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Ewens sampling formula (ESF) is a one-parameter family of prob-
ability distributions with a number of intriguing combinatorial con-
nections. This elegant closed-form formula first arose in biology as
the stationary probability distribution of a sample configuration at
one locus under the infinite-alleles model of mutation. Since its dis-
covery in the early 1970s, the ESF has been used in various biological
applications, and has sparked several interesting mathematical gener-
alizations. In the population genetics community, extending the un-
derlying random-mating model to include recombination has received
much attention in the past, but no general closed-form sampling for-
mula is currently known even for the simplest extension, that is, a
model with two loci. In this paper, we show that it is possible to
obtain useful closed-form results in the case the population-scaled
recombination rate ρ is large but not necessarily infinite. Specifically,
we consider an asymptotic expansion of the two-locus sampling for-
mula in inverse powers of ρ and obtain closed-form expressions for the
first few terms in the expansion. Our asymptotic sampling formula
applies to arbitrary sample sizes and configurations.

1. Introduction. The probability of a sample configuration provides
a useful ground for analyzing genetic data. Popular applications include
obtaining maximum likelihood estimates of model parameters and perform-
ing ancestral inference [see Stephens (2001)]. In principle, model-based full-
likelihood analyses, such as that based on the coalescent [Kingman (1982a,b)],
should be among the most powerful methods since they make full use of the
data. However, in most cases it is intractable to obtain a closed-form for-
mula for the probability of a given dataset. A well-known exception to this
hurdle is the Ewens sampling formula (ESF), which describes the station-
ary probability distribution of a sample configuration under the one-locus
infinite-alleles model in the diffusion limit [Ewens (1972)]. Notable biolog-
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ical applications of this closed-form formula include the test of selective
neutrality [see Slatkin (1994); Watterson (1977)]. Hoppe (1984) provided a
Pólya-like urn model interpretation of the formula, and recently Griffiths
and Lessard (2005) provided a new combinatorial proof of the ESF and
extended the framework to obtain new results for the case with a variable
population size. We refer the reader to the latter paper for a nice summary of
previous works related to the ESF. Note that the ESF also arises in several
interesting contexts outside biology, including random partition structures
and Bayesian statistics; see Arratia et al. (2003) for examples of intricate
combinatorial connections. The ESF is a special case of the two-parameter
sampling formula constructed by Pitman (1992, 1995) for exchangeable ran-
dom partitions.

Golding (1984) considered generalizing the infinite-alleles model to in-
clude recombination and constructed a recursion relation satisfied by the
two-locus sampling probability distribution at stationarity in the diffusion
limit. Ethier and Griffiths (1990) later undertook a more mathematical
analysis of the two-locus model and provided several interesting results.
However, to date a general closed-form formula for the two-locus sampling
distribution remains unknown. Indeed, it is widely recognized that recom-
bination adds a formidably challenging layer of complexity to population
genetics analysis. Because obtaining exact analytic results in the presence of
recombination is difficult, recent research has focused on developing sophis-
ticated and computationally-intensive Monte Carlo techniques. Examples of
such techniques applied to the coalescent include Monte Carlo simulations
[see Hudson (1985, 2001)], importance sampling [see De Iorio and Griffiths
(2004a,b); Fearnhead and Donnelly (2001); Griffiths and Marjoram (1996);
Griffiths et al. (2008); Stephens and Donnelly (2000)], and Markov Chain
Monte Carlo methods [see Kuhner et al. (2000); Nielsen (2000); Wang and
Rannala (2008)].

Being the simplest model with recombination, the two-locus case has been
extensively studied in the past [Ethier and Griffiths (1990); Golding (1984);
Griffiths (1981, 1991); Hudson (1985)], and a renewed wave of interest was
recently sparked by Hudson (2001), who proposed a composite likelihood
method which uses two-locus sampling probabilities as building blocks. LD-
hat, a widely-used software package developed by McVean and colleagues,
is based on this composite likelihood approach, and it has been used to pro-
duce a fine-scale map of recombination rate variation in the human genome
[McVean et al. (2004); Myers et al. (2005)]. LDhat relies on the importance
sampling scheme proposed by Fearnhead and Donnelly (2001) for the coa-
lescent with recombination, to generate exhaustive lookup tables containing



ASYMPTOTIC SAMPLING FORMULA FOR A TWO-LOCUS MODEL 3

two-locus probabilities for all inequivalent sample configurations and a range
of relevant parameter values. This process of generating exhaustive lookup
tables is very computationally expensive. A fast and accurate method of
estimating two-locus probabilities would be of practical value.

In this paper, we revisit the tantalizing open question of whether a closed-
form sampling formula can be found for the coalescent with recombina-
tion. We show that, at least for the two-locus infinite-alleles model with the
population-scaled recombination rate ρ large but not necessarily infinite, it
is possible to obtain useful closed-form analytic results. Our work generalizes
previous results [Ethier and Griffiths (1990); Golding (1984)] for ρ = ∞, in
which case the loci become independent and the two-locus sampling distri-
bution is given by a product of one-locus ESFs. Our main results can be
summarized as follows.

Main results. Consider the diffusion limit of the two-locus infinite-alleles
model with population-scaled mutation rates θA and θB at the two loci. For
a sample configuration n (defined later in the text), we use q(n|θA, θB, ρ) to
denote the probability of observing n given the parameters θA, θB, and ρ. For
an arbitrary n, our goal is to find an asymptotic expansion of q(n|θA, θB, ρ)
in inverse powers of ρ, i.e., for large values of the recombination rate ρ, our
goal is to find

q(n|θA, θB, ρ) = q0(n|θA, θB) +
q1(n|θAθB)

ρ
+

q2(n|θA, θB)
ρ2

+ O

(
1
ρ3

)
,

where q0, q1, and q2 are independent of ρ. As mentioned before, q0(n|θA, θB)
is given by a product of one-locus ESFs. In this paper, we derive a closed-
form formula for the first-order term q1(n|θA, θB). Further, we show that the
second-order term q2(n|θA, θB) can be decomposed into two parts, one for
which we obtain a closed-form formula and the other that satisfies a simple
strict recursion. The latter can be easily evaluated using dynamic program-
ming. Details of these results are described in Section 3. In a similar vein,
in Section 4 we obtain a simple asymptotic formula for the joint probability
distribution of the number of alleles observed at the two loci.

2. Preliminaries. In this section, we review the ESF for the one-locus
infinite-alleles model, as well as Golding’s (1984) recursion relation for the
two-locus generalization. Our notational convention generally follows that
of Ethier and Griffiths (1990).

Given a positive integer k, [k] denotes the k-set {1, . . . , k}. For a non-
negative real number x and a positive integer n, (x)n := x(x + 1) . . . (x +
n − 1) denotes the nth ascending factorial of x. We use 0 to denote either



4 P. JENKINS AND Y. SONG

a vector or a matrix of all zeroes; it will be clear from context which is
intended. Throughout, we consider the diffusion limit of a neutral haploid
exchangeable model of random mating with constant population size 2N .
We refer to the haploid individuals in the population as gametes.

