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Abstract

We study the realized risk of Markowitz portfolio computed using parameters estimated from data
and generalizations to similar questions involving the out-of-sample risk in quadratic programs with
linear equality constraints.

We do so under the assumption that the data is generated according to an elliptical model, which
allows us to study models where we have heavy-tails, tail dependence, and leptokurtic marginals for the
data. We place ourselves in the setting of high-dimensional inference where the number of assets in the
portfolio, p, is large and comparable to the number of samples, n, we use to estimate the parameters.
Our approach is based on random matrix theory. We consider both the impact of the estimation of the
mean and of the covariance.

Our work shows that risk is underestimated in this setting, and further, that in the class of elliptical
distributions, the Gaussian case yields the least amount of risk underestimation. The problem is more
pronounced for genuinely elliptical distributions and Gaussian computations give an overoptimistic view
of the situation.

We also propose a robust estimator of realized risk and investigate its performance in simulations.

1 Introduction

The Markowitz problem (Markowitz (1952)) is a classic portfolio optimization problem in finance, where
investors choose to invest according to the following framework: one picks assets in such a way that the
portfolio guarantees a certain level of expected returns but minimizes the “risk” associated with them. In
the standard framework, this risk is measured the variance of the portfolio. Markowitz’s paper was highly
influential and much work has followed. It is now of course part of the standard textbook literature on
these issues (Ruppert (2006), Campbell et al. (1996)).

Naturally, many variants exist now, involving various notions of risk. The most common ones seem to
involve Value-At-Risk (VaR) and conditional Value-At-Risk (cVaR) as alternatives to variance. We discuss
here only the classical problem.

In the ideal (or, in statistical parlance, population) solution, the covariance and the mean of the returns
are known. The mathematical formulation is then the following simple quadratic program: we wish to find
the weights w by solving the following problem:

min %w’Zw
!
w'p=pp,

we=1

Here, e is a p-dimensional vector with 1 in every entry, w is the vector of mean returns, ¥ is the covariance
between the returns of the assets, and up is the level of expected returns the investor wishes to achieve.
If 3 is invertible, the solution is known explicitly (see Section 2). If we call woptimal the solution of this
problem, the curve wgpﬁmalzwomimal, seen as a function of pp is called the efficient frontier.
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We note that the problem is sometimes formulated slightly differently, i.e with the constraint w'pu > up
instead of w'yu = pup. However, this has minimal consequences in our setting since knowing the solution
of the problem we consider (for all up) will yield the solution of the problem involving the inequality
constraint. If needed, another motivation for studying the above mentioned problem for all up’s is that in
the case where we want to incorporate a riskless asset in the portfolio, the shape of the efficient frontier
changes and becomes a straight line. If the variance of the portfolio is on the z-axis and the level of
expected returns is on the y-axis, this straight line goes through (0,7) and is tangent to the efficient
frontier computed above, which is a parabola. The line touches the parabola at a point called the tangency
portfolio and we naturally need the whole efficient frontier to compute it (see e.g Ruppert (2006)).

Going back to the original problem, in practice, we of course do not know g and ¥ and we need to
estimate them. An interesting question is therefore to understand what happens in the Markowitz problem
when we replace population quantities by corresponding estimators. In this paper we will be especially
concerned with the following risk management question: if we choose our strategy by solving the Markowitz
problem with p (resp. X) replaced by the sample mean 1 (resp. the sample covariance matrix ¥), what is
the risk of our portfolio? Related interesting questions are naturally the respective contributions of i and
> in our measures of risk, and the problems they may create.

Naturally, we can ask a similar question for general quadratic programs with linear equality constraints
(see below or Boyd and Vandenberghe (2004) for a definition), the Markowitz problem in the form presented
here being a particular instance of such a problem. This more general question is relevant for various
statistical problems where we are interested in out-of-sample measures of risk.

It has been observed by many that there are problems in practice when replacing population quantities
by standard estimators (see Lai and Xing (2008), section 3.5), and alternatives has been proposed. A famous
one is the Black-Litterman model (Black and Litterman (1990) and e.g Meucci (2008)). Adjustments to
the standard estimators have also been proposed: Ledoit and Wolf (2004), partly motivated by portfolio
optimization problems, proposed to “shrink” the sample covariance matrix towards another positive definite
matrix (often the identity matrix properly scaled), while Michaud (1998) proposed to use the bootstrap
and to average bootstrap weights to find better-behaved weights for the portfolio.

An aspect of the problem that is of particular interest to us is the study of large-dimensional portfolios
(or quadratic programs with linear equality constraints). To make matters clear, we focus on a portfolio
with p = 100 assets. If we use a year of daily data to estimate X, the covariance between the daily
returns of the assets, we have n ~ 250 observations at our disposal. In modern statistical parlance, we
are therefore in a “large n, large p” setting, and we know from random matrix theory that EA], the sample
covariance matrix is a poor estimator of X, especially when it comes to spectral properties of . There is
now a developing statistical literature on properties of sample covariance matrices when n and p are both
large - and it is now understood that, though S is unbiased for 3., the eigenvalues and eigenvectors of 5
behave very differently from those of ¥. We refer the interested reader to Johnstone (2001), El Karoui
(2007), El Karoui (2008a), Bickel and Levina (2007), Rothman et al. (2008), El Karoui (2009a) for a partial
introduction to these problems.

Another interesting aspect of this problem is that the high-dimensional setting does not allow, by
contrast to the classical “small p, large n” setting, a perturbative approach to go through. In the “small
p, large n” setting, the classic paper Jobson and Korkie (1980) is concerned, in the Gaussian case, with
issues similar to the ones we will be investigating. However, it does not seem that so far there has been
much interest in this high-dimensionality question in the finance literature. For instance, a book-length
treatment of asset allocation questions (Meucci, 2005), gives only a rather cursory one page discussion of
these issues.

The “large n, large p” setting is the one with which random matrix theory is concerned - and the
high-dimensional Markowitz problem has therefore been of interest to random matrix theorists for some
time now. We note in particular the paper Laloux et al. (2000), where a random matrix-inspired (shrink-
age) approach to improved estimation of the sample covariance matrix is proposed in the context of the
Markowitz problem. We also note that other random-matrix based approaches to covariance estimation
were later proposed (El Karoui (2008b)), with asymptotic theoretical guarantees on the estimation of the
spectral distribution of the covariance matrix.

Let us now remind the reader of some basic facts of random matrix theory that suggests that serious



problems may arise if one solves naively the high-dimensional Markowitz problem or other quadratic
programs with linear equality constraints. A key result in random matrix theory is the Marcenko-Pastur
equation (Marcenko and Pastur (1967)) which characterizes the limiting distribution of the eigenvalues of
the sample covariance matrix and relates it to the spectral distribution of the population covariance matrix.
We give only in this introduction its simplest form and refer the reader to Marc¢enko and Pastur (1967), El
Karoui (2008b) and El Karoui (2009a) for a more thorough introduction and very recent developments, as
well as potential geometric and statistical limitations of the models usually considered in random matrix
theory. (As we will see, these geometric implications have a strong impact on the results we will present.)

In the simplest setting, we consider data {X;}" ;, which are p-dimensional. In a financial context, these
vectors are vectors of (log)-returns of assets, the portfolio consisting of p assets. To simplify the exposition,
let us assume that the X;’s are i.i.d with distribution N(0,Id,) - the normality assumption for the data
being close to assuming a Black-Scholes model for the underlying diffusion of stock prices. We call X the
n X p matrix whose ¢-th row is the vector X;. Let us consider the sample covariance matrix

S =

where X is a matrix whose rows are all equal to the column mean of X. Now let us call F, the spectral
distribution of i i.e the probability distribution that puts mass 1/p at each of the p eigenvalues of 5.
A graphical representation of this probability distribution is naturally the histogram of eigenvalues of S
A consequence of the main result of the very profound paper Marcenko and Pastur (1967) is that F,,
though a random measure, is asymptotically non-random, and its limit, in the sense of weak convergence
of distributions, F' has a density (when p < n) that can be computed. F' depends on p = lim, . p/n in
the following manner: if p < n, the density of F is
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where y; = (1+ ,/p)* and y_ = (1 — \/p)?. Figure 1 presents a graphical illustration of this result.
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Figure 1: Illustration of Mar¢enko-Pastur law, n=500, p=200. The red curve is the density of the Marcenko-
Pastur -law for p = 2/5. The simulation was done with i.i.d Gaussian data. The histogram is the histogram
of eigenvalues of X' X /n



What is striking about this result is that it implies that the largest eigenvalue of 3, A; will be overes-
timated by [; the largest eigenvalue of S Also, the smallest eigenvalue of 3, A, will be underestimated by
the smallest eigenvalue of i\], l,. As a matter of fact, in the model described above, ¥ has all its eigenvalues
equal to 1, so A1 (X) = Ap(X) = 1, while /; will asymptotically be larger or equal to (1+,/p)? and [, smaller
or equal to (1—,/p)? (in the Gaussian case and several others, [; and [, converge to those limits). We note
that the result of Maréenko and Pastur (1967) is not limited to the case where ¥ is identity, as presented
here, but holds for general covariance ¥ (F), has of course a different limit then).

Perhaps more concretely, let us consider a projection of the data along a vector v, with ||v]l2 = 1, where
||lv]|2 is the Euclidian norm of v. Here it is clear that, if X,,+1 ~ N (0,1d,), var (v'X,,+1) = 1, for all v, since
V' X1 ~ N(0,1). However, if we do not know X and estimate it by f, a naive (and wrong) reasoning
suggests that we can find direction of lower variance than 1, namely those corresponding to eigenvectors
of ¥ associated with eigenvalues that are less than 1. In particular, if v, is the eigenvector associated with
l,, the smallest eigenvalue of i, by naively estimating, for X, independent of {X;}!" ;, the variance in
the direction of vy, var (U;Xn+1), by the empirical version vé,f]vp, one would commit a severe mistake: the

variance in any direction is 1, but it would be estimated by something roughly equal to (1 — y/p/n)? in
the direction of vy,.

In a portfolio optimization context, this suggests that by using standard estimators, such as the sample
covariance matrix, when solving the high-dimensional Markowitz problem one might underestimate the
variance of certain portfolios (or “optimal” vectors of weights). As a matter of fact, in the previous toy
example, thinking (wrongly) that there is low variance in the direction v,, one might (numerically) “load”
this direction more than warranted, given that the true variance is the same in all directions. Naturally,
this will also lead us to choose a portfolio that is suboptimal and should therefore have higher realized risk
than the optimal portfolio.

