
Dense Point Trajectories by GPU-accelerated Large

Displacement Optical Flow

Narayanan Sundaram
Thomas Brox
Kurt Keutzer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-104

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-104.html

July 1, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported by the German Academic Exchange Service
(DAAD) and the Gigascale Systems Research Center, one of ve research
centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program.

Dense Point Trajectories by GPU-accelerated Large Displacement

Optical Flow∗

Narayanan Sundaram Thomas Brox Kurt Keutzer

July 1, 2010

Abstract

Dense and accurate motion tracking is an important
requirement for many video feature extraction algo-
rithms. In this paper we provide a method for com-
puting point trajectories based on a fast parallel im-
plementation of a recent optical flow algorithm that
tolerates fast motion. The parallel implementation of
large displacement optical flow runs about 78× faster
than the serial C++ version. This makes it practi-
cal to use in a variety of applications, among them
point tracking. In the course of obtaining the fast
implementation, we also prove that the fixed point
matrix obtained in the optical flow technique is posi-
tive semi-definite. We compare the point tracking to
the most commonly used motion tracker - the KLT
tracker - on a number of sequences with ground truth
motion. Our resulting technique tracks up to three
orders of magnitude more points and is 46% more
accurate than the KLT tracker. It also provides a
tracking density of 48% and has an occlusion error of
3% compared to a density of 0.1% and occlusion error
of 8% for the KLT tracker. Compared to the Particle
Video tracker, we achieve 66% better accuracy while
retaining the ability to handle large displacements
while running an order of magnitude faster.

∗This work was supported by the German Academic Ex-
change Service (DAAD) and the Gigascale Systems Research
Center, one of five research centers funded under the Focus
Center Research Program, a Semiconductor Research Corpo-
ration program.

1 Introduction

When analyzing video data, motion is probably the
most important cue, and the most common tech-
niques to exploit this information are difference im-
ages, optical flow, and point tracking. We will focus
on only the last two as they allow us to extract rich
information that is not restricted to static cameras.
The goal here is to enable accurate motion tracking
for a large set of points in the video in close to real
time and in this paper, we make substantial progress
towards that goal. The quality of the estimated flow
field or a set of point trajectories is very important as
small differences in the quality of the input features
can make a high level approach succeed or fail. To
ensure accuracy, many methods only track a sparse
set of points; however, dense motion tracking enables
us to extract information at a much finer granularity
compared to sparse feature correspondences. Hence,
one wants to use the most recent motion estimation
technique providing the most reliable motion features
for a specific task. For dense and accurate tracking
there are usually computational restrictions. Video
data processing requires far more resources than the
analysis of static images, as the amount of raw input
data is significantly larger. This often hinders the use
of high-quality motion estimation methods, which are
usually quite slow [1] and require expensive computer
clusters to run experiments efficiently. For this rea-
son, ways to significantly speedup such methods on
commodity hardware are an important contribution
as they enable more efficient research in fields that
build upon motion features. Fast implementations of
the KLT tracker and optical flow [2, 3] are examples

1

2 RELATED WORK 2

that have certainly pushed research.
In this paper we present a fast GPU implementa-

tion of large displacement optical flow (LDOF) [4],
a recent variational optical flow method that can
deal with faster motion than previous optical flow
techniques1. The numerical schemes used in [4] and
most variational methods are based on a coarse-to-
fine warping scheme, where each level provides an up-
date by solving a nonlinear system given by the Euler-
Lagrange equations followed by fixed point iterations
and a linear solver, as described in [5]. However, the
relaxation techniques used in the linear solver that
work best for serial processors are not efficient on
parallel processors. We investigate alternative solvers
that run well on parallel hardware, in particular red-
black relaxations and the conjugate gradient method.
We show that the conjugate gradient method is faster
than red-black relaxations, especially on larger im-
ages. We also prove that the fixed point matrix is
positive semi-definite, thus guaranteeing the conver-
gence of the conjugate gradient algorithm. We obtain
a speedup of about 78×, which allows us to compute
high quality LDOF for 640×480 images in 1.8 sec-
onds. Extrapolating the current progress in GPU
technology, the same code will even run in real-time
in only a few years. While additional speedup is of-
ten obtained at the cost of lower quality, we ensured
in our implementation that the quality of the original
method is preserved.

We also propose a method for dense point tracking
by building upon the fast implementation of large dis-
placement optical flow. Point trajectories are needed
whenever an approach builds on long term motion
analysis. The dominant method used for this task is
the KLT tracker [6], which is a sparse technique that
only tracks a very small number of designated feature
points. While for many tasks like camera calibration
such sparse point trajectories are totally sufficient,
other tasks like motion segmentation or structure-
from-motion would potentially benefit from higher
densities. In [1] and [7], a method for point track-
ing based on dense variational optical flow has been
suggested. The method proposed in [1] is compu-

1Executables and mex functions can be found at the au-
thors’ websites

tationally very expensive and impractical to use on
large datasets without acceleration.The point track-
ing we propose uses a similar technique, as points are
propagated by means of the optical flow field; how-
ever, we do not build upon another energy minimiza-
tion procedure that detects occluded points mainly
by appearance, but do the occlusion reasoning by
a forward-backward consistency check of the optical
flow. In a quantitative comparison on some sequences
from [8], where close to ground truth optical flow has
been established by manually annotating the objects
in the scene, we show that we can establish much
denser point trajectories with better quality than the
KLT tracker. At the same time, our method is more
accurate and runs an order of magnitude faster than
the technique in [7].

