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Preliminary Studies on de novo Assembly with 
Short Reads 

 
 
Abstract 
 
Recent development of next generation sequencing presents new computational 
challenges to assembly algorithms. Any effective and practical de novo assembly 
algorithm must confront issues of short read length, base-calling errors and enormous 
data size. In this report we present our effort to address these challenges in de novo 
assembly with short reads. Specifically we show that quality scores contain vital 
information and algorithms can achieve optimized results if they utilize quality scores. 
We also show that error correction preprocessing can be used to enhance de novo 
assembly algorithms with more tolerance to base-calling errors. Finally we present a 
novel parallel algorithm to cluster sequence reads based on overlap information and 
show that it has the potential to scale up to handling millions of reads efficiently. 
 
1. Introduction 
 
New emerging DNA sequencing technologies can produce short length reads at an 
unprecedented level of throughput than traditional methods. For instance, massively 
parallel sequencing platforms produced by Illumina and Roche have delivered 
sequencing capability of up to several Giga base-pairs of DNA per single run. Next 
generation sequencing technology brings new challenges to the task of analyzing its 
results. First of all, the output sequence reads are typically much shorter than those 
produced by the traditional Sanger technology. Shorter reads naturally carry less 
information. Second, high level of throughput produces enormous number of output 
sequence reads. Typically, the number of sequences generated is on the order of tens 
of millions. Therefore, any program that processes such data must be highly efficient 
and scalable. 
 
DNA sequence assembly with short reads aims to use the short sequence reads to 
reconstruct the genome that is being sequenced. The goal of de novo assembly is to 
perform DNA sequence assembly without comparing the reads to a reference genome. 
De novo assembly with short reads has been an active area of research, and many 
algorithms have become available recently. Besides the typical difficulties such as short 
read length and large input dataset size de novo assembly with short reads faces 
another challenge: base-calling errors. Errors often occur in the process of extracting 
sequence information from the underlying signal produced by the sequencing platform. 
Such errors drastically increase the complexity of many assembly algorithms and cause 
them to perform worse with increased numbers of mis-assembled contigs or decreased 
number of bases from the original genome that are sequenced.  



 
In this study we investigate several recently published de novo assembly algorithms and 
analyze the flaw in these existing algorithms. One weakness shared by many existing 
algorithms is their low tolerance to base-calling errors and another is their lack of use of 
the quality information in the data. We attempt to help improve the existing algorithms 
and help them contend with the computational challenges in three areas: First, we show 
that although short reads carry less information in the sequence by nature, quality 
scores produced by the sequencing platforms can provide vital information. In particular 
we show that we can improve the performance of widely used software VELVET by 
making it utilize the quality information in sequence reads. We modify portions of 
VELVETʼs error correction algorithm to compare sequences based on the likelihood of 
each base and observe a significant boost in VELVETʼs accuracy. Although most 
current algorithms make an effort to handle base-calling errors, such errors remain a 
challenge to de novo assembly algorithms with short reads. Therefore in our second 
area of focus, we show that an independent error-correction preprocessing stage of the 
data can help algorithms tolerate base-calling errors. We develop an error correction 
method using graph theoretical technique and demonstrate improvement on the 
performance of VELVET in both accuracy and percentage of bases assembled. The 
impact of our method is particularly apparent in the regions where the error rate is high; 
in such region VELVET can barely produce any assembled sequence before error 
correction and gives reasonable results after we clean the data with our method. Last, 
we turn our attention to developing a reliable and scalable de novo clustering method 
with short reads. The goal of the method is to aggregate reads that are from the same 
region of the genome in clusters. The clusters produced by our methods can be used by 
statistical methods to perform error correction on short reads. We implement a parallel 
algorithm that first bins reads into approximate clusters and uses graph based methods 
to refine them into actual clusters. The method is implemented with Hadoop and we test 
it running on Amazonʼs cloud computing cluster. The method demonstrates excellent 
clustering results and high scalability.  
 
2. Related Works 
 
The area of de novo assembly with short reads has received much interest recently and 
many new algorithms have been proposed to solve the problem. Our primary focus in 
the study is graph theory based algorithms because they generally perform better. 
Moreover, graph theoretical techniques are well studied and understood. The 
approaches taken by current algorithms fall into two general categories: read graph or 
de Bruijn graph. In a read graph (or sometimes referred to as overlap graph) based 
model each input read is represented by a node in the graph and two nodes are 
connected by an edge if the reads overlap by at least a minimally allowed number of 
bases. EDENA (Hernandez et al, 2008) is an algorithm that explicitly uses this 
framework and other assemblers such as SSAKE (Warren et al, 2007) use this 
framework implicitly.  
 



There are a number of issues that make the assembly process challenging using read 
graph based approach. As pointed out in Butler et al. read graphs depend on the choice 
of minimum overlap size (K). If K is chosen to be too small there are too many 
“accidental” overlaps, meaning that two reads overlap by K bases but they do not really 
belong in the same region of the genome. The implication of choosing a small K is that 
the graph becomes very dense and it is computationally difficult to distinguish the “true” 
overlaps so that the algorithm does not glue along the wrong reads and produce 
incorrect contigs. On the other hand if K is chosen to be too large, although it drastically 
increases the reliability of an overlap, such overlaps become increasingly rare as K gets 
larger, therefore without ample coverage the graph becomes sparse and makes it a 
difficult task to assemble large contigs which are useful in real biological applications. 
 
