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Chapter 26

Modelling Spatial Trajectories

26.1 Introduction

The study of trajectories has been basic to science for many centuries. One can mention the

motion of the planets, the meanderings of animals and the routes of ships. More recently

there has been considerable modeling and statistical analysis of biological and ecological

processes of moving particles. The models may be motivated formally by difference and dif-

ferential equations and by potential functions. Initially, following Liebnitz and Newton, such

models were described by deterministic differential equations, but variability around observed

paths has led to the introduction of random variables and to the development of stochastic

calculi. The results obtained from the fitting of such models are highly useful. They may

be employed for: simple description, summary, comparison, simulation, prediction, model

appraisal, bootstrapping, and also employed for the estimation of derived quantities of inter-

est. The potential function approach, to be presented in Section 1.3.4, will be found to have

the advantage that an equation of motion is set down quite directly and that explanatories,

including attractors, repellors, and time-varying fields may be included conveniently.

Movement process data are being considered in novel situations: assessing websites, com-

puter assisted surveys, soccer player movements, iceberg motion, image scanning, bird nav-
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2 CHAPTER 26. MODELLING SPATIAL TRAJECTORIES

igation, health hazard exposure, ocean drifters, wildlife movement. References showing the

variety and including data analyses include: [4], [9], [14], [17], [21], [19], [27], [29], [35], [33],

[34], [39], and [40]. In the chapter consideration is given to location data {r(ti), i = 1, ..., n}
and models leading to such data. As the notation implies and practice shows observation

times, {ti}, may be unequally spaced. The chapter also contains discussion of inclusion of

explanatory variables. It starts with the presentation and discussion of two empirical exam-

ples of trajectory data. The first refers to the motion of a small particle moving about in a

fluid and the second to the satellite-determined locations of a Hawaiian monk seal foraging

off the island of Molokai. The following material concerns pertinent stochastic models for

trajectories and some of their properties. It will be seen that stochastic differential equations

(SDEs) are useful for motivating models and that corresponding inference procedures have

been developed. In particular discrete approximations to SDEs lead to likelihood functions

and thence classic confidence and testing procedures become available.

The basic motivation for the article is to present a unified approach to the modelling and

analysis of trajectory data.

26.2 History and examples

26.2.1 Planetary motion

Newton derived formal laws for the motion of the planets and further showed that Kepler’s

Laws could be derived from these. Lagrange set down a potential function and Newton’s

equations of motion could be derived from it in turn. The work of Kepler, Newton and

Lagrange has motivated many models in physics and engineering. For example in a study

describing the motion of a star in a stellar system, [11] sets down equations of the form

du(t)

dt
= − βu(t) + A(t) + K(r(t), t) (26.1)

with u velocity, A a Brownian-like process, β a coefficient of friction and K the accelera-

tion produced by an external force field. Chandresekar in [11] refers to this equation as a
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generalized Langevin equation. It is an example of an SDE.

Next two examples of empirical trajectory data are presented.

26.2.2 Brownian motion

In general science Brownian motion refers to the movement of tiny particles suspended in

a liquid. The phenomenon is named after Robert Brown, an Englishman, who in 1827

carried out detailed observations of the motion of pollen grains suspended in water, [17].

The phenomenon was modelled by Einstein. He considered the possibility that formalizing

Brownian motion could support the idea that molecules existed. Langevin, [26], set down

the following expression for the motion of such a particle,

m
d2x

dt2
= − 6πµa

dx

dt
+ X

where m is the particle’s mass, a is its radius of the particle, µ is the viscosity of the liquid,

and X is the “complementary force” - a Brownian process-like term. One can view this as

an example of an SDE.

A number of “Brownian” trajectories were collected by Perrin, [31]. One is provided in

Figure 1.1 and the results of an anlysis will be presented later in the chapter. The particles

involved were tiny mastic grains, radius .53 microns. Supposing (x, y) refers to position in

the plane, the trajectory may be written (x(t), y(t)), t = 1, ..., 48. The time interval between

the measurements in this case was 30 sec.