2.1. Ewens sampling formula for the one-locus model. In the one-locus
model, a sample configuration is denoted by a vector of multiplicities n =
(n1, . . . , nK), where ni denotes the number of gametes with allele i at the
locus and K denotes the total number of distinct allelic types observed. We
use n to denote

∑K
i=1 ni, the total sample size. Under the infinite-alleles

model, any two gametes can be compared to determine whether or not they
have the same allele, but it is not possible to determine how the alleles
are related when they are different. Therefore, allelic label is arbitrary. The
probability of a mutation event at the locus per gamete per generation is
denoted by u. In the diffusion limit, N →∞ and u → 0 with the population-
scaled mutation rate θ = 4Nu held fixed. Each mutation gives rise to a new
allele that has never been seen before in the population. For the one-locus
model just described, Ewens (1972) obtained the following result:

Proposition 2.1 (Ewens). At stationarity in the diffusion limit of the
one-locus infinite-alleles model with the scaled mutation parameter θ, the
probability of an unordered sample configuration n = (n1, . . . , nK) is given
by

(2.1) p(n | θ) =
n!

n1 . . . nK

1
α1! . . . αn!

θK

(θ)n
,

where αi denotes the number of allele types represented i times, i.e., αi :=
|{k | nk = i}|.

Let An denote an ordered configuration of n sequentially sampled ga-
metes such that the corresponding unordered configuration is given by n.
By exchangeability, the probability of An is invariant under all permutations
of the sampling order. Hence, we can write this probability of an ordered
sample as q(n) without ambiguity. It is given by

(2.2) q(n | θ) = p(n | θ)
[

n!∏K
i=1 ni!

1
α1! . . . αn!

]−1

=

[
K∏

i=1

(ni − 1)!

]
θK

(θ)n
,

which follows from the fact that there are n!∏K

i=1
ni!

1
α1!...αn! orderings corre-

sponding to n [Hoppe (1984)]. It is often more convenient to work with an
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ordered sample than with an unordered sample. In this paper, we will work
with the former; i.e., we will work with q(n | θ) rather than p(n | θ).

In the coalescent process going backwards in time, at each event a lineage
is lost either by coalescence or mutation. By consideration of the most recent
event back in time, one can show that q(n | θ) satisfies

(2.3) n(n−1+θ)q(n | θ) =
K∑

i=1

ni(ni−1)q(n−ei | θ)+θ
K∑

i=1

δni,1q(n−ei | θ),

where δni,1 is the Kronecker delta and ei is a unit vector with the ith entry
equal to one and all other entries equal to zero. The boundary condition is
q(ei | θ) = 1 for all i ∈ [K], and q(n | θ) is defined to be zero if n contains
any negative component. It can be easily verified that the formula of q(n | θ)
shown in (2.2) satisfies the recursion (2.3).

Ewens (1972) also obtained the following result regarding the number of
allelic types:

Proposition 2.2 (Ewens). Let Kn denote the number of distinct allelic
types observed in a sample of size n. Then,

(2.4) P(Kn = k | θ) =
s(n, k)θk

(θ)n
,

where s(n, k) are the unsigned Stirling numbers of the first kind. Note that
(θ)n = s(n, 1)θ + s(n, 2)θ2 + . . . + s(n, n)θn.

It follows from (2.1) and (2.4) that Kn is a sufficient statistic for θ.

2.2. Golding’s recursion for the two-locus case. Golding (1984) first gen-
eralized the one-locus recursion (2.3) to two loci, and Ethier and Griffiths
(1990) later undertook a more mathematical study of the model. We de-
note the two loci by A and B, and use θA and θB to denote the respective
population-scaled mutation rates. We use K and L to denote the number
of distinct allelic types observed at locus A and locus B, respectively. The
population-scaled recombination rate is denoted by ρ = 4Nr, where r is the
probability of a recombination event between the two loci per gamete per
generation. A key observation is that to obtain a closed system of equations,
the type space must be extended to allow some gametes to be specified only
at one of the two loci.

Definition 2.1 (Extended sample configuration for two loci). The two-
locus sample configuration is denoted by n = (a, b, c), where a = (a1, . . . , aK)
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with ai being the number of gametes with allele i at locus A and unspecified
alleles at locus B, b = (b1, . . . , bL) with bj being the number of gametes with
unspecified alleles at locus A and allele j at locus B, and c = (cij) is a K×L
matrix with cij being the multiplicity of gametes with allele i at locus A and
allele j at locus B. Further, we define

a =
K∑

i=1

ai, ci· =
L∑

j=1

cij , c =
K∑

i=1

L∑
j=1

cij ,

b =
L∑

j=1

bj , c·j =
K∑

i=1

cij , n = a + b + c.

We use q(a, b, c) to denote the sampling probability of an ordered sam-
ple with configuration (a, b, c). For ease of notation, we do not show the
dependence on parameters. For 0 ≤ ρ < ∞, Golding’s (1984) recursion for
q(a, b, c) takes the following form:

[n(n− 1) + θA(a + c) + θB(b + c) + ρc]q(a, b, c) =
K∑

i=1

ai(ai − 1 + 2ci·)q(a− ei, b, c) +
L∑

j=1

bj(bj − 1 + 2c·j)q(a, b− ej , c)

+
K∑

i=1

L∑
j=1

[cij(cij − 1)q(a, b, c− eij) + 2aibjq(a− ei, b− ej , c + eij)]

+θA

K∑
i=1

 L∑
j=1

δai+ci·,1δcij ,1q(a, b + ej , c− eij) + δai,1δci·,0q(a− ei, b, c)


+θB

L∑
j=1

[
K∑

i=1

δbj+c·j ,1δcij ,1q(a + ei, b, c− eij) + δbj ,1δc·j ,0q(a, b− ej , c)

]

+ρ
K∑

i=1

L∑
j=1

cijq(a + ei, b + ej , c− eij).

(2.5)

Relevant boundary conditions are q(ei,0,0) = q(0, ej ,0) = 1 for all i ∈
[K] and j ∈ [L]. For notational convenience, we deviate from Ethier and
Griffiths (1990) and allow each summation to range over all allelic types. To
be consistent, we define q(a, b, c) = 0 whenever any entry in a, b, or c is
negative.

For ease of discussion, we define the following terms:

Definition 2.2 (Degree). The degree of q(a, b, c) is defined to be a +
b + 2c.
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Definition 2.3 (Strictly recursive). We say that a recursion relation is
strictly recursive if it contains only a single term of the highest degree.

