
Protecting Browsers from Extension Vulnerabilities

Adam Barth
Adrienne Porter Felt
Prateek Saxena
Aaron Boodman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-185

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.html

December 18, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We would like to thank Nick Baum, Erik Kay, Collin Jackson, Matt Perry,
Dawn Song, David Wagner, and the Google Chrome Team. This work is
partially supported by the Air Force Office of Scientific Research under
MURI Grant No. 22178970-4170.

Protecting Browsers from Extension Vulnerabilities

Adam Barth, Adrienne Porter Felt, Prateek Saxena
University of California, Berkeley

{abarth, afelt, prateeks}@eecs.berkeley.edu

Aaron Boodman
Google, Inc.

aa@google.com

Abstract

Browser extensions are remarkably popular, with one in
three Firefox users running at least one extension. Although
well-intentioned, extension developers are often not security
experts and write buggy code that can be exploited by ma-
licious web site operators. In the Firefox extension system,
these exploits are dangerous because extensions run with
the user’s full privileges and can read and write arbitrary
files and launch new processes. In this paper, we analyze
25 popular Firefox extensions and find that 88% of these
extensions need less than the full set of available privileges.
Additionally, we find that 76% of these extensions use un-
necessarily powerful APIs, making it difficult to reduce their
privileges. We propose a new browser extension system that
improves security by using least privilege, privilege separa-
tion, and strong isolation. Our system limits the misdeeds
an attacker can perform through an extension vulnerabil-
ity. Our design has been adopted as the Google Chrome
extension system.

1 Introduction

Web browser extensions are phenomenally popular:
roughly one third of Firefox users have at least one
browser extension [22]. Browser extensions modify the
core browser user experience by changing the browser’s
user interface and interacting with web sites. For exam-
ple, the Skype browser extension rewrites phone numbers
found in web pages into hyperlinks that launch the epony-
mous IP-telephony application [5]. Although there have
been several recent proposals for new web browser archi-
tectures [18, 11, 32], little attention has been paid to the
architecture of browser extension systems.

Many extensions interact extensively with arbitrary web
pages, creating a large attack surface that attackers can
scour for vulnerabilities. In this paper, we focus on benign-
but-buggy extensions. Most extensions are not written by
security experts, and vulnerabilities in benign extensions
are worrisome because Firefox extensions run with the

browser’s full privileges. If an attacker can exploit an ex-
tension vulnerability, the attacker can usurp the extension’s
broad privileges and install malware on the user’s machine.
At this year’s DEFCON, Liverani and Freeman presented
attacks against a number of popular Firefox extensions [23].
In one example, if the user dragged an image from a mali-
cious web page into the extension, the web site operator
could install a remote desktop server on the user’s machine
and take control of the user’s mouse and keyboard.

These attacks raise the question of whether browser ex-
tensions require such a high level of privilege. To investi-
gate this question, we examine 25 popular Firefox exten-
sions to determine how much privilege each one requires.
We find that only 3 of the 25 extensions require full sys-
tem access. The remainder are over-privileged, needlessly
increasing the severity of extension vulnerabilities. An ex-
tension system that narrows this privilege gap would reduce
the severity of extension exploits, but the Firefox extension
platform does not provide sufficiently fine-grained privi-
leges. For example, many extensions store settings with an
interface that can read and write arbitrary files.

We propose a new extension system, built with security
in mind. In particular, we aim to protect users from benign-
but-buggy extensions by designing least privilege, privilege
separation, and strong isolation into our extension system.
Instead of running with the user’s full privileges, extensions
in our system are limited to a set of privileges chosen at
install time. If an extension later becomes compromised,
the extension will be unable to increase this set of privi-
leges. In particular, our case studies of Firefox extensions
suggest that most extensions do not require the privilege to
execute arbitrary code; consequently, the privilege to exe-
cute arbitrary code will often be unavailable to an attacker
who compromises an extension in our system.

In addition to limiting the overall privileges of each ex-
tension, our system further reduces the attack surface of
extensions by forcing developers to divide their extensions
into three components: content scripts, an extension core,
and a native binary (see Figure 1):

• Each content script has direct access to the DOM of
a single web page and is thereby exposed to poten-

1

Attacker

Figure 1. Extensions are divided into three components, each with progressively more privileges and
less exposure to malicious web content.

tially malicious input. However, content scripts have
no other privileges except for the ability to send mes-
sages to the extension core.

• The extension core contains the bulk of the extension
privileges, but the extension core can only interact
with web content via XMLHttpRequest and content
scripts. Even the extension core does not have direct
access to the host machine.

• An extension can optionally include a native binary
that can access the host machine with the user’s full
privileges. The native binary interacts with the ex-
tension core via the standard NPAPI interface used by
Flash and other browser plug-ins.

To gain the user’s full privileges, an attacker would need
to convince the extension to forward malicious input from
the content script to the extension core and from the exten-
sion core to the native binary, where the input would need
to exploit a vulnerability. We argue that exploiting such a
multi-layer vulnerability is more difficult than exploiting a
simple cross-site scripting hole in a Firefox extension.

Finally, the different components of an extension are iso-
lated from each other by strong protection boundaries: each
component runs in a separate operating system process. The
content script and the extension core run in sandboxed pro-
cesses that cannot use most operating system services. As
a first layer of defense, the content script is isolated from
its associated web page by running in a separate JavaScript
heap. Although both the content script and the web page
have access to the same underlying DOM, the two never ex-
change JavaScript pointers, helping prevent JavaScript ca-
pability leaks [12].

Our extension system design has been adopted by
Google Chrome and is available in Google Chrome 4. Al-
though it is difficult to predict how developers will use the
extension system, we believe that this architecture will pro-
vide a solid foundation for building more secure extensions.