In Figure 1.1 one sees the particle start in the lower right corner of the figure and then

meander around a diagonal line running from the lower left to the upper right.

26.2.3 Monk seal movements

The Hawaiian monk seal is an endangered species. It numbers only about 1400 today. They

are now closely monitored, have a life span of about 30 years, weigh between 230 and 270
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Figure 26.1: Perrin’s measurements of the location of a mastic grain at 48 successive times.
The figure is adapted from one in [16]

kilos and have lengths of 2.2 to 2.5 meters.

Figure 1.2 shows part of the path of a juvenile female monk seal swimming off the SW

coast of the island of Molokai, Hawaii. Locations of the seal as it moved and foraged were

estimated from satellite detections, the animal having a radio tag glued to its dorsal fin. The

tag’s transmissions could be received by satellites when the animal was on the surface and

a satellite passed overhead. The animal’s position could then be estimated.

The data cover a period of about 15 days. The seal starts on a beach on the SW tip of

Molokai and then heads to the far boundary of a reserve called Penguin Bank, forages there

for a while, and then heads back to Molokai, perhaps to rest in safety. Penguin Bank is

indicated by the dashed line in the figure.

An important goal of the data collection in this case was the documentation of the animals’

geographic and vertical movements as proxies of foraging behavior and then to use this

information to assist in the survival of the species. More detail may be found in [40] and [9].
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Figure 26.2: Estimated locations of a Hawaiian monk seal off the coast of Molokai. The
dashed line is the 200 fathom line, approximately constraining an area called the Penguin
Bank Reserve.

26.3 Statistical concepts and models

26.3.1 Displays

It is hard to improve on visual displays in studies of trajectory data. In a simple case one

shows the positions (x(ti), y(ti)), i = 1, 2, ... as a sequence of connected straight lines as in

Figures 1.1 and 1.2. One can superpose other spatial information as a background. An

example is Figure 1.2 which shows the outlines of Molokai, the hatched region, and Penguin

Bank, the dashed line

A related type of display results if one estimates a bivariate density function from the

observed locations (x(ti), y(ti)), i = 1, 2, ... and shows the estimate in contour or image form.

Such figures are used in home range estimation, however this display loses the information

on where the animal was at different times.

A bagplot, [36], is useful in processing trajectory data if estimated locations can be in

serious error. It highlights the “middle 50%” of a bivariate data set and is an extension of the

univariate boxplot. An example is provided in [9]. Before preparing the bagplot presented
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there this author did not know of the existence of the Penguin Bank Reserve. Computing

the bagplot of all the available locations found the Reserve.

Another useful display is a plot of the estimated speed of the particle versus time. One

graphs the approximate speeds,

√

(x(ti+1) − x(ti))2 + (y(ti+1) − y(ti))2/(ti+1 − ti)

versus the average of the times, ti and ti+1, say. It is to be remembered that this “speed”

provides only the apparent speed, not the instantenious. The particle may follow a long

route getting from r(ti) to r(ti+1).

Figures are presented in this Chapter, but videos can assist the analyses.

26.3.2 Autoregressive models

A bivariate time series model that is coordinate free, provides a representation for processes

whose realizations are spatial trajectories. One case is the simple random walk,

rt+1 = rt + ǫt+1, t = 0, 1, 2, ...

with r0 the starting point and {ǫt} a bivariate time series of independent and identically

distributed variates.

In the same vein one can consider the bivariate order 1, autoregressive, VAR(1), given by

rt+1 = art + ǫt+1, t = 0, 1, 2, ... (26.2)

for an a leading to stationarity.

