044 0.15
Vavasis av41092 5.462 3.595 0.66
Zhao Zhao2 1.041 3.237 3.11

Table 8.2: Performance comparison between a µ-scaling auction implementation and an
optimized augmenting path implementation (mc64). Both are applied in a column-major
fashion to maximize the product of the matching given floating-point data. They achieve the
same total matching weight up to round-off. Performance is extremely variable, but both are
quite fast. Performance ratios over 2 and under 0.5 are outside run-to-run variability.

Group Name Col-major (s) Row-major (s) Row/Col

Bai af23560 0.025 0.028 1.13
FEMLAB poisson3Db 0.014 0.016 1.11

FIDAP ex11 0.060 0.060 1.00
GHS indef cont-300 0.007 0.006 0.84
GHS indef ncvxqp5 0.338 0.318 0.94

Hamm scircuit 0.048 0.047 0.99
Hollinger g7jac200 0.355 0.339 0.95
Hollinger g7jac200sc 0.304 0.232 0.77
Mallya lhr14 0.044 0.065 1.47
Mallya lhr14c 0.089 0.075 0.85

Schenk IBMSDS 3D 51448 3D 0.031 0.282 9.22
Schenk IBMSDS ibm matrix 2 0.031 0.275 9.02
Schenk IBMSDS matrix 9 0.074 0.613 8.29

Schenk ISEI barrier2-4 0.291 0.193 0.66
Vavasis av41092 5.462 4.083 0.75
Zhao Zhao2 1.041 0.609 0.58

Table 8.3: Performance comparison between applying µ-scaling auction implementation
in a column-major fashion to applying the same implementation in a row-major fashion
(transposed). In some cases, performance differences are dramatic ands unpredictable.
Performance ratios over 2 and under 0.5 are outside run-to-run variability.
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Group Name Float (s) Int (s) Int/Float

Bai af23560 0.025 0.040 1.61
FEMLAB poisson3Db 0.015 0.016 1.08

FIDAP ex11 0.060 0.029 0.49
GHS indef cont-300 0.007 0.006 0.91
GHS indef ncvxqp5 0.338 0.425 1.26

Hamm scircuit 0.048 0.016 0.34
Hollinger g7jac200 0.355 1.004 2.83
Hollinger g7jac200sc 0.304 0.987 3.25
Mallya lhr14 0.044 0.050 1.12
Mallya lhr14c 0.089 0.137 1.55

Schenk IBMSDS 3D 51448 3D 0.031 0.020 0.66
Schenk IBMSDS ibm matrix 2 0.031 0.020 0.66
Schenk IBMSDS matrix 9 0.074 0.066 0.89

Schenk ISEI barrier2-4 0.291 0.261 0.91
Vavasis av41092 5.462 5.401 0.99
Zhao Zhao2 1.041 2.269 2.18

Table 8.4: Performance comparison between applying µ-scaling auction implementation in a
column-major fashion given a floating-point benefit matrix or after rounding the matrix to
integers. Again, performance varies although rarely as dramatically. Performance ratios over
2 and under 0.5 are outside run-to-run variability.
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Terminal µ value
Name 0 5.96e-08 2.44e-04 5.00e-01

af23560 Primal 1342850 1342850 1342850 1342670
Time(s) 0.14 0.05 0.03 0

ratio 0.37 0.21 0.02
poisson3Db Primal 2483070 2483070 2483070 2483070

Time(s) 0.02 0.02 0.02 0.02
ratio 1.01 1.04 1.07

ex11 Primal 963560 963560 963560 962959
Time(s) 0.11 0.05 0.02 0.01

ratio 0.44 0.22 0.07
cont-300 Primal 902982 902982 902982 902982

Time(s) 0.01 0.01 0.01 0.01
ratio 1.02 1.04 0.91

ncvxqp5 Primal 1119520 1119520 1119520 1116780
Time(s) 1.27 0.53 0.15 0.02

ratio 0.42 0.12 0.01
scircuit Primal 8720900 8720900 8720900 8720900

Time(s) 0.12 0.02 0.01 0.01
ratio 0.14 0.07 0.07

g7jac200 Primal 3533980 3533980 3533980 3533340
Time(s) 2.98 1.07 0.28 0.18

ratio 0.36 0.09 0.06
g7jac200sc Primal 3518610 3518610 3518610 3518080

Time(s) 1.32 0.56 0.73 0.12
ratio 0.42 0.55 0.09

Table 8.5: Approximating the maximum weight of a maximal matching affects that weight
only slightly for integer problems but can provide dramatic performance improvements.
(Continued in Table 8.6.)

by increasing the relative gap defined in Definition 7.5.1 between the primal and dual. This
pays of handsomely in sequential performance.