Base-calling errors further add to the complexity of solving the short read assembly 
problem using read graph based approach. This is because erroneous reads create 
random branches that may connect regions that are supposed to be disjoint (with no 
overlapped reads) and mis-assembly can happen if the errors are not identified and 
handled carefully.  
 
To correct sequencing errors some read graph based algorithms take the approach of 
cutting off branches in the graph that dead end quickly. EDENA is one with such 
approach. The basis of this approach is the assumption that erroneous reads are less 
likely to have overlapping error-free reads and therefore paths that only extend to a 
small number of nodes are likely to contain reads with errors thus removing such paths 
eliminates the errors. However, there has been no published work on how effectively 
this technique works and therefore it is hard to determine under what conditions this 
technique works beyond an intuitive level. SSAKE does not deal with errors directly, the 
algorithm greedily extends the contig with overlapping reads; whenever ambiguity arises 
at a position the algorithm uses consensus voting from all the reads that cover the 
position to decide on the correct base. The consensus voting scheme can be a 
mechanism to deal with errors by taking advantage of the coverage depth. The problem 
this approach suffers from is that it uses very little information about each read such as 
how many distinct reads overlap with it: if a region of the genome is repeated or 
approximately repeated several times SSAKEʼs approach quickly leads to the wrong 
result once it includes reads that do not belong in the same region.   
 
De Bruijn graphs take a different approach to represent the input sequences. In a de 
Bruijn graph model the representation of the input data is not organized directly around 
the reads but around substrings of reads of length k, or k-mers. Each input sequence is 
mapped to a path that “threads” through all if its k-mers. The de Bruijn graph data 
structure is attractive because it is based on k-mers not reads and it can encode 
redundancy in the data without growing the size of the graph. It is natural to represent 
the multiplicity of a read with the weights on all the edges that connect the readʼs k-
mers. As a trivial example, for k=3 a read ACGT can be encoded in a de Bruijn graph 
with (ACG→CGT). If the read appears twice in the data, 2 would be the weight of the 



edge. The de Bruijn graph structure can also map repeat reads easily: they simply 
correspond to paths that share some nodes but with different start and end points. 
 
Much work has been done to suggest ways of using the de Bruijn graph structure; 
EULER-USR and VELVET are the two popular ones among them. These assembler 
programs both explicitly use the de Bruijn graph framework with notations of dealing 
with errors. The technique EULER-USR uses to correct read errors transforms the 
problem into solving the “Spectral Alignment Problem.” It is based on the fact that the 
beginning portion of the reads are much more reliable and almost error-free. Therefore, 
it extracts from the reads the set of k-mers that appear most frequently and deem them 
as error-free k-mers, it next uses the error-free k-mers to correct errors in the rest of the 
k-mers by doing minimal amount of substitution or mutation (Chaisson, et al 2008). A 
read is considered corrected if all of its k-mers have been corrected and included in the 
error-free set. We note that a similar error correction approach is used by another 
algorithm ALLPATHS which does not use the de Bruijn graph structure. ALLPATHS 
looks at the distribution of k-mer multiplicity and looks for the local minimum that 
separates correct and incorrect k-mers. It defines a k-mer strong if it has multiplicity 
greater than such local minimum m. The error correction uses a series of values of k 
and checks for each k if all of those k-mers in that read are strong. If they are, the read 
is considered correct and left alone, otherwise a correction method is used to correct the 
read by making “one or two substitutions” (Butler et al 2008). If such correction is 
unsuccessful and the read cannot be corrected by some small number of changes it is 
discarded before assembly. Lastly, the error correction process in Velvet is more 
complex and it involves several graph based techniques such as removing tips, bulges 
and removing “bubbles”. 
 
In order to evaluate the performance of each assembler our study uses mainly two 
metrics: to measure how much of the original genome can be effectively reconstructed 
by the algorithm we count the number of bases covered by contigs, a contig is a larger 
string formed by piecing the input reads together and a base is covered by a contig if it 
appears in it; in order to evaluate the accuracy of each assembler we examine their 
error rate, which is the number of contigs that contain reads which do not belong 
together but are merged incorrectly. The results suggest that de Bruijn graph based 
algorithms generally perform better than their read graph based counterparts on both 
metrics and EULER-USR have comparable performance to Velvet, although it appears 
to work better under certain conditions.  
 
We note that although there has been substantial effort made in the development of de 
novo assembly using short reads, base-calling errors still remain a challenge for current 
algorithms. Many algorithms today have low tolerance for base-calling errors and they 
perform drastically worse even with small increase of error rate. We see two reasons 
that explain this low tolerance of errors: First, although many algorithms acknowledge 
the importance of error correction their procedures are mostly ad hock, as far as we 
understand no existing algorithms try to use information from the data to the fullest 