2 Attacks on Extensions

A browser extension is a third-party software module
that extends the functionality of a web browser, letting users
customize their browsing experience. Because extensions
interact directly with untrusted web content, extensions are
at risk of attack from malicious web site operators and ac-
tive network attackers. In this section, we present a generic
threat model for extension security that applies to both the
Firefox extension system and the new extension system we
introduce in this paper. We then focus our attention on the
Firefox extension system, providing background material
and examples of real attacks.

2.1 Threat Model

We focus on benign-but-buggy extensions: we assume
the extension developer is well-intentioned but not a secu-
rity expert. We assume attacker attempts to corrupt the ex-
tension and usurp its privileges. For example, the attacker
might be able to install malware on the user’s machine if the
extension has arbitrary file access. We assume the attacker
is unable to entice the user into downloading or running na-
tive executables. We further assume the browser itself is
vulnerability-free, letting us focus on the additional attack
surface provided by extensions.

2

We consider two related threat models: a web attacker
and an active network attacker. The web attacker controls a
web site, canonically https://attacker.com/, that
the user visits. (Note that we do not assume that the user
confuses the attacker’s web site with another web site.) Typ-
ically, the attacker attempts to corrupt an extension when the
extension interacts with the attacker’s web site. In addition
to the abilities of a web attacker, an active network attacker
can intercept, modify, and inject network traffic (e.g., HTTP
responses). The active network attacker threat model is ap-
propriate, e.g., for a wireless network in a coffee shop.

Plug-ins. In this paper, we focus on browser extensions,
which differ from browser plug-ins. Plug-ins render specific
media types (such as PDF and Flash) or expose additional
APIs to web content (such as the Gears APIs). Plug-ins are
requested explicitly by web sites, usually by loading con-
tent with a specific MIME type. By way of contrast, ex-
tensions interact with web pages without their explicit con-
sent. Although plug-in security is an important area of re-
search [18, 17], securing browser extensions requires differ-
ent techniques.

2.2 Exploiting Firefox Extensions

In Firefox, browser extensions run with the same privi-
leges as the browser itself. Firefox extensions have full ac-
cess to browser internals and the user’s operating system.
Extensions can change the functionality of the browser,
modify the behavior of web sites, run arbitrary code, and
access the file system. Firefox extensions combine two dan-
gerous qualities: high privilege and rich interaction with un-
trusted web content. Taken together, these qualities risk ex-
posing powerful privileges to attackers. We describe four
classes of attacks against browser extensions and the rele-
vant mitigations provided by the Firefox extension system:

• Cross-Site Scripting. Extension cross-site script-
ing (XSS) vulnerabilities result from interacting di-
rectly with untrusted web content. For example, if an
extension uses eval or document.write without
sanitizing the input, the attacker might be able to in-
ject a script into the extension. In one recent exam-
ple [23], a popular RSS aggregation extension evalu-
ated data from the <description> element of an
arbitrary web site without proper sanitization. To help
mitigate XSS attacks, Firefox provides a sandbox API,
evalInSandbox. When evaluating a script using
evalInSandbox, the script runs without the exten-
sion’s privileges, thereby preventing the script from
causing much harm. However, use of this sandbox
evaluation is discretionary and does not cover every
kind of interaction with untrusted content.

• Replacing Native APIs. A malicious web page can
confuse (and ultimately exploit) a browser extension
by replacing native DOM APIs with methods of its
own definition. These fake methods might superfi-
cially behave like the native methods [9] and trick
an extension into performing some misdeed. To
help mitigate this class of attack, Firefox automati-
cally wraps references to untrusted objects with an
XPCNativeWrapper. An XPCNativeWrapper
is analogous to X-ray goggles: viewing a JavaScript
object through an XPCNativeWrapper shows the
underlying native object, ignoring any modifications
made by the page’s JavaScript. However, this security
mechanism has had a long history of implementation
bugs [4, 3, 1]. Recent work has demonstrated that these
bugs are exploitable in some extensions [23].

• JavaScript Capability Leaks. JavaScript capability
leaks [12] are another avenue for exploiting exten-
sions. If an extension leaks one of its own objects to
a malicious web page, the attacker can often access
other JavaScript objects, including powerful extension
APIs. For example, an early version of Greasemonkey
exposed a privileged version of XMLHttpRequest
to every web page [33], letting attackers circumvent
the browser’s same-origin policy by issuing HTTP re-
quests with the user’s cookies to arbitrary web sites
and reading back the responses.

• Mixed Content. An active network attacker can con-
trol content loaded via HTTP. The most severe form
of this attack occurs when a browser extension loads
a script over HTTP and runs it. The attacker can re-
place this script and hijack the extension’s privileges
to install malware. A similar, but less powerful, attack
occurs when an extension injects an HTTP script into
an HTTPS page. For example, we discovered that an
extension [6] injects an HTTP script into the HTTPS
version of Gmail. (We reported this vulnerability to
the developers of the extension on August 12, 2009,
and the developers released a fixed version that oper-
ates only on the non-HTTPS version of Gmail.)

Even though we might be able to design defenses for each
of these attack classes, we argue that the underlying issue is
that Firefox extensions interact directly with untrusted con-
tent while possessing a high level of privilege.

3 Limiting Firefox Extension Privileges

A natural approach to mitigating extension vulnerabil-
ities is to reduce the privileges granted to extensions. To
evaluate the feasibility of this approach, we studied 25 pop-
ular Firefox extensions to determine how much privilege

3

!"#$%&'(

)(

*#+,(

-.(
/012(

)(

345(

)(

6470(

8(

(a) Most powerful behavior.

!"#$%&'

()*

+#,-*

.*

/012*

3*

(b) Most powerful interface.