2 Related work

Finding efficient solutions to variational optical flow
problems has been an active area of research. On
serial hardware, multi-grid solvers based on Gauss-
Seidel have been proposed in [9]. A GPU implemen-
tation of the formulation in [9] has been proposed us-
ing Jacobi solvers [10]. Compared to [10], our imple-
mentation handles large displacements through dense
descriptor matching. Such extensions enable us to
handle fast motion well [11], [4]. A multi-grid red-
black relaxation has been suggested in a parallel im-
plementation of the linear CLG method [12]. Very
efficient GPU implementations of other variational
optical flow models have been proposed in [3, 13, 14].

The conjugate gradient algorithm is a popular
solver for convex problems and has been used for op-
tical flow problems with convex quadratic optimiza-
tion [15]. In order to theoretically justify the use of
conjugate gradients, we prove that the system matrix
of general variational optical flow methods is positive
semi-definite and thus the conjugate gradient solver
is guaranteed to converge. It was previously proven
that the Horn-Schunck matrix is positive definite [16].
Our proof is more general and applicable to most vari-
ational formulations [9], [5], [17] and [11].

The most popular point tracker is the Kanade-
Lucas-Tomasi (KLT) tracker [6], which constructs an

3 LARGE DISPLACEMENT OPTICAL FLOW ON THE GPU 3

image pyramid, chooses points that have sufficient
structure and tracks them across frames. New fea-
tures are periodically detected to make up for the loss
of features because of occlusions and tracking errors.
This is generally considered to be fast and accurate,
but it tracks only a few points. Efficient GPU im-
plementations of the KLT tracker have been released
in [18] and [2]. While the KLT algorithm itself is
quite old, the implementation in [2] compensates for
changes in camera exposure to make it more robust.
Non-local point trackers that use global information
have also been proposed [19].

The more advanced point tracker in [1] and [7]
tracks points by building on top of a variational tech-
nique. This comes with high computational costs. It
takes more than 100 seconds to track points between
a pair of 720×480 frames. Moreover, this technique
cannot deal with large displacements of small struc-
tures like limbs, and it has never been shown whether
tracking based on variational flow actually performs
better than the classic KLT tracker.

3 Large displacement optical
flow on the GPU

Large displacement optical flow (LDOF) is a vari-
ational technique that integrates discrete point
matches, namely the midpoints of regions, into the
continuous energy formulation and optimizes this en-
ergy by a coarse-to-fine scheme to estimate large dis-
placements also for small scale structures [11]. As
pointed out in [4], region matching can be replaced
with matching other features like densely sampled
histograms of oriented gradients (HOG) [20]. These
simpler features allow us to implement both the vari-
ational solver and the discrete matching efficiently on
the GPU.

The considered energy functional that is mini-
mized reads:

E(w) =

Z
Ω

Ψ1

`
|I2(x + w(x))− I1(x)|2

´
+γ

Z
Ω

Ψ2

`
|∇I2(x + w(x))−∇I1(x)|2

´
dx

+β

Z
Ω
δ(x) ρ(x) Ψ3(|w(x)−w1(x)|2)dx

+

Z
Ω
δ(x) |f2(x + w1(x))− f1(x)|2dx

+α

Z
Ω

ΨS

`
|∇u(x)|2 + |∇v(x)|2

´
dx

(1)

where w = (u v)T and Ψ∗(s2) is a general penalizer
function with its derivative Ψ′∗(s

2) > 0. A popular
choice in the literature is Ψ∗(s2) =

√
s2 + ε2 [4].

Since speed and accuracy are foremost in solving
the optical flow problem, it is necessary to take ad-
vantage of the improvements in modern microproces-
sors to aid the solution. In particular, parallelism has
emerged as a key to performance scaling. Hence, it is
necessary to study and develop algorithms and tech-
niques that best utilize multiple processing elements
simultaneously.

A parallel implementation of the descriptor match-
ing is relatively straightforward since several points
are being searched for in parallel without any depen-
dencies between them. It is important, however, to
take advantage of coalesced memory accesses (vector
loads/stores) in order to maximize the performance
of the GPU. In the rest of the section, we will fo-
cus on the parallel implementation of the variational
solver that considers these point correspondences.

3.1 Variational solver on the GPU

We minimize (1) by writing the Euler-Lagrange
equations and solving them through a coarse-to-fine
scheme with fixed point iterations. This results in a
sequence of linear systems to be solved, where each
pixel corresponds to two coupled equations in the lin-
ear system:

(Ψ′1I
k
x

2
+ γΨ′2(Ik

xx
2

+ Ik
xy

2
) + βρΨ′3)duk,l+1

+ (Ψ′2I
k
xI

k
y + γΨ′2(Ik

xxI
k
xy + Ik

xyI
k
yy))dvk,l+1

− α div(Ψ′S∇(uk + duk,l+1))

= −Ψ′1(Ik
xI

k
z) + γΨ′2(Ik

xxI
k
xz + Ik

xyI
k
yz)− βρΨ′3(uk − u1)

(2)

3 LARGE DISPLACEMENT OPTICAL FLOW ON THE GPU 4

(Ψ′1I
k
y

2
+ γΨ′2(Ik

yy
2

+ Ik
xy

2
) + βρΨ′3)dvk,l+1

+ (Ψ′2I
k
xI

k
y + γΨ′2(Ik

xxI
k
xy + Ik

xyI
k
yy))duk,l+1

− α div(Ψ′S∇(vk + dvk,l+1))

= −Ψ′1(Ik
y I

k
z) + γΨ′2(Ik

yyI
k
yz + Ik

xyI
k
xz)− βρΨ′3(vk − v1)

For details on the derivation of these equation we
refer to [4]. From symmetry considerations, the dis-
cretization usually produces a symmetric block pen-
tadiagonal matrix with 2 × 2 blocks (for a 5-point
Laplacian stencil). From equation (2), it is clear
that only the diagonal blocks are dense, while the
off-diagonal blocks are diagonal matrices. In fact, for
the isotropic functionals we consider here, they are
scaled identity matrices.