Except in the special case ρ = ∞, a closed-form solution for q(a, b, c) is
not known. Notice that the terms q(a− ei, b− ej , c + eij) and q(a + ei, b +
ej , c−eij) on the right-hand side of (2.5) have the same degree as q(a, b, c) on
the left-hand side. Therefore, (2.5) is not strictly recursive. For each degree,
we therefore need to solve a system of coupled equations, and this system
grows very rapidly with n. For example, for a sample with a = 0, b = 0, and
c = 40, computing q(0,0, c) requires solving a system of more than 20, 000
coupled equations [Hudson (2001)]; this is around the limit of sample sizes
that can be handled in a reasonable time. In the following section, we revisit
the problem of obtaining a closed-form formula for q(a, b, c) and obtain an
asymptotic expansion for large ρ.

3. An asymptotic sampling formula for the two-locus case. For
large ρ, our objective is to find an asymptotic expansion of the form

(3.1) q(a, b, c) = q0(a, b, c) +
q1(a, b, c)

ρ
+

q2(a, b, c)
ρ2

+ O

(
1
ρ3

)
,

where q0, q1, and q2 are independent of ρ. Our closed-form formulas will be
expressed using the following notation:

Definition 3.1. For a given multiplicity vector a = (a1, . . . , aK) with
a =

∑K
i=1 ai, we define

(3.2) qA(a) =

[
K∏

i=1

(ai − 1)!

]
θK

A

(θA)a
.

Similarly, for a given multiplicity vector b = (b1, . . . , bL) with b =
∑L

i=1 bi,
we define

(3.3) qB(b) =

 L∏
j=1

(bj − 1)!

 θL
B

(θB)b
.

As discussed in Section 2.1, qA (respectively, qB) gives the probability of an
ordered sample taken from locus A (respectively, B).

Definition 3.2 (Marginal configuration). We use cA = (ci·)i∈[K] and
cB = (c·j)j∈[L] to denote the marginal sample configurations of c restricted
to locus A and locus B, respectively.
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The leading order term q0(a, b, c) is equal to q(a, b, c) when ρ = ∞, in
which case the two loci are independent. Theorem 2.3 of Ethier and Griffiths
(1990) states that q0(0,0, c) = qA(cA)qB(cB). More generally, one can obtain
the following result for the leading order contribution:

Proposition 3.1. In the asymptotic expansion (3.1) of the two-locus
sampling formula, the zeroth order term q0(a, b, c) is given by

(3.4) q0(a, b, c) = qA(a + cA)qB(b + cB).

Although this result is intuitively obvious, in Section 5.1 we provide a
detailed new proof, since it well illustrates our general strategy. One of the
main results of this paper is a closed-form formula for the next order term
q1(a, b, c). The case with c = 0 admits a particularly simple solution:

Lemma 3.1. In the asymptotic expansion (3.1) of the two-locus sampling
formula, the first order term satisfies

q1(a, b,0) = 0

for arbitrary a and b.

That q1(a, b,0) vanishes is not expected a priori. Below we shall see that
q2(a, b,0) 6= 0 in general. For an arbitrary configuration matrix c of non-
negative integers, we obtain the following closed-form formula for q1(a, b, c):

Theorem 3.1. In the asymptotic expansion (3.1) of the two-locus sam-
pling formula, the first order term q1(a, b, c) is given by

q1(a, b, c) =
1
2

c(c− 1)qA(a + cA)qB(b + cB)

− qB(b + cB)
K∑

i=1

ci·(ci· − 1)qA(a + cA − ei)

− qA(a + cA)
L∑

j=1

c·j(c·j − 1)qB(b + cB − ej)

+
K∑

i=1

L∑
j=1

cij(cij − 1)qA(a + cA − ei)qB(b + cB − ej)

 ,(3.5)

for arbitrary configurations a, b, c of non-negative integers.
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Lemma 3.1 is used in proving Theorem 3.1. A proof of Theorem 3.1 is
provided in Section 5.2, while a proof of Lemma 3.1 is given in Section 5.3. In
principle, similar arguments can be used to find the (j+1)th order term given
the jth, although a general expression does not seem to be easy to obtain.
In Section 5.4, we provide a proof of the following result for q2(a, b, c):

Theorem 3.2. In the asymptotic expansion (3.1) of the two-locus sam-
pling formula, the second order term q2(a, b, c) is of the form

(3.6) q2(a, b, c) = q2(a + cA, b + cB,0) + σ(a, b, c),

where σ(a, b, c) is given by the analytic formula shown in Appendix A, and
q2(a, b,0) satisfies the following strict recursion:

[a(a + θA − 1) + b(b + θB − 1)]q2(a, b,0) =
K∑

i=1

ai(ai − 1)q2(a− ei, b,0) +
L∑

j=1

bj(bj − 1)q2(a, b− ej ,0)

+θA

K∑
i=1

δai,1q2(a− ei, b,0) + θB

L∑
j=1

δbj ,1q2(a, b− ej ,0)

+4

aθA−(θA + a− 1)
K∑

i=1

δai,1

bθB−(θB + b− 1)
L∑

j=1

δbj ,1

qA(a)qB(b),

(3.7)

with boundary conditions q2(ei,0,0) = q2(0, ej ,0) = 0 for all i ∈ [K] and
j ∈ [L].

In contrast to q1(a, b,0) (c.f., Lemma 3.1), it turns out that q2(a, b,0)
does not vanish in general. We do not have an analytic solution for q2(a, b,0),
but note that (3.7) is strictly recursive and that it can be easily solved
numerically using dynamic programming. Deriving an analytic expression
for σ(a, b, c) in (3.6) is a laborious task, as the long equation in Appendix A
suggests. We have written a computer program to verify numerically that
our analytic result is correct.

Numerical study (not shown) suggests that the relative contribution of
q2(a + cA, b + cB,0) to q2(a, b, c) is in most cases extremely small. For very
large sample sizes, solving the dynamic programming problem for q2(a +
cA, b + cB,0) could become prohibitive, and so we might consider simply
omitting it for an analytic estimate of q2(a, b, c). For a given sample config-
uration it would therefore be desirable to estimate the contribution of this
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term without having to calculate it directly. In Appendix B we obtain a
close upper bound on q2(a, b,0) which can be found using an a× b dynamic
programming table. This is much simpler than the dynamic programming
problem for (3.7), whose table has [

∏K
i=1 ai][

∏L
j=1 bj ] entries.