The second difference of the motion of an iceberg has been modelled as an autoregressive

in [29].
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26.3.3 Stochastic differential equations

The notion of a continuous time random walk may be formalized as a formal Brownian

motion. This is a continuous time process with the property that disjoint increments, dB(t),

are independent Gaussians with covariance matrix Idt. Here B(t) takes values in R2. The

random walk character becomes clear if one writes

B(t + dt) = B(t) + dB(t), −∞ < t < ∞

The vector autoregressive of order 1 series may be seen as an approximation to a stochastic

differential equation by writing

r(t + dt) − r(t) = µr(t)dt + σdB(t)

and comparing it to (1.2).

Given a Brownian process B, consider a trajectory r in R2 that at time t has reached the

position r(t) having started at r(0). Consider the “integral equation”

r(t) = r(0) +
∫ t

0

µ(r(s), s)ds +
∫ t

0

σ(r(s), s)dB(s) (26.3)

with r, µ, dB each 2-vectors and σ 2 by 2. Here µ is called the drift, and σ the diffusion

coefficient. Equation (1.3) is known as Ito’s integral equation.

This equation requires the formal definition of the Ito integral

∫ b

a
G(r(t), t)dB(t)

for conformal G and B. Under regularity conditions. Under regularity conditions the Ito

integral can be defined as the limit in mean-squared, as △ ↓ 0, of

N−1
∑

j=1

G(r(tj), tj)[B(tj+1) −B(tj)]
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where

a = t△1 < t△2 < ... < t△N = b, △ = max(tj+1 − tj)

Expressing (1.3) as an “Ito integral” is a symbolic gesture, but the definition is mathemati-

cally consistent.

The equation (1.3) is often written

dr(t) = µ(r(t), t)dt + σ(r(t), t)dB(t) (26.4)

using differentials, but (1.3) is the required formal expression. For details on Ito integrals

see [12] or [15].

26.3.4 The potential function approach

A potential function is an entity from Newtonian mechanics. It leads directly to equations

of motion in the deterministic case, see [41]. An important property is that a potential

function is real-valued and thereby leads to a simpler representations for a drift function, µ,

than those based on the vector-valued velocities.

To make this apparent define a gradient system as a system of differential equations of

the form

dr(t)/dt = −∇V (r(t)) (26.5)

where V : R2 → R is a differentiable function and ∇V = (∂V/∂x, ∂V/∂y)T denotes its

gradient. (“T” here denotes transpose.) The negative sign in this system is traditional. The

structure dr(t)/dt is called a vector field while the function V is called a potential function.

The classic example of a potential function is the gravitational potential in R3, V (r) =

−G/ | r − r0 | with G the constant of gravitation, see [11]. This function leads to the

attraction of an object at position r towards the position r0. The potential value at r = r0

is −∞ and the pull of attraction is infinite there. Other specific formulas will be indicated

shortly.
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In the work of this chapter the deterministic equation (1.5) will be replaced by a stochastic

differential equation

dr(t) = −∇V (r(t))dt + σ(r(t))dB(t) (26.6)

with B(t) two dimensional standard Brownian process, V a potential function and σ a

diffusion parameter. Under regularity conditions a unique solution of such an equation

exists and the solution process, {r(t)} is Markov. Repeating a bit, a practical advantage

of being able to write µ = −∇V is that V is real-valued and thereby simpler to model, to

estimate and to display.

For motion in R2 the potential function is conveniently displayed in contour, image, or

perspective form. Figures 1.3 and 1.4 below provide examples of image plots. If desired the

gradient may be displayed as a vector field. Examples may be found in [6].

An estimated potential function may be used for: simple description, summary, compari-

son, simulation, prediction, model appraisal, bootstrapping, and employed for the estimation

of related quantities of interest. The potential function approach can handle attraction, and

repulsion from points and regions directly. While the figures of estimated potential functions

usually look like what you expect a density function to be, given the tracks, but there is

much more to the potential surface, for example the slopes are direction and speed of motion.