Positive semi-definiteness of the fixed point
matrix. We prove that the fixed point matrix is
symmetric positive semi-definite because (a) the di-
agonal blocks are positive definite and (b) the ma-
trix is block diagonally dominant [21]. An interest-
ing takeaway from the proof is that it is not restricted
to convex penalty functions Ψ∗. The only restriction
on Ψ∗ is that it should be increasing. Moreover, the
proof technique generalizes to most variational opti-
cal flow methods, e.g. [5], [9],[11] and [17]. Details of
the proof are provided below.

3.1.1 Proof of positive definiteness

The sparsity structure of the matrix derived from the
system of equations (2) is shown in Figure 1. The
connectivity looks similar to a 2D Laplacian stencil
matrix.

We present a brief introduction to the necessary
mathematical background. We refer the readers
to [21] for more details. Throughout the following
discussion, we consider only real matrices.
||A|| denotes the norm of the matrix and is defined

as follows:

||A|| = sup
x 6=0

||Ax||
||x||

(3)

If A is a square matrix, then ||A|| = |λmax(A)|.
A is a block diagonally dominant matrix with

Figure 1: Sparse matrix showing the decomposition
into dense 2 × 2 blocks. Filled dots represent non-
zeroes and hollow dots & unspecified elements repre-
sent zeroes.

blocks {Ai,j : 1 ≤ i, j ≤ N} if

||A−1
i,i ||

−1 ≥
N∑

j=1,j 6=i

||Ai,j || 1 ≤ i ≤ N (4)

A =

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

...
...

. . .
...

AN,1 AN,2 . . . AN,N

If all {Ai,j} are square matrices, then the condition

for block diagonal dominance becomes,

λmin(Ai,i) ≥
N∑

j=1,j 6=i

|λmax(Ai,j)| (5)

Accordingly, the matrix is positive semi-definite if
the diagonal blocks are positive semi-definite and the
matrix is block diagonally dominant [21].

Lemma 3.1 The diagonal blocks of the matrix in the
system of equations (2) are positive definite.

Proof Consider a 2× 2 matrix(
x y
y z

)

3 LARGE DISPLACEMENT OPTICAL FLOW ON THE GPU 5

This matrix is positive semi definite iff

x+ z ≥ 0 and y2 ≤ xz. (6)

Constructing the 2 × 2 diagonal block matrix in
the fixed point matrix [4] shown in Figure 2. For
convenience, we drop the pixel reference i from now
on. All assignments are assumed to be made for a
pixel i.

Let

s = α(
∑

j∈N(i)

Ψ′S(j)) (7)

p = Ψ′1I
2
x + γΨ′2(I2

xx + I2
xy) + βρΨ′3 (8)

q = Ψ′1I
2
y + γΨ′2(I2

yy + I2
xy) + βρΨ′3 (9)

r = Ψ′1IxIy + γΨ′2(IxxIxy + IxyIyy) (10)

It is obvious that p, q ≥ 0 and s > 0. If the gradients
are not zero, we have p, q > 0.

The 2× 2 matrix becomes

(
p+ s r
r q + s

)

From relation (6), the necessary and sufficient con-
ditions for positive definiteness become

r2 < (p+ s)(q + s) (11)
(as p+ q + 2s > 0)

⇒ r2 < pq + s(p+ q) + s2 (12)

It is sufficient to prove that r2 ≤ pq as the rest of the
terms on the right hand side are non-negative.

pq − r2 = [Ψ′1I
2
x + γΨ′2(I2

xx + I2
xy) + βρΨ′3]

×[Ψ′1I
2
y + γΨ′2(I2

yy + I2
xy) + βρΨ′3]

−[Ψ′1IxIy + γΨ′2Ixy(Ixx + Iyy)]2 (13)
= Ψ′1Ψ′2γ[I2

x(I2
yy + I2

xy) + I2
y (I2

xx + I2
xy)]

+γ2Ψ′22 (I2
xxI

2
yy + I4

xy)− 2γ2Ψ′22 IxxIyyI
2
xy

−2γΨ′1Ψ′2IxIyIxxIxy − 2γΨ′1Ψ′2IxIyIxyIyy
+βρΨ′3[Ψ′1(I2

x + I2
y) + γΨ′2(I2

xx + I2
yy + 2I2

xy)]

= Ψ′1Ψ′2γ[(IxIyy − IyIxy)2

+(IyIxx − IxIxy)2]
+γ2Ψ′22 (IxxIyy − I2

xy)2

+βρΨ′3Ψ′1(I2
x + I2

y)

+βγρΨ′3Ψ′2(I2
xx + I2

yy + 2I2
xy) (14)

≥ 0 (15)
⇒ r2 ≤ pq (16)
⇒ r2 < pq + s(p+ q) + s2 (as s > 0) (17)

Lemma 3.2 The matrix from the system of equa-
tions (2) is block diagonally dominant

Proof Let a = max(p, q) and b = min(p, q). The
eigenvalues of this matrix are a+ s+ δ and b+ s− δ
where

δ =
1
2

[
√

(a− b)2 + 4r2 − (a− b)] (18)

Note that δ ≥ 0. The smallest eigenvalue (λmin) is
b+ s− δ.