Tables 8.5 and 8.6 give the final matching weight and time required on our test matrices.
The inputs here are rounded to integers, and the implementation differs from Section 8.2’s
implementation by not reducing prices between µ-stages as mentioned in Section 7.7. This
seemingly minor change causes av40192’s running time to explode from around 5 seconds to
over 25 seconds. By permitting a relative gap between the primal (matching weight) and
dual of 0.5, however, the time is reduced to slightly over a tenth of a second. Speed-ups in
the range of 10× to 100× at the largest µ value of 0.5 appear common; see the bold ratios in
Tables 8.5 and 8.6.
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Terminal µ value
Name 0 5.96e-08 2.44e-04 5.00e-01

lhr14 Primal 10698500 10698500 10698500 10698400
Time(s) 0.09 0.05 0.03 0.02

ratio 0.59 0.39 0.19
lhr14c Primal 14223100 14223100 14223100 14215400

Time(s) 0.35 0.15 0.06 0.03
ratio 0.43 0.16 0.09

3D 51448 3D Primal 3910020 3910020 3910020 3908000
Time(s) 0.08 0.03 0.01 0.003

ratio 0.39 0.18 0.06
ibm matrix 2 Primal 3961440 3961440 3961440 3959460

Time(s) 0.08 0.03 0.01 0
ratio 0.40 0.17 0.06

matrix 9 Primal 8377720 8377720 8377720 8368370
Time(s) 0.17 0.07 0.03 0.01

ratio 0.39 0.18 0.05
barrier2-4 Primal 105044000 105044000 105044000 104597000

Time(s) 0.54 0.23 0.10 0.04
ratio 0.42 0.18 0.08

av41092 Primal 3156210 3156210 3156210 3155920
Time(s) 24.51 8.09 2.48 0.11

ratio 0.33 0.10 0.00
Zhao2 Primal 333891 333891 333891 333487

Time(s) 7.69 2.37 3.65 0.02
ratio 0.31 0.47 0.00

Table 8.6: (Continued from Table 8.5.) Approximating the maximum weight of a maximal
matching affects that weight only slightly for integer problems but can provide dramatic
performance improvements. Note that this implementation is slightly different than the one
used in Table 8.4, but the slight difference caused a dramatic increase in time required for
av41092. Approximating the best matching erased the difference.
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8.4 Approximate matchings for static pivoting

Returning to the test bed of Chapter 5, we find no appreciable difference between solution
results using the approximation levels in Section 8.3. Systems that fail to converge because of
element growth fare no better, and systems that do converge fare no worse. This is somewhat
surprising and deserves more validation. As in Tables 8.5 and 8.6, the matching quality
differs only in small elements. If those elements are too tiny and are perturbed, they are
perturbed in both cases. If not too tiny, then choosing one over the other seems not to make
a difference.

8.5 Performance of distributed auctions

The run-time performance of our memory scalable auction algorithm is highly variable. Some
matrices and configurations of processors and auction options find great speed-ups, while
others find large slow-downs. We have not yet found a good indicator to performance that
requires less time than running the auction algorithm.

Our performance results3 are from a small cluster of dual quad-core X5550 Nehalem
processors running at 2.66GHz. The nodes have 24 GiB of memory and are connected by a
Mellanox ConnectX DDR InfiniBand with an MPI latency of around 1 µs. We use a subset of
the matrices in Section 8.2; we only select matrices with at least 2 400 rows. At 24 processors,
there are at least 100 rows allocated to each processor. We use the fastest of two runs for
each matrix. The sequential implementation provides the baseline rather than running the
distributed implementation on a single processor.

Figure 8.1 shows a widely variable speed-up on our matrix suite across multiple processors.
Occasional best cases reach speed-ups of over 1 000×, but the median speed-up begins at 3×
with two processors and drops below 1× by 24 processors.