This simple argument suggests that severe problems might arise in the high-dimensional Markowitz
problem and other quadratic programs with linear equality constraints. In particular, risk might be under-
estimated. While this heuristic argument is probably clear to specialists of random matrix theory, as far as
we know, the problem has not been investigated at a mathematical level of rigor in that literature until the
very recent El Karoui (2009b). It has received some attention at a physical level of rigor (see e.g Pafka and
Kondor (2003), where the authors treat only the Gaussian case, and neglect the effect of the mean, which
as we show below creates problems of its own). We note that there are claims of universality in the physics
literature, in other words, the model for the data would not matter, only the population parameters (and
n and p) would, and we show below that there is no universality in these problems. Finally, we personally
found the physics literature very hard to read because of the lack of detailed and rigorous proofs and its
reliance on a vocabulary that is different from the one in mathematical random matrix theory.

In this paper, which is a companion to El Karoui (2009b), we propose a theoretical analysis of the
problem in a elliptical framework (which incorporates the Gaussian case as a subcase) for general quadratic
programs with linear equality constraints, one of them involving the parameter u. We treat the problem at
this level of generality because, beyond the finance settings, the results should be interesting in statistics
and several areas of applied mathematics where one need to solve optimization problems based on estimated
parameters. Our results are several-fold. We relate the realized risk of the portfolios to the theoretical
efficient frontier that is key to the Markowitz theory. We quantify this realized risk as a function of the
population parameters, n, p and a quantity characterizing the ellipticity of the data. Finally, we propose
a estimator of this realized risk that is easy to compute. We show its performance in some simulations.

The elliptical framework for modeling returns of financial stocks has been advocated in the literature
for some time now (see Frahm and Jaekel (2005)) and is still, as a random matrix problem, quite interesting
to theoreticians (see El Karoui (2009a)). One of its many benefits is that it allows us to incorporate heavy-
tailed modeling in our analysis, and it yields marginal distributions for the returns of individual assets that
are all leptokurtic. Finally, elliptical distributions have non-zero coefficient of tail dependence (see McNeil
et al. (2005)), whereas the Gaussian distribution has zero dependence in the tail.

Interestingly, there seems to be a consensus in the finance literature that estimation of covariance is
“easy”, and the more difficult aspect of the Markowitz problem (and other portfolio optimization problems)
comes from estimating the mean. By contrast, statisticians working in high-dimensional inference have



recently devoted a lot of efforts to improving covariance estimation, which is thought to be a hard task.
We show here (and showed in El Karoui (2009b)) that estimating the mean and the covariance matrix
both matter and create quantifiable (and first-order) problems and biases.

The paper is divided into three main parts and a conclusion. In Section 2, we give some preliminaries
on the problem we are tackling here and the key results of El Karoui (2009b) that will prove useful in the
paper. In Section 3, we state the main technical results of the paper and discuss them briefly. Because the
proofs are rather technical and self contained, they are given in an Appendix. In Section 4, we compare the
results in the Gaussian and genuinely elliptical setting. The main conclusion there is that the Gaussian case
gives an over-optimistic view of risk underestimation and that risk underestimation is more pronounced in
the elliptical setting. This shows in particular that no “universality” should be expected in these questions.
We also present some simulations that illustrate both the accuracy and potential limitations of our work.
We discuss our results and possible extensions in the conclusion.

2 Preliminaries

In this section we remind the reader of some classical and well-known results concerning quadratic
programs with linear equality constraints. We also briefly reminds the reader of the key results in El
Karoui (2009b) we will need later on.

Setup of the problem

We get to observe data X1, ..., X,, with distribution
X; = p+ NSV (1)

where ¥ is a p X p covariance matrix and the Y; are i.i.d A (0,1d,). Here we assume that the \;’s are
independent of the Y;’s, but they might be correlated with one another. We note that E (X;) = p and
cov(X;) = E ()\%) Y. IfE ()\12) = 1, all these models lead to the same covariance for the data, X. We
note that X; has as many moments as \;, and in particular can have much heavier tails than Gaussian
data. It is also easy to see that the marginals of X; are leptokurtic. By a slight abuse of language, we call
data distributed according to the model stipulated in Equation (1) elliptical, though the model is slightly
different than the standard model for elliptical data in statistics.

Known results

We are interested in the solution of the following problem, which is a generalization of the Markowitz
problem:
min,cre %w’Zw
wop=u;, 1<j<k—-1, (QP-eqc-Pop)
w'p = uy,
We remind the reader of the following fact:

Fact 2.1. The solution of Problem (QP-eqc-Pop) is given by
Woptimal = > lvMTlu ,

where V is the p X k matriz containing the v;’s, U 1is the k X 1 wvector containing the w;’s, and M =
(V'S=YW) =L provided all these quantities exist.

Throughout, we will assume that the number of constraints k stays fixed in the asymptotics we consider.
Our assumptions will also guarantee that ¥~ and M ! exists. Unless otherwise noted, these assumptions
will be made implicitly throughout the paper.



In the situation we care most about, vy = i and ¥ = S are estimated from data. We will call V the
p X k matrix containing the v;’s. In other word, we will seek the solution of the problem

min,cre %w@w
wvp =, 1<j<k—1, (QP-eqc-Emp)
W'l = uy,

We call wen the vector of weights obtained by solving the problem (QP-eqc-Emp). A very important
question is to understand how wemp and functions of this vector relate to woptimal and functions of weptimal-
We will do so in the setting where p and n are large and do asymptotic computations when p — oo and
n — oo, while p/n — p € (0,1). A reason for doing this sort of double asymptotic computations is
that they might yield better insights than standard (i.e fixed p, large n) asymptotics when p and n are
moderately large, i.e in the few 100’s. This is verified in our simulations.

In El Karoui (2009b), we focused on the issue of relating the naive estimator of risk wémpiwemp to the
population risk wgptimalzwoptimal' By contrast, in this paper for reasons that are explained below we will
be focusing on wy,, Swemp-

On the realized risk of portfolios

From a risk management standpoint, a natural quantity to estimate is the realized risk (or out-of-sample
risk) of a vector obtained by solving Problem (QP-eqc-Emp). We first place ourselves in the setting where
the X;’s are independent. By realized risk, we mean

RRisk = var (w,, Xn+1|X1, ..., Xn) = whpp Stemp (2)

emp

namely the risk that we will subjected to in the future if we chose wemp as our allocation today, and the
returns are independent. The previous result naturally holds under the milder assumption that X, is
independent of {X;}? ;. If the \;’s are dependent, while the Y;’s are independent, we have

var (WempXnt1|X1, ..., Xpn) = E (>\721+1H)\i}?=1) W SWemnp -

emp

So most, of our work will focus on understanding the random variable wg,, ¥ wemp, which we will call the

realized risk, while keeping in mind that our analysis would also give us (through a simple modification)
results concerning the case where the \;’s are dependent.

In particular, we might want to compare this risk to the naive estimator of risk, wgmpﬁwemp, and to the
actual optimal risk, w(’)ptimalzwoptimal‘ These latter two estimators were considered in El Karoui (2009b),
therefore we only need to compare RRisk and wgptimalﬁwopﬁmal. Clearly to do so, we will only need to
focus on understanding w;mpremp. Note that this is not such an easy quantity to estimate since X is
unknown, and as we said earlier, the sample covariance matrix is a poor estimator of ¥ in high-dimension,
the setting we will consider here.

From now on we will assume throughout that f is the sample mean and S is the sample covariance
matrix. In other words, X is the data matrix whose i-th row is X;, 7/ = € X/n and & = (X — efi!)(X —
eft’)/n — 1. We will sometime refer to the n x p matrix efi’ as X. The sample covariance matrix could also
be rescaled by 1/n insted of 1/(n — 1), in which case it is not unbiased but since this might lead to rather
less cumbersome expressions, we will sometime choose this normalization. Note that the normalization
will have no effect on our asymptotic results.

A simple but key observation in what follows is the following simple fact.

Fact 2.2. Suppose the observed data can be written in matrix form
X=ey +31YS =eu/ + 12 .
Then, if H =1d,, — e€’/n, and M=V'S"1V,

Y/HY,
n—1

-2
RRisk = W/, Stemp = U'M V5712 ( ) sy MU . (3)



The simple fact above is an immediate consequence of the fact that & = X'HX /(n — 1) and therefore,
S _ yi1/2 (Y/HY1) \1/2
5 =5l (ﬁ) $1/2,

The expression we give in Equation (3) might look relatively nasty. However, it considerably simplifies
the problem. As a matter of fact, U and M are finite dimensional objects, which are now well understood

(see El Karoui (2009b)). For instance we showed in El Karoui (2009b), that under technical assumptions
similar to the ones we will be making in this paper, if kK = p/(1 — p),

M~sV'S~ v+ Kegel,

where s is defined below in Equation (4). Our assumptions guarantee that the approximate equality above
holds in probability and we can also take the inverses of the two matrices on both sides of the approximate
equality and have approximate equality for the inverses.

So the only real difficulty we will have to deal with is to understand the k x k matrix

9
Dre-1/2 <Y1/HY1> o-1/2(

n—1

On closer inspections, and with insights coming from El Karoui (2009b), it turns out that we only need
to understand mainly two things: first, for certain well-chosen deterministic vectors «, we need to grapple

with .
(Y,

n—1

We will see that the ideas we developed in El Karoui (2009b) will be extremely helpful in that context.

Second, we will have to consider
-2
Tomle (Y{Hﬁlﬁ> w125 |
n —

This quantity will require substantially more work.

The key insight from random matrix theory we will need in this context is the fact that these random
quantities converge to (deterministic) constants in the asymptotic setting we consider. Hence, it turns out
that RRisk will be the product of 5 essentially deterministic matrices, and we will be able to relate this
product to the “population” quantity (or theoretical efficient frontier) wéptimalzwoptimal =U'M~'U.

In Section 3, we present our main results and apply them to compare the Gaussian and elliptical case
in Section 4.

Notations Before we start presenting our results, let us describe some notations we will be using. ||v||
is by default the Euclidian norm of the vector v. We sometime also write ||v||2. > represents the positive
semi-definite ordering for matrices: so if A > B, A — B is positive semi-definite. [||A]||2 is the operator
norm or largest singular value of the matrix A. op(1) means that the corresponding random variable goes
to zero in probability. a V b stands for max(a,b). The vector e is a vector whose entries are all equal to 1;
it is generally of dimension n.