Figure 2. The chart on the left shows the severity ratings of the most dangerous behaviors exhibited
by each extension. The chart on the right shows the security ratings of the extension interfaces used
to implement these behaviors.

each needs to implement its features. In addition to pre-
senting our case studies, we also present an algorithm for
finding methods in the Firefox extension API that lead from
a less-privileged interface to a more-privileged interface.

3.1 Case Studies

We review 25 extensions manually to determine their
privilege requirements:

1. We analyze the behavior of an extension to determine
how much privilege an extension needs to realize its
functionality, letting us compare its required privileges
to its actual privileges.

2. We analyze the implementation of an extension to de-
termine how much power the extension receives, given
the set of interfaces it uses to realize its functionality.
This lets us evaluate how much we could reduce its
privileges if we limited access to interfaces.

We find that most extensions do not require arbitrary file
system access (the most powerful privilege), meaning that
most extensions are over-privileged. We also find that ex-
tensions commonly use powerful interfaces to accomplish
simple tasks because the Firefox APIs are coarse-grained.

Methodology. We randomly selected two extensions
from each of the 13 categories in the “recommended” sec-
tion of the Firefox Add-on directory. (See Appendix A for
a list.) We excluded one of the selected extensions because
it was distributed only as a binary. We verified that the 25
subject extensions were also highly ranked in the “popu-
lar” directory. To determine the extensions’ functionality,
we ran each extension and manually exercised its user in-
terface. We also located usage of the extension system API
by searching for explicit interface names in the extensions’

source code. (This methodology under-approximates the set
of interfaces.) We then manually correlated the interfaces
with the extensions’ functionality. This process could not
be automated because understanding high-level functional-
ity requires human judgement.

To compare the set of interfaces with extension func-
tionality, we assigned one of five ratings (critical, high,
medium, low, and none) to each interface and functional-
ity. These ratings are based on the Firefox Security Severity
Ratings [8]:

• Critical: Can run arbitrary code on the user’s system
(e.g., arbitrary file access)

• High: Can access site-specific confidential informa-
tion (e.g., cookies and password) or the Document Ob-
ject Model (DOM) of all web pages

• Medium: Can access private user data (e.g., recent his-
tory) or the DOM of specific web pages

• Low: Can annoy the user

• None: No security privileges (e.g., a string) or privi-
leges limited to the extension itself

Results. Of the 25 subject extensions, only 3 require criti-
cal privileges (see Figure 2(a)). Therefore, 22 of the subject
extensions are over-privileged because all extensions have
the privilege to perform critical tasks. Despite the fact that
only 3 need critical privileges, 19 use a critical-rated in-
terface (see Figure 2(b)). An additional 3 use high-rated
interfaces despite needing only medium or less privileges,
meaning that a total of 19 extensions use interfaces that have
broader privileges than they require. Figure 3 shows the de-
tailed results. We summarize these results below:

• Three extensions, all download managers, require the
ability to create new processes. (These are the only

4

Behavior Interface Disparity? Frequency
Process launching (C) Process launching (C) No 3 (12%)
User chooses a file (N) Arbitrary file access (C) Yes 11 (44%)
Extension-specific files (N) Arbitrary file access (C) Yes 10 (40%)
Extension-specific SQLite (N) Arbitrary SQLite access (H) Yes 3 (12%)
Arbitrary network access (H) Arbitrary network access (H) No 8 (40%)
Specific domain access (M) Arbitrary network access (H) Yes 2 (8%)
Arbitrary DOM access (H) Arbitrary DOM access (H) No 9 (36%)
Page for display only (L) Arbitrary DOM access (H) Yes 3 (12%)
DOM of specific sites (M) Arbitrary DOM access (H) Yes 2 (8%)
Highlighted text/images (L) Arbitrary DOM access (H) Yes 2 (8%)
Password, login managers (H) Password, login managers (H) No 3 (12%)
Cookie manager (H) Cookie manager (H) No 2 (8%)
Same-extension prefs (N) Browser & all ext prefs (H) Yes 21 (84%)
Language preferences (M) Browser & all ext prefs (H) Yes 1 (4%)

Figure 3. The frequency of security-relevant behaviors. The security rating of each behavior is ab-
breviated in parentheses. If the interface’s privilege is greater than the required behavioral privilege,
there is a disparity.

three extensions that actually require critical privi-
leges.) One extension converts file types using system
utilities, another runs a user-supplied virus scanner on
downloaded files, and the third launches a new process
to use the operating system’s shutdown command.

• None of the extensions we studied require arbitrary file
access. Several extensions access files selected by a
file open dialog, and most use files to store extension-
local data. The download managers interact with files
as they are downloaded.

• 17 extensions require network access (e.g., observing
network data) and/or web page access (e.g., manipu-
lating a page’s DOM). 10 require network access and
11 require access to web pages. Of the 10 extensions
that require network access, 2 require access only to a
specific set of origins.

• Nearly all of the extensions require access to an
extension-local preference store to persist their own
preferences, but only one changes global browser pref-
erences (to switch languages).

Discussion. Although every Firefox extension runs with
the user’s full privileges, only three of the extensions we an-
alyze actually require such a high level of privilege. The re-
maining 22 extensions exhibit a privilege gap: they run with
more privileges than required. Moreover, none of the sub-
ject extensions require arbitrary file access and only 70%
require network or web page access. The extension system

can reduce the privileges of these extensions without im-
pacting functionality.

Unfortunately, reducing the privileges of extensions in
the Firefox extensions system is difficult because the Fire-
fox extension API bundles many privileges into a single
interface. This is evidenced by the 19 extensions that use
excessively powerful interfaces: 16 use critical-rated in-
terfaces and 3 use high-rated interfaces without needing
that level of privilege. For example, most extensions use
the preference service to store extension-local preferences.
This service can also change browser-wide preferences and
preferences belonging to other extensions.