Reporting fair speed-ups for combinatorial algorithms is difficult. The algorithms take
different paths to the solution depending on the distribution of the problem. Sequentially
running a blocked auction (Section 7.8) with the same distribution may eliminate the
“superlinear” speed-ups of over 1 000× on two processors. Problems with trivial solutions still
will achieve near-linear speed-ups. The first pass that forms the initial matching is almost
perfectly parallel, and bids do not conflict between processors.

Figure 8.2 scales the speed-up more appropriately for our target use in distributed, sparse
LU factorization. If the input is distributed, a sequential algorithm first must gather all the
data onto a single node. Figure 8.3 compares the speed-up of the distributed algorithm to
the slow-down from gathering the matrix data.

The frequent communication for non-trivial problems may lead to network latency domi-
nating performance. To demonstrate that the algorithm’s performance is not dominated by
latency, Figure 8.4 compares different arrangements of processors across nodes. Processes

3Source code currently at http://lovesgoodfood.com/jason/cgit/index.cgi/matchpres/ .

http://lovesgoodfood.com/jason/cgit/index.cgi/matchpres/
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Figure 8.1: This speed-up of a distributed auction over a sequential auction shows a general
lack of performance scalability and wide variability in performance. We take the best time of
two runs for each sample. Each box covers the 25% to 75% of results, and the bar within the
box denotes the median (50%) of results. The whiskers (lines) grow out to sample that is at
most twice as far from the median as the box extends. No dots beyond that upward segment
means that no sample is more than twice the 50%→75% distance (downward, 50%→25%).
The blue diagonal line is a median regression line; 50% of the data points are at worst above
the line, and 50% are at best on or below the line.
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Figure 8.2: This speed-up of a distributed auction over collecting the graph at a single node,
running a sequential weight matching algorithm, and distributing the results show slightly
better scalability but still wide variability in performance. Comparing performance assuming
distributed input data is more fair for our target application, distributed-memory sparse LU
factorization. We take the best time of two runs for each sample. The box covers the 25%
to 75% of results, and the bar within the box denotes the median (50%) of results. The
whiskers (lines) grow out to sample that is at most twice as far from the median as the box
extends. No dots beyond that upward segment means that no sample is more than twice the
50%→75% distance (downward, 50%→25%). The blue diagonal line is a median regression
line; 50% of the data points are at worst above the line, and 50% are at best on or below the
line.
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Figure 8.3: Comparison of speed-ups of a distributed auction over collecting the graph at a
single node, running a sequential weight matching algorithm, and distributing the results.
The overheads in collecting the graph almost always reduces performance. Exceptions are
within the level of run-time noise. Comparing performance assuming distributed input data
is more fair for our target application, distributed-memory sparse LU factorization. We take
the best time of two runs for each sample. Each box covers the 25% to 75% of results for the
algorithm in question (gathering to a root or remaining distributed), and the bar within the
box denotes the median (50%) of results. The whiskers (lines) grow out to sample that is at
most twice as far from the median as the box extends. No dots beyond the upward segment
means that no sample is more than twice the 50%→75% distance (downward, 50%→25%).
The blue diagonal line is a median regression line; 50% of the data points are at worst above
the line, and 50% are at best on or below the line.
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Figure 8.4: The issue is not simply latency. This plot shows “equivalent” processor allocations
spread across separate nodes connected by Infiniband. If performance were directly related to
the interconnect’s latency, the (1x3, 3x1) and (1x8, 2x4) results would be appreciably different.
Each of the pairs involves the same number of processing cores. The 3x1 combination involves
more memory controllers than the 1x3 combination as well as cross-node communication yet
still shows the same performance. With auctions, the performance depends on the number of
phases and not on the network’s alacrity at resolving the phase.
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Figure 8.5: Example of two matrices, av41092 (41 092 rows, 1 683 902 entries) and shyy161
(76 480 rows, 329 762 entries) with utterly different performance profiles. The av41092 matrix
does not scale with respect to performance for our algorithm regardless of the access order,
but shyy161 appears “easy” to the row-major order and “hard” to the column-major order.
The lines are median regressions ensuring that half the data points are above the line and
half below.
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Figure 8.6: The results of Figure 8.5 show matrices that both do not scale, but that is not the
only performance mode of our algorithm. Here there are four matrices (af23560, bwmcra 1,
garon2, stomach) with three different performance profiles. The matrix af23560 is so “simple”
that additional processors simply add overhead. Matrix garon2 shows a sudden drop by
happening upon the optimal solution immediately. The other two, bwmcra 1 and stomach,
show a slight speed-up from the initial pass followed by a flat performance profile. Ultimately
the wide variety of matrices show a wide and unpredictable variety of performance profiles.
The lines show a median regression; half the data points are above the line and half below.
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within a node communicate with one-tenth the inter-node latency. If latency dominated the
performance, the different arrangements in Figure 8.4 would show very different speed-ups.
However, there is almost no difference between the arrangements.