3 Main results

In this section, we state our main results so as to extract them from the technical details of the proofs.
We wish to note that we will work with the assumption that Y;’s (see Equation (1) are Gaussian. We chose
to do so to limit the technical details and to bypass standard methods of random matrix theory, in the hope
that our proofs would show more clearly the phenomena at play. As explained in El Karoui (2009a), most
of the results of random matrix theory we will rely on depend strongly on the geometry that the purported
model implies on the data. By working with our model we are able to capture all the richness of elliptical
models from a random matrix theoretic point of view, in particular the different models induce differences
in the geometry of the data, while keeping proofs relatively clear. It is very likely possible to use other
well known techniques (based on Stieltjes transforms, so more specialized and less broadly accessible) to



weaken the assumptions on the Y;’s and replace the current ones by assumptions concerning concentration
of convex Lipschitz functions of the Y;’s (see Ledoux (2001) and El Karoui (2009a) for concrete examples
in the present context). However, this would change essentially nothing to the geometry of the data - the
key driver of the results in our opinion - and hence we expect to get the same results under these weaker
assumptions. Work in this direction is currently under way. In the present paper we really want to focus
on the key phenomena and not on what is now for serious practitioners of random matrix theory essentially
manageable technical details.

As said earlier, we will need two main results to draw conclusions about the realized risk of high-
dimensional Markowitz portfolios. We now present them.

3.1 On V'S8V
The first question is to get a good understanding of the quantity
V'Sies-ly

where V' is p X k deterministic and given matrix.
We have the following results, proven in Appendix A.

Theorem 3.1. Suppose we observe n i.i.d observations X;, where X; has the form X; = pu+ \Y;, with
y; & N(0,1d,) and {A\;}1 is independent of {Y;}7_,. We assume that E (A\?) =1. We call X the n x p
data matrix containing the X;’s.

We call p, = p/n and assume that p, — p € (0,1).

We use the notation 7; = \? and assume that the empirical distribution, G, of 7; converges weakly in
probability to a deterministic limit G. We also assume that 7; # 0 for all 7.

If 75y is the i-th largest Ty, we assume that we can find a random variable N € N and positive real
numbers ey and Cy such that

P(p/N <1—¢)) — lasn — oo,
P(rny > Cy) — 1, (Assumption-BB)
Ino > 0 such that P(N/n >ny) — 1 asn — oo .

Under these assumptions, if « is a (sequence of ) deterministic vectors with norm 1,

. <X’HX
(0%

-2
> a — £ in probability
n—1

where if 5 satisfies

JE (@

1+prs

& is defined as
1

5: 1 f 72dG(T) (5)
52 (14+7ps)?

We note that if v is a given deterministic vector and ov = ¥~/2y /Vv'S~ 1, the previous theorem means
that, under the appropriate technical conditions,

VSRS 1y

STy — £ in probability .

It is in this latter form that the theorem is going to be used.

To flesh out a little bit the result, let us point out that in the Gaussian case, G = 1, s0 s = 1/(1 — p)
and £ = (1 —p)~3.

Perhaps remarkably, even though it is stated with the condition E (/\ZQ) = 1, this theorem does not
actually require any assumptions on the moments of \;, nor do we need to assume that the \;’s are



independent of each other. All that really matters is the existence of a deterministic limiting empirical
distribution for 7; = )\12. (Assumption-BB) essentially means that the distribution of the \;’s does not put
“too much” mass near 0, which will guarantee that the smallest singular values of certain random matrices
appearing in our computations are bounded away from 0. This is very important in the proof.

To get a sense of differences between the elliptical and Gaussian cases, let us mention the following
fact:

Fact 3.1. We have

52

1—p°

§>
This latter value corresponds to the Gaussian case.

Let us now turn to the more general situation. Let us call P1 the following condition on the population
parameters:

VISt
V1<i#j<k, U J and
S T T )
IS=1y.
Vi stay bounded away from O . (Condition-P1)

(vi = v)’S7 (v — vy)
As an immediate corollary of Theorem 3.1, we have

Corollary 3.1. Suppose now that X; = pu+ \XY2Y; and the conditions of Theorem 3.1 hold. With the
definitions above, and if the p X k deterministic matriz V and X are such that Condition-P1 is satisfied,
we have asymptotically

VIETISETIW = VSTV 4 0p(V'EWV) = €M + op(M) .

We note that since M is k x k matrix and k is held fixed in our asymptotics, all norms on M are
equivalent. So op(M) just means that the maximal entry of V'S 1SS -1V — £M is negligible compared
to the largest entry of M, or equivalently here that the largest singular value of the difference of the two
matrices is negligible compared to that of M.

3.2 Quadratic forms in i and E-1E%1

Because we need to estimate the mean of the data, we also have to deal with forms of the type
EIYY "0 and @'Y Y, for fixed v. Our main result in this direction is the following. The result
is proven in Appendix B.

Theorem 3.2. Suppose that X; = pu + NXY2Y;, where Y; are i.i.d N'(0,1d,) and {\}, are random
variables, independent of {Y;}1'_ | and with E ()\ZQ) = 1. Let v be a deterministic vector. Suppose that
pn = p/n has a finite non-zero limit, p and that p € (0,1).

We call 7, = 2. We assume that 7; # 0 for all i as well as

1 ¢ ‘ y ¢ . ‘ . .
) E 1 A — 0 in probability, and - E 1 M2 remains bounded in probability. (Assumption-BL)
1= 1=

If 7(3) 1s the i-th largest Ty, we assume that we can find a random variable N € N and positive real numbers

eg and Cy such that

P(p/N <1—¢) — lasn — oo,
P(r(ny > Co) — 1, (Assumption-BB)
Ino > 0 such that P(N/n >mny) — 1 asn — oo .

We also assume that the empirical distribution of 7;’s converges weakly in probability to a deterministic
limit G.



We call A the n xn diagonal matriz with A(i,i) = \;, Y the n x p matriz whose i-th row is Y;, W = AY
and S = W'W/n. Finally, we use the notation m = W'e/n, i = X~1/2p.
Then, we have, for & defined as in Equation (5), and s defined as in Equation (4),

IS-lns-ly SISy 'yly 'yly
v~y v~y Vu'y—ly v~y

Also,
TS0 3 YRy TIEST) Su) 3) S PR upi”)gs + 20 (S — min/) "2 + op(1) (7)
J— pn
1/

and we recall that @' (S — mm/)~2m/||ji]| = op(1).

The following remarks should help with the use of Equation (7) in practice. We can consider three
cases, having to do with the size of u/> "ty = ||ji]|3.

1. If /X' — 0, then, ﬁ’i\)*lﬁ = (1_”#)25 +op(1).
2. If /S~ — oo, then WS i ~ Eu/S .
3. Finally, if 4/X "4 stays bounded away from 0 and infinity,

IS = sy + 55 +op(1) .

_r
(1—-p)

We note that when the A;’s are independent, (Assumption-BL) will be satisfied as soon as )\22 has two
moments, by the Marcienkiewicz-Zygmund strong law of large numbers (see Chow and Teicher (1997), p.
125). Since two moments are required for X; to have a covariance, the existence of a second moment is
also necessary for the population quantities to exist. (Assumption-BL) is here to guarantee that certain
quadratic forms involving random projections are asymptotically deterministic.

4 Applications to computing the realized risk of portfolios

We now combine our results to reach conclusions about the realized risk of portfolios selected by solving
the problem (QP-eqc-Emp).

As a matter of notation, all of our approximation statements hold with high-probability asymptotically,
unless otherwise noted. We will carry out our work assuming that the data is generated from the models
described in Section 2 and our theorems and under the following assumptions:

1. Assumption A0: p/n — p € (0,1), and the empirical distribution of the \;’s converge weakly in
probability to a deterministic limit G.

2. Assumption Al: for alli € {1,...,k}, v/¥ ™ v; stays bounded away from 0. vy, is assumed to be equal
to p.

3. Assumption A2: the smallest eigenvalue of M = V'S7'V stays bounded away from 0 and the
condition number of M remains bounded. Also, the smallest entry of M in absolute value is bounded
away from 0.

4. Assumption A3: if e = £1, for all (i,5), (v; + evj)’S 7 (v; + €v;) stay bounded away from infinity.
5. Assumption A4: (Assumption-BB) and (Assumption-BL) hold. (See Theorem 3.2 for definitions.)

6. Assumption A5: The operator norm of ¥, |||3]||2, remains bounded.

We note that under these assumptions, the conclusions of our main theorems above are immediately
applicable. In particular, A2 and A3 imply that Condition-P1 is satisfied. Condition A5 could be relaxed
and will simply be needed for estimation purposes later. Also, the part of A2 concerning the smallest
off-diagonal entry of M could also likely be relaxed.

Let us now take a moment to recall some key relevant results from El Karoui (2009b). Under similar
assumptions as the ones we are now operating under, it was shown there that:
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® //Wemp, the realized returns of our portfolio, was not a consistent estimator of pp, the target returns
for our portfolio. We proposed in El Karoui (2009b) an estimator of j/wemp which seems to perform
well in (perhaps limited) simulations. The corrections we proposed there (or others) should be used
if one wants to plot efficient frontier graphs that reflect the correct level of returns of portfolios.

e We showed in El Karoui (2009b) that s(®) > s(&) = (1 — p)~1. In other words, the s corresponding
to genuinely elliptical models is greater than the s corresponding to Gaussian models.

4.1 Theoretical predictions

We recall the notations p = limp/n and kK = p/(1 — p). Applying the results of our theorems above, we
have the following fact:

Fact 4.1. Let us call M = V'SV, When Assumptions A0-A5 are satisfied, we have

K
L=p

M=VS"W~sV's v + Kegey, -

VETES W~ VsV 4 segel

Also, under our assumptions, as shown in El Karoui (2009b),
— 1 ~1
M~z (V’z—lv n feke;> .
5 I

Before we proceed, let us also recall that

and that in the Gaussian case, £ = (1 — p)™3 and s = (1 — p)~!. So the right hand side of the previous
inequality is achieved in the Gaussian setting.
Fact 4.1 allows us to give the following characterization of the realized risk of “Markowitz” portfolios.

Theorem 4.1. Recall that in matriz form, the optimal risk for (QP-eqc-Pop), wij..EWiheo i equal to
UM-'U.

Suppose that a portfolio is chosen by allocating weights wemp to each asset according to the solution of
(QP-eqc-Emp). Under assumptions A0 — A5, we have

1 K _ K 52 K _ 2
Wegnp B Wemp ™ 2 (&U'(M+ gekeﬁg) U7+ 5 <1 " §> [U’(M + gekeﬁc) lek} ) . (8)
Furthermore, in the situation where u is assumed to be known or equivalently, if all the elements of V are
deterministic and given,
£

YWemp 2

/ IAr—1r7 ~ f /
Wemp UM U~ ?wtheoﬁwtheo .

Before we give the proof, which is now just linear algebra, we remind the reader that ¢ > s2/(1 — p),
with equality in the Gaussian case. So the second term in the approximation to wgmpEwemp is negative,
except in the Gaussian case where it is zero.

Furthermore, in cases where p does not need to be estimated, w,’ampremp is at least 1/(1 — p) times
as large as the population optimum w}, . Ywineo, the coefficient 1/(1 — p) corresponding to the Gaussian
case.