Some specific potential function forms that have proven useful follow. A research issue

is how to chose amongst them and others. Subject matter knowledge can prove essential in

doing this. To begin, consider the function

V (r) = αlog d + βd (26.7)

with r = (x, y)T the location of a particle, and d = d(r) the distance of the particle from

a specific attractor. This function is motivated by equations in [21]. The attractor may

move in space in time, and then the potential function is time dependent. Another useful

functional form is

V (r) = γ1x + γ2y + γ11x
2 + γ12xy + γ22y

2 + C/dM (26.8)



10 CHAPTER 26. MODELLING SPATIAL TRAJECTORIES

where dM = dM(x, y) is the distance from location (x, y) to the nearest point of a region, M ,

of concern. Here with C > 0 the final term keeps the trajectory out of the region. On the

other hand

V (r) = αlog d + βd + γ1x + γ2y + γ11x
2 + γ12xy + γ22y

2 (26.9)

where d = d(r) = d(x, y) is the shortest distance to a point leads to attraction to the point

as well as providing some general structure. It is useful to note for computations that the

expressions (1.7) - (1.9) are linear in the parameters.

In summary, the potential function approach advocated here is distinguished from tradi-

tional SDE-based work by the fact that µ has the special form (1.5).

26.3.5 Markov chain approach

Taking note of the work of [22], [23], [24] it is possible to approximate the motion implied

by an SDE, of a particle moving in R2, by a Markov chain in discrete time and space. This

can be useful for both simulations of the basic process and for intuitive understanding.

In the approach of [23], [24] one sets up a grid forming pixels, and then makes a Markov

chain assumption. Specifically define

a(r, t) =
1

2
σ(r, t)σ(r, t)T

and, for convenience of exposition here, suppose that aij(r, t) = 0, i 6= j, i.e. the error

components of the gaussian vector are assumed statistically independent for fixed r. Suppose

further that time is discretized with tk+1− tk = ∆. Write rk = r(tk), and suppose that the

lattice points of the grid have separation h. Let ei denote the unit vector in i-th coordinate

direction, i = 1, 2. Now consider the Markov chain with transition probabilities,

P (rk = r0 ± eih | rk−1 = r0)

=
∆

h2
(aii(r0, tk−1) + h|µi(r0, tk − 1)|±)
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P (rk = r0 | rk−1 = r0) = 1 −
∑

preceding

Here it is supposed the probabilities are ≥ 0 which may be arranged by choice of ∆ and h.

In the above expressions the following notation has been employed,

|u|+ = u if u > 0 and = 0 otherwise

and

|u|− = − u if u < 0 and = 0 otherwise

A discrete random walk is the simplest case of this construction.

For results on the weak convergence of such approximations to SDEs see [23], [22], [12].

With that introduction attention can turn to a different, yet related type of model. Sup-

pose that a particle is moving along the points of a lattice in R2 with the possibility of moving

one step to the left or one to the right or one step up or one step down. View the lattice as

the state space of a Markov chain in discrete time with all transition probabilities 0 except

for the listed one step ones. This is the structure of the just provided approximation. The

difference is that one will start by seeking a reasonable model for the transition probabilities

directly, rather than coefficients for SDE.

26.4 Inference methods

There is a substantial literature devoted to the topic of inference for stochastic differential

equations (references include [32], [37]. Many interesting scientific questions can be posed

and addressed involving them and their applications. Elementary ones include: Is a motion

Brownian? Is it Brownian with drift? These can be formulated in terms of the functions µ

and σ of (1.3) and (1.4).

Consider an object at position r(t) in R2 at time t. In terms of approximate velocity,
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equation (1.6) leads to

(r(ti+1) − r(ti))/(ti+1 − ti) = −∇V (r(ti)) + σZi+1/
√

ti+1 − ti (26.10)

with the Zi independent and identically distributed bivariate, standard normals. The reason

for the
√

ti+1 − ti is that for real-valued Brownian V ar(dB(t)) = σdt. In (1.10) one now

has a parametric or nonparametric regression problem for learning about V , depending on

the parametrization chosen. If the ti are equispaced this is a parametric or nonparametric

autoregression model of order 1.