We identified the file system interface as a common point
of excessive privileges. Most extensions use the file system
interface, which can read and write arbitrary files. These
extensions could make use of lower-privilege file storage
interfaces if such interfaces existed. For example, 11 of the
extensions could be limited to files selected by the user via
a file open dialog (analogous to the HTML file upload con-
trol), and 10 extensions could be limited to an extension-
local persistent store (like the HTML 5 localStorage
API) or an extension-specific directory. The download man-
agers could also be limited to the downloads folder.

3.2 The Security Lattice

Even if a developer explicitly requests only a small num-
ber of interfaces, other interfaces could be reachable from
that set. For example, a developer might request access
to a low-type object with a method that returns a critical-
type object; even though the developer has not asked for the

5

` ρ ↪→η α
 α.subtype(β)
` ρ ↪→η β

SUBTYPING
` ρ ↪→η α
 α.method(β)

` ρ ↪→η β
METHOD

 α.getter(β)

 α.method(1→ β)

GETTER

 α.setter(β)

 α.method(β → 1)
SETTER

` ρ ↪→ρ α
TYPE FORGERY

` ρ ↪→η α→ β ` ρ ↪→γ α ` η ↪→δ β

` ρ ↪→δ β
RETURN

` ρ ↪→η α→ β ` ρ ↪→γ α ` η ↪→δ β

` η ↪→γ α
PARAMETER

Figure 4. Inference rules for reachability in a type system with type forgery, such as the Firefox
extension API.

critical-type object, it is available. We consider this a form
of privilege escalation. To fully limit the privilege levels of
extensions, we must control these escalation points, either
by adding a reference monitor (e.g., to implement an access
control approach) or by taming the interface (e.g., to imple-
ment an object-capability approach). We analyze a subset
of the Firefox extension API to find these escalation points.

In Firefox, extensions and internal browser components
use the same interfaces (known as XPCOM interfaces).
These strictly typed interfaces are defined in a CORBA-
like Interface Description Language (IDL). We analyzed
the XPCOM interfaces from Firefox 3.5 by adding a Dat-
alog back-end to the Firefox IDL compiler. By default,
these interfaces are implemented internally by the browser.
However, extensions can (and do) replace these implemen-
tations. For example, the SafeCache [21] browser extension
replaces the HTTP cache. Regardless of the implementation
of an XPCOM interface, the browser enforces the return and
parameter types declared in the interface description.

We analyze the API for escalation points by organizing
the XPCOM interfaces into a security lattice. We manu-
ally label the severity of 613 interfaces (of 1582 total), in-
cluding all the interfaces used by the subject extensions.
We then automatically compute when an extension with a
reference to one interface might be able to obtain a ref-
erence to another interface by deductive inference on the
types used in the interfaces. Our deductive system is an
over-approximation because we do not consider the actual
implementation of the interfaces. Deductions based on the
handling of input parameters might be overly conservative
because it is not known which methods are called on the

input parameters in the implementation. For example, type
foo has a method that accepts type bar as a parameter.
Type bar has a method getFile that returns a file type.
We do not know whether an implementation of foo actu-
ally ever calls bar.getFile, but we know it is possible.

Deductive System. Our deductive system (see Figure 4)
computes which additional interfaces a principal (the
browser or an extension) can obtain from one interface.
Along with the interface name, the rules track which princi-
pal implements each concrete instance of the interface. We
write ρ ↪→η α when principal ρ has a reference to an in-
terface α implemented by principal η. The deduction rules
then describe various ways a reference to one interface can
lead to a reference to another interface. For example, if ρ
possesses both a method of type α → β implemented by
η and an object with interface α implemented by γ, then
ρ can give the α object to η by calling the method. After-
wards, η will have a reference to an object with interface α
implemented by δ.

One subtle rule in the deductive system is the type
forgery rule. This rule states that every principal can cre-
ate an object that implements an arbitrary interface. This
rule is appropriate for XPCOM (and, in fact, most CORBA-
like component systems) because an extension can create a
JavaScript object that implements an XPCOM interface by
implementing the requisite methods and announcing sup-
port in its queryInterface method. This technique is
useful to attacks because an attacker can use a “forged” ob-
ject to call a method the attacker could not call otherwise.

6

Figure 5. The Firefox extension API reacha-
bility graph, from our deductive system. Up-
ward edges could lead to privilege escalation.

Reachability. We computed the security lattice for the
Firefox extension interfaces by implementing our rules in
Datalog. We add an edge from one interface to another if
our deductive system computes that a reference to an object
with the first interface implemented by one principal could
lead to an object with the second interface implemented by
the same principal. Notice that the type forgery rule permits
us to reason about each interface individually instead of re-
quiring us to build a lattice over sets of interfaces. Figure 5
summarizes the lattice by coalescing all the interfaces with
the same security rating into a single vertex and contracting
the unlabeled interfaces.

Of the 2920 edges in the lattice, 147 edges go “up” the
lattice. These upward edges represent potential escalation
points that make reducing the privilege of extensions diffi-
cult. Because our analysis is an over-approximation, some
of these edges might not actually be exploitable given the
Firefox implementation of the extension interfaces. How-
ever, even these edges might become exploitable if an exten-
sion replaces the built-in implementation of the relevant in-
terface. To retrofit security onto the Firefox extension API,
we recommend preventing privilege escalation by removing
these edges, either by adding runtime access control checks
or by taming the interfaces at design time. When designing
a new extension system, we suggest not introducing escala-
tion points into the security lattice.

4 Google Chrome Extension System

In this section, we describe and evaluate the security ar-
chitecture of the Google Chrome extension system. We fo-
cus on the aspects of the design related to protecting users
from benign-but-buggy extensions. The security model for

the extension system is based on least privilege, privilege
separation, and strong isolation.