The off-diagonal matrices are diagonal. In fact,
due to the equivalence between the x and y dimen-
sions, they are identity matrices scaled by a constant
(αΨ′S). Therefore the sum of the maximum eigenval-
ues of the off-diagonal matrices becomes,

N∑
j=1,j 6=i

|λmax(Ai,j)| = α(
∑

j∈N(i)

Ψ′S(j)) (19)

= s (20)
(from equation (7))

3 LARGE DISPLACEMENT OPTICAL FLOW ON THE GPU 6

(
Ψ′1I

2
x + γΨ′2(I2

xx + I2
xy) + βρΨ′3 + α(

∑
j∈N(i) Ψ′S(j)) Ψ′1IxIy + γΨ′2(IxxIxy + IxyIyy)

Ψ′1IxIy + γΨ′2(IxxIxy + IxyIyy) Ψ′1I
2
y + γΨ′2(I2

yy + I2
xy) + βρΨ′3 + α(

∑
j∈N(i) Ψ′S(j))

)

Figure 2: Diagonal blocks for pixel i. Ψ′1,Ψ
′
2 and Ψ′S are defined as follows: Ψ′1 := Ψ′((Ikxdu

k + Iky dv
k +

Ikz)2),Ψ′2 := Ψ′((Ikxxdu
k + Ikxydv

k + Ikxz)
2 + (Ikxydu

k + Ikyydv
k + Ikyz)

2)), Ψ′3 = Ψ′((uk + duk − u1)2 + (vk +
dvk − v1)2) Ψ′S := Ψ′(|∇(uk + duk)|2 + |∇(vk + dvk)|2). N(i) denotes the neighborhood of pixel i.

For block diagonal dominance, we require

b+ s− δ ≥ s (21)
b ≥ δ (22)

⇒ 2b ≥
√

(a− b)2 + 4r2 − (a− b) (23)
(a+ b)2 ≥ (a− b)2 + 4r2 (24)

4ab ≥ 4r2 (25)
pq ≥ r2 (26)

which is true from equation (16).
Hence, the matrix is block diagonally dominant.

Theorem 3.3 The matrix from the system of equa-
tions (2) is symmetric positive semi-definite.

Proof From Lemmas 3.1 and 3.2, the inner point
matrix has positive definite diagonal blocks and is
block diagonally dominant. It is also irreducible (as
the connectivity extends to another element in the
same row and column - usually true for any discrete
Laplacian stencil). Due to symmetry in the Laplacian
stencil, the matrix is also symmetric.

Therefore, the matrix is symmetric positive semi-
definite. If the gradient is not the same everywhere,
i.e., the matrix is not singular, it is even positive def-
inite.

Linear solvers. On the CPU, the linear system is
usually solved using Gauss-Seidel relaxations, which
have been empirically shown to be very efficient in
this setting [22]. The Gauss-Seidel method is guar-
anteed to converge if the matrix is symmetric positive
definite. Unfortunately, the Gauss-Seidel technique is
inherently sequential as it updates the points in a se-
rial fashion. It is hard to parallelize it efficiently on
multi-core machines and even harder on GPUs.

It is possible to choose relaxation methods that
have slightly worse convergence characteristics, but
are easy to parallelize, such as Red-black relax-
ation [23]. A single red-black relaxation consists of
two half iterations - each half iteration updates every
alternate point (called red and black points). The
updates to all the red points are inherently parallel
as all the dependencies for updating a red point are
the neighboring black pixels and vice versa. Usually,
this method is used with successive overrelaxation.
Since we have a set of coupled equations, each relax-
ation will update (ui, vi) using a 2 × 2 matrix solve.
Red-black relaxations have been used in a previous
parallel optical flow solver [12].

Besides red-black relaxation, we consider the Con-
jugate gradient method. This requires symmetric
positive definiteness as a necessary and sufficient con-
dition for convergence. The convergence of the conju-
gate gradient technique depends heavily on the con-
dition number of the matrix κ = λmax

λmin
. The condi-

tion numbers of the matrices obtained in the optical
flow problems are very large and hence, convergence
is usually slow.

A standard technique for improving convergence
for ill-conditioned matrices is preconditioning to re-
duce the condition number of the system matrix.
The pre-conditioner must be symmetric and positive
definite. The special structure of the matrix allows
for several regular pre-conditioners that work well in
practice. In particular, we know that the diagonal
blocks of the matrix are positive definite. Hence, a
block diagonal matrix with only the diagonal blocks
of the matrix is symmetric and positive definite and
forms a good pre-conditioner. This pre-conditioner is
usually referred to as a block Jacobi preconditioner.
From now on, unless specified, we use the term con-

4 POINT TRACKING WITH LARGE DISPLACEMENT OPTICAL FLOW 7

jugate gradient solver to refer to the preconditioned
conjugate gradient solver with a block Jacobi precon-
ditioner.

Performing this algorithmic exploration is impor-
tant as choosing the right algorithm for the right plat-
form is essential for getting the best speed-accuracy
tradeoff. This fast LDOF implementation can now
be used to track points in video.

4 Point tracking with large dis-
placement optical flow

We demonstrate the utility of our LDOF implementa-
tion by suggesting a point tracker. In contrast to tra-
ditional local point trackers, like KLT [6], variational
optical flow takes global smoothness constraints into
account. This allows the tracking of far more points
as the flow field is dense and tracking is not restricted
to a few feature points. Moreover, large displacement
optical flow enables tracking limbs or other fast ob-
jects more reliably than conventional trackers.

Our tracking algorithm works as follows: a set of
points is initialized in the first frame of a video. In
principle, we can initialize with every pixel, as the
flow field is dense. However, areas without any struc-
ture are problematic for tracking with variational op-
tical flow as well. For this reason, we remove points
that do not show any structure in their vicinity as
measured by the second eigenvalue λ2 of the struc-
ture tensor

Jρ = Kρ ∗
3∑
k=1

∇Ik∇I>k , (27)

where Kρ is a Gaussian kernel with standard devia-
tion ρ = 1. We ignore all points where λ2 is smaller
than a certain portion of the average λ2 in the image.