We also recall one of the main results of El Karoui (2009b): under the same assumptions as those of
Theorem 4.1, we have, for the (extremely) naive estimate of risk

a 1 K -
Weynp X Wemp = gU' (M + ;ek€;€> U.
Furthermore, if 1 does not need to be estimated, we then have wgmpiwemp ~ %wéheoEwtheo.
These remarks combined with Theorem 4.1 allow to us quantify the difference between the naive
estimate of risk of our portfolio and its realized risk. We will later discuss an estimator of this realized
risk.

11



Proof. Let us call N =V'S12E-1V. The analyses we performed show that

N ~¢M + 1= pﬁekek

=ear 5) 5 (5755 - ¢)

Therefore, since M1~ 1/s (M + %ekek)_l, we have

2

—~_ 15 1 5 K -1
M—1N25<§Idp+ <1_ —£> <M+;eke§g> ekefc>.

Consequently, we also have

o 1 K -1 g 52 K -1 K -1
M'NM ™'~ = (5 (M + —eke;€> + = < — £> (M + —eke;) ek, (M + —eke;@,) ) :
5 5 s \1—p 5 5

Since Weyyp X wWemp = U’ M-NM='U, we finally conclude that

2

1 K - 5 K -1 2
W Sty = = (w’ (nr+ ;eke;) U+Z (1 ~ 5) [U’ (M + Zere) ek] > .

This proves Equation (8).
R Let us now turn to the second part of the theorem. When V =V, M = V'SV ~ sM. Also,
N =V'S71887V ~ ¢M. Therefore, in this situation where p does not need to be estimated,

empremp o~ éU’ U,

Now U'M~U is equal to w}; .. Ewineo, the population optimum and efficient frontier. O

Theorem 4.2 (Comparison Gaussian-Elliptical Case). The realized risk of a portfolio computed by solving
(QP-eqc-Emp) where the data is elliptical is greater than that of its Gaussian counterpart.

If wéf&) is the solution of (QP-eqc-Emp) when X; are elliptical and wéﬁ% is the solution when X; are
Gaussian,

(W) = i), > (wlGy) = i)

emp emp emp *

The inequality is strict if X; is genuinely elliptical and not Gaussian (i.e \; # 1 with strictly positive
probability).

It is interesting to compare this theorem to its counterpart in El Karoui (2009b), Theorem 5.1 there.
That theorem shows that the (very) naive estimator of risk, (wéﬂ))’ iwéﬂ) underestimates the true risk,
and that this underestimation is more pronounced in the elliptical case than in the Gaussian case. So we
conclude that

(w(E) )y w®) (w(G) )y w6 1

emp emp emp emp
(wéﬁ))’ iwéﬁ)p  (we @ ) p) 2 w(G) (1—p)?
We note that the analysis presented in the proof below actually shows that

1 K _
( gm)p) Ewt(em)p = 17U/(M+ gekdq) lUu

and therefore, asymptotically and with high-probability,
( (E)) Ew(E)

Wemp emp 5
(wéﬁ%))’ 5 wéﬁ) “1l-p
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Since s > 1/(1— p), with equality in the Gaussian case, this inequality gives a sharper notion of the impact
of ellipticity on risk underestimation.
Finally, let us say that
E E
(wemp)' % wianp
By o (E
(womp)' & wianp

is a measure of how accurate the (very) naive estimator of risk (wéﬁ,)’ 5 wéﬂ) is at predicting the actual risk
of our strategy (in the setting of i.i.d data), (wéfg))’ z wgﬁ)p. What our computations show is that it is never
terribly accurate and it is least inaccurate in the Gaussian case. This also suggests that doing corrections
or predictions based on Gaussian computations will yield poor results (and still risk underestimation!) in
the class of elliptical distributions considered here.

We now turn to the proof.

Proof of Theorem 4.2 : Recall that s(5) > s(©). Recall also that £)/(s(F))2 > 1/(1 — p). Finally,
our theorems show that

56]662 .

Therefore,

Therefore, asymptotically with high-probability,

o~~~ K 1 K K K -1
MINM=' = (M + Zepel )t 7<M+fee’> M + —ege, *1:7<M+fee’> )
= ( ﬁkk) 1—p 5 CkCk ( 5€kk) 5 CkCk
Now,M—i—ﬁ(—’fE)eke;CjM—i-s(%)eke;c, SO

K _ K _
(M + @eke;) U (M + @eke;) b

We conclude that asymptotically with high-probability,
NN = — (M 4+ 2 epel) !

Now recall that in the Gaussian case, £(%)/(s())2 = 1/1 — p, so that

1

(M'NM 1)) ~
I—0p

R _
(M + ) 6].362) L

Since Weyyp X Wemp = U’ M-INM-1U, we conclude that, asymptotically with high-probability

() 2] > (w{G)Bu(C)

emp emp *
The proof shows that in the case where X; are genuinely elliptical, since s(7) > s(©@) we have a strict
inequality in the conclusion. O
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4.2 Improved estimation of the realized risk

We now seek a robust estimator - in the class of elliptical distributions considered here - for the realized
risk of our Markowitz portfolios. From a practical standpoint, it could be useful to help assess the actual
risk of a portfolio constructed using all the data available, i.e the n observations {X;} ;. Naturally,
statistically, one might want to use techniques like cross-validation to make this assessment empirically,
but this would reduce the effective number of samples of the procedure and hence yield even less optimal
allocations than the ones we could get by using all the data.

For the purposes of the discussion that follows, we now assume that the A;’s are independent.

Recall that Equation (8) showed that

) 1 K _ k[ s K 12
RRisk ~ e ({U’(M+ ;ekeﬁg) U+ " <1 T {) [U’(M + geke;ﬁ) 164 > :

Furthermore, M1 ~ 1(M + Zepe})™!, so it turns out that

—_~ 2 —~
RRisk ~ S0 31U + & < Sl 5) [U’M*lek} .
5 s \1-p

Now we recall that in El Karoui (2009b), we proposed an estimator of s and the A?’s: our proposal,
motivated by concentration of measure results for Gaussian random vectors (see Ledoux (2001)) was to

1. Estimate )\? by
F=Al= nHXz'—ﬁ@Q '
>l Xi — ll3/n

2. If we denote p, = p/n, we then proposed to estimate s by 5, the positive solution of

n

1

1
where g(z) = — _.
) i 1+ 22,

In light of Equation (5), we propose to estimate & by E with

S ©)
TR Ut R

Y=

Note that U'M LU is the plug-in (and very naive) estimator of risk. Let us denote it by femp. We
propose to use

¢ Kk [ o2 A 1
k = X Jem =< _— M . 1
RRisk = 2 fomp + 5 ( 77— & [U ek] (10)

The simulation work that follows illustrate the performance of this estimator.

4.3 Simulation results

To investigate the quality of our proposed estimator in practice, we now present some simulations.
We compare two situations, one where the data generated are normally distributed and one where they
have a distribution close to a multivariate tg distribution. In this latter case, the \;’s are i.i.d and have
a univariate tg distribution, scaled to have second moment equal to 1. We note that the tg distribution
has only 5 moments, so the corresponding X;’s also have only 5 moments and are much more heavy-tailed
than in the situation where they have a Gaussian distribution.

Before we present pictures of our simulations, let us briefly summarize our findings. The estimator
presented in Equation (10) seems to work quite or reasonably well in expectation, when n and p are in the
low 100’s. However, in this situation, the variance is still quite large. We also note that the “true” realized
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risk of our portfolios, which is itself a conditional variance, and hence vary from one simulation to another,
is also quite variable. Furthermore, in this situation, the difference in realized risks between the Gaussian
and the tg cases are considerable, as our theoretical results suggest. We make this remark to emphasize
how assuming Gaussianity would lead to vastly over-optimistic conclusions.

When we increase dimensionality to the low 1000’s for both p and n (something that is probably
unrealistic at this point in financial applications but might be relevant in other areas of applications),
the variance issue becomes less important or significant (as we would expect since we are closer to the
limiting setting and therefore our predictions should be more accurate), and the quality of our predictions
of realized risk is even better. Of course, the advantage of having an estimator that is robust in the class
of elliptical distributions is that we do not need to specify which distribution likely generated the data -
as long as it is elliptical, we will be fine. We note that again here the difference between the realized risks
in the Gaussian and tg cases is very large.

We present simulations in the situation where ¥ is a Toeplitz matrix with o(i,7) = Al=il Two
dimensionality settings are investigated. In the first case, illustrated in Figure 2, p. 34, n = 250 and
p = 100. In the second case, illustrated in Figure 3, p. 35, n = 2500, p = 1000. The first constraint vector,
v1, was chosen to be the eigenvector associated with the .9 * p largest eigenvalue of 3. We also relied on
the vector vs, chosen to be eigenvector associated with the .15 x p largest eigenvalue of 3. The second
constraint vector, which played the role of y, was chosen as v/.3v1 + v/.7vs.

We also present simulations that are closer to real data. In this second set of simulations, we took the
daily returns of 48 Fama-French industry portfolios, for the year 2005. We computed the corresponding
sample mean and sample covariance matrix, and took them as our new population parameters. From
them, as in a parametric bootstrap, we generated 1000 datasets, with n = 252 and p = 48, under the
Gaussian and tg models. In this situation, the matrix M had a relatively large condition number, equal to
40, and the setting is more difficult for our estimators. As we show in Figure 4, p. 36, the variability of
our estimator is quite large and the average performance is not as good (the performance of the medians
are quite similar) as the one we observed on the other synthetic problems. The smaller p and relatively
large condition number of M might explain some of these problems.

5 Conclusion

We have analyzed in this paper the impact of high-dimensionality and ellipticity of the data vectors
on the risk of Markowitz portfolios obtained by seeking the solution of the generalized Markowitz Problem
(QP-eqc-Emp), a quadratic program with linear equality constraints. One of our main result is that we
have provided an estimator of this realized risk that is robust in the class of elliptical distributions and
appears to work reasonably well in practice, in the limited simulations we have investigated. An interesting
by-product of our results is that they show that there is no “universality” in the random matrix sense of
the word for this problem. The details of the model do matter and we cannot limit ourselves to specifying
the population parameters if we want to get a general and robust answer. Our results therefore suggest
that claims of universality found in the physics literature are unfounded.

Elliptical models are a relatively rich class of models and allow us to incorporate in the modeling
features of financial data that are often found in practice. For instance, our models have leptokurtic
marginals, can have heavy-tails (only two moments are needed for our results to be valid in the i.i.d case)
and tail-dependence. However, it seems to us that what drives the key results are global geometric features
of the data and not details about the marginals. These global geometric features play an important role in
random matrix theory (see El Karoui (2009a)) and it is not surprising that they play a key role here. We
expect that the results obtained in our paper can be shown to be valid under weaker and less restrictive
distributional assumptions, something we are currently working on, as long as the geometry of the data
implied by the model is conserved.