4.1 Least Privilege

Instead of running with the user’s full privileges, exten-
sions run with a restricted set of privileges. The browser
grants an extension access only to those privileges explic-
itly requested in the extension’s manifest. By requiring ex-
tensions to declare their privileges at install time, an attacker
who compromises an extension is limited to these privileges
at runtime. For example, consider the manifest for the sam-
ple Gmail Checker extension [13]:

{
"name": "Google Mail Checker",
"description": "Displays the number of unread

messages...",
"version": "1.2",
"background_page": "background.html",
"permissions": [
"tabs",
"http://*.google.com/",
"https://*.google.com/"

],
"browser_action": {

"default_title": ""
},
"icons": {
"128": "icon_128.png"

}
}

In the example, Gmail Checker needs access to subdomains
of google.com and the tabs API. An extension can re-
quest a number of different privileges in its manifest:

• Execute Arbitrary Code. Although our case study
suggests that a majority of extensions do not require
the privilege to execute arbitrary code, some exten-
sions do require this privilege. To request the privilege
to execute arbitrary code, an extension lists a native
binary in its manifest.

• Web Site Access. Extensions can also request the
privilege to interact with web sites. Instead of receiv-
ing access to all web sites, extensions designate which
web sites they would like to access by origin. For ex-
ample, Gmail Checker requests access to subdomains
of Google by listing http://*.google.com
and https://*.google.com in its manifest.
If the extension were later compromised, the at-
tacker would not have the privilege to access
https://bank.com.

• API Access. In addition to the usual web platform
APIs, extensions can also request access to extension
APIs, which are grouped according to functionality.

7

Behavior Interface Disparity?
User chooses a file (N) User chooses a file (N) No
Extension-specific files (N) HTML5 storage (N) No
Extension-specific SQLite (N) HTML5 storage (N) No
Specific-domain network access (M) Restricted domains (M) No
Page for display only (L) Page for display only (L) No
DOM of specific sites (M) Restricted domains (M) No
Highlighted text/images (L) Gleam API (L) No
Same-extension prefs (N) HTML5 storage (N) No
Language preferences (M) Browser settings (M) No

Figure 6. The proposed Google Chrome extension interfaces closely match the privileges required
by the 25 extensions in our case study.

For example, the extension system contains an API
group called tabs for interacting with the browser’s
tab strip (creating tabs, moving tabs, etc.). An ex-
tension is granted access to an API group only if that
group appears in the extension’s manifest.

The API groups closely match the privileges needed
by the extensions we studied in Section 3.1. Figure 6
shows how those extensions could implement their
functionality using the extension APIs. For example,
an extension that requires access only to user-selected
files can use the <input type="file"> element,
which grants the extension access to a file chosen by
the user (and not to a mutable file handle).

Without additional encouragement, developers are likely to
request the maximum possible privileges for their exten-
sions, reducing the benefits of least privilege. To encour-
age developers to request the minimum required privileges,
we alter the user experience for installing an extension from
the Google-controlled extension gallery based on the maxi-
mum privilege level the extension requests. The most dan-
gerous class of extensions (extensions with the privilege
to execute arbitrary code) are not permitted in the gallery
unless the developer signs a contract with Google. An-
other approach is to review extensions manually, as in the
addons.mozilla.org gallery. In this approach, the
manifests make it easier for reviewers to prioritize reviews
of low-privilege extensions. This incentivizes developers to
request fewer privileges to reduce review latency. Whether
these incentives are sufficient to encourage least privilege
will depend largely on whether developers can gain more
exposure for their extensions by appearing in the gallery
sooner or more prominently.

Extensions can also be installed from arbitrary web sites.
This install experience is different from installing an exten-
sion from the gallery. When installing an extension from
outside the gallery, the user experience is the same as the
user experience for downloading and running a native ex-

ecutable. An attacker who can trick a user into installing
a malicious extension this way can likely already trick the
user into running an arbitrary executable, giving the attacker
little additional leverage.

4.2 Privilege Separation

To make it more difficult for a malicious web site oper-
ator to usurp an extension’s privileges, the extension plat-
form forces developers to divide their extensions into mul-
tiple components: content scripts, the extension core, and a
native binary (see Figure 1):

• Content Scripts. Content scripts let extensions inter-
act directly with untrusted web content. If the manifest
limits the extension’s access to origins, the browser
blocks the extension from injecting content scripts into
unauthorized origins. Each content script, written in
JavaScript, has direct access to the DOM of a single
web page via the standard DOM APIs. Content scripts
do not have access to the powerful extension APIs pro-
vided by the browser. The only other privilege granted
to content scripts is the privilege to send JSON [2]
messages to the extension core via a postMessage-
like API.

• Extension Core. The extension core, written in
HTML and JavaScript, controls the extension’s user
interface (e.g., browser actions, pop-ups) and has ac-
cess to the extension APIs declared in the extension’s
manifest. The extension core contains the majority of
the extension’s privileges, but it is insulated from di-
rect interaction with untrusted web content. To interact
with untrusted content, the extension core can either
(1) communicate with a content script or (2) issue an
XMLHttpRequest. Both of these mechanisms re-
quire the extension author to take explicit action and
restrict the interaction to plain data.

8

• Native Binary. Only native binaries can run arbitrary
code or access arbitrary files. To gain these privileges,
the extension developer must supply a native Netscape
Plug-in API (NPAPI) binary. For example, on Win-
dows such a binary consists of a dynamically linked
library (DLL) with certain entry points. By default,
the native binary can interact only with the extension
core (e.g., not with content scripts). Furthermore, the
interaction is typically limited to the interfaces defined
when the native binary was compiled, but, of course,
the native binary can re-compile itself because it can
run arbitrary code. Similarly, the manifest lets devel-
opers expose their native binaries to web pages be-
cause there are no technical means for stopping an ex-
tension that can run arbitrary code from installing a
regular browser plug-in.

