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1. Summary

We employ the Kantorovich-Rubinstein (KR) metric and Lp generalizations to
compare probability distributions on a given phylogenetic tree. Such distributions
arise in the context of metagenomics, where a sample of environmental sequences
may be treated as a collection of weighted points on a reference phylogenetic tree
of known sequences. In contrast to many applications of Kantorovich-Rubinstein
ideas, the phylogenetic KR metric can be written in a closed form and calculated
in linear time. Using Monte Carlo resampling of the data, we assign a statistical
significance level to the observed distance between two distributions under a null
hypothesis of no clustering. We also approximate the significance level using a
functional of a suitable Gaussian process; in the L2 generalized case this functional
is distributed as a linear combination of χ2

1 random variables weighted by the eigen-
values of an associated matrix. We conclude with an example application using our
software implementation of the KR metric and its generalizations.

2. Introduction

2.1. Phylogenetic placement and probability distributions on a phyloge-
netic tree. Next-generation sequencing technology enables sequencing of hundreds
of thousands to millions of short DNA sequences in a single experiment. This has
led to a new methodology for characterizing the collection of microbes in a sample:
rather than using observed morphology or the results of culturing experiments, it
is possible to directly sequence genetic material extracted in bulk from the sample.
This technology has revolutionized the possibilities for unbiased surveys of environ-
mental microbial diversity, ranging from the human gut (Gill et al., 2006) to acid
mine drainages (Baker and Banfield, 2003).

Recently, a number of groups have proposed phylogenetic placement algorithms
that place each environmental sequences on a fixed reference phylogenetic tree ac-
cording to the phylogenetic maximum-likelihood criterion (Von Mering et al., 2007;
Monier et al., 2008; Berger and Stamatakis, 2009; Matsen et al., 2010). The refer-
ence phylogenetic tree is constructed from previously-characterized DNA sequences.
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The output of a placement algorithm is an assignment of the query sequences to
their most likely location on the reference tree. By fixing a reference tree rather
than attempting to build a phylogenetic tree for the sample from scratch, recent
algorithms of this type are able to place tens of thousands of query sequences per
hour per processor on a reference tree of one thousand taxa (e.g. species), with
linear performance scaling in the number of reference taxa.

The emergence of these algorithms raises the question of how to make com-
parisons between the sets of placements that they output for two samples. One
approach would be to use taxonomic annotation on the reference tree to assign
taxonomic information to the query sequences. However, this is very difficult to
automate: there is no canonical way to assign taxonomic information to the in-
ternal nodes, and the process can be further complicated by gene trees deviating
from the species tree. Resolving such differences is an active research area, with
algorithms and implementations such as Notung (Chen et al., 2000), Softparsmap
(Berglund-Sonnhammer et al., 2006), and PrIME (Åkerborg et al., 2009).

Instead, we consider directly if there is a significant difference between two col-
lections of placements on a reference tree. In doing so, we sidestep the errors intro-
duced by the naming process and preserve the detailed information that phylogeny
offers, including branch length information and information about paralogous genes.
To do so, environmental sequence samples are considered as probability distribu-
tions on their corresponding reference tree as follows. Given n query sequences,
each sequence fragment is assigned probability mass 1/n. In the “point” version,
the mass for a given query sequence is assigned to the location in the reference tree
which best fits the location in the reference tree for that query sequence. In the
“spread” version the 1/n mass is distributed in a continuous or discrete fashion
across the tree according to the level of optimality of that location for the given
query sequence.

These probability distributions can be found via likelihood-based phylogenetics.
The likelihood of a phylogenetic tree under a given model of sequence evolution for a
given aligned set of sequences is the probability of having those observed sequences
evolve on the phylogenetic tree under the specified model (see, e.g., Felsenstein
(2004)). In the likelihood setting, we define a phylogenetic placement to be a
choice of attachment edge on the reference tree, position of attachment point along
that edge, and “pendant” branch length (i.e. the length from the attachment point
to the query node). The likelihood of a placement is the likelihood of the reference
tree with the query sequence attached as specified. A maximum-likelihood point
placement for a given query sequence is the maximum-likelihood attachment of the
sequence to the tree.

By assuming prior probabilities on the edges, the attachment locations on those
edges, and the pendant branch lengths, one can also calculate a posterior proba-
bility value for the placements. For example, one might take a uniform prior on
edges and attachment locations, then an exponential or truncated uniform prior on
pendant branch lengths. By integrating out pendant branch lengths, one obtains
a posterior probability measure µi on the tree for each query sequence i; the re-
sulting probability distribution for the sample would in that case be

∑
i µi/n. For

large data sets, it is not practical to record detailed information about the posterior
probability distribution. Thus, in our implementation, the posterior probability is
computed on an edge-by-edge basis by integrating out the attachment location and
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the pendant branch length, and the corresponding mass is assigned to the maximum
a posteriori location along the edge (Matsen et al., 2010). We note that the imple-
mentation of phylogenetic placement by Berger and Stamatakis (2009) allows for
more flexibility in the tree, with the consequence that placements are only assigned
to a given edge, rather than to a location along an edge.