4. Joint distribution of the number of alleles at the two loci in
a sample. Following the same strategy as in the previous section, we can
obtain the asymptotic behavior of the joint distribution of the number of
alleles observed at the two loci in a sample. To make explicit the dependence
of these numbers on the sample size, write the number of alleles at locus A
as Ka,b,c and the number of alleles at locus B as La,b,c. Ethier and Griffiths
(1990) proved that the probability p(a, b, c; k, l) := P(Ka,b,c = k, La,b,c = l)
satisfies the recursion

[n(n− 1) + θA(a + c) + θB(b + c) + ρc]p(a, b, c; k, l) =
a(a− 1 + 2c)p(a− 1, b, c; k, l) + b(b− 1 + 2c)p(a, b− 1, c; k, l)
+ c(c− 1)p(a, b, c− 1; k, l) + 2abp(a− 1, b− 1, c + 1; k, l)
+ θA [ap(a− 1, b, c; k − 1, l) + cp(a, b + 1, c− 1; k − 1, l)]
+ θB [bp(a, b− 1, c; k, l − 1) + cp(a + 1, b, c− 1; k, l − 1)]
+ ρcp(a + 1, b + 1, c− 1; k, l),(4.1)

where p(a, b, c; k, l) = 0 if a < 0, b < 0, c < 0, k < 0, l < 0, a = b = c = 0,
or k = l = 0. Equation (4.1) has a unique solution satisfying the initial
conditions

p(1, 0, 0; k, l) = δk,1δl,0, p(0, 1, 0; k, l) = δk,0δl,1,

for k, l = 0, 1, . . . , n.
As with Golding’s recursion, equation (4.1) can be solved numerically,

but quickly becomes computationally intractable with growing n. The only
exception is the special case of ρ = ∞, for which the distribution is given
by the product of (2.4) for each locus. In what follows, we use the following
notation in writing an asymptotic series for p(a, b, c; k, l):

Definition 4.1. For loci A and B, respectively, we define the analogues
of (2.4) as

(4.2) pA(a; k) =
s(a, k)θk

A

(θA)a
,

and

(4.3) pB(b; l) =
s(b, l)θl

B

(θB)b
,
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where s(a, k) and s(b, l) are the Stirling numbers of the first kind.

We pose the expansion

(4.4) p(a, b, c; k, l) = p0(a, b, c; k, l) +
p1(a, b, c; k, l)

ρ
+ O

(
1
ρ2

)
,

for large ρ. Then, in Section 5.5 we prove the following result for the zeroth
order term:

Proposition 4.1. For an asymptotic expansion of the form (4.4) satis-
fying the recursion (4.1), p0(a, b, c; k, l) is given by

(4.5) p0(a, b, c; k, l) = pA(a + c; k)pB(b + c; l).

Similar to Lemma 3.1, we obtain the following vanishing result for the
first order term in the case of c = 0:

Lemma 4.1. For an asymptotic expansion of the form (4.4) satisfying
the recursion (4.1), we have

p1(a, b, 0; k, l) = 0.

Using this lemma, it is then possible to obtain the following result for an
arbitrary c:

Proposition 4.2. For an asymptotic expansion of the form (4.4) satis-
fying the recursion (4.1), p1(a, b, c; k, l) is given by

(4.6) p1(a, b, c; k, l) =
c(c− 1)

2
[pA(a + c; k)− pA(a + c− 1; k)]×

[pB(b + c; l)− pB(b + c− 1; l)] .

Proofs of Proposition 4.2 and Lemma 4.1 are provided in Section 5.6 and
Section 5.7, respectively.

5. Proofs of main results. In what follows, we provide proofs of the
results mentioned in the previous two sections.
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5.1. Proof of Proposition 3.1. First assume c > 0. Substitute the expan-
sion (3.1) into Golding’s recursion (2.5), divide by ρc and let ρ → ∞. We
are then left with

(5.1) q0(a, b, c) =
K∑

i=1

L∑
j=1

cij

c
q0(a + ei, b + ej , c− eij).

Now, applying (5.1) repeatedly gives

q0(a, b, c) =
∑

orderings

∏
(i,j)∈[K]×[L] cij !

c!
q0(a + cA, b + cB,0),

where the summation is over all distinct orderings of the c gametes with mul-
tiplicity c = (cij). There are c!∏

(i,j)
cij !

such orderings and since the summand

is independent of the ordering, we conclude

(5.2) q0(a, b, c) = q0(a + cA, b + cB,0).

Clearly, (5.2) also holds for c = 0. From a coalescent perspective, this equa-
tion tells us that any gamete with specified alleles (i.e., “carrying ancestral
material”) at both loci must undergo recombination instantaneously back-
wards in time.

Now, by substituting the asymptotic expansion (3.1) with c = 0 into
Golding’s recursion (2.5) and letting ρ →∞, we obtain

[n(n− 1) + θAa + θBb] q0(a, b,0) =
K∑

i=1

ai(ai − 1)q0(a− ei, b,0) +
L∑

j=1

bj(bj − 1)q0(a, b− ej ,0)

+ 2
K∑

i=1

L∑
j=1

aibjq0(a− ei, b− ej , eij)

+ θA

K∑
i=1

δai,1q0(a− ei, b,0) + θB

L∑
j=1

δbj ,1q0(a, b− ej ,0).(5.3)

Equation (5.2) implies q0(a − ei, b − ej , eij) = q0(a, b,0), so with a bit of
rearranging we are left with

[a(a + θA − 1) + b(b + θB − 1)] q0(a, b,0) =
K∑

i=1

ai(ai − 1)q0(a− ei, b,0) +
L∑

j=1

bj(bj − 1)q0(a, b− ej ,0)

+ θA

K∑
i=1

δai,1q0(a− ei, b,0) + θB

L∑
j=1

δbj ,1q0(a, b− ej ,0),(5.4)
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with boundary conditions q0(ei,0,0) = q0(0, ej ,0) = 1 for all i ∈ [K] and
j ∈ [L]. Noting that (5.4) is the sum of two independent recursions of the
form (2.3), one for each locus and each with appropriate boundary condition,
we conclude that q0(a, b,0) is given by

(5.5) q0(a, b,0) = qA(a)qB(b),

a product of two (ordered) ESFs. It is straightforward to verify that (5.5)
satisfies (5.4). Finally, using (5.2) and (5.5), we arrive at (3.4).

5.2. Proof of Theorem 3.1. First assume c > 0. Substitute the asymp-
totic expansion (3.1) into Golding’s recursion (2.5), eliminate terms of order
ρ by applying (5.1), and let ρ → ∞. After applying (5.2) to the remaining
terms and invoking (5.4), with some rearrangement we obtain

cq1(a, b, c)−
K∑

i=1

L∑
j=1

cijq1(a + ei, b + ej , c− eij) =

c(c− 1)q0(a + cA, b + cB,0)−
K∑

i=1

ci·(ci· − 1)q0(a + cA − ei, b + cB,0)

−
L∑

j=1

c·j(c·j − 1)q0(a + cA, b + cB − ej ,0)

+
K∑

i=1

L∑
j=1

cij(cij − 1)q0(a + cA − ei, b + cB − ej ,0).

Now, by utilizing (5.5), this can be written in the form

(5.6) q1(a, b, c) = f(a, b, c) +
K∑

i=1

L∑
j=1

cij

c
q1(a + ei, b + ej , c− eij),

where

f(a, b, c) := (c− 1)qA(a + cA)qB(b + cB)

− qB(b + cB)
K∑

i=1

ci·(ci· − 1)
c

qA(a + cA − ei)

− qA(a + cA)
L∑

j=1

c·j(c·j − 1)
c

qB(b + cB − ej)

+
K∑

i=1

L∑
j=1

cij(cij − 1)
c

qA(a + cA − ei)qB(b + cB − ej).(5.7)
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Above we assumed c > 0. We define f(a, b, c) = 0 if c = 0. Iterating the
recursion (5.6), we may write q1(a, b, c) as

q1(a, b, c) = f(a, b, c) +
K∑

i=1

L∑
j=1

cij

c

f(a + ei, b + ej , c− eij)

+
K∑

i′=1

L∑
j′=1

ci′j′ − δii′δjj′

c− 1
q1(a + ei + ei′ , b + ej + ej′ , c− eij − ei′j′)

 .