Content scripts, which have the largest attack surface, do
not have a direct channel to the component with critical
privileges. By dividing the extension’s privileges among
three components, the extension system makes it harder for
an attacker to exploit the user’s machine. To run arbitrary
code, the attacker first convinces the extension’s content
script to forward malicious input to the extension core. The
attacker then convinces the extension core to forward the
malicious input to the native binary (assuming one even ex-
ists). Finally, the attacker exploits a vulnerability in the na-
tive binary.

4.3 Isolation Mechanisms

The extension system uses three mechanisms to isolate
extension components from each other and from web con-
tent. First, we leverage the same-origin web sandbox by
running the extension core in a unique origin designated by
a public key. Second, we run the extension core and the na-
tive binaries in their own processes. Finally, content scripts
run in a separate JavaScript heap from untrusted web con-
tent.

Origin. In the web platform, the authority of a script is
derived from its origin (in particular, the scheme, host,
and port of the URL from which the browser obtained the
script). However, extension scripts are not loaded from
the network; extensions are stored in the user’s file system.
Consequently, extensions do not have an origin in the usual
sense. We assign an “origin” to an extension by including a
public key in the extension’s URL as follows:

chrome-extension://
ilpnegfhimflflifcnmgpeihglhedbnn/

When loading an extension, the browser verifies that the
extension package is “self-signed” by the public key in its

URL. Placing the extension’s public key in its URL frees the
extension system from depending on a central naming au-
thority (like a public-key infrastructure or DNS), reducing
the attack surface of the platform and simplifying extension
signing. By using this approach, we can reuse the web’s
same-origin machinery to isolate extensions from browser
internals, web pages, and each other.

This approach to extension identity also makes updating
extensions easy. If the browser encounters a newer exten-
sion package signed with the same public key, the browser
can replace the installed version of the extension (unless the
new manifest requests critical privileges and changes the in-
stall experience). When the browser reloads the extension,
the updated version inhabits the same security context as
the old version, analogous to re-visiting a web site. In par-
ticular, the updated extension still has access to its previous
persistent state because localStorage is segregated by
origin and its origin remains the same.

Process Isolation. Each component of the extension runs
in a different process. The extension core and the native bi-
nary each receive dedicated processes. Content scripts run
in the same process as their associated web pages. This pro-
cess isolation has two benefits: it defends against browser
errors and low-level exploits. Process isolation helps pro-
tect the extension core from browser implementation er-
rors, such as cross-origin JavaScript capability leaks [12],
because JavaScript objects cannot leak from one process to
another. Process isolation also defends against low-level
exploits in the browser. For example, if a malicious web
site operator manages to corrupt the renderer process [11]
(e.g., via a buffer overflow), the attacker will not be granted
access to the extension APIs because the extension core re-
sides in another process.

Isolated Worlds. We provide an additional layer of isola-
tion between the content script and the untrusted web site’s
JavaScript environment by running the content script in an
isolated world. Instead of accessing the underlying DOM
data structures via the same JavaScript objects used by the
page, each content script accesses the DOM with its “own”
JavaScript objects. Content scripts and web pages therefore
never exchange JavaScript pointers, making it more difficult
for a malicious web page to confuse the content script (e.g.,
with a JavaScript rootkit [9]).

This design changes the normal one-to-one relation be-
tween DOM implementation objects and their JavaScript
representations (see Figure 7) into a one-to-many rela-
tion (see Figure 8). For example, both the page and the
content script have a global variable named document,
but these variables refer to two distinct JavaScript objects.
Consistency is still maintained: when either script calls a
DOM method, such as appendChild, both objects are

9

DOM (C++) JavaScript (V8)

Figure 7. The normal one-to-one relation
between DOM implementation objects and
JavaScript representations.

JavaScript (V8)

W1 (Page)

DOM (C++)
W2 (Extension 1)

W3 (Extension 2)

Figure 8. The one-to-many relation caused by
running content scripts in isolated worlds.

updated to reflect the modified document tree. However,
when a script modifies a non-standard DOM property, such
as document.foo, the modification is not reflected in
the other object. These rules help maintain the invariant
that JavaScript objects (i.e., non-primitive values) are never
transmitted between worlds.

The standard one-to-one relation is implemented using a
hash table keyed by DOM implementation object (depicted
as black rectangles in the figures). For isolated worlds,
we create a hash table for each world and choose which
hash table to use based on the currently executing world.
When entering the JavaScript virtual machine (e.g., when
invoking a callback function registered via setTimeout),
the browser must start executing the function in the proper
world. If the browser executes the function in the wrong
world, we risk leaking a JavaScript pointer between worlds.

To select the correct world with reasonable assurance, we
cache a reference to the appropriate world on the function
object itself at the time the callback is registered.

4.4 Performance

Separating extensions into components could potentially
add overhead to operations that involve multiple compo-
nents. For example, if a content script needs to use privi-
leges held by the extension core, the content script needs to
send a message to the core process instead of simply calling
a function in its own address space. Similarly, DOM access
from content scripts requires crossing from the extension’s
isolated world to the page’s world, incurring an additional
hash table lookup on some execution paths.

To evaluate the run-time overhead of inter-process com-
munication, we measured the round-trip latency for send-
ing a message from a content script to the extension core
and back in Google Chrome 4.0.249.22 on Mac OS X. We
observe an average round-trip latency of 0.8 ms (n = 100,
σ = 0.0079 ms), where each trial is the average of 1000
inter-process round-trips. Of course, an extension incurs
this added latency only for operations that require coordi-
nation between multiple components. For example, an ex-
tension that adds additional EXIF metadata to Flickr [27] in-
curs this overhead once per page load to issue a cross-origin
XMLHttpRequest, increasing the load time by an unnotice-
able 0.8 ms.