2.2. The phylogenetic Kantorovich-Rubinstein metric. The Kantorovich-
Rubinstein (KR) metric is a classical means for comparing probability distributions
on a metric space. It is defined rigorously below, but it can be described intuitively
in physical terms as follows. Picture each of the two probability distributions on the
metric space as a collection of piles of sand with unit mass; the amount of sand at a
given point is equal to the probability mass at that point. Suppose that the amount
of “work” required to transport an amount of sand from one place to another is
proportional to the mass of the sand moved times the distance it has to travel.
Then the KR distance between two probability distributions P and Q is simply the
minimum amount of work required to move sand in a configuration corresponding to
P into a configuration corresponding to Q. It will require little effort to move sand
between the configurations corresponding to two similar probability distributions,
while more will be needed for two distributions that place most of their respective
masses on disjoint regions of the metric space.

In the phylogenetic case, the optimization implicit in the definition of the KR
metric can be done analytically, resulting in a closed form expression that can be
evaluated in linear time, thereby enabling analysis of the volume of data produced
by large-scale sequencing studies. Indeed, as shown in Section 3, the metric can
be represented as a single integral over the tree, and the integral reduces to a
summation with a number of terms on the order of the number of placements. In
contrast, computing the KR metric in Euclidean spaces of dimension greater than
one requires a linear programming optimization step.

It is remarkable that the point version of this closed-form expression for the phy-
logenetic KR distance (although apparently not the optimal mass transport justi-
fication for the distance) was intuited by microbial ecologists and called “weighted
UniFrac.” The original UniFrac distance (Lozupone and Knight, 2005) measured
the fraction of branch length shared between two samples when a tree is constructed
on both samples together. When the branches are weighted by the number of sam-
ples below them (Lozupone et al., 2007), one obtains a formula identical to the
point version of the KR distance – see (2) below.

By demonstrating a connection between the classical KR formulation and a con-
struct that has already proved useful in microbial ecology, we are able to leverage
the statistical foundations of the KR perspective. Specifically, we introduce Lp

generalizations of the KR metric that are analogous to ones on the real line due
to Zolotarev (Rachev, 1991; Rachev and Rüschendorf, 1998) – the KR metric cor-
responds to the case p = 1. The generalizations do not arise from optimal mass
transport considerations, but we remark in Section 4 that the square of the p = 2
version does have an appealing interpretation as the amount of variability in a
pooling of the two samples that is not accounted for by the variability in each of
them.

A natural approach to assessing the significance of an observed distance between
the probability distributions associated with two samples is the following proce-
dure analogous to a permutation test from classical non-parametric statistics that
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we expand upon in Section 6. Suppose that we have two samples with m and n
placements, respectively. Imagine creating a new pair of samples by taking some
other subset of size m and its complement from the set of all m+n placements and
then computing the distance between the resulting two probability distributions.
The proportion of the

(
m+n
m

)
choices of such pairs of samples that result in a dis-

tance larger than the one observed in the data is an indication of the significance
of the observed distance. Of course, we can rephrase this procedure as taking a
uniform random subset of placements of size m and its complement and asking for
the probability that the distance between the resulting probability distributions is
greater than the observed one. Consequently, it is possible to approximate the pro-
portion/probability by taking repeated independent choices of the random subset
and recording the proportion of times there is a distance greater than the observed
one. We describe the distribution of the distance between the two random proba-
bility distributions produced from a uniform random subset of placements of size
m and its complement of size n as the distribution of the distance under the null
hypothesis of no clustering.

We show in Section 7 that the distribution of the distance under the null hy-
pothesis of no clustering is approximately that of a readily-computable functional
of a Gaussian process indexed by the tree and that this Gaussian process is rela-
tively simple to simulate. Moreover, we observe that when p = 2 this approximate
distribution is that of the square root of a weighted sum of χ2

1 random variables.
Also, we recall in Section 5 the well-known fact that any tree is a Hadamard

space: a Hadamard space is a simply connected complete metric space in which
there is a suitable notion of the length of a path in the space, the distance be-
tween two points is the infimum of the lengths of the paths joining the points, and
the space has nonpositive curvature in an appropriate sense – see (Burago et al.,
2001). Equivalently, a Hadamard space is a complete CAT(0) space in the sense of
(Bridson and Haefliger, 1999). CAT(0) spaces have already made an appearance
in phylogenetics in the construction of spaces of phylogenetic trees (Billera et al.,
2001). Any compactly supported probability distribution on a Hadamard space has
an appropriately defined barycenter that shares some of the properties of the ex-
pectation of a probability distribution on a Euclidean space and acts as a sensible
“single point summary” of the distribution. We describe a simple procedure for
calculating the barycenter of a probability distribution on a tree.