degree. Second, the error correction procedures used by existing algorithms are 
computationally expensive and they are infeasible as the input typically consists of tens 
of millions of reads. Therefore we concentrate our effort to improve de novo assembly 
with short-reads algorithms in three areas. First, we show that existing algorithms can 
benefit if they harvest the quality score information of the data. For this task we modify 
the appropriate portion of source code of the VELVET assembler to incorporate reads 
quality into its bubble removal algorithm (named Tourbus). Our results show 
considerable improvement on the accuracy for VELVET, suggesting that incorporating 
quality scores in other sections of the algorithm is an area worth exploring. Second, we 
show that an error correction preprocessing of the data can lead to improvement on 
existing algorithm without any modification. We approach this task by developing an 
error correction program based on majority voting and feeding the corrected reads into 
VELVET assembler. The effect of the error correction procedure is another notable 
improvement on accuracy and number of covered bases. Last, we focus our effort on 
developing a reliable and scalable de novo clustering procedure that is suitable to 
process millions of reads. We develop a parallel algorithm using the MapReduce 
framework to run on any Hadoop cluster. The result of our clustering algorithm can be 
directly used by statistical methods to perform error correction on large data sets. The 
success of our clustering algorithm suggests a new way parallel applications can be 
applied in the space of DNA sequencing and we believe this is going to inspire the 
discovery of new research opportunities in this area. 
 
 
3. Improving de novo assembly with short reads 
 
3.1 Incorporating Quality Score in VELVET 
 
Quality Scores 
In Modern Sequencing platforms the produced short reads also include information 
about the likelihood of each base. For instance, the Illumina platform outputs this 
information as Quality Scores. For each read produced by the platform there are four 
quality scores for every position, one score for each base (A, C, T or G). Such base-
specific score 

� 

Q(x)  is defined as: 

� 

Q(x) = 10log10[
P(x)

1− P(x)
], 

where 

� 

P(x)  is the probability that the base is the correct one at the current position. It is 
easy to derive the probability given a quality score: 

� 

P(x) =
10

Q(x )
10

1+10
Q(x )
10

 

For instance in Illumina based technology if a position has quality scores {“A”=40, “C”=-
40, “G”=-40, “T”=-40} it indicates that the correct base at that position is almost certainly 
“A”, whereas quality scores {“A”=-4.7, “C”=-4.7, “G”=-4.7, “T”=-4.7} suggest that the 
correct base could be any of the four bases with equal likelihood. Quality scores in 



reads allow us to use the information in the data to the fullest extent, as we show in the 
next section one of the applications of quality scores is to aggregate the scores for each 
position that is covered by multiple reads and to infer the most likely outcome in the end. 
This idea is similar to majority voting but instead of a binary vote each read contributes 
a probability. We observe a substantial improvement when we apply this technique to 
the Tourbus algorithm of the VELVET assembler.  
 
Tourbus algorithm 
VELVET uses a collection of graph based techniques to correct errors including removal 
of tips and bulges and resolution of bubbles. A “bubble” in a graph is defined as two 
paths that share the same end-points but are otherwise disjoint. Recall that VELVET 
uses the de Bruijn graph approach where each read is mapped to a path that threads 
together its k-mers. A bubble in the de Bruijn graph may be caused by errors in some 
reads that create another path, which diverges from the correct one. The Tourbus 
algorithm is VELVETʼs technique to identify the erroneous path and merge it with the 
correct one and remove the bubble from the graph (Zerbino DR, Birney E. 2008). The 
Tourbus algorithm is essentially a Dijkstra-like breadth-first algorithm. The algorithm 
cycles through all the nodes and for each node it runs a shortest path algorithm where 
the distance is defined by the number of nodes on the path divided by the pathʼs 
multiplicity. If the algorithm reaches a node whose closet neighbor has already been 
previously visited the algorithm backtracks to find the bubble. It follows the backward 
edges simultaneously from the current node and the previously visited neighbor until the 
two “backward” paths converge at a single node. Once the bubble is discovered the 
algorithm extracts the sequences represented by the two paths and aligns them using a 
dynamic programming algorithm; if the two sequences are judged similar enough (by 
comparing the score of the best alignment to a fixed parameter of the algorithm) the 
Tourbus algorithm goes on to merge the two paths and remove the bubble. 
 
Our modification 
The Tourbus algorithm uses a standard dynamic programming algorithm to compute the 
similarity between two sequences, in which assigns Indels and mis-matches equally 
with score of 0 and matches with score of 1. We discover there an opportunity for 
improvement if we incorporate quality scores into the scoring matrix. The intuition is the 
following: If the two positions have bases with high likelihood the penalty should be 
higher than when it is less certain what the correct bases are. Suppose the quality 
scores for the two reads we are comparing are {“A”=40, “C”=-40, “G”=-40, “T”=-40} and 
{“A”=-40, “C”=-40, “G”=-40, “T”=40} at some location, this means that one base is 
almost certainly an “A” and the other one almost certainly a “T”. This mis-match should 
be given a penalty higher than scores like {“A”=-40, “C”=0, “G”=0, “T”=-40} and {“A”=-40, 
“C”=0, “G”=0, “T”=-40} where the correct nucleotide could be C or G with equal 
uncertainty. It is apparent here that without the use of quality scores the original 
Tourbus algorithm could not differentiate such situations.  



In order to inject quality scores into VELVET we make considerable amount of changes 
to the graph data structure and the Tourbus algorithm. In the graph data structure we 
make the following modification: 
 

1.To store quality scores of each base, we create an additional field scores in the 
original structure that stores data of a node node_st. The field scores is an array 
of qualityScore_st pointers. Each qualityScore_st corresponds to a base that is 
contained in the graph node, each qualityScore_st has the 4 scores and a 
counter to keep track of how may values have been accumulated at the position, 
it is used for probability accumulation. 