Depending on the application, one may actually
be interested in fewer tracks that uniformly cover the
image domain. This can be achieved by spatially sub-
sampling the initial points. Fig. 3 shows a subsam-
pling by factor 8. The coverage of the image is still
much denser than with usual keypoint trackers.

Each of the points can be tracked to the next frame

by using the optical flow field w := (u, v)>:

(xt+1, yt+1)> = (xt, yt)> + (ut(xt, yt), vt(xt, yt))>.
(28)

As the optical flow is subpixel accurate, x and y will
usually end up between grid points. We use bilinear
interpolation to infer the flow at these points.

The tracking has to be stopped as soon as a point
gets occluded. This is extremely important, oth-
erwise the point will share the motion of two dif-
ferently moving objects. Usually occlusion is de-
tected by comparing the appearance of points over
time. In contrast, we detect occlusions by check-
ing the consistency of the forward and the back-
ward flow, which we found to be much more reli-
able. In a non-occlusion case, the backward flow
vector points in the inverse direction as the forward
flow vector: ut(xt, yt) = −ût(xt + ut, yt + vt) and
vt(xt, yt) = −v̂t(xt +ut, yt + vt), where ŵt := (ût, v̂t)
denotes the flow from frame t+ 1 back to frame t. If
this consistency requirement is not satisfied, the point
is either getting occluded at t+ 1 or the flow was not
correctly estimated. Both are good reasons to stop
tracking this point at t. Since there are always some
small estimation errors in the optical flow, we grant
a tolerance interval that allows estimation errors to
increase linearly with the motion magnitude:

|w + ŵ|2 < 0.01
(
|w|2 + |ŵ|2

)
+ 0.5. (29)

We also stop tracking points on motion boundaries.
The exact location of the motion boundary, as esti-
mated by the optical flow, fluctuates a little. This can
lead to the same effect as with occlusions: a tracked
point drifts to the other side of the boundary and
partially shares the motion of two different objects.
To avoid this effect we stop tracking a point if

|∇u|2 + |∇v|2 > 0.01 |w|2 + 0.002. (30)

In order to fill the empty areas caused by disocclusion
or scaling, in each new frame we initialize new tracks
in unoccupied areas using the same strategy as for
the first frame.

5 RESULTS 8

Figure 3: Left: (a) Initial points in the first frame using a fixed subsampling grid. Middle: (b) Frame
number 15 Right: (c) Frame number 30 of the cameramotion sequence. Figure best viewed in color.

5 Results

The implementation platform consists of an Intel
Core2 Quad Q9550 processor running at 2.83GHz in
conjunction with a Nvidia GTX 480 GPU. For the
LDOF implementations, almost all of the computa-
tion is done on the GPU and only minimal amount of
data is transferred between the CPU and the GPU.
We use Nvidia CUDA tools (v3.0) for programming
the GPU. The CPU code was vectorized using the
Intel compiler with all the optimizations enabled.

For the tracking experiments, the KLT tracker used
also runs on GPUs. A description of the exact algo-
rithm is provided in [2]. The implementation in [2]
also compensates for changes in camera exposure and
provides real-time performance on the GPU consid-
ered. Default parameters were used unless otherwise
specified.

5.1 GPU accelerated large displace-
ment optical flow

Runtime for large displacement optical flow has come
down from 143 seconds for the previous serial imple-
mentation on CPU to 1.84 seconds for the parallel
implementation on GPU, a speedup of 78× for an
image size of 640×480. This implementation searches
for HOG matches in a neighborhood of ±80 pixels,
uses η = 0.95, 5 fixed point iterations and 10 Con-
jugate gradient iterations to achieve the same overall
AAE as the CPU version on the Middlebury dataset.
It is also possible to run the optical flow algorithm at
a slightly reduced accuracy (AAE increase of about

11%) at 1.1 seconds per frame. We look closely at the
choice of the linear solver that enabled this speedup.

Performance of linear solvers. Figure 4 shows
the convergence of different solvers for the optical
flow problem. We measure convergence through the
squared norm of the residual ||b−Axm||2. The rates
of convergence are derived from 8 different matrices
from images in the Middlebury dataset [24]. Red-
black and Gauss-Seidel solvers use successive over-
relaxation with ω = 1.85. The matrices considered
were of the largest scale (smaller scales show very
similar results). The initial vector in all the methods
was an all-zero vector. Using a better initialization
procedure (the result of a previous fixed point itera-
tion, for instance) also shows similar results.

From Fig. 4, we can see why the Gauss-Seidel solver
is the preferred choice for serial platforms. It con-
verges well and is relatively simple to implement. In
the numerical scheme at hand, however, we do not de-
sire absolute convergence, as solving any one linear
system completely is not important to the solution of
the nonlinear system. It is more important to have
a quick way of refining the solution and removing all
the large errors. For a few iterations (30 or less), it
is clear that the preconditioned conjugate gradient
solver converges fastest. Non-preconditioned conju-
gate gradient is not as efficient because of the high
condition number of the matrix.

Although it is clear from Fig. 4 that conjugate gra-
dient converges quickly in terms of the number of it-
erations required, a single iteration of conjugate gra-
dient requires more computation than a Gauss-Seidel

5 RESULTS 9

0.00001

0.0001

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

Sq
ua

re
d

no
rm

 o
f t

he
 r

es
id

ua
l

Iterations

Red-black
Gauss Seidel
CG - block Jacobi preconditioner
CG-No Preconditioner

Figure 4: Rates of convergence for different techniques considered. Y-axis shows the value of the residual
normalized to the initial residual value averaged over 8 different matrices. Figure best viewed in color

or a red-black iteration. Table 1 shows the runtimes
of the solvers. Even though red-black relaxations are
also parallel, we can see from Fig. 4 that we require
roughly 3× as many red-black iterations as conju-
gate gradient iterations to achieve the same accuracy.
Red-black iterations are 1.4× slower than CG overall.
Gauss-Seidel iterations, running on the CPU, are 47×
slower compared to conjugate gradient on the GPU.