To illustrate the usefulness of probability metrics for distinguishing between
collections of placements, we perform an example analysis using a dataset on a
photosystem gene that was collected to investigate the difference in populations
when organic sulfur is added to seawater. A significant difference is seen when
comparing the two conditions using the KR metric and its generalizations, and the
sampling distribution of the various distances under the null hypothesis is quite
consistent as the exponent p varies. It is noteworthy that for this data set the
barycenters of the two samples are quite close together, and so the significant value
of the observed distance between the two sets of placements is not simply due to
them occupying essentially non-overlapping regions of the reference tree. Also, it
is not immediately clear from plots of the distributions of distances between pairs
of placements for the two samples and a pooling of them that there is clustering
present.
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There are a number of ways to compare microbial samples in a phylogenetic con-
text besides the method presented here. One popular means of comparing samples
is the “parsimony test,” by which the most parsimonious assignment of internal
nodes of the phylogenetic tree to communities is found; the resulting parsimony
score is interpreted as a measure of difference between communities (Slatkin and
Maddison, 1989; Schloss and Handelsman, 2006). Another interesting approach is
to consider a “generalized principal components analysis” whereby the tree struc-
ture is incorporated into the process of finding principal components of the species
abundances (Bik et al., 2006; Purdom, 2008). The Kantorovich-Rubinstein met-
ric complements these methods by providing a means of comparing samples that
leverages established statistical methodology, that takes into account uncertainty
in read location, and can be visualized directly on the tree.

3. Probability metrics on trees

In this section we introduce the phylogenetic Kantorovich-Rubinstein metric,
which is a particular case of the family of Wasserstein metrics. We use a dual
formulation of the KR metric to show that it can be calculated in linear time via a
simple integral over the tree.

Let T be a phylogenetic tree with assigned branch lengths. Write d for the path
distance on T . We assume that probability distributions have been given on the
tree via collections of either “point” or “spread” placements as described in the
introduction.

For a metric space (S, r), the Kantorovich-Rubinstein distance Z(P,Q) between
two Borel probability distributions P and Q on S is defined as follows. Let R(P,Q)
denote the set of probability distributions R on the product space S × S with the
property R(A×S) = P (A) and R(S ×B) = Q(B) for all Borel sets A and B (that
is, the two marginal distributions of R are P and Q). Then,

Z(P,Q) := inf

{∫
S×S

r(x, y)R(dx, dy) : R ∈ R(P,Q)

}
;

see, for example, (Rachev, 1991; Rachev and Rüschendorf, 1998; Villani, 2003;
Ambrosio et al., 2008; Villani, 2009).

There is an alternative formula for Z(P,Q) that comes from convex duality.
Write L for the set of functions f : S → R with the Lipschitz property |f(x) −
f(y)| ≤ r(x, y) for all x, y ∈ S. Then,

Z(P,Q) = sup

{∫
S

f(x)P (dx)−
∫
S

f(y)Q(dy) : f ∈ L
}
.

We can use this expression to get a simple explicit formula for Z(P,Q) when
(S, r) = (T, d).

Given any two points x, y ∈ T , let [x, y] be the arc between them. There is a
unique Borel measure λ on T such that λ([x, y]) = d(x, y) for all x, y ∈ T . We call
λ the length measure. It is analogous to Lebesgue measure on the real line. Fix
a distinguished point ρ ∈ T , which we think of as the “root” of the tree. For any
f ∈ L with f(ρ) = 0, there is an λ-a.e. unique Borel function g : T → [−1, 1] such
that f(x) =

∫
[ρ,x]

g(y)λ(dy) (this follows easily from the analogous fact for the real

line).
Given x ∈ T , put τ(x) := {y ∈ T : x ∈ [ρ, y]}; that is, if we draw the tree with

the root ρ at the top of the page, then τ(x) is the sub-tree below x. Observe that
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if h : T → R is a bounded Borel function and µ is a Borel probability distribution
on T , then we have the integration-by-parts formula∫

T

(∫
[ρ,x]

h(y)λ(dy)

)
µ(dx) =

∫
T×T

1[ρ,x](y)h(y) (µ⊗ λ)(dx, dy)

=

∫
T×T

1τ(y)(x)h(y) (µ⊗ λ)(dx, dy)

=

∫
T

h(y)

(∫
τ(y)

µ(dx)

)
λ(dy)

=

∫
T

h(y)µ(τ(y))λ(dy).

Thus, if P and Q are two Borel probability distributions on T we have

Z(P,Q) = sup

{∫
T

g(y) [P (τ(y))−Q(τ(y))] λ(dy) : −1 ≤ g ≤ +1

}
.

It is clear that the integral is maximized by taking g(y) = +1 (resp. g(y) = −1)
when P (τ(y)) > Q(τ(y)) (resp. P (τ(y)) < Q(τ(y)), so that

(1) Z(P,Q) =

∫
T

|P (τ(y))−Q(τ(y))| λ(dy).

Interestingly, the quantity on the LHS does not depend on the choice of root,
whereas a priori the quantity on the RHS appears to.

3.1. Zolotarev-type Lp generalization. The metric defined in (1) generalizes to
an Lp Zolotarev-type version: for 0 < p <∞ we have the distances

Zp(P,Q) =

[∫
T

|P (τ(y))−Q(τ(y))|p λ(dy)

] 1
p∧1

– see (Rachev, 1991; Rachev and Rüschendorf, 1998) for a discussion of analogous
metrics for probability distributions on the real line. Intuitively, large p gives more
weight in the distance to parts of the tree which are maximally different in terms
of P and Q, while small p gives more weight to differences which require lots of
transport.