Interestingly, we show that both estimation of the mean and the covariance of the data vectors is
important and creates its share of problems. Both yield first order effects and biases which cannot be
ignored. Naturally, if extra information is available and used, these problems could be partially alleviated
by, for instance, shrinking the sample mean and covariance matrix toward appropriate targets. But an
analysis that takes into account both sources of problems is indeed necessary.
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We note that our work could also be adapted to study the performance of portfolios obtained by using
weighted estimators of covariance or by bootstrapping. As shown in El Karoui (2009b) for the bootstrap,
these problems are essentially covered by the elliptical framework. We note that the more complicated
aspects of the issue come from having to understand 7’ i_lEE_lﬁ, which in general will behave differently
than it did in the situations we have considered in this paper (see the bootstrap analysis in El Karoui
(2009b) for an example in a different but related problem). The possible choice of different weights for the
estimation of the mean and the covariance also complicates the situation, though the tools used in this
paper seem suitable for analyzing this problem. (We postpone its analysis to another paper, as this one
is already quite long.) On the other hand, we note that forms of the type v’ $-1%5 -1y should behave as
we have described in this paper, after we properly account from the “ellipticity” generated by weighting
differently different observations.

Random matrix theory appears to be a convenient and valuable tool for the study of the optimization
problem we were concerned with. It has helped shed some light on an otherwise quite difficult problem and
might be helpful in the analysis of other optimization problems that are sensitive to spectral properties of
the input data.

APPENDIX

Recall that the two main quantities of technical interest in this paper are v’ $-1xE -1y and o’ ileiflﬁ.
If Y1 = ¥1Y, where Y is an n x p matrix with ii.d A/(0,1) entries, understanding v'Y 'YX 1w is
’ —2
equivalent to understanding o’ (%) a, for an appropriately chosen «. This question is the focus of

the following section.

, —2
A On o <—Y1HY1) «a

n—1

The analysis of this quantity is closely connected the work that was done in El Karoui (2009b), Theorem
4.1. We have the following theorem.
Theorem A.l. Suppose we observe n i.i.d observations X;, where X; has the form X; = u+ \;Y;, with
Y; z\zf(\i./\/'((),ldp) and {\;}!, is independent of {Y;}?,. We assume that E (\}) = 1. We call X the n x p
data matriz containing the X;’s, which are the rows of X.

We call p, = p/n and assume that p, — p € (0,1).

We use the notation 7; = )\22 and assume that the empirical distribution, G, of 7; converges weakly in
probability to a deterministic limit G. We also assume that 7; # 0 for all i.

If 75y is the i-th largest Ty, we assume that we can find a random variable N € N and positive real
numbers ey and Cy such that

P(p/N <1—¢) — lasn — oo,
P(r(ny > Co) — 1, (Assumption-BB)
Ino > 0 such that P(N/n > n9) — 1 as n — oo .

Under these assumptions, if « is a (sequence of ) deterministic vectors with norm 1,

X'HX\ 2
o/( ) a— &

n—1

where if 5 satisfies,

dG(T)
=1-—p. A-1
/1 + p78 P (A-1)
& is defined as
1
£= 1 72dG(1) (A_2)
2 f (14+7ps)?
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Let us call P1 the following condition on the population parameters:

viYo;
V1<i#j<k, L J and
=17Is (vi +v3)" 57 (vi + vj)
=Ly,
Yo U stay bounded away from O . (Condition-P1)

(vi = v;)' 57 (i — v5)
As an immediate corollary, we have

Corollary A-1. With the definitions above, and if V and ¥ are such that Condition-P1 is satisfied, and
if M = V'S™V, we have asymptotically

VISTIES W = VIS W 4 op(V'ETW) = €M + op(M) .

The proof of the corollary follows exactly the same steps as the proof of Lemma 4.1 in El Karoui
(2009Db).
We also have the following fact:

Fact A.1. We have
52

§>
I—p

This latter value corresponds to the Gaussian case.

Proof of the fact. Let us consider the integral

2,.2.2
P TS
1= ——d .
/(1 +7_p5)2 G(T)

By writing prs/(1 + prs) = (1 — 1/(1 + p7s)), we see that

I:1—2/dG(7)+/dG(7)

1+ prs (1+ prs)?

dG(r) _
1+p:5 - (1

/(lcirG/():l)ZZ</(10lf(/,TT)5)>2=(l—p)2.

Now by definition of s, — p). On the other hand, by convexity of the square function, we have

Therefore,
I>1-21=p)+(1-p?=(1-(1-p)*=p?,
or -
TS
—dG(1) > 1.
/ (14 p1s)? (1) 2
Therefore,

1 7252dG (1) 1—p
—(1- < .
52< p/<1+pm>2> s

Now we know that & > 0 by construction (see below). So we conclude that

52(1—/))'
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Proof of Theorem A.1. Our proof follows closely the proof of Theorem 4.1 in El Karoui (2009b). The
matrix X can be written as

X =ey +AY

where Y is an n x p data matrix having the Y;’s as its rows and hence i.i.d A(0,1) entries under our
assumptions, and A is the diagonal matrix containing the \;’s. Therefore,

1 1 1
X'HX = Y'NHAY &

S =
n—1 n—1 n—1

Y'LY ,

where L = A'HA. Tt has been argued in El Karoui (2009b) that Y'LY is invertible with probability 1
under our assumptions. Note that the quantity we care about is

oS 2% .

We will first get results conditional on A and then will argue that we can de-condition and get results
unconditionally. We call v; the ordered eigenvalues of S, 7, being the smallest.

Results conditionally on A Let us call £, s the set of matrices A such that p/N < 1 — € and C(N —
1)/(n — 1) > 6. Under (Assumption-BB), for a ¢ bounded away from 0 (e.g 6 = 1/2liminf CoN/n),
P(A € Lc5) — 1. We assume that the A we condition on below belongs to L. s. In such situation, one
can show (see Lemma B-1 in El Karoui (2009b)) that, if Py denotes probability conditional on A, and if
A€ ['e,é,

Py (\/7,, <VE[1-Vi—e- t]) < exp (—(n — 1)6t2/C)
In other words, the smallest eigenvalue of S is uniformly bounded away from 0 with very high (conditional)
probability. We will see that these uniform bounds on the smallest eigenvalue of S will eventually allow us

to go from the conditional results on A to unconditional ones.
Let us write the spectral decomposition of S:

p

/

S= E ViUiU; .
i=1

As was explained in the proof of Theorem 4.1 in El Karoui (2009b), the eigenvalues and eigenvectors of
S are independent, and the matrix of eigenvectors is uniformly distributed on the orthogonal group (after
taking proper care of sign indeterminacy - see Chikuse (2003), p.40). Therefore, the random variable we

care about can be written as
p
1 2
re—2 oA
oS o= E 3 (a UZ) .
i=1 '

Going through the proof of Theorem 4.1 in El Karoui (2009b), we see that if we consider, for a given
function h, the random variable

it is shown there that

1 p
var (Zp|7yi, A) < Cﬁ > (h(w)?
=1

In our case here, h(z) = 272, Under our assumptions, according to Lemma B-1 in El Karoui (2009b), we

have 72 > €, (1 — /p/(N — 1))?/2, where €, = Co(N —1)/(n — 1), with high ({Y;}™,)-probability , so we
conclude that
var (/S %a |[{v;},A) = 0.

Since (see e.g El Karoui (2009b))

1o—2 I 1
E(aS a|{'yi},A):§Z?,

=1
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we conclude that

1 1
/S0 — , Z = {7}, A — 0 in probability .
=1 i

The same arguments as those used in the proof of Theorem 4.1 of El Karoui (2009b) then show that the
same result can be obtained conditionally on A only.
Identifying the limit It is now clear that at least conditionally on A, our problem reduces to under-
standing the limit of
P
1 1
LY

P
The Stieltjes transform (see e.g Bai (1999)) of the spectral distribution of S is

sp(2) = EZ !

P37V —~F

As was explained in El Karoui (2009b), Theorem 4.1, according to results of Marcenko and Pastur (1967),
Wachter (1978) and Silverstein (1995), for any fixed z € CT, s,(z) — s(z) in probability, where s(z)
satisfies if G is the limiting spectral distribution of L = A’HA,

1 . TdG(T) i
N / 1+ 7ps(z) (A-3)

Note that under our assumptions, all the L’s have the same limiting spectral distribution, G. So the
result does not depend asymptotically on the sequence of A’s we are conditioning on. Because we know
that, given A € L.s, the smallest eigenvalue of S is asymptotically bounded away from 0, and hence
the limiting spectral distribution of S, I, has support bounded away from 0, we know that s is analytic
in a neighborhood of zero. Also, because the pointwise convergence of Stieltjes transforms imply weak
convergence of spectral distributions, we see that, if K is the limiting spectral distribution of S, by taking
my(z) = inf(1/n% 1/2?) as a test function, for any given n smaller than the left endpoint of the support of
lC?

P
;Zmn(’yi) — /mn(x)d/C(x) = / %dlC(x) in probability .
=1

Because the smallest v; is bounded away from 0 with high-probability, we also see that if 7 is small enough,
and p and n are large enough,

1< 11
, Z my (7)) = ’ Z 2 with high probability.
i=1

=1 "

Now, because s is analytic in a neighborhood of 0, we have

s'(()):/ Lak(z) |

2

and we have finally established that
1.1 o o
- E — — §(0) in probability ,

conditionally on any A belonging to L 5.
Now, according to Equation (A-3) and using the fact that s(z) is analytic in a neighborhood of 0, we
have, for z in a neighborhood of zero,

s'(2) B (s T2dG(T)
20 =170 [ g
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From this equation, and the fact that we know that s(0) # 0 and is finite, we conclude that s'(0) # 0, for
otherwise we would have 0 = 1. We finally obtain

1 1 _/ 2dG(T)

s'(0) ~ s2(0) L+ prs(0)2

Note that as seen in Theorem 4.1 of El Karoui (2009b), s(0) = s. We see that s'(0) is the value of £
announced above. Also, since s'(0) = 1lim Y, /p, s'(0) > 0, and therefore £ > 0.

Getting results unconditionally on A So far we have worked with matrices A belonging to L.
Following exactly the de-conditioning arguments given at the end of the proof of Theorem 4.1 in El Karoui
(2009Db), we see that the results hold also unconditionally on A under the assumptions of the theorem. The
theorem is shown. O

B Quadratic forms in /i and ¥ 1¥3 !

In this section, we will use the definition S = X'HX /n, if X is the data matrix. This mild change
of scaling has no asymptotic consequences but makes the notation less cumbersome in our proofs and
theorems.

B-1 Understanding ﬁ’i_lﬁi_lﬁ, when p =0
The aim of this and the following subsections is to show the following theorem.