Linear Solver Time taken
(in milliseconds)

Gauss-Seidel 395.13
Red-black 11.97

Conjugate Gradient 8.39

Table 1: Average time taken by the linear solvers for
achieving residual norm < 10−2

Figure 5 shows the breakdown of the serial opti-
cal flow solver that uses Gauss-Seidel and the paral-
lel solver that uses conjugate gradient. The solvers
were run with η = 0.95, 5 fixed point iterations and
25 Gauss-Seidel iterations/10 Conjugate gradient it-
erations to achieve similar AAE on the Middlebury
dataset. From both Figure 5(a) and 5(b), it is clear
that the HOG matching and the linear solver are

the most computation intensive components in the
solvers. In both cases, they take more than 75% of
the total runtime.

The major bottleneck in the conjugate gradient
solver is the sparse matrix-vector multiply (SpMV).
Care has been taken to lay out the matrix in mem-
ory properly to enable the data access patterns
needed for the implementation. This, along with sev-
eral other optimizations (caching in local scratchpad
memory, avoiding control overheads, ensuring vector
loads/stores) enables the SpMV to run at 53 GFlops
on the GPU. This is significant considering that the
matrix is quite sparse (≤ 6 non-zeros per row). Un-
der such conditions, most of the time in the kernel
is spent fetching data to and from GPU main mem-
ory. Similar behavior is seen with the red-black re-
laxations, where 25% of the time is spent in floating
point operations, while 75% of the time is spent in
memory loads and stores. Red-black relaxations also
have less computation to communication ratio (all
the points are read, but only half the points are up-
dated), which reduces their performance.

Accuracy. Table 2 shows the average angular er-
ror measured using our technique on the Middlebury
dataset. These results have been achieved with the
setting (γ = 4, β=30, α = 9, η = 0.95, fixed point

5 RESULTS 10

HOG Creation

HOG Match

Linear solver

Matrix creation

Interpolation &
Warping
Downsampling

Filter

Other

(a) Serial (Gauss Seidel on CPU)

HOG Creation

HOG Match

Linear solver

Matrix creation

Interpolation &
Warping
Downsampling

Filter

Other

Memcopy CPU-GPU

(b) Parallel (CG on GPU)

Figure 5: Breakdown of execution times for serial and parallel variational optical flow solvers. Both solvers
are run at a scale factor of 0.95, with 5 fixed point iterations and 25 Gauss-Seidel iterations/10 CG iterations
to achieve similar AAE. Figure best viewed in color.

iterations = 5, Gauss-Seidel iterations = 25/CG it-
erations = 10). The data shows that the method
provides similar accuracy to the CPU version while
running fast on the GPU.

For faster computations, we use the parameter set
(η = 0.75, 5 fixed point iterations, 10 linear solve it-
erations) to reduce the runtime by 38% with a degra-
dation in AAE of 11%.

5.2 Tracking

We measure the accuracy of the tracking algorithms
with the MIT sequences [8]. This dataset provides
the ground truth optical flow for whole sequences and
the sequences are much longer. This allows us to
evaluate the accuracy of tracking algorithms. After
obtaining the point trajectories from both KLT and
LDOF, we track points using the given ground truth
to predict their final destination. Tracking error is
measured as the mean Euclidean distance between
the final tracked position and the predicted position
on the final frame according to the ground truth for
all the tracked points. LDOF is run with η = 0.95, 5
fixed point iterations and 10 iterations for the linear
solver in all the following experiments. Since the de-
fault parameters for the KLT tracker failed in track-
ing points in long sequences, we increased the thresh-

old for positive identification of a feature from 1000
to 10000 (SSD threshold parameter).

Accuracy. We compare the accuracy of the trackers
for the entire length of the sequences. Since tracking
algorithms should ideally track points over long times
without losing points, we only consider those points
that are tracked through all the frames. Trackers
like KLT keep losing features and need to be con-
stantly detecting new features every few frames to
track well. From Table 3, it is clear that LDOF tracks
almost three orders of magnitude more points than
KLT with 46% improvement in overall accuracy. For
tracking only the common points, the LDOF tracker
is 32% better than KLT. These numbers exclude the
fish sequence since it has transparent motion caused
by dust particles moving in the water. Although we
were able to track this sequence well, performance on
this sequence is sensitive to parameter changes.

Compared to the Particle Video point tracker in [7],
our tracker is 66% more accurate for the common
tracks. Since ground truth data does not exist for
the sequences used in [7], it is not possible to have
objective comparisons on metrics other than the aver-
age round trip error (The videos are mirrored tempo-
rally, so all unoccluded pixels should return to their
starting positions). For comparison, we use only the

5 RESULTS 11

Data Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus Average

AAE(CPU) 1.84 2.67 6.35 2.44 3.96 2.55 4.79 6.46 3.88
AAE(GPU) 1.84 2.51 5.94 2.37 3.91 2.47 5.43 6.38 3.86

Table 2: Average Angular Error (in degrees) for images in the Middlebury dataset.

All tracked points Common points only
Sequence Number LDOF KLT LDOF KLT

name of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

table 13 1.48 114651 3.78 363 1.04 293 1.39 293
camera 37 1.41 101662 3.78 278 1.01 185 2.64 185

fish 75 3.39 75907 35.62 106 3.12 53 5.9 53
hand 48 2.14 151018 3.11 480 1.87 429 2.39 429
toy 18 2.24 376701 2.88 866 1.70 712 1.89 712

Table 3: Tracking accuracy of LDOF and KLT over the MIT sequences

full-length particle trajectories provided by the au-
thors of [7] at http://rvsn.csail.mit.edu/pv/data/pv.
Details of the comparison are provided in Table 5.2.