To evaluate the run-time overhead of the isolated words
mechanism, we ran a DOM core performance bench-
mark [19] in Chromium 4.0.266.0 on Mac OS X. The
benchmark measures the total speed of a set of append,
prepend, insert, index, and remove DOM operations. In the
main world, the benchmark required an average of 231 ms
(n = 100, σ = 5.46 ms) to complete. When run in an
isolated world, the benchmark took an average of 309 ms
(n = 100, σ = 6.33 ms). The use of isolated worlds adds
33.3% to DOM access time but nothing to layout and ren-
dering time.

5 Related Work

In addition to the Firefox extension system we analyze
in this paper, Firefox has a second, experimental extension
system: Jetpack [26]. Similar to the extension system we
propose, Jetpack exposes browser functionality via narrow
interfaces. Currently, however, each Jetpack extension runs
with the user’s full privileges and has access to the complete
Firefox extension API. As Jetpack matures, we expect the
Firefox developers to restrict the privileges of Jetpack ex-
tensions, but the designers of Jetpack have chosen to focus
first on usability and generativity [28].

10

Internet Explorer has a combined plug-in and extension
system known as Browser Helper Object (BHO) modules.
For example, the Yahoo Toolbar for Internet Explorer is im-
plemented as a BHO. These extensions are written in native
code and have direct access to the win32 API. If a BHO
has a vulnerability (such as a buffer overflow), a malicious
web site can issue arbitrary win32 API calls by exploiting
the vulnerability. Recent versions of Internet Explorer run
these BHOs in “protected mode,” [25] reducing their priv-
ileges. However, a compromised BHO still has full access
to web pages (including passwords and cookie) and read
access to the file system.

One recent paper [24] considers limiting the privileges
of Firefox extensions. They propose a mechanism for sand-
boxing extensions by intercepting various events in the
XPCOM object marshaling layer, incurring a performance
overhead of 19% for a particular policy. Unlike our work,
this paper focuses entirely on mechanism, and the authors
do not determine which policies their mechanism ought to
enforce. We could imagine reducing the privileges of Fire-
fox extensions by using this mechanism to restrict extension
behavior at the escalation points we identify in Section 3.2.

A number of papers [15, 34, 7, 16, 30] consider the prob-
lem of running native plug-in code securely using fault iso-
lation and system call interposition. These techniques fo-
cus on isolating untrusted native code, whereas we focus
on code written in JavaScript, letting us use the standard
same-origin JavaScript sandbox. We are chiefly concerned
with the privileges afforded to extensions via explicit APIs,
a topic that has not been studied in much detail. Their
techniques for plug-in confinement are complimentary to
our work and could be used to monitor native binaries dis-
tributed with extensions.

Our work is also related to mashups, which are web
pages that result from sophisticated communication and
data sharing between multiple parties (e.g., plotting data
from one source on a map from another source). In a
sense, a browser is a mashup combining extension code
and web content into a personalized browsing experience.
Our design draws inspiration from MashupOS [31] and
OMash [14], albeit taking into account subsequent attacks
and design recommendations [10]. In addition, the isolated
worlds heap-segregation mechanism is an outgrowth of the
perspective expressed in [12]. Finally, placing the exten-
sion’s public-key in the URL was suggested in [20] to rem-
edy a vulnerability in Firefox’s signed JAR mechanism.

Browser extensions are also analogous to kernel mod-
ules in operating systems. Buggy kernel modules have long
been a major cause of failures and security vulnerabilities
in operating systems. Nooks [29] and SafeDrive [35] em-
ploy memory access confinement to limit the privileges of
kernel modules. Although the two problems are analogous,
the techniques used are quite different.

6 Conclusion

Browser extensions are often not written by security ex-
perts, and many extensions contain security vulnerabilities.
Every cross-site scripting vulnerability in a Firefox exten-
sion is an avenue for malicious web site operators to install
malware onto the user’s machine because Firefox exten-
sions run with the user’s full privileges. To evaluate whether
extensions actually require such a high level of privilege to
implement their feature set, we analyze 25 “recommended”
extensions from the Firefox extension gallery. We find that
the majority of these extensions do not require full privi-
leges. However, reducing the privileges of existing Firefox
extensions is difficult because many Firefox APIs are more
powerful than required to implement extension features.

Although one could imagine restructuring the Firefox
extension interface, we instead recommend building a new
extension platform with security in mind. In our proposed
system, extensions enumerate which privileges they desire
at install-time and are limited to those privileges at runtime.
If an extension does not include a native binary (which most
do not require), then an attacker who compromises the ex-
tension will not gain the privilege to run arbitrary code.

In addition to least privilege, we separate privileges by
dividing extensions into three components: content scripts,
the extension core, and a native binary. Content scripts are
exposed directly to web content but have few privileges.
Native binaries are powerful but (by default) have no direct
contact with web content. The three components interact
via narrow interfaces, reducing the attack surface for the
privileged components. We expect vulnerabilities to exist,
of course, but we hope they will be harder to exploit than a
single cross-site scripting hole.

Acknowledgments

We would like to thank Nick Baum, Erik Kay, Collin
Jackson, Matt Perry, Dawn Song, David Wagner, and the
Google Chrome Team. This work is partially supported
by the Air Force Office of Scientific Research under MURI
Grant No. 22178970-4170.

References

[1] Arbitrary code execution using bug 459906.
https://bugzilla.mozilla.org/show_bug.
cgi?id=460983.

[2] JSON. http://www.json.org.
[3] Mozilla Security Advisory 2009-19.

http://www.mozilla.org/security/
announce/2009/mfsa2009-19.html.