Theorem B.1. Suppose Y is an n X p matriz whose rows are the vectors Y;, which are i.i.d N'(0,1d,).
Suppose A is a diagonal matriz whose i-th entry is \;, which is possibly random and is independent of

Y. We use the notation 7; = )\? and assume that the empirical distribution, Gy, of 7; converges weakly in
probability to a deterministic limit G. We also assume that 7; # 0 for all i and

1 o 1 o
3 Z 2= 3 Z 72 — 0 in probability . (Assumption-BLa)
i=1 i=1

If 7(3) 1s the i-th largest Ty, we assume that we can find a random variable N € N and positive real numbers
eg and Cy such that

P(p/N <1—¢) — lasn — oo,
P(r(ny > Co) — 1, (Assumption-BB)
Ino > 0 such that P(N/n > ng) — 1 asn — o .

Let us call p, = p/n and p = lim, .« pn. We assume that p € (0,1). We call
1
Cn,p = 729/AY(Y/A2Y/R)_2Y,AG .
n
Then we have
Cn,p — PS , in probability.

If the n X p data matriz X is written X = AYXY2 ) and if i = 211/2Y’Ae/n is the vector of column means
of X, and if ¥ is the sample covariance matriz computed from X, we have

K

s in probability .

fﬁ/i_lzi_lfﬁ — 1

We note that under our assumptions (,;, will exist with probability 1, since the A;’s are all different
from 0 and the Y;’s have a continuous distribution.
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B-1.1 Linear algebraic preliminaries

Before we deal with the central issues of this problem, we need the following preliminary lemma.

Lemma B-1. If X = Y1XY? and i = X'e/n, then

)

P Yy (YIHY\ 2 Y/

n n n

and is therefore independent of . Further, if M is an invertible matrix and u is a vector such that
W' M~ u # 1, we have
u' M2
(1—wM-1u)?’
In particular, if iy, = Y{e/n, S =Y{Yi/n, Sy, =S — fivi iy, = Y{HY1/n, we have

u' (M —uu)?u =

//’Z/YiSiQﬁYl
This lemma shows that the problems we are considering do not involve 3 when p = 0 and that therefore

we can assume that ¥ = Id, without loss of generality in our analysis. The central object of our study will
be the random variable

Zn,p = ﬁg/l 2;12/73/1 = (1

W (W’W)‘2 W'e

n ) (B'4)

Cn,p = :a/WS_QﬁW =

n n

where W = AY, and Y is a random matrix whose entries are i.i.d A/(0,1) and A is a diagonal random
matrix whose entries are independent of Y.
Under the assumptions of Theorem B.1, we showed in El Karoui (2009b) that

S iw — p
in probability. So all that is left to do is understand ¢, .
We now prove Lemma B-1

Proof of Lemma B-1. The first part of the lemma is almost immediate after we realize that g/ =
e X/n =eYXY2/n. All the matrices ¥ cancel and we are left with an expression that does not involve X.

For the second part, we use a differentiation trick we will use repeatedly in this paper. Let us call
My = M +t1d, where t > 0 and M is assumed to be positive definite (this is all we need for this paper, but
the results below hold in more generality). In this case, M; is also invertible for any ¢ > 0 (and actually
for ¢ in a neighborhood of 0). Simple calculus shows that, for M positive definite, and any ¢ > 0, ]\41,’_1 is
differentiable on [0, c0) and

_ 0 _
u (Mt’) Yu= —au’ (Mt’) "u )
M being invertible guaranteeing differentiability at 0.

Now, using the classic expansion of the inverse of a rank-1 perturbation of M; (see Horn and Johnson

(1990), p. 19), we have, if u' M; 'u # 1,

M w MY
(M — )™ = M 4 =00 ang
1—vwM; u
1
u' (My — uu) " tu = — 1.
1—u/M,; u

Differentiating the last equality and multiplying by (—1), we get, for any ¢ > 0,
u' M, 2u
(1 —w' M )2
Applying the previous equality at ¢ = 0 gives the result.
We note that another method of proof would be to use a rank one update and then take squares. This

is a bit more tedious that the simple trick we presented here, but also shows that the result apply for any
invertible M. O

u' (My — uu)%u =
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B-1.2 Structure of the proof

The proof of convergence of ¢, is based on regularization ideas. In particular, we will focus on
Cn,p(t) = ﬁ%/V(S + ﬂdp)72/7W ) (B-5)
where t is a positive number. The overall strategy is the following:
1. Show that for any € > 0, we can find ¢, such that [(,, — (np(te)| < € with high-probability.

2. Show, for any given ¢, that (,,(t) converges in probability to ps(t.), where this quantity is deter-
ministic.

3. Show that s(t¢) can be made arbitrarily close to s (by picking e small enough), so that in the end
one concludes that ¢, , — ps tends to 0 in probability.

Technically, (,,(t) is a much nicer object to work with that (,, since it is bounded and amenable to
variance computations (at least conditionally on A). This is especially useful because to show convergence
in probability of ¢, ,(t) we rely - among other things - on conditional variance computations, based on the
Efron-Stein inequality (see Lugosi (2006), Theorem 9).

B-1.3 Approximating (n,p by Cnp(tn)

To show that we can approximate (,p, by (np(t), we rely on the following lemma:

Lemma B-2. Suppose Assumption-BB is satisfied. Then we have, as n — oo,
Ve > 0, 3te : P(|Cnp — Cnplte)] >€) — 0.

In plain english, the lemma means that for any € > 0 we can find {;, p(tc), which approximates ¢, to
within e with high-probability.
In this and other proofs, it will be convenient to work with the matrix P5(t) defined as

W (W'W 2w
P(t)=— | —+tld —. B-6
2( ) \/ﬁ ( n + p) \/ﬁ ( )
Proof. Recall that (,, = (p(0) and that, if W = AY and v/ = €'W/n,

/ —2
Cmp(t):z/’(WW—i-tIdp) v
ew (W'W 2 We
= + t1d,
n
e (W (WW 2w\ e
= | —=(—+1td,] —]—
valve U n NG
A € e
2" p(t)— .

Let us write the singular value decomposition of W/y/n as

W _ /
%fUDV.

Then, using the fact that V is orthogonal, we have

n

/
<W L tIdp) =V(D? +tld,)V'.
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Therefore,

! -2
<W L tIdp> = V(D? +tId,) 2V’ , and
n
2 2 ! Ep: d2 !

3

Recall that our aim is to compare Py(0) — P»(t), or more precisely, quadratic forms involving this difference
of matrices. Towards this end, we make the following simple remark: suppose that the d;’s are decreasingly
ordered and ¢t > 0:
2 2 42 2 2
o< Lo d _wudgr  w R S .
d2(d? +t)2 = (d2+1)2  di(d2+t)?

T2 ()2 (A1) (dF+t)?

We can hence conclude that

0<Coy—Can(t) < Bty P (B-7)
TP R (@2 )2 d2(d2 4 1)?
since
e e
0 < Cnp— Cup(t) = %(Pz(()) - Pz(t))%

<< 2 2 >z”:<,e>2< 2 £
=~ uii = )
@12 B@v02) = \"n) (@R B

because ||e/y/n|l2 =1 and U is an orthogonal matrix.

Let us now explain why d,, is bounded away from 0 under our assumptions. Let us call £, s the set
of matrices A such that p/N < 1 — ¢y and Co(N — 1)/(n — 1) > §. Under our assumptions, for a dy
bounded away from 0 (e.g dp = 1/2liminf Co(N —1)/(n —1)), P(A € L, 5,) — 1. Let us pick such a do.
If A € L, 5,, according to Lemma B-1 and the proof of Theorem 4.1 in El Karoui (2009b), if Py denotes
probability conditional on A,

Py (dp < /% [(1-V1—e)— r]) <exp (—(n —1)6r*/Co) .

Hence, when A € L, 5,, dp, the smallest singular value of W/\/n, is bounded away from 0 with high-
probability.
We conclude that
Ve > 0, 3t such that P(|Cnp — Cuplte)| >€) — 0.

B-1.4 About E (C,,(t)) and E (., (t)|A)

Recall that 1
Cnp(t) = ge'Pg(t)e ,

and is therefore the scaled sum of the entries of P(t). Let us call p4(i,j) the (4, j)-th entry of Py(t). We
have the following lemma:

Lemma B-3. When Y; are i.i.d and have a symmetric distribution (i.e Y; £ —Y;), we have, if i # j,
E (P2,t(i’j)|A) =E (P2,t(i7j)) =0.

Further, for any given t > 0,
1
E (Cnp(t)|A) — —trace(Pa(t)) — 0, in probability ,
n

and Ltrace (Py(t)) has a deterministic limit, which depends only on G, the limiting spectral distribution of

A.
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Proof. In all the proof, we assume that ¢ > 0 is given. We use an invariance idea similar to the one used
in a corresponding situation in El Karoui (2009b). Let us first note that the expectations we are referring
to are well-defined. As a matter of fact, because WW/n + tId,, > tId,, we have

1 _ 1
1Pl < S [[[W W W)W la = -,

since the matrix appearing in the right-hand side is an orthogonal projection matrix. Therefore, all the
entries of P(t) are bounded and less than 1/¢.
We now work conditionally on A and focus on the case i = 1, j # 1. Let us call

n —2
1
pos(1,§) = OA(Y1, ..., Y) = AN\ Y ( Sy —|—tIdp) Y; .
n
=1

We have clearly, ©5(Y1,Ys,...,Y,) = —Ox(—Y1,Ys,...,Y,). In other respects, because Y; £ -Y;, and

the Y;’s are independent, we have © (Y1, Ys,....Y},) £ OA(—Y1,Ya,...,Y,). Because ©Op(Y1,Yo,...,Y,) is
bounded, we can take expectations in the previous equality and we have, if i # 7,

E (p2,(1,5)[A) = 0. (B-8)

We conclude that the same result holds unconditionally and E (p2+(7, 7)) = 0, since under our assumptions
P, is defined with probability 1.
Hence, for any ¢t > 0,

1 . 1
B (Guplt) = — DB (i, 1)) = - B (trace (Pa(1)))
Let us now argue that, for any fixed t > 0,

1
Cnp(t) — —trace (P»(t)) — 0 in probability .
n

If S = WW/n and if I; are the eigenvalues of S,

L, (P plzp: 121”: 1, 1
—race —_— — — .
n 2( np ‘= l+t P pilit+t (li +1)?