 
2. To aggregate quality scores of each sequence we create a function 
accumulateProb that takes in a new set of scores and add it to a specific position 
of a graph node. In this experiment we compute a new set of averaged quality 
scores of all the scores we have seen so far and convert the scores into 
probabilities. The VELVET function that imports all the reads and constructs the 
de Bruijn graph is in threadSequenceThroughGraph function.  In this function the 
algorithm processes each read and maps it to a path in the graph. We first 
modify VELVET to accept an additional file of quality scores and we then modify 
threadSequenceThroughGraph function so that when each read sequence is 
mapped through a path we use the accumulateProb function to compute the 
averaged scores. 

 
3. We need a mechanism to output a string sequence according to the quality 
scores at each position. We insert code in exportLongNodeSequence function to 
output the most likely base (one with highest quality score) at each position. 
VELVET uses this method to output the final assembled contigs and our 
modification allows the algorithm to produce the result according to quality 
information. 
 

The modification of the Tourbus algorithm is a nontrivial software engineering task. 
When the algorithm merges the two disjoint paths all the information stored in the node 
such as edges, multiplicity information and quality scores must be updated with care to 
ensure the data structure consistency. In our approach we create a new representation 
of a sequence, called QualityScoreSequence to replace the original character based 
sequence representation. A QualityScoreSequence is essentially an array of pointers to 
the quality scores of each base. The Tourbus algorithm starts from a random node in 
the graph and runs a Dijkstra algorithm from it. If it encounters a node that has been 
previously visited, it is an indication that it has encountered a “Bubble”. To remove the 
bubble the Tourbus algorithm traces backwards to find the two paths that share the 
same end points. Tourbus defines the path with shorter distance as the “fast” path and 
the other one the “slow” path. It proceeds to extract the sequence from each path and 
compute their similarity score and alignment with dynamic programming. The original 
Tourbus extracts a character based sequence from each path, we modify the algorithm 



such that it creates a QualityScoreSequence from each path. This modification enables 
us to use quality information in the alignment computation. The original Tourbus 
computes all possible alignments and assigns scores for each position as follows: if the 
bases at each position match the score is 1 otherwise it is 0 (mis-matched base and 
gaps receive the same score). The final alignment is the one with the highest total 
score. Our approach uses the QualityScoreSequence to compute the alignment, in our 
dynamic programming code we assign scores for each position using the following 
method: a gap receives a score of 0 as in original Tourbus, otherwise we compute the 
product of the quality scores of all four corresponding bases at the position and use the 
sum of products as score. We also use the alignment that maximizes the score as the 
final alignment. Once the Tourbus algorithm identifies the two sequences and computes 
the similarity score for them it moves to merge the two paths that the sequences map 
to. We also modify this portion of the Tourbus algorithm to merge our 
QualityScoreSequence data structures so that we merge the quality scores correctly. 
When Tourbus transfers information from the “slow” path nodes to corresponding “fast” 
paths nodes the multiplicity increases for “fast” path nodes and we use the 
accumulateProb procedure to add scores from the “slow” path node to the “fast” path 
node. 
 
Results and discussion 
In our preliminary study we set up an experiment using short reads from a randomly 
simulated genome. We chose various coverage depth and error profiles. The “flat” error 
profile has a uniform error rate for all positions of an input sequence and “Bustard” error 
profile models the realistic sample from Illumina platform which produces most of the 
errors at the end of each sequence. We also tried “10X Bustard” error profile to simulate 
pair-end data, we notice when paired-end data is used the first read generally has good 
accuracy but the second read tends to have a much higher error rate. All the tests in this 
study are sampled from a simulated genome of 1000 bps and with read length of 76 
base pairs. 
 
The results showed that we achieved a significant improvement on accuracy for the 
VELVET assembler for all 3 error-profiles as a result of incorporating quality scores in 
the Tourbus algorithm (Table 1).  
 
Table 1: Comparison of VELVET assembly results using quality scores 

 
The columns labeled “QS” corresponds to the VEVLET algorithm error rate with quality scores 
incorporated, and “No QS” corresponds to the error rate when quality scores are not used. Imp% denotes 
percentage of improvement. Every experiment here is repeated 50 times and the average values are 
reported 



We also observed improvement on contig sizes but they were not substantial. Our study 
on the VELVET software has put us in the position to deliver more in depth modification 
in other areas of the algorithm and study the full effect of quality scores in future 
research. For instance, in the Tourbus algorithm the length of a path is calculated using 
a heuristic that takes into account the number of nodes on the path and the pathʼs 
multiplicity. When merging two paths the path with a shorter distance is considered 
“fast” the other one “slow”. The Tourbus algorithm destroys the “slow” path by 
transferring information from the “slow” path to the “fast” one. We think the path 
selection process can also use the quality information to decide on the more likely path.  
 