If desired, the estimation may be carried out by ordinary least squares or maximum

likelihood depending on the model and the distribution chosen for the Zi. The naive ap-

proximation (1.10) is helpful for suggesting methods. It should be effective if the time points,

ti, are close enough together. In a sense (1.10), not (1.3), has become the model of record.

To be more specific, suppose that µ has the form

µ(r) = g(r)Tβ

for an L by 1 parameter β and a p by L known function g. This assumption, from (1.10)

leads to the linear regression model

Yn = Xnβ + ǫn

having stacked the n − 1 values (r(ti+1) − r(ti))/
√

ti+1 − ti to form the (n − 1)p vector Yn,

stacked the n − 1 matrices µ(r(ti), ti)
√

(ti+1 − ti) to form the (n − 1)p by L matrix Xn and

stacked the n − 1 values σZi+1 to form ǫn. One is thereby led to consider the estimate

β̂ = (XT
nXn)

−1XT
nYn

assuming the indicated inverse exists. Continuing one is led to estimate g(r)Tβ by g(r)T β̂.
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Letting yj denote the jth entry of Yn and xT
j denote the jth row of Xn one can compute

s2

n = ((n − 1)p−1
∑

(yj − xT
j β̂)T (yj − xT

j β̂)

as estimate of σ2 and if desired proceed to form approximate confidence intervals for the

value g(r)Tβ using the results of Lai and Wei (1982). In particular the distribution of

(g(r)T (XT
nXn)−1g(r))−1/2g(r)T (β̂ − β)/sn

may be approximated by a standard normal for large n. Further details may be found in [5].

A further concern is deciding on the functional form for the drift terms µ and the diffusion

coefficient σ of the motivating model (1.3). In [35], [6] the estimates are non-parametric.

26.5 Difficulties that can arise

One serious problem that can arise in work with trajectory data relates to the uncertainty

of the location estimates. The commonly used Loran and satellite based estimated locations

can be in serious error. The measurement errors have the appearance of including outliers

rather than coming from some smooth long-tailed distribution. In the monk seal example the

bagplot proved an effective manner to separate out outlying points. It led to the empirical

discovery of the Penguin Bank Reserve in the work. Improved estimates of tracks may be

obtained by employing a state space model and robust methods, see [1] and [20].

A difficulty, created by introducing the model via an SDE is that some successive pairs

of time points, ti − ti−1, may be far apart. The concern arises since the model employed in

the fitting is (1.10). One can handle this by viewing (1.10) as the model of record, forgetting

where it came from, and assessing assumptions, such as the normality of the errors, by

traditional methods.

It has already been noted above that the speed estimate is better called the apparent

speed estimate because one does not have information on the particle’s movement between
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Figure 26.3: The estimated potential function for the Perrin data using the form (1.8) with
C = 0. The circle represents the initial location estimate.

times ti−1 and ti. Correction terms have been developed for some cases, [18].

26.6 Results for the empirical examples

Figure 1.3 provides the estimated potential function, V̂ , for Perrin’s data assuming the

functional form (1.8) with C = 0. The particle’s trajectory has been superposed in the

figure. One sees the particle being pulled towards central elliptical regions and remaining

in or nearby. This nonrandom behavior could have been anticipated from the presence of

viscosity in the real world, [17]. Where the process “pure” Brownian the particle would have

meandered about totally randomly and the SDE been

dr(t) = σdB(t)

The Smolukowski approximation, see ([11],[30], takes (1.1) into

dr(t) = K(r(t), t)dt/β + σB(t)

instead. The backgound in figure 1.3 is evidence against the pure Brownian model for Perrin’s

data.
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Figure 26.4: A potential function estimate computed to describe a Hawaiian monk seal’s
outbound, then inbound, foraging journeys from the southwest corner of Molokai. The circle
in the SW corner represents an assumed point of attraction.