Similarly, repeatedly iterating (5.6) yields

q1(a, b, c) = q1(a + cA, b + cB,0)
+ f(a, b, c)

+
∑
i1j1

ci1j1

c
f(a + ei1 , b + ej1 , c− ei1j1)

+
∑

i1j1,i2j2

ci1j1

c

ci2j2 − δi1j1,i2j2

c− 1

× f(a + ei1 + ei2 , b + ej1 + ej2 , c− ei1j1 − ei2j2)

+ . . . +
∑

i1j1,...,icjc

∏
ij cij !
c!

f(a + cA, b + cB,0).(5.8)

The key observation is that the right-hand side of (5.8) has a nice proba-
bilistic interpretation which allows us to obtain a closed-form formula. To
be more precise, consider the first summation∑

i1j1

ci1j1

c
f(a + ei1 , b + ej1 , c− ei1j1).

For a fixed sample configuration c, this can be interpreted as the sum over all
possible ways of throwing away a gamete at random and calculating f based
on the remaining subsample, which we will denote c(c−1). Equivalently, it is
the expected value of f with respect to subsampling without replacement
c− 1 of the gametes in c. Write this as

E[f(A(c−1),B(c−1),C(c−1))],

where C(c−1) is the random subsample obtained by sampling without re-
placement c− 1 gametes from c, and A(c−1) := a + cA −C

(c−1)
A , B(c−1) :=

b+cB−C
(c−1)
B . Note that once the subsample c(c−1) is obtained, then a(c−1)
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and b(c−1) are fully specified. More generally, consider the (c − m)th sum
in (5.8). A particular term in the summation corresponds to an ordering of
c − m gametes in c, which, when removed leave a subsample c(m). With
respect to this subsample, the summand is

K∏
i=1

L∏
j=1

cij !

c
(m)
ij !

m!
c!

f(a(m), b(m), c(m)),

and for each such subsample c(m) there are
( c−m
c−c(m)

)
distinct orderings of the

remaining types in c, with each ordering contributing the same amount to
the sum. Here,

( c−m
c−c(m)

)
denotes the multinomial coefficient:(

c−m

c− c(m)

)
=

(c−m)!∏K
i=1

∏L
j=1(cij − c

(m)
ij )!

.

Gathering identical terms, the (c−m)th sum in (5.8) can therefore be written
over all distinct subsamples of c of size m:

∑
c(m)

(
c−m

c− c(m)

)
K∏

i=1

L∏
j=1

cij !

c
(m)
ij !

m!
c!

f(a(m), b(m), c(m))

=
∑
c(m)

1( c
m

) K∏
i=1

L∏
j=1

(
cij

c
(m)
ij

)
f(a(m), b(m), c(m))

= E[f(A(m),B(m),C(m))],

where, for a fixed m, C(m) = (C(m)
ij ) is a multivariate hypergeometric(c, c,m)

random variable; that is,

P
(
∩(i,j)∈[K]×[L]

[
C

(m)
ij = c

(m)
ij

])
=

1( c
m

) ∏
(i,j)∈[K]×[L]

(
cij

c
(m)
ij

)
.

Furthermore, marginally we have

C
(m)
ij ∼ hypergeometric(c, cij ,m),

C
(m)
i· ∼ hypergeometric(c, ci·,m),

C
(m)
·j ∼ hypergeometric(c, c·j ,m).

In summary, (5.8) can be written as

(5.9) q1(a, b, c) = q1(a + cA, b + cB,0) +
c∑

m=1

E[f(A(m),B(m),C(m))].
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According to Lemma 3.1, the first term q1(a+ cA, b+ cB,0) vanishes, so we
are left with

(5.10) q1(a, b, c) =
c∑

m=1

E[f(A(m),B(m),C(m))].

Finally, since A(m) +C
(m)
A = a+cA and B(m) +C

(m)
B = b+cB, (5.7) and

(5.10) together imply

q1(a, b, c) =
c∑

m=1

(m− 1)qA(a + cA)qB(b + cB)

−qB(b + cB)
1
m

K∑
i=1

E[C(m)
i· (C(m)

i· − 1)]qA(a + cA − ei)

−qA(a + cA)
1
m

L∑
j=1

E[C(m)
·j (C(m)

·j − 1)]qB(b + cB − ej)

+
1
m

K∑
i=1

L∑
j=1

E[C(m)
ij (C(m)

ij − 1)]qA(a + cA − ei)qB(b + cB − ej)

 .

The moments in this equation are easy to compute and one can sum them
over m to obtain the desired result (3.5).

5.3. Proof of Lemma 3.1. First note that for any sample (a, b, c) and
any subsample of the form (a(1), b(1), c(1)), we have f(a(1), b(1), c(1)) = 0,
since every term on right-hand side of (5.7) has a vanishing coefficient. So,
equation (5.9) implies

(5.11) q1(a− ei, b− ej , eij) = q1(a, b,0),

for any (i, j) ∈ [K] × [L]. Now, substitute the asymptotic expansion (3.1)
with c = 0 into Golding’s recursion (2.5). Note that terms of order ρ are
absent since c = 0. Eliminate terms with coefficients independent of ρ by
applying (5.3), multiply both sides of the recursion by ρ, and let ρ →∞ to
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obtain the following:

[n(n− 1) + θAa + θBb]q1(a, b,0) =
K∑

i=1

ai(ai − 1)q1(a− ei, b,0) +
L∑

j=1

bj(bj − 1)q1(a, b− ej ,0)

+ 2
K∑

i=1

L∑
j=1

aibjq1(a− ei, b− ej , eij)

+ θA

K∑
i=1

δai,1q1(a− ei, b,0) + θB

L∑
j=1

δbj ,1q1(a, b− ej ,0),

with boundary conditions q1(ei,0,0) = q1(0, ej ,0) = 0 for all i ∈ [K] and
j ∈ [L]. This equation can be made strictly recursive by applying (5.11) to
q1(a− ei, b− ej , eij). It therefore follows from the boundary conditions (for
example by induction) that q1(a, b,0) = 0.