Occlusion handling. We use the region annota-
tion data from the MIT dataset to measure the oc-
clusion handling capabilities of the algorithms. The
LDOF tracker has an occlusion error of 3% (tracks
that drift between regions/objects) while the KLT
tracker has an occlusion error of 8%. Given that
KLT tracker is already very sparse, this amounts to
a significant number of tracks that are not reliable
(they do not reside on the same object for the en-
tire time). After excluding all the tracks that were
known to have occlusion errors, LDOF outperforms
KLT by 44%. Since all the ground truth occlusions
are known, we measure the tracking density (% of
unoccluded points that the tracker was successful in
tracking through the entire sequence without any oc-
clusion errors). The LDOF tracker has an average
tracking density of 48%, i.e., it tracks roughly half of
the points that are not occluded for the entire length
of the sequence, while KLT has a density of about
0.1%. Table 5 presents the data on occlusion han-
dling.

Large displacements. The MIT sequences still
mostly contain small displacements and hence KLT

is able to track them well (if it does not lose the
features). However, there are motion sequences with
large displacements that are difficult for a tracker like
KLT to capture. In the tennis sequence [11], there are
frames where the tennis player moves very fast, pro-
ducing motion that is hard to capture through simple
optical flow techniques. Since ground truth data does
not exist for this sequence, we manually labeled the
correspondences for 39 points on the player between
frames 490, 495 and 500 2. These points were feature
points identified by KLT in frame 490. The results
for the points tracked on the player are shown in Ta-
ble 6 and Figure 6. It is clear that the LDOF tracker
tracks more points with better accuracy, while cap-
turing the large displacement of the leg.

Runtime. The cameramotion sequence with 37
frames of size 640×480, requires 135 seconds. Out
of this, 125 seconds were spent on LDOF (both for-
ward and backward flow). Such runtimes allow for
convenient processing of large video sequences on a
single machine equipped with cheap GPU hardware.

2The manually labeled correspondence data can be found
on the authors’ website.

5 RESULTS 12

All tracked points Common points only
Sequence Number LDOF Particle Video LDOF Particle Video

name of frames Mean error Points Mean error Points Mean error Points Mean error Points
in pixels tracked in pixels tracked in pixels tracked in pixels tracked

VMouth 70 0.51 114643 7.62 6364 0.79 1232 2.88 1232
VHand 70 0.59 140726 3.15 7029 0.74 3998 3.00 3998
VCars 50 0.30 142052 1.09 10812 0.38 5612 0.84 5612

VBranches 50 0.60 125086 5.49 2883 0.71 946 4.49 946
VHall 50 0.73 108641 2.01 7649 0.78 4205 1.57 4205

VPerson 50 0.47 114335 8.15 6342 0.48 4048 8.18 4048
VShelf 50 0.60 119881 5.98 9016 0.55 4723 5.90 4723

VTreetrunk 50 0.40 204777 3.65 9002 0.49 7132 3.71 7132
VPlant 70 0.50 170361 2.07 8078 0.84 3347 1.17 3347
VTree 70 0.27 168905 1.51 5529 0.29 2566 1.17 2566

VRectFast 80 0.08 112992 0.78 10516 0.06 4558 0.10 4558
VRectLight 80 0.11 112478 0.66 9277 0.08 3909 0.14 3909
VRectSlow 80 0.12 119457 0.61 11046 0.09 4812 0.14 4812
VCylFast 50 0.15 109939 1.90 10688 0.11 4069 0.27 4069
VCylLight 50 0.19 120985 1.17 11789 0.14 4214 0.32 4214
VCylSlow 50 0.15 126924 1.08 12208 0.11 4816 0.19 4816
VZoomIn 40 2.07 15908 3.17 8880 1.93 416 3.64 416

VZoomOut 40 2.45 14838 8.50 9334 2.43 253 8.59 253
VRotateOrtho 90 3.34 28984 3.07 11934 3.03 800 2.66 800
VRotatePersp 90 2.90 19660 2.11 10965 2.84 432 1.14 432

Average 61.5 0.83 109579 3.20 8967 0.84 3304 2.51 3304

Table 4: Tracking accuracy of LDOF and Sand-Teller tracker over the sequences used in [7]

KLT LDOF
Sequence Number of Mean error Number of Mean error Tracking

occluded tracks with no occlusion occluded tracks with no occlusion Density (%)

table 11 2.73 853 1.41 39.6
camera 8 3.68 558 1.37 39.9

fish 30 31.79 8321 2.7 53.0
hand 10 2.90 2127 1.81 46.8
toy 31 2.58 5482 2.11 61.4

Table 5: Occlusion handling by KLT and LDOF trackers based on region annotation from the MIT data set.
Occluded tracks indicate tracks that are occluded according to the ground truth data, but not identified as
such by the trackers.

5 RESULTS 13

LDOF KLT
Frames Mean error Points tracked Mean error Points tracked

in pixels on player in pixels on player

490-495 2.55 (22) 8157 3.21 (19) 21
490-500 2.62 (8) 3690 4.12 (4) 4

Table 6: Tracking accuracy of LDOF and KLT for large displacements in the tennis sequence with manually
marked correspondences. Numbers in parentheses indicate the number of annotated points that were tracked.