The position of the root ρ also does not matter for this generalized version.
Indeed, if ρ′ and ρ′′ are two choices of the root and [ρ′, ρ′′] is the segment in the
tree T joining them, then (in the obvious notation)

P (τ ′(y))−Q(τ ′(y)) = P (τ ′′(y))−Q(τ ′′(y)), y /∈ [ρ′, ρ′′],

and

P (τ ′(y))−Q(τ ′(y)) = − [P (τ ′′(y))−Q(τ ′′(y))] , λ− a.e. y ∈ [ρ′, ρ′′];

(there is equality provided y is not an atom of P or Q), so∫
T

|P (τ ′(y))−Q(τ ′(y))|p λ(dy) =

∫
T

|P (τ ′′(y))−Q(τ ′′(y))|p λ(dy)

and the choice of the “root” is irrelevant.
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3.2. Connection with the “weighted UniFrac” metric. Assume there are m
sequences from sample A and n sequences in sample B. The “weighted UniFrac”
formula is

(2) u =

n∑
i=1

`i

∣∣∣∣Aim − Bi
n

∣∣∣∣
where `i is the length of branch i, Ai and Bi are the number of descendants of branch
i from communities A and B respectively, and m and n are the total number of
sequences from communities A and B, respectively (Lozupone et al., 2007). This is
the same as (1) when P assigns point mass 1/m to each of the leaves in community
A, and Q assigns point mass 1/n to each of the leaves in community B.

4. Z2
2 (P,Q) and ANOVA

In this section we demonstrate how Z2
2 (P,Q) can be interpreted as a difference

between the pooled average of pairwise distances and the average for each sample
individually.

Let π1, . . . , πm (resp. πm+1, . . . , πm+n) be the placements in the first (resp.
second) sample, so that each πk is a probability distribution on the tree T , P =
1
m

∑m
k=1 πk, and Q = 1

n

∑m+n
k=m+1 πk.

Observe that

Z2
2 (P,Q) =

∫
T

|P (τ(u))−Q(τ(u))|2 λ(du)

=

∫
T

P (τ(u))2 λ(du)− 2

∫
T

P (τ(u))Q(τ(u))λ(du)

+

∫
T

Q(τ(u))2 λ(du)

=

∫
T

[∫
T

∫
T

1[ρ,v](u)1[ρ,w](u)P (dv)P (dw)

]
λ(du)

− 2

∫
T

[∫
T

∫
T

1[ρ,v](u)1[ρ,w](u)P (dv)Q(dw)

]
λ(du)

+

∫
T

[∫
T

∫
T

1[ρ,v](u)1[ρ,w](u)Q(dv)Q(dw)

]
λ(du)

Now, [ρ, v]∩ [ρ, w] is an arc of the form [ρ, v∧w], where v∧w is the “most recent
common ancestor” of v and w relative to the root ρ. Hence,∫

T

1[ρ,v](u)1[ρ,w](u)λ(du) = λ([ρ, v ∧ w])

= d(ρ, v ∧ w)

=
1

2
[d(ρ, v) + d(ρ, w)− d(v, w)] ,
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and

Z2
2 (P,Q) =

∫
T

∫
T

1

2
[d(ρ, v) + d(ρ, w)− d(v, w)] P (dv)P (dw)

− 2

∫
T

∫
T

1

2
[d(ρ, v) + d(ρ, w)− d(v, w)] P (dv)Q(dw)

+

∫
T

∫
T

1

2
[d(ρ, v) + d(ρ, w)− d(v, w)] Q(dv)Q(dw)

=
1

2

[
2

∫
T

∫
T

d(v, w)P (dv)Q(dw)

−
∫
T

∫
T

d(v, w)P (dv)P (dw)

−
∫
T

∫
T

d(v, w)Q(dv)Q(dw)

]
.

Therefore, if we set

R :=
m

m+ n
P +

n

m+ n
Q =

1

m+ n

∑
k

πk,

then

2mn

∫
T

∫
T

d(v, w)P (dv)Q(dw) = (m+ n)2
∫
T

∫
T

d(v, w)R(dv)R(dw)

−m2

∫
T

∫
T

d(v, w)P (dv)P (dw)

− n2
∫
T

∫
T

d(v, w)Q(dv)Q(dw)

and

Z2
2 (P,Q) =

1

2

[
(m+ n)2

mn

∫
T

∫
T

d(v, w)R(dv)R(dw)

− (mn+m2)

mn

∫
T

∫
T

d(v, w)P (dv)P (dw)

− (mn+ n2)

mn

∫
T

∫
T

d(v, w)Q(dv)Q(dw)

]
=

1

2

(m+ n)2

mn

[∫
T

∫
T

d(v, w)R(dv)R(dw)

−
{

m

m+ n

∫
T

∫
T

d(v, w)P (dv)P (dw)

+
n

m+ n

∫
T

∫
T

d(v, w)Q(dv)Q(dw)

}]
.

Thus, Z2
2 (P,Q) gives an indication of the “variability” present in the pooled

collection πi, 1 ≤ i ≤ m + n, that is over and above the “variability” in the two
collections πi, 1 ≤ i ≤ m, and πi, m+ 1 ≤ i ≤ m+ n.