5.4. Proof of Theorem 3.2. Here, we provide only an outline of a proof;
details are similar to the proof of Theorem 3.1. Substitute the asymptotic
expansion (3.1) into Golding’s recursion (2.5), eliminate terms with coeffi-
cients proportional to ρ or independent of ρ. Then, multiply both sides of
the recursion by ρ and let ρ →∞ to obtain

cq2(a, b, c)−
K∑

i=1

L∑
j=1

cijq2(a + ei, b + ej , c− eij) =

K∑
i=1

ai(ai − 1 + 2ci·)q1(a− ei, b, c) +
L∑

j=1

bj(bj − 1 + 2c·j)q1(a, b− ej , c)

+
K∑

i=1

L∑
j=1

[cij(cij − 1)q1(a, b, c− eij) + 2aibjq1(a− ei, b− ej , c + eij)]

+θA

K∑
i=1

 L∑
j=1

δai+ci·,1δcij ,1q1(a, b + ej , c− eij) + δai,1δci·,0q1(a− ei, b, c)


+θB

L∑
j=1

[
K∑

i=1

δbj+c·j ,1δcij ,1q1(a + ei, b, c− eij) + δbj ,1δc·j ,0q1(a, b− ej , c)

]
−[n(n− 1) + θA(a + c) + θB(b + c)]q1(a, b, c)

(5.12)

By substituting our expression (3.5) for q1(a, b, c), the right-hand side can
be expressed as a function g(a, b, c) which is completely known but rather
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cumbersome to write down. As in the proof of Theorem 3.1, the same ‘un-
wrapping’ maneuver can be applied to rearrange (5.12) into the form (3.6),
where

σ(a, b, c) =
c∑

m=1

E[g(A(m),B(m),C(m))].

This time E[g(A(m),B(m),C(m))] is a function of fourth-order moments of
the multivariate hypergeometric distribution. The formula shown in Ap-
pendix A is obtained by evaluating the expectations and summing over m.

We now show that q2(a, b,0) satisfies the recursion shown in (3.7). We
will use the fact that for a sample (a− ei, b− ej , eij), we have

g(a− ei, b− ej , eij) = 2(a− 1)(b− 1)qA(a)qB(b)
− 2(b− 1)(ai − 1)qA(a− ei)qB(b)
− 2(a− 1)(bj − 1)qA(a)qB(b− ej)
+ 2(ai − 1)(bj − 1)qA(a− ei)qB(b− ej).(5.13)

For an arbitrary c, g(a, b, c) is much more complicated.
Now, one can adopt the approach used in the proof of Lemma 3.1 to

obtain a strict recursion for q2(a + cA, b + cB,0). First, note that (3.6) and
(5.13) imply

q2(a− ei, b− ej , eij) = q2(a, b,0) + E[g((A− ei)(1), (B − ej)(1), e
(1)
ij )]

= q2(a, b,0) + g(a− ei, b− ej , eij)
= q2(a, b,0) + 2(a− 1)(b− 1)qA(a)qB(b)

− 2(b− 1)(ai − 1)qA(a− ei)qB(b)
− 2(a− 1)(bj − 1)qA(a)qB(b− ej)
+ 2(ai − 1)(bj − 1)qA(a− ei)qB(b− ej).(5.14)

As before, substitute the asymptotic expansion (3.1) for c = 0 into Gold-
ing’s recursion (2.5), eliminate terms with coefficients independent of ρ or
proportional to ρ−1, and let ρ →∞ to obtain

[n(n− 1) + θAa + θBb]q2(a, b,0) =
K∑

i=1

ai(ai − 1)q2(a− ei, b,0) +
L∑

j=1

bj(bj − 1)q2(a, b− ej ,0)

+ 2
K∑

i=1

L∑
j=1

aibjq2(a− ei, b− ej , eij)

+ θA

K∑
i=1

δai,1q2(a− ei, b,0) + θB

L∑
j=1

δbj ,1q2(a, b− ej ,0),
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with boundary conditions q2(ei,0,0) = q2(0, ej ,0) = 0 for all i ∈ [K] and
j ∈ [L]. This equation can be made strictly recursive by applying (5.14) to
q2(a− ei, b− ej , eij). After some simplification, this leads to the recursion
(3.7).

5.5. Proof of Proposition 4.1. The proof is similar to the proof of Propo-
sition 3.1, working with the system (4.1) rather than Golding’s recursion
(2.5). First assume c > 0. Substitute the expansion (4.4) into the recursion
(4.1), divide by ρc and let ρ →∞. We are left with

p0(a, b, c; k, l) = p0(a + 1, b + 1, c− 1; k, l),

which implies

(5.15) p0(a, b, c; k, l) = p0(a + c, b + c, 0; k, l).

Clearly, (5.15) also holds for c = 0.
Now, by substituting the asymptotic expansion (4.4) with c = 0 into (4.1)

and letting ρ →∞, we obtain

[n(n− 1) + θAa + θBb] p0(a, b, 0; k, l) =
a(a− 1)p0(a− 1, b, 0; k, l) + b(b− 1)p0(a, b− 1, c; k, l)
+ 2abp0(a− 1, b− 1, 1; k, l)
+ θAap0(a− 1, b, 0; k − 1, l) + θBbp0(a, b− 1, 0; k, l − 1).(5.16)

After invoking (5.15) on p0(a − 1, b − 1, 1; k, l) and rearranging, we are left
with

[a(a + θA − 1) + b(b + θB − 1)] p0(a, b, 0; k, l) =
a(a− 1)p0(a− 1, b, 0; k, l) + b(b− 1)p0(a, b− 1, 0; k, l)
+ θAap0(a− 1, b, 0; k − 1, l) + θBbp0(a, b− 1, 0; k, l − 1),(5.17)

with boundary conditions p0(1, 0, 0; k, l) = δk,1δl,0, and p0(0, 1, 0; k, l) =
δk,0δl,1. Equation (5.17) can be expressed as a linear sum of two independent
recursions:

(a− 1 + θA)pA
0 (a; k) = (a− 1)pA

0 (a− 1; k) + θApA
0 (a− 1; k − 1),

(b− 1 + θB)pB
0 (b; l) = (b− 1)pB

0 (b− 1; l) + θBpB
0 (b− 1; l − 1),

with respective boundary conditions pA
0 (1; k) = δk,1 and pB

0 (1; l) = δl,1.
These recursions are precisely those considered by Ewens (1972, eq. 21),
with respective solutions (4.2) and (4.3). Hence, pA

0 (a; k) = pA(a; k) and
pB
0 (b; l) = pB(b; l), and it is straightforward to verify that pA(a; k)pB(b; l)

satisfies (5.17). Substituting this solution into (5.15), we arrive at (4.5), as
required.
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5.6. Proof of Proposition 4.2. First assume c > 0. Substitute the asymp-
totic expansion (4.4) into the recursion (4.1), eliminate terms with coeffi-
cients linear in ρ by applying (5.15), and let ρ → ∞. After applying (5.15)
to the remaining terms and invoking (5.17), with some rearrangement we
obtain

p1(a, b, c; k, l)− p1(a + 1, b + 1, c− 1; k, l) =
(c− 1)[p0(a + c, b + c, 0; k, l)− p0(a + c− 1, b + c, 0; k, l)

− p0(a + c, b + c− 1, 0; k, l) + p0(a + c− 1, b + c− 1, 0; k, l)].(5.18)

Applying the recursion repeatedly, this becomes

p1(a, b, c; k, l) = p1(a + c, b + c, 0; k, l) + [p0(a + c, b + c, 0; k, l)
− p0(a + c− 1, b + c, 0; k, l)− p0(a + c, b + c− 1, 0; k, l)

+ p0(a + c− 1, b + c− 1, 0; k, l)]
c−1∑
m=0

(c− 1−m).(5.19)

According to Lemma 4.1, the first term p1(a + c, b + c, 0; k, l) vanishes.
Hence, since p0(a, b, c; k, l) is given by (4.5), the right-hand side of (5.19) is
fully known. With some rearrangement we are left with (4.6).