[4] Mozilla Security Advisory 2009-39.
http://www.mozilla.org/security/
announce/2009/mfsa2009-39.html.

11

[5] Skype. http://www.skype.com.
[6] Zemanta. http://www.zemanta.com.
[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

flow integrity: Principles, implementations, and applica-
tions. In ACM Conference on Computer and Communica-
tions Security (CCS), November 2005.

[8] L. Adamski. Security Severity Ratings. https://wiki.
mozilla.org/Security_Severity_Ratings.

[9] B. Adida, A. Barth, and C. Jackson. Rootkits for JavaScript
Environments. In 3rd USENIX Workshop on Offensive Tech-
nologies, 2009.

[10] A. Barth, C. Jackson, and W. Li. Attacks on JavaScript
Mashup Communication. In Proceedings of the Web 2.0 Se-
curity and Privacy 2009.

[11] A. Barth, C. Jackson, C. Reis, and The Google Chrome
Team. The Security Architecture of the Chromium Browser.
Technical report, Google, 2008.

[12] A. Barth, J. Weinberger, and D. Song. Cross-Origin
JavaScript Capability Leaks: Detection, Exploitation, and
Defense. In USENIX Security Symposium, 2009.

[13] A. Boodman and E. Kay. Google Mail Checker.
http://code.google.com/chrome/
extensions/samples.html.

[14] S. Crites, F. Hsu, and H. Chen. Omash: Enabling secure web
mashups via object abstractions. In CCS ’08: Proceedings of
the 15th ACM conference on Computer and communications
security, pages 99–108. ACM, 2008.

[15] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leverag-
ing legacy code to deploy desktop applications on the web.
In USENIX Operating System Design and Implementation,
2008.

[16] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces. In
Symposium on Operating System Design and Implementa-
tion (OSDI), 2006.

[17] C. Grier, S. T. King, and D. S. Wallach. How I Learned to
Stop Worrying and Love Plugins. In Web 2.0 Security and
Privacy, 2009.

[18] C. Grier, S. Tang, and S. T. King. Secure Web Browsing
with the OP Web Browser. In IEEE Symposium on Security
and Privacy, 2008.

[19] I. Hickson. DOM Core Performance, Test 1.
http://www.hixie.ch/tests/adhoc/perf/
dom/artificial/core/001.html.

[20] C. Jackson and A. Barth. Beware of finer-grained origins. In
Web 2.0 Security and Privacy, 2008.

[21] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Pro-
tecting browser state from web privacy attacks. In Proceed-
ings of the 15th International World Wide Web Conference
(WWW), May 2006.

[22] kkovash. How Many Firefox Users Customize Their
Browser? Blog of Metrics, 2009.

[23] R. S. Liverani and N. Freeman. Abusing Firefox Extensions.
Defcon17, July 2009.

[24] M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan. Enhanc-
ing web browser security against malware extensions. In
Journal in Computer Virology, August 2008.

[25] Microsoft Developer Network. Introduction of the Protected
Mode API. http://msdn.microsoft.com/en-us/
library/ms537319(VS.85).aspx.

[26] Mozilla Labs. Jetpack.
https://wiki.mozilla.org/Labs/Jetpack.

[27] D. Pupius. Fittr Flickr Extension for Chrome.
http://code.google.com/p/fittr/.

[28] A. Raskin. Jetpack FAQ. http://www.azarask.in/
blog/post/jetpack-faq/, 2009.

[29] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. ACM Trans-
actions on Computer Systems, 23(1):77–110, 2005.

[30] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient Software-Based Fault Isolation. In ACM Symposium
on Operating Systems Principles (SOSP), 1994.

[31] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protec-
tion and Communication Abstractions for Web Browsers in
MashupOS. In 21st ACM Symposium on Operating Systems
Principles (SOSP), 2007.

[32] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choud-
hury, and H. Venter. The Multi-Principal OS Construction of
the Gazell Web Browser. In USENIX Security Symposium,
2009.

[33] S. Willison. Understanding the Greasemonkey vulnerabil-
ity. http://simonwillison.net/2005/Jul/20/
vulnerability/.

[34] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
In IEEE Symposium on Security and Privacy, 2009.

[35] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. En-
nals, M. Harren, G. Necula, and E. Brewer. SafeDrive:
Safe and recoverable extensions using language-based tech-
niquesXFI. In Symposium on Operating System Design and
Implementation (OSDI), 2006.

A Extension Survey

Our extension survey (Section 3.1) examines extensions
from the Firefox Add-on “recommended” directory. We se-
lected two from each category in the directory. The thir-
teen categories are: Alerts & Updates, Appearance, Book-
marks, Download Management, Feeds News & Blogging,
Language Support, Photos Music & Videos, Privacy & Se-
curity, Search Tools, Social & Communication, Tabs, Tool-
bars, and Web Development.

The twenty-five extensions in our extension survey are:
Adblock Plus 1.0.2, Answers 2.2.48, AutoPager 0.5.0.1,
Auto Shutdown (InBasic) 3.1.1B, Babel Fish 1.84, Cool-
Previews 2.7.4, Delicious Bookmarks 4.3, docked JS-
Console 0.1.1, DownloadHelper 4.3, Download Statusbar
2.1.018, File and Folder Shortcuts 1.3, Firefox Showcase
0.3.2009040901, Fission 1.3, Glue 4.2.18, GoogleEnhancer
1.70, Image Tweak 0.18.1, Lazarus: Form Recovery 1.0.5,
Mouseless Browsing 0.5.2.1, Multiple Tab Handler 0.9.5,
Quick Locale Switcher 1.6.9, Shareaholic 1.7, Status-bar
Scientific Calculator 4.5, TwitterFox 1.7.7.1, WeatherBug
2.0.0.4, and Zemanta 0.5.4.

12