5. Calculating the barycenter

It can be useful to compare probability distributions on a metric space by calcu-
lating a suitably defined “center of mass” that provides a single point summary for
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each distribution. Recall the standard fact that if P is a probability distribution
on a Euclidean space such that

∫
|y−x|2 P (dy) is finite for some (and hence all) x,

then the function x 7→
∫
|y − x|2 P (dy) has a unique minimum at x0 =

∫
y P (dy).

It therefore makes sense to say that a probability distribution P on an arbitrary
metric space (S, r) has a barycenter at x0 if

∫
r(x, y)2 P (dy) is finite for some (and

hence all x) and the function x 7→
∫
r(x, y)2 P (dy) has a unique minimum at x0.

In general, a barycenter need not exist. However, it is well-known that barycen-
ters do exist for probability distributions on Hadamard spaces – see Chapter 9 of
(Burago et al., 2001) for the formal definition of a Hadamard space and a proof of
this fact. It is a straightforward exercise to check that a tree is a Hadamard space –
see Example II.1.15(4) of (Bridson and Haefliger, 1999) and note the remark after
Definition II.1.1 of (Bridson and Haefliger, 1999) that a Hadamard space is the
same thing as a complete CAT(0) space. Thus, a probability distribution on a tree
possesses a barycenter in the above sense.

This fact may also be established directly as follows. As a continuous func-
tion on a compact metric space, the function f : T → R+ defined by f(x) :=∫
T
d(x, y)2 P (dy) achieves its infimum. Suppose that the infimum is achieved at two

points x′ and x′′. Define a function γ : [0, d(x′, x′′)] → [x′, x′′], where [x′, x′′] ⊆ T
is the arc between x′ and x′′, by the requirement that γ(t) is the unique point in
[x′, x′′] that is distance t from x′. It is straightforward to check that the composition
f ◦ γ is strongly convex; that is,

(f ◦ γ)(αr + (1− α)s) < α(f ◦ γ)(r) + (1− α)(f ◦ γ)(s)

for 0 < α < 1 and r, s ∈ [0, d(x′, x′′)]. In particular, f(γ(d(x′, x′′)/2)) = (f ◦
γ)(d(x′, x′′)/2) < (f(x′) + f(x′′))/2, contradicting the definitions of x′ and x′′.

We next consider how to compute the barycenter of a probability distribution
P on a tree (T, d). For each point u ∈ T there is the associated set of directions
in which it is possible to proceed when leaving u. There is one direction for every
connected component of T \ {u}. Thus, there is just one direction associated with
a leaf, two directions associated with a point in the interior of an edge, and k
associated with a vertex of degree k. Given a point u and a direction δ, write
T (u, δ) for the subset of T consisting of points v 6= u such that the unique path
connecting u and v departs u in the direction δ, set

D(u, δ) := −
∫
T (u,δ)

d(u, y)P (dy) +

∫
T\T (u,δ)

d(u, y)P (dy),

and note that

lim
v

1

d(u, v)

[∫
T

d(v, y)2 P (dy)−
∫
T

d(u, y)2 P (dy)

]
= 2D(u, δ),

where the limit is taken over v → u, v ∈ T (u, δ). Note that if u is in the interior of
an edge [a, b] and b is in the direction δ from u, u is in the direction α from a, and



10 STEVEN N. EVANS AND FREDERICK A. MATSEN

u is in the direction β from b, then

D(u, δ) = −
∫
T\T (b,β)

d(u, y)P (dy)−
∫
(u,b)

d(u, y)P (dy)

+

∫
T\T (a,α)

d(u, y)P (dy) +

∫
(a,u)

d(u, y)P (dy)

= −
∫
T\T (b,β)

d(a, y)P (dy) + d(a, u)P (T \ T (b, β))

−
∫
(u,b)

d(a, y)P (dy) + d(a, u)P ((u, b))

+

∫
T\T (a,α)

d(a, y)P (dy) + d(a, u)P (T \ T (a, α))

+ d(a, u)P ((a, u))−
∫
(a,u)

d(a, y)P (dy)

= D(a, α) + d(a, u).

If for some vertex u of the reference tree D(u, δ) ≥ 0 for all directions δ associated
with u, then u is the barycenter (this case includes the trivial one in which u is a
leaf and all the mass of P is concentrated on u). If there is no such vertex, then
there must be a unique pair of neighboring vertices a and b such that D(a, α) < 0
and D(b, β) < 0, where α is the direction from a pointing towards b and β is the
direction from b pointing towards a. In that case, the barycenter must lie on the
edge between a and b, and it follows from the calculations above that the barycenter
is the point u ∈ (a, b) such that d(a, u) = −D(a, α).

6. Assessing significance

To assess the significance of the observed distance between the probability dis-
tributions associated with two samples of placed reads of size m and n, we use an
idea familiar from classical nonparametric statistics: we imagine creating all

(
m+n
m

)
pairs of “samples” that arise from placing m of the reads into one sample and the
remaining n into the other, computing the distances between the two probability
distributions on the reference tree that result from the placed reads, and determin-
ing what proportion of these distances exceed the distance observed in the data.
This proportion may be thought of as a p-value for a test of the null hypothesis of
no clustering against an alternative of some degree of clustering.