Figure 6: (Top) Frame 490 of the tennis sequence with (left) actual image, (middle) KLT points and (right)
LDOF points. (Bottom) Frame 495 of the sequence with (left) actual image, (middle) KLT points and
(right) LDOF points. Only points on the player are marked. KLT tracker points are marked larger for easy
visual detection. Figure best viewed in color.

REFERENCES 14

6 Conclusion

Fast, accurate and dense motion tracking is possi-
ble with large displacement optical flow (LDOF).
We have provided a parallel version of LDOF that
achieves a speedup of 78× over the serial version.
This has been possible through algorithmic explo-
ration for the numerical solvers, and an efficient par-
allel implementation of the large displacement optical
flow algorithm on highly parallel processors (GPUs).
We have also proven analytically that our linear
solver converges for all cases. Moreover, we have
proposed a dense point tracker based on this fast
LDOF implementation. Our experiments quantita-
tively show for the first time that tracking with dense
motion estimation techniques provides better accu-
racy than KLT feature point tracking by 46% on long
sequences and better occlusion handling. We also
achieve 66% better accuracy than the Particle Video
tracker. Our point tracker based on LDOF improves
the density by up to three orders of magnitude com-
pared to KLT and handles large displacements well,
thus making it practical for use in motion analysis
applications.

References

[1] Sand, P., Teller, S.: Particle video: Long-
range motion estimation using point trajecto-
ries. International Journal of Computer Vision
80 (2008) 72–91

[2] Zach, C., Gallup, D., Frahm, J.M.: Fast gain-
adaptive KLT tracking on the GPU. CVPR
Workshop on Visual Computer Vision on GPU’s
(CVGPU) (2008)

[3] Zach, C., Pock, T., Bischof, H.: A duality
based approach for realtime TV-L1 optical flow.
In: Pattern Recognition - Proc. DAGM. Volume
4713 of LNCS., Springer (2007) 214–223

[4] Brox, T., Malik, J.: Large displacement opti-
cal flow:descriptor matching in variational mo-
tion estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2010) To ap-
pear

[5] Brox, T., Bruhn, A., Papenberg, N., Weickert,
J.: High accuracy optical flow estimation based
on a theory for warping. In: ECCV (4). (2004)
25–36

[6] Shi, J., Tomasi, C.: Good features to track. In:
CVPR. (1994) 593–600

[7] Sand, P., Teller, S.: Particle video: Long-
range motion estimation using point trajectories.
CVPR (2006)

[8] Liu, C., Freeman, W.T., Adelson, E.H., Weiss,
Y.: Human-assisted motion annotation. CVPR
(2008)

[9] Bruhn, A., Weickert, J.: Towards ultimate mo-
tion estimation: Combining highest accuracy
with real-time performance. In: ICCV ’05: Pro-
ceedings of the Tenth IEEE International Con-
ference on Computer Vision (ICCV’05) Volume
1, Washington, DC, USA, IEEE Computer So-
ciety (2005) 749–755

[10] Grossauer, H., Thoman, P.: GPU-based multi-
grid: Real-time performance in high resolution
nonlinear image processing. In: ICVS. (2008)
141–150

[11] Brox, T., Bregler, C., Malik, J.: Large displace-
ment optical flow. CVPR (2009)

[12] Gwosdek, P., Bruhn, A., Weickert, J.: High per-
formance parallel optical flow algorithms on the
Sony Playstation 3. Vision, Modeling and Visu-
alization (2008) 253–262

[13] Wedel, A., Pock, T., Zach, C., Bischof, H., Cre-
mers, D.: An improved algorithm for TV-L1
optical flow. Statistical and Geometrical Ap-
proaches to Visual Motion Analysis: Interna-
tional Dagstuhl Seminar, Dagstuhl Castle, Ger-
many, July 13-18, 2008. Revised Papers (2009)
23–45

[14] Werlberger, M., Trobin, W., Pock, T., Wedel,
A., Cremers, D., Bischof, H.: Anisotropic
Huber-L1 optical flow. In: Proc. of the British
Machine Vision Conference (BMVC). (2009)

REFERENCES 15

[15] Lai, S.H., Vemuri, B.C.: Reliable and efficient
computation of optical flow. International Jour-
nal of Computer Vision 29 (1998)

[16] Mitiche, A., Mansouri, A.R.: On convergence
of the Horn and Schunck optical-flow estimation
method. IEEE Transactions on Image Process-
ing 13 (2004) 848–852

[17] Bruhn, A., Weickert, J., Schnörr, C.: Lu-
cas/Kanade meets Horn/Schunck: combining lo-
cal and global optic flow methods. Int. J. Com-
put. Vision 61 (2005) 211–231

[18] Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc,
Y.: Feature tracking and matching in video us-
ing programmable graphics hardware. Machine
Vision and Applications (2007)

[19] Birchfield, S.T., Pundlik, S.J.: Joint tracking of
features and edges. In: CVPR. (2008)

[20] Dalal, N., Triggs, B.: Histograms of oriented
gradients for human detection. In: CVPR.
(2006)

[21] Feingold, D.G., Varga, R.S.: Block diagonally
dominant matrices and generalizations of the
Gerschgorin circle theorem. Pacific J. Math 12
(1962) 1241–1250

[22] Bruhn, A.: Variational Optic Flow Computa-
tion: Accurate Modelling and Efficient Numer-
ics. PhD thesis, Faculty of Mathematics and
Computer Science, Saarland University, Ger-
many (2006)

[23] Stüben, K., Trottenberg, U. In: Multigrid meth-
ods: Fundamental algorithms, model problem
analysis and applications. Volume 960 of Lecture
Notes in Mathematics. Springer (1982)

[24] Baker, S., Scharstein, D., Lewis, J., Roth, S.,
Black, M., Szeliski, R.: A database and evalu-
ation methodology for optical flow. In: ICCV.
(2007)