Under our assumptions on the convergence of the spectral distribution of A, we have convergence of
the spectral distribution of S in probability (see Marcenko and Pastur (1967), Wachter (1978), Silverstein
(1995), El Karoui (2009a) and El Karoui (2009b)) to a deterministic probability measure /C, and therefore

1
Etrace (P2(t)) — ps(t) in probability .

Though we will not need it later for any explicit computations, let us mention that if IC is the limiting
spectral distribution of S, we have, since a(x) = 1/(z + t) is continuous and bounded on [0, c0),

s(t) = / k) (B-9)

[+t

Because Ltrace (P2(t)) < 1/t, we also have var (Ltrace (P2(t))) — 0 and E (Ztrace (P»(t))) — ps(t). Note
also that since

B (Gup(1)]A) = B (trace (P(0) [A) |

we also have, under our assumptions, that
1

var <E (trace (Pa(t)) |A)> —0,.
n
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since 2E (trace (P2(t)) |A) is a bounded random variable, depending on A, which converges in probability
to a limit that is independent of A.
So for any given ¢,

E (o p(t)|A) — ps(t) — 0, in probability, and

1
E (¢np(t)|A) — Etrace (P2(t)) — 0 in probability.

The first statement is to be understood in A-probability. Note that s(¢) depends only on the limiting
spectral distribution of A, which is the same for all the A’s we consider. In other words, s(t) is deterministic,
and the random variable E ((,,(t)|A) is asymptotically non-random. The second statement is to be
understood with respect to the probability induced by the joint distribution of the A;’s and the ¥;’s (so
the joint A x Y-probability).

O

B-1.5 Conditional variance and convergence of {, ,(t)

We now place ourselves in the setting where p = 0. To understand g’ i_lzi_lﬁ, we simply need to
understand, if W =AY,

W (WW\ 2 W'e
Cn,p - .

n n n

Lemma B-4. Suppose that Y; w N(0,1d,) and Cpp(t) is defined as above in Equation (B-5). Then we

can find a constant C' and two (explicit) functions g1 and go such that for any t > 0

var (Gp(B)IA) < O 3™ (Mau(t) + 0a(1))
=1

Furthermore, for any t > 0, when Assumption-BLa and Assumption-BB are satisfied,
1
Cnp(t) — —trace (Pa(t)) — 0 in probability .
n

The key to the proof of this lemma is the Efron-Stein inequality (Efron and Stein, 1981), as stated for
instance in Theorem 9 of Lugosi (2006): it says that if X is a random variable such that X = f(&1,...,&,),
where the ;’s are independent random variables, then, if X; = f;(&1,...,&—1,&+1,---,&n),

n
var (X) < Zvar(X - X;) .
i=1
We will therefore try to approximate (, ,(t) by random variables (;(¢) involving all but one of the Y;’s to
get our conditional variance bound - the key to the lemma.

Proof. We call
1 n
S=WW/n==) \NYY/.
/n n ; (] (2
We call §; =S — \2Y;Y/. We also call §(t) =S + t1d,, and S;(t) = S(t) — A\2Y;Y/ /n.
Let us call m = W'e/n and m; = W/e/n, where W; = W — \;e;Y/ (e; is the i-th canonical basis vector

in R™). Note that W; is simply W with the i-th row replaced by 0.
We call
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Note that

Sr == (S(t) i = —Gup(t)
OZi(t) a2~ _ -
o =~ (Sit) T i = —G(1)

Now, recall the results of El Karoui (2009b), Theorem 4.2 and its proof:
1 (1 — Az”wi(t))2
In,(t)=Z;(t) + — 1 — ———"—] , wh
»(t) ()+n< T+ 2q(t) where
wi(t) = M} (Si(8) 'Yy
Y/ (Si(1)'Yi
qi(t) = -,

Note that ¢;(¢) > 0. Taking derivatives with respect to ¢ in the previous expression, we get:

8Zn7p(t) o aZl(t) 1 2(>\1wl(t) — 1))\111);(75) (1 — )\lwz(t))Q 2 "
o ot _n[ 1+ M\2q(t) (14 AZgi(t))? 14 )] '
Hence, )
)\w, —1)\iw§t 1—)\Z"wit ’
G = ()] = [R5 Dm0 C 2B i)

We notice that, trivially, S(t) > tId, and S;(t) > tId,. Also,
wi(t) = —mi(Si(t))

Y’ -
q(t) = —

Therefore,

(S (#) M ll211(Si () ~*/2Yill3 ()

L] < .
4i(t)] < . :

Consequently,
(T+X2q())27 ™7 — ¢ 14 X2qi(t)

Let us write

M) = Gt = G00) = T (i) - 5 0) . o)
The remarks we made above show that
Ao < | F=2 S N (et + 2o ES i
< §+A2< f” Lyl + 2/l (o)

Using the fact that (a + b+ c)? < 3(a? + b? + ¢2), as well as the equally well-known (a + b)? < 2(a? + b?)
and |ab| < (a* 4 b?)/2, we have

4 8wy (t
Ai(t)? <3 [t2 + 4 < wtg( ) + wi(t) + (wg(t))4) + A2 (wi(t))?
Note that, conditional on Y{;y = (Y1,...,Yi_1,Yiq1,...,Yy) and A, wi(t) ~ N(0,m}(S;(t)) *m;). Re-
call also from El Karoui (2009b) that under the same conditioning, w;(t) ~ N(0,m}(S;(t))~2m;) So in

particular, since
1

mi(Si(t) " m; < 5



because, as explained in El Karoui (2009b), #;(S;(t))~1m; < 1, we have, using the same arguments as in
El Karoui (2009b),

E ((w!(1))2[A) < tlg and E ((w}(1))"]A) < t% .
Similarly, 5
E (w}(t)|A) < nE

So we conclude that, for C' a constant (independent of p and n),
E ((2i(1))%|A) < CO () + X fa(t) + f3(1)) -

For completeness, let us say that a possible choice of such functions is fi(t) = 8t 4+t 2+¢76, fo(t) =¢3
and f3(t) =t2.

After using the very coarse bound /\Z2 <1+ )\?, this inequality can be rewritten as (for appropriate
functions ¢g; and gs)

E ((Ai(1)%[A) < C(Ajgi(t) + g2(t)) -
Applying the Efron-Stein’s inequality (see Lugosi (2006), Theorem 9), we see that,

vt (Cop1A) < DB ((Grplt) — GOPIA) < €y 37 (Man(0) + ga(1) |
=1

i=1

Let us now consider £, = {A : n—12 SRR 77}. If A € L, we have, for all > 0, and Py denotes
probability conditional on A,

Pa(J6nslt) = B Gupl0))] > 2) < 5 (o) + 227

In particular, when n is large enough and € > 0 is given, we see that we can pick an 7n(t, z, €) such that for
any given x and ¢,

Pa ([Gnp(t) = B (Gup(£)|A)] > ) < 4 .

Now, given z, t and ¢, P(A € L, 4,)) — 1 under our assumptions. Also, we have shown above that
E (o p(t)|A) — ps(t) in A-probability, where s(t) is deterministic and the same for a set of A’s of probability
1. In other words, if we call L5y = {A : |[E (¢up(t)|A) — ps(t)| < 6}, for any 6 > 0 and ¢ > 0, we have
P(Lst) — 1. Of course, if Lyt 265 = Lyte,e) (1 Lst, We also have P(Ly 5. 5) — 1. So we conclude, by
elementary conditioning arguments (similar to the ones found at the end of the proof of Theorem 4.2 in El
Karoui (2009b)) that under our assumptions

for any given t > 0,  (,(t) — ps(t) — 0 in probability,

where the last statement is of course to be understood unconditionally on A.
Note that because +trace (P,(t)) — ps(t) in (unconditional) probability, this also implies that, for any
given t > 0,

1
Cnp(t) — —trace (P(t)) — 0 in probability.
n

B-1.6 Convergence of (. p

We now put together all the previous arguments to show the first result announced in Theorem B.1,
namely that, under our assumptions,

Cn,p — ps in probability .

As a matter of fact, we have, for any ¢t > 0,

Gup = trace (Po(0))| < [Gup — Gupl0)] + [Gup() — - trace (Pg(t))‘ + ‘itrace (P(t)) — trace (P2(0))
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We have already established that, if dj, is the smallest singular value of S = W/'W/n,

2t N t?
(d2+1t)2  d2(d2+1)

0< Cnvp B Cn»P(t) < 2 and
1

Cnp(t) — —trace (P(t)) — 0 in probability .
n

Now, we also have by the same argument as the one we used to bound ¢, p — (. p(t)

2t N 12
d2+1)2  d2(dZ+t)?

%trace (Pa(t)) — %trace (P2(0))‘ < (

Since under our assumptions dj, is bounded away from 0 with high-probability, for any € > 0, we can find
te such that, in probability,

‘Cn,p - Cn,p(ts)‘ <€,

1
Cnp(te) — 5trace (Pa(te))| <€, and

‘:Ltrace (Py(t.)) — %trace (PQ(O))' <e.

Hence,

1
Cn,p — —trace (P2(0))‘ — 0 in probability .
n

Now
1 1<~ .,
—trace (P2(0)) = pn— d; - — ps in probability ,
~trace (P3(0)) = p p; p y
by the analysis done in El Karoui (2009b) and the result is shown.
B-1.7 On p/'S-12S-14

Let us now focus on the second result announced in Theorem B.1. Recall that the statistic we were
interested in was
Znp =088

Calling T}, , = 'S, we have shown in Lemma B-1 that

Cn p
Tpp = b
(1= Tp)?

In El Karoui (2009b), we showed that T}, , — p under our assumptions. And we just showed that

Cnp — PS5 .

Recalling the notation k = p/(1 — p), we finally have
K
Zn,P - ip5 )

as announced in Theorem B.1.
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B-2 On 'E1¥%-1y

We use here the normalization 3 = %X 'HX. Note that & is shift-invariant (it does not depend on
w), so we call m = W'e/n, where W = AY. m is the sample mean in the case where y = 0. Let us call
S = W'W/n. We have

S =32 (S~ mm') B2 .

Therefore, we have

FETISS T = V2 (S — i) PSP 2/ V2 (S — i) P i
+ i (S —mm) P
On the other hand, if v is a deterministic vector,

SNy = e 12? (S —mm') N2y 4y (S — mm') 2Ly

The work earlier in this paper gives results concerning quadratic forms of the type v'S~1/2 (S — mn/ )_2 »1/2y,
for a fixed sequence of vectors v, and @/ (S — mm/) > .
To complete the study, we now need to understand quantities of the type

' (S —mm') v
We now turn to studying these objects and begin with the following lemma:

Lemma B-5. Let u be a vector and M be a positive definite matriz such that M — uv' is invertible. Then

u'M~2v u' M~y I nre]

/ nN—2, __
w(M =)o = [ —wMTa " (1—u’M‘1u)2u

v. (B-11)

In our applications of this lemma we will have M = S, v = m and v deterministic. Because we have
studied in El Karoui (2009b) quantities of the type v'S™'m and m'S~!m, and because in light of the
results above we now understand m'S~2m, we will just have to focus on quantities of the type v'S™2m to
get a general understanding of statistics of the form z’ i_lEi_lﬁ.