Of course, for most values of m and n it is infeasible to actually perform this
exhaustive listing of distances. We observe that if, as above, the pooled collection of
placed reads from both samples is π1, . . . , πm+n, I ⊆ {1, . . . ,m+ n} is a uniformly
distributed random subset with cardinality m (that is, all

(
m+n
m

)
values are equally

likely), J := Ic is the complement of I, P̃ is the random probability distribution
1
m

∑
i∈I πi, and Q̃ is the random probability distribution 1

n

∑
j∈J πj , then the pro-

portion of interest is simply the probability that the distance between P̃ and Q̃
exceeds the distance between P and Q. We can approximate this probability in
the obvious way by taking independent replicates of (I, J) and hence of (P̃ , Q̃) and
looking at the proportion of them that result in distances greater than the observed
one. We illustrate this Monte Carlo approximation procedure in Section 8.
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7. Gaussian approximation

Although the Monte Carlo approach to approximating a p-value in Section 6 is
conceptually straightforward, it is tempting to explore whether there are further
approximations to the outcome of this procedure that give satisfactory results but
require less computation.

Recall that π1, . . . , πm+n is the pooled collection of placed reads and that P̃ =
1
m

∑
i∈I πi and Q̃ = 1

n

∑
j∈J πj , where I is a uniformly distributed random subset

of {1, . . . ,m+ n} and J is its complement. Write

Gk(u) := πk(τ(u)) for any u ∈ T, 1 ≤ k ≤ m+ n,

where we recall that τ(u) is the tree below u relative to the root ρ. Define a
T -indexed stochastic process X = (X(u))u∈T by

X(u) := P̃ (τ(u))− Q̃(τ(u))

=
1

m

∑
i∈I

Gi(u)− 1

n

∑
j∈J

Gj(u).

Then,

Zp(P̃ , Q̃) =

[∫
T

|X(u)|p λ(du)

] 1
p∧1

.

If Hk, 1 ≤ k ≤ m + n, is the indicator random variable for the event {k ∈ I},
then

X(u) =

m+n∑
k=1

[(
1

m
+

1

n

)
Hk −

1

n

]
Gk(u).

Writing E, V, and C for expectation, variance, and covariance, we have

E[Hi] =
m

m+ n
,

V[Hi] =
m

m+ n

n

m+ n
,

and

C[Hi, Hj ] = − 1

m+ n− 1

m

m+ n

n

m+ n
, i 6= j.

It follows that

E[X(u)] = 0
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and

C[X(u), X(v)]

=
1

mn

∑
i

Gi(u)Gi(v)− 1

m+ n− 1

∑
i 6=j

Gi(u)Gj(v)


≈ 1

mn

∑
i

Gi(u)Gi(v)− 1

m+ n

∑
i,j

Gi(u)Gj(v)


=

1

mn

∑
i

Gi(u)Gi(v)− (m+ n)

(
1

m+ n

∑
i

Gi(u)

) 1

m+ n

∑
j

Gj(v)


=

1

mn

[∑
i

(
Gi(u)− Ḡ(u)

) (
Gi(v)− Ḡ(v)

)]
=: Γ(u, v)

when m+ n is large, where Ḡ(u) := 1
m+n

∑
kGk(u).

Remark 7.1. In the case of point placements, with the probability distribution πk
being the point mass at wk ∈ T for 1 ≤ k ≤ m+ n, then

Γ(u, v) =
1

mn

[∑
k

#{k : u ∈ [ρ, wk], v ∈ [ρ, wk]}

− 1

m+ n
#{k : u ∈ [ρ, wk]}#{k : v ∈ [ρ, wk]}

]
.

By a standard central limit theorem for exchangeable random variables, the pro-
cess X is approximately Gaussian with covariance kernel Γ when m+n is large. A
straightforward calculation shows that we may construct a Gaussian process ξ with
covariance kernel Γ by taking independent standard Gaussian random variables
η1, . . . , ηm+n and setting

ξ(u) =
1√
mn

[∑
i

Gi(u)ηi −
1

m+ n

(∑
i

Gi(u)

)(∑
i

ηi

)]
.

It follows that the distribution of Zp(P̃ , Q̃) is approximately that of the random
variable

(3)

[∫
T

|ξ(u)|p λ(du)

] 1
p∧1

,

One can repeatedly sample the normal random variates ηi and numerically integrate
(3) to approximate the distribution of this integral.

There is an even simpler approach for the case p = 2. Let µ2
k, k = 1, 2, . . .,

and ψk, k = 1, 2, . . ., be the positive eigenvalues and corresponding normalized
eigenfunctions of the non-negative definite, self-adjoint, compact operator on L2(λ)
that maps the function f to the function

∫
T

Γ(·, v)f(v)λ(dv). The functions µkψk,
k = 1, 2, . . ., form an orthonormal basis for the reproducing kernel Hilbert space
associated with Γ and the Gaussian process ξ has the Karhunen-Loève expansion

ξ(u) =
∑
k

µkψk(u)ηk,
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where ηk, k = 1, 2, . . ., are independent standard Gaussian random variables – see
(Jain and Marcus, 1978) for a review of the theory of reproducing kernel Hilbert
spaces and the Karhunen-Loève expansion.