3.2 Error correction preprocessing 
 
In this section we discuss the second aim of our research to improve de novo assembly 
algorithm with short reads by contending with base-calling errors. Base-calling errors 
occur when the sequencing platform fails to convert the underlying signal to the 
corresponding base. These errors introduce noise to the data and negatively affect de 
novo assembly algorithms to produce shorter assembled sequences or more assembly 
errors. Although some measures are taken to deal with sequencing errors, they still 
remain a serious challenge in the area of short reads assembly.  Some algorithms use 
an explicit error correction stage to clean up the data before assembly such as 
ALLPATHS and EULER-USR. In particular, the EULER family algorithms attempt to 
correct the errors by formulating it as “Spectral Alignment Problem”. The solution uses 
the coverage information by finding k-mers that occur frequently in the data set and 
correct the other k-mers with a dynamic programming based algorithm [3]. Such 
algorithms are limited by low coverage and low efficiency and therefore not practical on 
large data sets. VELVET however does not have an error correction preprocessing; 
instead it attempts to correct the errors through a series of techniques that are built in as 
part of the algorithm. We organize a study on the impact of error correction 
preprocessing on VELVET. In this study we create an error correction preprocessing 
algorithm and deliver the corrected data to VELVET. Our study shows that the strategy 
is effective in general yielding fewer errors and more bases from the genome to be 
assembled into contigs. Note that our method leads to great results especially when the 
coverage is low (< 10X coverage). This is an attractive property because this allows 
more genomes to be sequenced at low cost, for instance the “1000 genome” project 
(1000genome.com) plans to sequence the genome of one thousand individuals at 
coverage depth of 3-5X, because such coverage depth is below the level at which 
VELVET can perform well we believe our error-correction method can be of much value 
in such projects.  
 
Our error correction method 
Our method corrects errors in input reads by correcting errors that occur in k-mers. The 
input to our algorithm is a set of sequences and the desired k-mer length to use where k 
is a parameter of the algorithm. Our algorithm first applies hashing techniques to find 
similar (identical except a few bases) k-mers. It proceeds as follows: for each input 



sequence the algorithm extracts all possible k-mers, if the input sequence has length L 
there are 

� 

L − k +1 k-mers per sequence. For each such k-mer the algorithm stores it in a 
hashtable with the ID of the sequence it comes from and the offset from the beginning of 
that sequence. Once the hashing phase is complete the algorithm collects all the k-mers 
from the hashtable and computes the hamming distance between all pairs of k-mers. 
The intuition is to divide k-mers that are very similar into clusters. The algorithm 
accomplishes this by constructing a graph in which each k-mer is a node and two k-
mers are connected by an edge if their hamming distance is less than a predefined 
threshold. The all-pair distance computation allows the algorithm to construct all the 
edges. Once the graph is created our algorithm computes the connected components 
on the graph and each connected component contains k-mers that only differ by few 
bases. The next step is to build the prototype k-mer from each cluster; our method uses 
a consensus voting scheme to effectuate that. We do not use the multiplicity in this 
implementation so every node contributes one vote. We assume that the prototype k-
mer is error free and thus our method uses the prototype k-mer to correct the errors in 
each sequence. Since we store the reads and starting offset of each k-mer in the 
hashtable error correction becomes a trivial task. We compare the k-mers of each 
cluster with its prototype one position at a time, if they differ at any position since we 
know that the position in the read is simply the position in the k-mer plus the offset of the 
k-mer in the read, we replace the base of the read with the one from prototype.  
 
Experiments and Preliminary Results 
We simulated genomes of various sizes for this experiment and tested our method 
using simulated sequences of various lengths and depth of coverage. We also applied 
two different error profiles, “Flat” is a uniformly random error profile and “Bustard” 
models after the realistic data sample from the Illumina platform. We also coarsely 
simulate the error profile of paired-end data with “10X Bustard” profile because typically 
in paired-end data the second read has much higher (usually around 10X) error rate 
than the first read. 
 
We ran VEVLET on both uncorrected and corrected reads and noticed significant 
improvement in both the number of bases assembled and accuracy. We observe that in 
case of relatively low error rate such as the case of Bustard model VELVET fared 
slightly better in terms of bases covered with corrected data and substantially better in 
terms of accuracy. Also note that in case of high error rate VELVET does very poorly (0 
assembled bases under 10% Flat Error Profile) and error correction brought drastic 
improvement in number of bases assembled (17X under 10X Bustard Error Profile).  
Our results show that VELVET without help of the error correction preprocessing is very 
sensitive to base calling errors in the reads. As the errors reach a certain threshold none 
of VELVETʼs internal error correction mechanisms are effective.  
 
For instance, in the case of 10% Flat Error Profile (Table 3) too many errors in the data 
create many dead-ended branches and short cycles which get removed by VELVET 
and therefore it wasnʼt able to produce any output.  



Table 2: Comparison of VELVET assembly results in the case of relatively low error rates 
corresponding to Bustard error profile 

 
The column labeled “Corr.” corresponds to VELVET assembly result with corrected reads using 
our method, “Uncorr.” corresponds to results using uncorrected reads and “Imp%” corresponds 
to percentage of improvement. 
 
Table 3: Comparison of VELVET assembly results in the case of high error rates 
corresponding to 10% uniform error and 10X the Bustard error profile 

 
See Table 2 for explanation of column labels. This table shows that under high error rates the 
fraction of bases covered by the assembled contigs are much greater after error correction. With 
exception of only one case accuracy is also improved with error correction; note that increasing 
fraction of bases covered should be expected to reduce accuracy because the contigs must 
cover regions with more error. 
 