5.7. Proof of Lemma 4.1. First note that (5.18) implies

(5.20) p1(a− 1, b− 1, 1; k, l) = p1(a, b, 0; k, l).

Now, substitute the asymptotic expansion (4.4) with c = 0 into (4.1), elim-
inate leading order terms by applying (5.16), and let ρ → ∞. The result is
made strictly recursive by invoking (5.20), and we obtain

[a(a + θA − 1) + b(b + θB − 1)]p1(a, b, 0; k, l) =
a(a− 1)p1(a− 1, b, 0; k, l) + b(b− 1)p1(a, b− 1, 0; k, l)
+ θAap1(a− 1, b, 0; k − 1, l) + θBbp1(a, b− 1, 0; k, l − 1),

with boundary conditions p1(1, 0, 0; k, l) = p1(0, 1, 0; k, l) = 0, for k, l =
0, . . . , n. It therefore follows (for example by induction) that p1(a, b, 0; k, l) =
0.
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APPENDIX A: EXPRESSION FOR σ(a, b, c)

We use QA to denote qA(a + cA), QA
i to denote qA(a + cA − ei), QA

ik to
denote qA(a + cA − ei − ek), and so on. Then,

σ(a, b, c) =
c

3

[
(c− 1)(c + 1)(3c− 2)

8
+ (c− 1)(3a + 3b + 2c− 1) + 6ab

]
QAQB

− θA(c− 1)
2

K∑
i=1

δai,0δci·,1Q
A
i QB − θB(c− 1)

2

L∑
j=1

δbj ,0δc·j ,1Q
AQB

j

+
K∑

i=1

[
θA − c(c− 3) + 2a + 4b− 4

4
ci·(ci· − 1)

− (2b + c− 1)ci·(ai + ci· − 1)
]
QA

i QB

+
1
2

K∑
i=1

[
θA

2
δci·,2 +

5− 6ai − 4ci·
6

]
ci·(ci· − 1)QA

iiQ
B

+
L∑

j=1

[
θB − c(c− 3) + 2b + 4a− 4

4
c·j(c·j − 1)

− (2a + c− 1)c·j(bj + c·j − 1)
]
QAQB

j

+
1
2

L∑
j=1

[
θB

2
δc·j ,2 +

5− 6bj − 4c·j
6

]
c·j(c·j − 1)QAQB

jj

+
K∑

i,k=1

ci·(ci· − 1)ck·(ck· − 1)
8

QA
ikQ

B +
L∑

j,l=1

c·j(c·j − 1)c·l(c·l − 1)
8

QAQB
jl

− θA + θB − c(c− 5) + 2a + 2b− 4
4

K∑
i=1

L∑
j=1

cij(cij − 1)QA
i QB

j

+
K∑

i=1

L∑
j=1

[
ci·(ci· − 1)c·j(c·j − 1)

4
+

cij(cij + 1− 2ci· + 2ci·c·j − 2c·j)
2

+ cijbj(ci· − 1) + cijai(c·j − 1) + 2aibjcij

+
θB

2
δbj ,0δc·j ,1δcij ,1(ci· − 1) +

θA

2
δai,0δci·,1δcij ,1(c·j − 1)

]
QA

i QB
j
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+
1
2

K∑
i=1

[
ai + ci· − 1− θA

2
δai+ci·,2

] L∑
j=1

cij(cij − 1)QA
iiQ

B
j

+
1
2

L∑
j=1

[
bj + c·j − 1− θB

2
δbj+c·j ,2

] K∑
i=1

cij(cij − 1)QA
i QB

jj

− 1
4

K∑
i=1

L∑
j=1

K∑
k=1

cij(cij − 1)ck·(ck· − 1)QA
ikQ

B
j

− 1
4

K∑
i=1

L∑
j=1

L∑
l=1

cij(cij − 1)c·l(c·l − 1)QA
i QB

jl

+
1
8

K∑
i=1

L∑
j=1

K∑
k=1

L∑
l=1

cij(cij − 1)ckl(ckl − 1)QA
ikQ

B
jl

− 1
12

K∑
i=1

L∑
j=1

cij(cij − 1)(2cij − 1)QA
iiQ

B
jj .

To check the correctness of the above expression, we also solved the re-
cursion (5.12) numerically for all sample configurations of sizes n = 10, 20,
and 30 (with K, L ≤ 2), and confirmed that the above analytic expression
agreed in all cases. We also implemented a Mathematica program to solve
q(a, b, c) exactly in the special case K = L = 1. The program can return
series expansions in terms of ρ−1 as ρ → ∞ which are symbolic in θA and
θB. We could then compare the first three terms against q0, q1, and q2, for
various sample configurations (a, b, c).

APPENDIX B: AN UPPER BOUND ON q2(a, b,0)

To obtain an upper bound on q2(a, b,0), we can exploit the linearity in
(3.7). Let

s1(a, b) := abθAθB,

s2(a, b) := −bθB(θA + a− 1)
∑

i

δai,1,

s3(a, b) := −aθA(θB + b− 1)
∑
j

δbj ,1,

s4(a, b) := (θA + a− 1)(θB + b− 1)
∑

i

δai,1

∑
j

δbj ,1.(B.1)
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Now note that if rk(a, b) (k = 1, . . . , 4) satisfies

[a(a + θA − 1) + b(b + θB − 1)]rk(a, b) =
K∑

i=1

ai(ai − 1 + θAδai,1)rk(a− ei, b) +
L∑

j=1

bj(bj − 1 + θBδbj ,1)rk(a, b− ej)

+ 4qA(a)qB(b)sk(a, b),(B.2)

then q2(a, b,0) = r1(a, b)+r2(a, b)+r3(a, b)+r4(a, b). We can then bound
each rk(a, b) individually and sum them for bounds on q2(a, b,0).

By iteratively unwrapping (B.2), each term that contributes to rk(a, b)
can be mapped bijectively to a sequence of subsamples of (a, b) with the
following constraints:

1. The first term in the sequence is (a, b),
2. The mth term in the sequence has total sample size a + b + 1−m,
3. The sequence has length m such that 1 ≤ m ≤ a + b.