Figure 8.5 shows that the performance variability between working with the matrix or its
transpose (“row-major”) seen sequentially in Section 8.2 complicates parallel performance as
well. Figure 8.6 shows how differently a few select matrices perform with increasing processor
count. Modeling and predicting performance reasonably remains outside our reach.

Some instances of slow performance appear related to the structure of the matrix’s
Dulmage-Mendelsohn decomposition[84, 50]. Every edge within a Dulmage-Mendelsohn
decomposition’s square blocks can be permuted to the diagonal. When the edge weights
within that block are similar, many permutations may be tried before finding the optimum
matching. The distributed algorithm runs nearly sequentially, and almost every change
requires a global communication.

Section 8.4’s approximate matching does reduce some of these slow-downs. However, the
baseline sequential running time drops even more and makes the speed-up appear worse.
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Part III

Summary and Future Directions
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Chapter 9

Summary and future directions

9.1 Summary

Essentially, iterative refinement with only a limited amount of extra precision works won-
derfully. The solutions not only are accurate but also are dependably labeled as accurate or
potentially inaccurate. Our tests with artificial dense systems (Chapter 4) and sparse systems
based on practical matrices (Chapter 5) found no failures to identify an erroneous solution.
We do not rely on condition estimation to identify success, improving [37] substantially for
sparse and distributed-memory use. We are evaluating Chapter 3’s algorithm as a replacement
for Lapack’s refinement in xGESVXX, and future work will compare numerical and timing
performance of an Lapack-style implementation of our new algorithm with Lapack’s.

With extra precision in refinement and an improved, column-relative perturbation scheme,
static pivoting achieves dependable solutions. The solutions are accurate even in forward
componentwise error unless the element growth is too large (Section 5.4) . Static pivoting
appears relatively insensitive to approximating the maximum weight matching (Section 8.4),
permitting high-performance sequential pivot selection.

Unfortunately, the parallel performance of our distributed auction algorithm is difficult
to characterize. Some combinations of matrices and processor counts achieve abysmal
performance. Larger approximation factors assist performance somewhat, but explaining the
performance to end users will become a support nightmare.

9.2 Future directions for iterative refinement

Iterative refinement wraps around many different factorization and solution techniques. The
normwise stable and asymptotically optimal algorithms for many linear algebra problems[36,
38] can use our refinement algorithm to obtain componentwise accurate results. Iterative
refinement is applicable to more than just solving square systems Ax = b. Demmel et al. [39]
successfully applies the algorithm from Demmel et al. [37] to over-determined least squares
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problems. Our algorithm likewise will apply, although choosing exactly which backward
errors are important and which quantities need monitored requires more thought.

Because we forgo condition estimation, our refinement algorithm should apply to iterative
methods. We only need some way to solve Adyi = ri at each step. Wrapping our iterative
refinement algorithm around GMRES(k) and experimenting with telescoping the backward
error within Adyi = ri could prove effective and efficient.

The analysis of refinement as Newton’s method by Tisseur and Higham (included in
Higham [59]) should permit bootstrapping small backward error in other circumstances. So
long as the residual can be computed to at least twice working precision, our refinement
algorithm should support implicitly defined linear operators.

9.3 Future directions for weighted bipartite matching

The future for distributed weighted bipartite matching algorithms that maintain partial
matchings seems bleak. Being restricted to the corners of the matching polytope severely
limits the computation’s structure. Specialized interior-point methods are most promising.
The internal solves can be handled quickly and in little memory using graph-preconditioned
iterative methods. However, rounding to a final answer is similar to rebuilding an entire
matching[10]. More effective ways to convert fractional matchings or flows to an integral
matching remains an interesting open problem.

As a practical alternative, running multiple different algorithms simultaneously on parti-
tions within a larger parallel process and terminating all but the fastest may be useful. For
use in static pivoting, the numerical phase requires far more memory and processing, so there
may be room to replicate the symbolic work. Engineering such a system is a challenge in the
current MPI model.
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