Note that although sequencing technology has improved on base calling errors in 
practice it is very difficult for users to consistently achieve the advertised accuracy and 
high error rates such as 10% is not atypical. Our study demonstrates that error-
correction can serve as a valuable preprocessing stage to clean up data with high error 
rate to allow users to make use of the otherwise unusable data.  
 
The challenge of developing a reliable error correction method is that it must handle 
millions of sequences efficiently. Our proof-of-concept implementation has running time 
quadratic to the number of reads that is not feasible in reality. In the next section we 
discuss our approach to developing a reliable and scalable de novo clustering algorithm. 
The output of our clustering algorithm can be directly used to perform error correction on 
large data sets. 
 
3.3 Parallel de novo Clustering with Short Reds 
 
In the previous section we highlight our study on error correction preprocessing and its 
potential effect on de novo assembly algorithm with short reads. We use a popular  



 
Figure 1 Example of short reads clusters. In this figure is a genome of 23 bps. 15 short reads 
have been sampled from the genome. Reads that belong in the same circle are from the same 
region of the genome and therefore are in the same cluster.  
 
algorithm VELVET to test our method and demonstrate substantial improvement in 
many cases.  However, as we note before the algorithm running time is quadratic in the 
number of sequences and therefore not practical for any real world project. In this 
section we discuss an algorithm we develop to perform de novo clustering with short 
reads (Figure 1). The clusters our algorithm produces can be used as basis for any error 
correction method. Our method implements the MapReduce paradigm and 
simultaneously computes clusters of reads that have similar characteristics. We have 
implemented the method in Hadoop and tested it on the Amazon Elastic Cloud (EC2) 
infrastructure. We will show that the algorithm is suitable to process vast amount of data 
and that the algorithm is robust with high error rates.  
 
MapReduce and Amazon EC2 
MapReduce is a programming paradigm developed at Google Inc. The paradigm 
models the Lisp map/reduce functions and has two essential phases: The map phase 
processes the input data and outputs intermediate key/value pairs and the reduce 
phase takes all intermediate pairs that are associated with the same key and produces 
the final result. Hadoop is an open source implementation of the MapReduce model and 
it is becoming prominent in areas where computational tasks involve processing and 
generating large data sets. 
 
Our algorithm fits the MapReduce programming model because it first divides similar 
reads into partitions, and each partition can be processed simultaneously for clusters 
with zero dependency. We selected the Amazon EC2 platform because of several 
advantages we can exploit.  First, it is highly scalable, the Elastic Cloud environment 
provides a flexible way to increase or decrease the number of nodes in a cluster and the 
number that are dedicated to a job. Since the MapReduce framework handles data 
partitioning and file movement, scaling up the application is virtually effortless. Second, 
it is easily accessible. Because the infrastructure is set up and provided by the Amazon 
Elastic Cloud computing services, users are not required to have a cluster to run our 
application. We believe our algorithm is a contribution in the direction of using Hadoop 
as the platform for parallel programming in the bioinformatics space. 
 
The Algorithm Approach 
 
To implement the MapReduce model our method specifies a map function, which 
divides the input DNA sequences into groups that belong to an overlapping region 
(Figure 1). 



 
Figure 2: Algorithm overview. In our algorithm map function groups reads that overlap perfectly 
by a small k-mer and the reduce function refines the group of reads into clusters in parallel. 
 
The reduce function implements a graph based algorithm and further refines the groups 
to produce the final read clusters (Figure 2). 
 
Map Function 
To group sequences that belong to an overlapping region, we aim to partition the data 
such that reads that might belong in a region together will be mapped to the same 
reducer. We do this by mapping the reads based on their k-mers (Figure 3). If the same 
k-mer is found in certain sequences, those sequences are likely to come from the same 
region of the genome. 
 
For each input read, the map function extracts all shifts of a predefined length k of k-
mers and for each k-mer it produces a <key, value> pair using the k-mer as key and the 
reads as value. Thus, sequences that share a common sub-string are grouped together 
and processed by the same reduce function. In the end, each read of length L appears 
in 

� 

L − k +1different groups.  
 
The correctness and efficiency of our algorithm is sensitive to k that we choose for the 
k-mers in this phase. As k increases, reads are mapped to more buckets, so the total 
input size to the reducers decreases. Also, each bucket contains fewer reads, so the 
computation in the reduction phase speeds up. However, when the error rate is high, a 
larger choice of k increases the chance that each k-mer contains errors. For a k-mer 
with errors the read is grouped incorrectly with others that are not from the same region 
of genome and not placed in the cluster it belongs to. Thus, there is a tradeoff between 
performance and quality, and this parameter should be carefully tuned for each data set. 
 

 
Figure 3: k-mers for k=5. The figure shows how to extract all shifts of 5-mers. For the read 
ACCTAAGTTCATCAT, the first 3 5-mers are ACCTA, CCTAA, CTAAG. 



Reduce Function 
The input to each reducer is a group of reads that share a common k-mer. Since we 
choose k to be very small, the reads in the group may come from many different regions 
of the genome. We want to create clusters so that reads in the same clusters can 
overlap to form a single contig. To do this, we use another parameter kʼ where kʼ > k 
and find kʼ-mers that differ by less than a specified number of bases 

� 

t1, and use these 
kʼ-mers to cluster the reads together. The assumption is that reads that contain the 
same kʼ-mer, with minimal errors, will come from the same region. The first part of the 
reduction algorithm is to group these similar kʼ-mers together.  
 