For example, the sequence ((a, b)) is associated with the contribution

4qA(a)qB(b)sk(a, b)
a(a + θA − 1) + b(b + θB − 1)

,

while the sequence ((a, b), (a− ei, b)) is associated with the contribution

ai(ai − 1 + θAδai,1)
[a(a + θA − 1) + b(b + θB − 1)]

· 4qA(a− ei)qB(b)sk(a− ei, b)
(a− 1)(a + θA − 2) + b(b + θB − 1)

,

and so on. Call a sequence satisfying the constraints 1–3 a path. Denote a
subsample of (a, b) of size (mA,mB) by (a(mA), b(mB)). To see how to obtain
a bound on rk(a, b), let us consider the contribution from a single example
path,

((a, b), (a(a−1), b), (a(a−1), b(b−1)), (a(a−2), b(b−1)))
:= ((a, b), (a− ei, b), (a− ei, b− ej), (a− 2ei, b− ej)).

If ai = 2 and bj > 1, the contribution from this path to rk(a, b) is

(B.3)
[
ai(ai − 1)
D(a, b)

· bj(bj − 1)
D(a− 1, b)

· θA

D(a− 1, b− 1)

]
× 4qA(a(a−2))qB(b(b−1))

D(a− 2, b− 1)
sk(a(a−2), b(b−1)),
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where D(a, b) := a(a−1+θA)+b(b−1+θB). Evaluating rk(a, b) completely
is problematic because of terms like

[D(a, b)D(a− 1, b)D(a− 1, b− 1)D(a− 2, b− 1)]−1,

which differ for each path. Suppose for now we have obtained an upper
bound Ua−2,b−1 on this term which depends only on the subsample size
(a− 2, b− 1) for the final term in the path, and not on the complete path.
Then the contribution (B.3) can be rewritten

4
[
a(a− 1 + θA)

D(a, b)
· b(b− 1 + θB)

D(a− 1, b)
· (a− 1)(a− 2 + θA)

D(a− 1, b− 1)
· 1
D(a− 2, b− 1)

]
×
[
ai

a

bj

b

1
a− 1

]
qA(a)qB(b)sk(a(a−2), b(b−1))

(B.4) ≤ 4Ua−2,b−1
a!

(a− 2)!
b!

(b− 1)!
(θA)a

(θA)a−2

(θB)b

(θB)b−1

×
[
ai

a

bj

b

1
a− 1

]
qA(a)qB(b)sk(a(a−2), b(b−1)).

The reason for this approach is that one can now sum (B.4):

(I) First, over all paths to this subsample, then
(II) over all paths ending at a subsample of size (a− 2, b− 1), and finally

(III) over all subsample sizes.

There are
(3
2

)
= 3 paths to this subsample. Hence, summing the bound (B.4)

over (I), a bound on the total contribution of paths to this subsample is

(B.5) 4Ua−2,b−1
a!

(a− 2)!
b!

(b− 1)!
(θA)a

(θA)a−2

(θB)b

(θB)b−1

×
(

3
2

)
P(A(a−2) = a(a−2))P(B(b−1) = b(b−1))qA(a)qB(b)sk(a(a−2), b(b−1)),

where the random variable A(mA) is distributed according to a multivari-
ate hypergeometric(a,a,mA) distribution, and the random variable B(mB)

is distributed according to a multivariate hypergeometric(b, b,mB) distribu-
tion.

Next, sum this bound over (II). Thus, a bound on the contribution from
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all paths ending at a subsample of size (a− 2, b− 1) is

4Ua−2,b−1
a!

(a− 2)!
b!

(b− 1)!
(θA)a

(θA)a−2

(θB)b

(θB)b−1

×
(

3
2

)
qA(a)qB(b)E[sk(A(a−2),B(b−1))].

More generally, one can follow the same argument to find a bound on the
total contribution from paths ending at a subsample of size (mA,mB):

(B.6) 4UmA,mB

(
a + b−mA −mB

a−mA

)
a!

mA!
b!

mB!
(θA)a

(θA)mA

(θB)b

(θB)mB

× qA(a)qB(b)E[sk(A(mA),B(mB))].

The binomial coefficient
(a+b−mA−mB

a−mA

)
accounts for the number of ways of

interspersing the sequences (a,a(a−1), . . . ,a(mA)) and (b, b(b−1), . . . , b(mB)).
Referring to (B.1), the expectations in (B.6) can be evaluated:

E[s1(A(mA),B(mB))] = mAmBθAθB,

E[s2(A(mA),B(mB))] = −mBθB(θA + mA − 1)
∑

i

ai
( a−ai
mA−1

)( a
mA

) ,

E[s3(A(mA),B(mB))] = −mAθA(θB + mB − 1)
∑
j

bj
( b−bj

mB−1

)( b
mB

) ,

E[s4(A(mA),B(mB))] = (θA + mA − 1)(θB + mB − 1)

×
∑

i

ai
( a−ai
mA−1

)( a
mA

) ∑
j

bj
( b−bj

mB−1

)( b
mB

) .(B.7)

Summing (B.6) over all subsample sizes and over k = 1, . . . , 4, we have
therefore proven the following:

Proposition B.1.

q2(a, b,0) ≤ 4qA(a)qB(b)
a∑

mA=2

b∑
mB=2

(a + b−mA −mB)!

(
a

mA

)(
b

mB

)

× (θA)a

(θA)mA

(θB)b

(θB)mB

UmA,mB

4∑
k=1

E[sk(A(mA),B(mB))],

where E[sk(A(mA),B(mB))] is given by (B.7) for k = 1, . . . , 4.
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In a similar fashion,

q2(a, b,0) ≥ 4qA(a)qB(b)
a∑

mA=2

b∑
mB=2

(a + b−mA −mB)!

(
a

mA

)(
b

mB!

)

× (θA)a

(θA)mA

(θB)b

(θB)mB

LmA,mB

4∑
k=1

E[sk(AmA ,BmB )],

where LmA,mB is a lower bound on all coefficients of the form

[D(a, b) . . . D(mA,mB)]−1,

corresponding to paths through the recursion from (a, b) to any subsample
(a(mA), b(mB)) of size (mA,mB).

It remains to choose UmA,mB . The closest possible bound is given by the
actual path which maximizes this term, and this can be found by construct-
ing an a× b dynamic programming table as follows. Define

UmA,mB =



1
D(a, b)

if (mA,mB) = (a, b),

UmA+1,b

D(mA, b)
if mB = b,

Ua,mB+1

D(a,mB)
if mA = a,

max{UmA+1,mB , UmA,mB+1}
D(mA,mB)

if 2 ≤ mA ≤ a− 1, and 2 ≤ mB ≤ b− 1,

and similarly for LmA,mB (replacing max with min). Note that constructing
this single table finds all the relevant bounds. In fact, UmA,mB provides
upper bounds for r1(a, b) and r4(a, b); and LmA,mB provides upper bounds
for r2(a, b) and r3(a, b), since these terms are less than or equal to zero.

The bounds presented above require O(ab) operations, which, while grow-
ing with a and b, require much less time than a complete evaluation of
q2(a, b,0). Empirical testing of this upper bound suggest that it is generally
very close. We also investigated some constant time upper bounds as well
as defining lower bounds, but these proved to be less useful.
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