Proof. We use the same trick as above. Because M is invertible, M; = M + tId is such that M; ! is
well-defined and differentiable in a neighborhood of 0. Recall that the rank one update formula gives

u (M — uu')_l = U/Lt_l_l .
1—uM; u
Let us call g(t) = —u/ (M; — uw') "' v. We have
g(0) =u (M —uu) .
However, g(t) = (uv'M; *v)/(1 — ' M; 'u). Therefore,

W' M2y N WM~y
1—u/M~1u  (1—u/M1u)

q0) = 2u’M_Qu .

B-2.1 On m'S 2w

Our aim is to show the following theorem:
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Theorem B.2. Suppose that v is a deterministic vector with ||v||2 = 1. Suppose that the assumptions
stated in Theorem B.2 hold and also that

1 n
— E A2 remains bounded with probability going to 1. (Assumption-BLb)
n

i=1

Consider, if W =AY, S = W'W/n,
1 / —2 ~/o—2
P=—eAYSFv=m'S""v.
n

Then
1 — 0 in probability. (B-12)

Furthermore, we have
m' (S —mm')"2v — 0 in probability. (B-13)

Proof. As before, our proof will rely on an approximation argument and the Efron-Stein inequality. We
call, for t > 0,
1
Y(t) = €AY (S + t1d,) v .
n

As before we call S(t) = S +tld, and we will be using the same notations as in the proof of Theorem B.1.
Note that

e W (WW -

t)=—=—| — +tld .

0= g (T )

We first remark that if W is changed to —W, then () is changed to —(t). We also note that since
[11S(t)||l2 < 1/t, 1(t) has an expectation, conditional on A. Since Y’ £ —Y, we immediately have

E (4(1)|A) =0,

since, conditional on A, (t) £ —1(t). Let us call ¢;(t) the random variable obtained by replacing A; by

zero in the definition of ¥ (¢). Note that 1;(¢) does not involve Y;.
Now the proof of Theorem 4.3 in El Karoui (2009b) shows that if

e W (WW -
V(t)=—=—7| ——+1td
0= Jagr () v
and U;(t) is the random variable obtained from W by replacing A; by 0,
U(t) —W;(t) = —
(*) ®) n < 1+ \2g;(t)
0it) = Y{(Si(t)"lv.

) , Where

Naturally, we have 1 (t) = —3\15?) and similary for U;(t) and ;(t). Therefore, we have
n oy [0 (1= Nwi(t)) — Awi(0)0i () 0i(1) (1 — iwi(t)) 1o
i) = w(0) = x| ) e IR

So we conclude that

nlis(t) — w(0)] < A (w;(t)m ()] 4 () s(o)] + BOIL= A"“’i“)') |

t

A key aspect of this equation for our purposes in that )\; appears in it with powers at most 2. We also
note that 8}()|Y(;), A ~ N(0,v(Si(t))"*v), and recall that 6;()|Y(;), A ~ N(0,v'(S;(t))"?v). Finally, as
seen many times before, S;(t)~! < tId,,.
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Therefore, E ((0;(t)) %) < Ct=* and E ((6;(t)) %) < Ct~?*. We conclude that
E (n*(¢i(t) — (£)*|A) < COTh(t) + ha(t) -

Hence, the Efron-Stein inequality guarantees that

n

var (B(1)[A) < O 3 (N (1) + ha(r))

i=1
So if A is such that > | A}/n? — 0, we have
¥ (t) — 0 conditionally on A .

Note that under Assumption-BLa, the set of matrices such that Y ; A}/n? — 0 has measure 1.

We now recall that under Assumption-BB, we can find sets of matrices L, 5, whose measures go to 1
asymptotically, for which the smallest singular value of § is bounded away from 0 with high-probability.
Recall also from El Karoui (2009b) that conditionally on A, m = W'e/n is N (0, %&A?Idp) and therefore,
1713 ~ x3/n(32i1 A7 /). Now

¥ — () < ImIS72 = (S@) M2 lv]l -

Soif A € L, 5, and is such that > , )\f/n stays bounded, we see that for any € > 0, we can find . such
that |¢) — 1 (tc| < e with high-probability. For such a A, satisfying also the conditions of Assumption-BLa,
we have

1) — 0 in probability, conditionally on A.

By using deconditioning arguments similar to the ones we presented above, we can conclude that under
Assumption-BB, Assumption-BLa and Assumption-BLb, we have

1 — 0 in probability ,

where this last statement is unconditional on A. Equation (B-12) is shown.

To show that the result announced in Equation (B-13) holds, we just notice that according to Lemma
B-5,
m'S~2v m'S2m

_ ~/o—1
1S s e

A (S — mm') 2

Under our assumptions, results in El Karoui (2009b) show that m/S~'m — p in probability. We have
also just established that m/S~2m has a finite limit in probability. And finally, we know from El Karoui
(2009b), Theorem 4.3 that m'S~'v — 0 in probability. Because ¢ = m'S~2v, we conclude that

m' (S — mm')~2v — 0 in probability .

B-2.2 Combining all the arguments together

The following theorem summarizes our findings and follows essentially immediately from the previous
two, Theorems B.1 and B.2.

Theorem B.3. Suppose that X; = p + N\XY2Y;, where Y; are i.i.d N(0,1d,) and {\;}_, are random
variables, independent of {Y;}!' ,. Let v be a deterministic vector. Suppose that p, = p/n has a finite
non-zero limit, p and that p € (0,1).

We call m; = )\?. We assume that 7; # 0 for all i as well as

1 — 1 <
=N M0 babilit d=Y )\ ins bounded i bability. A tion-BL
) ZZ; ;i — U wn probaodility, an " ; i remains bounaea 1n proovability ( ssumption )
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If 75y is the i-th largest Ty, we assume that we can find a random variable N € N and positive real numbers
eg and Cy such that

P(p/N <1—¢) — lasn — oo,
P(r(ny > Co) — 1, (Assumption-BB)
Ino > 0 such that P(N/n > ny) — 1 asn — oo .

We also assume that the empirical distribution of T;’s converges weakly in probability to a deterministic
limit G.

We assume that V' and X are such that Condition-P1 is satisfied.

We call A the n xn diagonal matriz with A(i,i) = A;, Y the n x p matriz whose i-th row is Y;, W = AY
and S = W'W/n. Finally, we use the notation m = W'e/n, i = X~1/2p.

Then, we have, for & defined as in Equation (A-2), and s defined as in Equation (A-1),

SIS -1y -1 IS—1y§3—1 Iy—1 Iy—1
pYIEY e Y TIEYN e WSt < WXt
_ op() ==V L op(1v L) . B-14
Vsl Vsl W) VoSl Vo's—ly ( )
Also,
PSS IS, 4 (1”*")25 +27(S — )2 + op(1) (B-15)
— Pn

and we recall that [i'(S — mm/)~2m/ ||| = op(1).
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Markowitz: realized risk of portfolios, n=250, p=100, “t-distribution" with 6 dofs.
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Markowitz: realized risk of portfolios, n=250, p=100, Gaussian case
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Figure 2: Performance of naive and corrected frontiers, for scaled “t¢” (upper picture) and Gaussian
returns. Here, n = 250 and p = 100. The number of simulations is 1000 in all pictures. The dashed
lines represent (empirical) 95% confidence bands. (The confidence bands corresponds are computed for
a fixed level of expected returns y.) The z-axis represents our estimate of the realized variance of the
optimal portfolios. The y-axis represents the target returns for the portfolios. The plots show both the
average realized risk of the naive Markowitz portfolios (blue curves) and the fact that our estimator (in
red) is nearly unbiased (red solid curves near the blue curves). They also illustrate the robustness of our
corrections. Another striking feature is the lack of robustness of Gaussian computations, since the average
realized risk computed with “tg” returns are very different from the Gaussian ones. The fact that, as our
theoretical work predicts, Gaussian computations leads to underestimation of the realized risk in the class
of elliptical distributions considered in the paper is illustrated by the fact that the “tg” curves are to the
right of the Gaussian curves. The population (or true) efficient frontier is in black. The green curve is the

mean estimated risk, if estimated through the naive estimator wgmpiwemp.
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Markowitz: realized risk of portfolios, n=2500, p=1000, “t-distribution" with 6 dofs.
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Markowitz: realized risk of portfolios, n=2500, p=1000, Gaussian case
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Figure 3: Performance of naive and corrected frontiers, for scaled “t¢” (upper picture) and Gaussian
returns. Here, n = 2500 and p = 1000. The number of simulations is 1000 in all pictures. The dashed
lines represent (empirical) 95% confidence bands. (The confidence bands are computed for a fixed level of
expected returns y.) The z-axis represents our estimate of the realized variance of the optimal portfolios.
The y-axis represents the target returns for the portfolios. The plots show both the average realized risk
of the naive Markowitz portfolios (blue curves) and the fact that our estimator (in red) is nearly unbiased
(red solid curves below the blue curves and not visible on the plots). They also illustrate the robustness
of our corrections. Another striking feature is the lack of robustness of Gaussian computations, since the
average realized risk computed with “tg” returns are very different from the Gaussian ones. The fact that,
as our theoretical work predicts, Gaussian computations leads to underestimation of the realized risk in
the class of elliptical distributions considered in the paper is illustrated by the fact that the “tg” curves
are to the right of the Gaussian curves. The population (or true) efficient frontier is in black. The green

curve is the mean estimated risk, if estimated through the naive estimator wémpiwemp.
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Markowitz: realized risk of portfolios, n=252, p=48, "t-distribution” with 6 dofs.
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Markowitz: realized risk of portfolios, n=252, p=48, Gaussian case
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Figure 4: Performance of naive and corrected frontiers, for scaled “t¢” (upper picture) and Gaussian
returns. Here, n = 252 and p = 48 and the population parameters were computed from real data. The
number of simulations is 1000 in all pictures. The dashed lines represent (empirical) 95% confidence bands.
(The confidence bands are computed for a fixed level of expected returns y.) The z-axis represents our
estimate of the realized variance of the optimal portfolios. The y-axis represents the target returns for the
portfolios. The plots show both the average realized risk of the naive Markowitz portfolios (blue curves)
and the average of our estimators (in red). Here our estimator is still biased. The lack of robustness of
Gaussian computations is again highlighted. The fact that, as our theoretical work predicts, Gaussian
computations leads to underestimation of the realized risk in the class of elliptical distributions considered
in the paper is illustrated by the fact that the “¢¢” (blue) curves are to the right of the Gaussian curves.
The population efficient frontier is in black. The green curve is the mean estimated risk, if estimated
through the naive estimator wgmpiwemp. The variance of our corrections can be quite large, as seen in the
te simulations.
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