Step 1: Extract all the second-level k-mers that contain the first-level k-mer, the key for 
the current reduction group, from the reads. For each second-level k-mer, record all the 
reads it appears in as well as the index in the read. Same k-mer may appear more than 
once in read although very unlikely.  
 
Step 2: Create a graph using kʼ-mers as nodes. Connect two kʼ-mers with an undirected 
edge if the Hamming distance between the kʼ-mers is less than a predefined threshold. 
The threshold should reflect the number of errors that are expected to appear in the kʼ-
mer. Thus, as the maximum error rate in a data set increases, the threshold should be 
also be adjusted.  
 
Step 3: Find the connected components of the kʼ-mer graph created in the previous 
step. We expect that each connected component consist of kʼ-mers that indeed come 
from the same segment in the genome, but might contain some number of errors.  
 
At this point, we have small groups of kʼ-mers and each group contains kʼ-mers that 
would most likely be identical if the reads were error-free. Thus it is natural to aggregate 
all the reads that the kʼ-mers in each group appear in and output these as the read 
clusters. However, identical kʼ-mers could appear in different regions of the genome, 
especially when the genome is large or when repeated regions are common. Thus, we 
need to further refine the group of reads.  
 
Step 1: For each group of kʼ-mers, aggregate all the reads that they appear in. These 
are called “pre-clusters”. Further separate the pre-clusters in the following steps if 
necessary.  
 
Step 2: Create a graph where each node represents a unique read. There is an 
undirected edge between two nodes if their “aligned” Hamming distance is less than a 
specified threshold 

� 

t2. Aligned Hamming distance is computed by aligning the two reads 
using the index of the kʼ-mers in the reads, and then computing the Hamming distance 
of the overlapping sections of the read. We also add another adjustable parameter that 
specifies the minimum amount of overlap between two reads necessary for them to be 
connected by an edge. Increasing this parameter reduces the cluster sizes, but ensures 
that the clusters have high integrity.  



 
Step 3: Find the connected components of the graph created in step 2. Discard 
components smaller than a minimum threshold, since they do not give enough helpful 
information to correct errors in reads, and the reads contained in these components will 
also appear in clusters elsewhere.  
 
The connected components found in the very last step are precisely the clusters of 
reads that our algorithm outputs. 
 
Results 
 
Clustering Accuracy 
To gauge the usefulness of our cluster data for error correction applications, we mainly 
used two metrics to measure the quality of the clusters, cluster size and number of 
regions within a cluster. The cluster size is a good indicator of cluster quality. A larger 
cluster size provides more statistical information about the reads in it. One can estimate 
a theoretical limit of the cluster size to be 

� 

(L − k +1) × c
k

 from our algorithm, where L is 

the read length and c is coverage. This limit has also proven useful in tuning 
parameters. A region is defined by a set of reads that can overlap to form a contig. 
Ideally each cluster would only contain a single region; more regions in the cluster 
create noise for error correction algorithms and indicate poor quality of clusters. 
 
A useful clustering algorithm needs to be able to handle data with high error rates. 
Different parameters should be tuned to allow our algorithm to adapt to increasing error 
rates. The thresholds used in the two graph based algorithms limit the number of bases 
that can differ between two reads before they are placed in the same cluster, so they 
should be increased to allow for more errors as the rate increases.  
 
We tested our algorithm with a uniformly random genome of 50,000 bps and sampled 
random sequences of length 50 from it. We artificially introduced sequencing errors in 
the simulation at various rates. The error rate is comparable to that produced by the 
Illumina Genome Analyzer, which has a position-dependent error model with more 
errors at the end of each read that is around 6%. There are four parameters in our 
algorithm: k and kʼ are the lengths of substrings we choose to bin the reads, 

� 

t1 is the 
hamming distance threshold of kʼ-mers and 

� 

t2 is the aligned hamming distance 
threshold of reads. We obtained the best results with k=5, kʼ=15, 

� 

t1=3, 

� 

t2=6. We see 
that our algorithmʼs results are stable with increasing error rate. As we introduce more 
errors we only observe a small decrease in the cluster size and slight increase in 
number of regions per cluster (Figure 4).  



 
Figure 4: Clustering Accuracy. Our algorithm is able to maintain the cluster size relatively well 
even as the error rate increases to the maximum seen in practice. Also, the mean number of 
regions per cluster increases by a negligible amount, which means that cluster integrity is not 
compromised. 
 
 
Performance Analysis 
We conducted these experiments using Amazonʼs Elastic MapReduce service. We 
performed the test using 20 instances with 15GB of RAM and 4 virtual cores per 
instance. The number of reduce tasks is set to 76 following the recommended setting of 
0.95* (number of nodes) * (number of cores per node). It is important to note that each 
reducer runs an algorithm with 

� 

O(n2)  in of space and running time, n is the number of 
sequences to be clustered. Our data reflects this fact. For instance, as the input size 
doubles from 100,000 to 200,000 reads, the completion time is roughly 4 times longer 
(Table 4). In these experiments, we were limited to use only 20 nodes, which is the 
maximum allowed by our Amazon account. However the results strongly indicate that as 
soon as more nodes become available we can process much larger datasets efficiently. 
It is also important to note that our sequential implementation of the algorithm failed to 
complete within a reasonable amount of time on an input of size 20,000. 
 