Therefore, ∫
T

|ξ(u)|2 λ(du) =
∑
k

µ2
kη

2
k,

and the distribution of Z2
2 (P̃ , Q̃) is approximately that of a certain positive linear

combination of independent χ2
1 random variables.

The eigenvalues of the operator associated with Γ can be found by calculating the
eigenvalues of a related matrix as follows. Define an (m+n)×(m+n) non-negative
definite, self-adjoint matrix M given by

Mij :=
1

mn

∫
T

(
Gi(u)− Ḡ(u)

) (
Gj(u)− Ḡ(u)

)
λ(du).

Note that if we have point placements at locations wk ∈ T for 1 ≤ k ≤ m+ n as
in Remark 7.1, then

M =
1

mn

(
I − 1

m+ n
11>

)
N

(
I − 1

m+ n
11>

)
,

where I is the identity matrix, 1 is the vector which has 1 for every entry, and the
matrix N has (i, j) entry given by the distance from the root to the “most recent
common ancestor” of wi and wj .

Suppose that x is an eigenvector of M for the positive eigenvalue ν2. Set

(4) ψ(u) :=
∑
j

(
Gj(u)− Ḡ(u)

)
xj .

Observe that∫
T

Γ(u, v)ψ(v)λ(dv)

=
1

mn

∫
T

[∑
i

(
Gi(u)− Ḡ(u)

) (
Gi(v)− Ḡ(v)

)]∑
j

(
Gj(v)− Ḡ(v)

)
xj λ(dv)

=
∑
i

(
Gi(u)− Ḡ(u)

)∑
j

Mijxj

=
∑
i

(
Gi(u)− Ḡ(u)

)
ν2xi

= ν2ψ(u),

and so ψ is an (unnormalized) eigenfunction of the operator on L2(λ) defined by
the covariance kernel Γ with eigenvalue ν2.

Conversely, suppose that µ2 is an eigenvalue of the operator with eigenfunction
φ. Set

xj :=

∫
T

(
Gj(v)− Ḡ(v)

)
φ(v)λ(dv).
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Then, ∑
j

Mijxj

=
∑
j

1

mn

∫
T

(
Gi(u)− Ḡ(u)

) (
Gj(u)− Ḡ(u)

)
λ(du)

×
∫
T

(
Gj(v)− Ḡ(v)

)
φ(v)λ(dv)

=

∫
T

(
Gi(u)− Ḡ(u)

)
×

∫
T

1

mn

∑
j

(
Gj(u)− Ḡ(u)

) (
Gj(v)− Ḡ(v)

)
φ(v)λ(dv)

 λ(du)

=

∫
T

(
Gi(u)− Ḡ(u)

) [∫
T

Γ(u, v)φ(v)λ(dv)

]
λ(du)

=

∫
T

(
Gi(u)− Ḡ(u)

)
µ2φ(u)λ(du)

= µ2xi,

so that µ2 is an eigenvalue of M with (unnormalized) eigenvector of x.
It follows that the positive eigenvalues of the operator associated with Γ coincide

with those of the matrix M and have the same multiplicities.
However, we don’t actually need to compute the eigenvalues of M to implement

this approximation. BecauseM is orthogonally equivalent to a diagonal matrix with
the eigenvalues of M on the diagonal, we have from the invariance under orthogonal
transformations of the distribution of the random vector η := (η1, . . . , ηm+n)> that∑
k µ

2
kη

2
k has the same distribution as η>Mη. Thus, the distribution of the random

variable Z2
2 (P̃ , Q̃) is approximately that of

∑
ijMijηiηj . In the example application

of Section 8, this provides a reasonable though not perfect approximation (Figure 6).
One might hope to go even further in the p = 2 case and obtain an analytic

approximation for the distribution
∑
k µ

2
kη

2
k or a useful upper bound for its right

tail.
It is shown in (Hwang, 1980) that if we order the positive eigenvalues so that

µ2
1 ≥ µ2

2 ≥ . . . and assume that µ2
1 > µ2

2, then

P

{∑
k

µ2
kη

2
k ≥ r

}
∼
√

2

π
µ1

∏
k>1

(
1− µ2

k

µ2
1

)− 1
2

r−
1
2 exp

(
− r

2µ2
1

)
,

in the sense that the ratio of the two sides converges to one as r →∞. It is not clear
what the rate of convergence is in this result and it appears to require a detailed
knowledge of the spectrum of the matrix M to apply it.

Gaussian concentration inequalities such as Borell’s inequality (see, for example,
Section 4.3 of (Bogachev, 1998)) give bounds on the right tail that only require a

knowledge of E[(
∑
k µ

2
kη

2
k)

1
2 ] and µ2

1, but these bounds are far too conservative for
the example in Section 8.