Figure 1.4 concerns the outbound foraging journeys of a Hawaiian monk seal whose out-

bound and inbound parts of one journey were graphed in Figure 1.2. Figure 1.4 is based

on a trajectory including five journeys. The animal goes out apparently to forage and then

returns to rest and be safer. The potential function employed is (1.9) containing a term,

αlog(d) + βd that models attraction of the animal out to the far part of Penguin Bank

Reserve. More detail on this analysis may be found in [9]. Outbound journeys may be

simulated using the fitted model and hypotheses may be addressed formally.

26.7 Other models

Figure 1.4 shows the western coast of the island of Molokai. Coasts provide natural bound-

aries to the movements of the seals. In an analysis of the trajectory of a different animal

that seal is kept off Molokai in the modelling by taking C > 0 in the final term in (1.8, see

[8]).

A boundary is an example of an explanatory variable and it may be noted that there is

now a substantial literature on SDEs with boundaries [3]. There are explanatory variables
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to be included. A particle may be moving in a changing field G(r(t), t) and one led to write

dr = µdt + γ∇G + σdB

A case is provided by sea surface height (SSH) with the surface currents given by the gradient

of the SSH field. It could be that µ = −∇V as previously in this chapter.

A different type of explanatory, model and analysis is provided in [7]. The moving object

is an elk and the explanatory is the changing location, x(t) of an all terrain vehicle (ATV).

The noise of an ATV is surely a repellor when it is close to an elk, but one wonders at

what distance does the repulsion begin? The following model was employed to study that

question. Let r(t) denote the location of an elk, and x(t) the location of the ATV both at

time t. Let τ be a time lag to be studied. Consider

dr(t) = µ(r(t))dt + ν(|r(t) − x(t − τ)|)dt + σdB(t)

The times of observation differ for the elk and the ATV. They are every 5 minutes for the elk

when the ATV is present and every 1 sec for the ATV itself. In the approach adopted location

values, x(t), of the ATV are estimated for the elk observation times via interpolation. One

sees an apparent increase in the speed of the elk, particularly when an elk and the ATV are

close to each another.

The processes described so far have been Markov. However non-Markov processes are

sometimes needed in modelling animal movement. A case is provided by the random walk

with correlated increments in [28]. One can proceed generally by making the sequence {Zi}
of (1.10) an autocorrelated time series.

A more complex SDE model is described by a functional stochastic differential equation

dr(t) = −∇V (r(t)|Ht)dt + σ(r(t)|Ht)dB(t)

with Ht = {(ti, r(ti)), ti ≤ t} is the history up to time t. A corresponding discrete approxi-
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mation is provided by,

r(ti+1) − r(ti) = −∇V (r(ti)|Hti)(ti+1 − ti) + σ
√

ti+1 − tiZi+1

with the Zi are again independent standard gaussians. With this approximation a likelihood

function may be set down directly and thereby inference questions addressed.

It may be that the animals are moving such great distances that the spherical shape

of the Earth needs to be taken into account. One model is described in [2]. There may

be several interacting particles. In this case one would make the SDEs of the individual

particles interdependent. References include [13] and [38].

26.8 Summary

Trajectories exist in space and time. One notices them in many places and their data have

become common. In this article two specific approaches have been presented for analyzing

such data, both involving SDE motivation. In the first approach a potential function is

assumed to exist with its negative gradient giving the SDE’s drift function. The second

approach involves setting up a grid, and approximating the SDE by a discrete Markov chain

moving from pixel to pixel. Advantages of the potential function approach are that the that

function itself is scalar-valued, that there are many choices for its form, and that knowledge

of the physical situation can lead directly to a functional form.

Empirical examples are presented and show that the potential function method can be

realized quite directly.
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