There is a substantial literature on various series expansions of densities of posi-
tive linear combinations of independent χ2

1 random variables. Some representative
papers are (Robbins and Pitman, 1949; Gurland, 1955; Pachares, 1955; Ruben,
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1962; Kotz et al., 1967; Gideon and Gurland, 1976). However, it seems that ap-
plying such results would also require a detailed knowledge of the spectrum of the
matrix M as well as a certain amount of additional computation to obtain the
coefficients in the expansion and then to integrate the resulting densities, and this
may not be warranted given the relative ease with which it is possible to repeatedly
simulate the random variable η>Mη.

8. Example application

To demonstrate the use of the Zp metric in an example application, we inves-
tigated variation in expression levels for the psbA gene for an experiment in the
Sargasso Sea (Vila-Costa et al., 2010). Metatranscriptomic data was downloaded
from the CAMERA website (http://camera.calit2.net/), and a psbA alignment was
supplied by Robin Kodner. Searching and alignment was performed using HMMER
(Eddy, 1998), a reference tree was inferred using RAxML (Stamatakis, 2006), and
phylogenetic placement was performed using pplacer (Matsen et al., 2010). Al-
though not yet formally released software, the code used to calculate the KR metrics
is available at http://github.com/matsen/mokaphy.

Visual inspection of the trees fattened by number of placements showed the same
overall pattern with some minor differences (Figure 1 and 2). Application of the
KR metric revealed a significant difference between the two samples. The value of
the Z1 for this example (using spread placements) was 0.006601; this is far out on
the tail of the distribution (Figure 6), and is in fact larger than any of the 1000
replicates generated via shuffling or the Gaussian-based approximation.

Such a low p-value prompts the question of whether the two distributions could
be distinguished using a “weaker” methodology. We observe that the density plot
of the distributions of pairwise distances (Figure 3) does not reveal an obvious
difference in the pairwise distances and that the two barycenters are close together
(Figure 4).

It was not intuitively obvious to us how varying p would affect the distribution
of the Zp distance under the null hypothesis of no clustering. To investigate this
question, we plotted the observed distance along with boxplots of the null distribu-
tion for a collection of different p (Figure 5). It is apparent that there is a consistent
conclusion over a wide range of values of p.

One can also visualize the difference between the two samples by drawing the
tree such that the branch thicknesses represent the minimal amount of “mass”
which flows through that edge in the optimal transport of mass implicit in the
computation of Z1(P,Q) (Figure 7). The color of the edge represents the sign of
the movement.

9. Conclusion

As sequencing becomes faster and less expensive, it will become increasingly
common to have a collection of large data sets for a given gene. Phylogenetic
placement can furnish an evolutionary context for query sequences, resulting in
each data set being represented as a probability distribution on a phylogenetic
tree. The Kantorovich-Rubinstein metric is a natural means to compare those
probability distributions. In this paper we showed that the UniFrac metric is the
phylogenetic Kantorovich-Rubinstein metric for point placements. We explored
Zolotarev-type generalizations of the KR metric, showed how to approximate the
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limiting distribution and made connections with the analysis of variance in the
p = 2 case.

The phylogenetic KR metric and its generalizations can be used any time one
wants to compare two probability distributions on a tree. However, our software im-
plementation is designed with metagenomic and metatranscriptomic investigations
in mind; for this reason it is tightly integrated with the phylogenetic placement
software pplacer (Matsen et al., 2010). With more than two genes, techniques
such as principal components analysis could be applied to the pairwise distances
to cluster environments based on the KR distances as has been done with UniFrac
(Lozupone and Knight, 2005; Lozupone et al., 2008; Hamady et al., 2009). In a
large scale metagenomic analysis with several genes, the KR and related metric
could be used to scan for “discriminating” genes, i.e. genes whose frequency differs
between environments.

One potential future extension not explored here is to partition the tree into sub-
sets in a principal components fashion for a single data set. Recall that (4) gives
a formula for the eigenfunctions of the covariance kernel Γ given the eigenvectors
of M . For any k, one could partition the tree into subsets based on the sign of
the product of the first k eigenfunctions, which would be analogous to partition-
ing Euclidean space by the hyperplanes associated with the first k eigenvectors in
traditional principal components analysis.

Future methods will also need to take details of the DNA extraction procedure
into account. Recent work shows that current lab methodology is unable to recover
absolute mixture proportions due to differential ease of DNA extraction between
organisms (Morgan et al., 2010). However, relative abundance between samples
for a given organism with a fixed laboratory protocol potentially can be measured,
assuming consistent DNA extraction protocols are used. An important next step
is to incorporate such organism-specific biases into the sort of analysis described
here.

10. Tables and figures
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Figure 1. Tree with branches thickened as a linear function of
the number of placements in the control sample placed on that
edge.
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Figure 2. Tree as in Figure 1 but for the DMSP-treated sample.
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Figure 3. Density plot of the distribution of pairwise distances
for the sample data sets.
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Figure 4. Dendrogram with barycenters marked. Circle is the
control sample, and star is the sample treated with DMSP.
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value (marked with x) in the example case.
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Figure 7. A tree displaying the optimal movement of mass for the
KR metric. When moving from the first probability distribution
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leaves. Thickness shows the quantity of mass moving through that
edge.
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