Table 4: running time Vs input size 

 
 
Table 4 summarizes how the algorithm scales with input size. 
 
 

# of Reads Completion Time (sec) 

20000 56 

40000 120 

60000 194 

80000 283 

100000 430 

120000 581 

140000 746 

180000 1274 

200000 1513 



Table 5: P-Times speed up 

 
Our method has ideal P-Times speed up 
characteristics 
 
P-Times Speed Up and Load Balance 
An important metric in measuring parallel programs is P-Times speed up which 
examines the runtime as function of number of CPUs. In this experiment we ran the 
application on an input dataset of 80,000 reads of length 50 base pairs sampled from a 
random genome. We recorded the completion time using different numbers of nodes. 
Our experiments show that it very closely approximates the idealized p-times speedup 
as we allocate more nodes for the job (Table 5). This is because we have a very large 
number of reduce jobs, and as we increase the number of nodes the reduce jobs are 
simply split among the increased resources since there is no communication overhead. 
We used 5 nodes as a base for the speedup because even for a moderate reads input 
size of 80,000, the sequential version of our algorithm takes far too long to complete. 
Figure 5 and Table 2 show that as we increase the number of nodes from 5 to 20, we 
have successfully reached a 4X speed up.  This illustrates that as we expected, using 
the Hadoop platform in conjunction with cloud computing allows our code to be highly 
scalable. In practice, our data lead us to believe that large input sets can be handled by 
adding more nodes, which is a major advantage of cloud computing. To measure load 
balancing we investigated the aspect of load balancing that is inherently part of the data: 
the number of unique sequences that contain the same substring. We simulated the 
map function and calculated the size and standard deviation of each reduce task input 
(Table 6).   
 
The input file is a simulated random reads file from a uniformly random genome. The 
results suggest that the choice of k size places a significant role in the amount of 
computational work to be done by each reduce task and should be studied with care. 
 
Discussion 
In this section we present a highly scalable distributed algorithm for solving the short-
reads clustering problem. Our method uses graph-based techniques to cluster DNA 
sequences that overlap. The algorithm is robust in dealing with data with varied error 
rates; our results show that increased error rate in data has little effect on the quality of 
the clusters the algorithm produces.  

# of Reads Completion Time (sec) 

20000 56 

40000 120 

60000 194 

80000 283 

100000 430 

120000 581 

140000 746 

180000 1274 

200000 1513 



Table 6: Load Balance 
k Avg Reads / Key Standard Dev (s) 

5 3593 280.6 

7 214 39.93 

9 12 8.3 

11 2 2.71 

The column labeled “Avg Reads/Key” corresponds to the size of workload in each node in 
reduce phase. The table suggests that the work load varies greatly with the choice of k and this 
will be a focal point in future studies. 
 
We implement the algorithm in Hadoop (http://www.hadoop.org), which is an open-
source Java implementation of the MapReduce model. We test our implementation 
using Amazon's Elastic MapReduce on the Amazon Elastic Cloud Compute 
infrastructure and obtain encouraging results. The method we develop is an early stage 
attempt at the solution, although we have demonstrated the potential of running graph 
based clustering in parallel on Hadoop there still remains many opportunities to improve 
and explore. One of the interesting areas is to parallelize the reduce function even 
further by using a consequent MapReduce job. Our current implementation must refine 
many pre-clusters of reads in sequence for each reduce task, if we parallelize this 
process and refine each pre-cluster in a separate machine we can potentially achieve 
better performance. Another area worth exploring is to use the MapReduce method do 
consensus voting error correction.  
 
4. Conclusion 
 
In this report we present our preliminary work in the study of de novo assembly with 
short-reads. We study the current assembly algorithms and identify two major areas 
where they can be improved and conducted experiments on our propose solutions. The 
first area is to harvest quality information in the reads. In order to show that quality 
scores contain rich information we modify popular software VELVET to incorporate 
reads quality scores in its Tourbus algorithm. We experiment two versions of the 
VELVET program on simulated sequence data with various coverage depths and under 
three different error profiles. The results show that VELVET with quality scores can 
achieve substantially higher accuracy than using the reads alone in all cases (as much 
as 75% improvement).  
 
The other area of focus for us is error correction preprocessing. Many de novo 
assembly algorithms today are very sensitive to sequencing errors and although most of 
them make use of error correction techniques but they are mostly ad hoc and are not 
well understood. We propos an error correction method based on k-mer graphs and it 
can be used in a preprocessing phase to clean up data for any assembly algorithm. We 
test our method on VELVET and observe a significant boost in accuracy and 
percentage of bases assembled. It is worth noting that our error correction method is 
particularly effective in regions of low coverage. We think that the error correction 



algorithm can help todayʼs assemblers to achieve better performance with lower 
coverage requirement and thus reduce the cost of large-scale sequence projects. Our 
last aim in this study is then to develop a scalable and robust de novo clustering method 
with short reads to help massive scale sequencing projects. We develop a parallel 
algorithm that uses graph theory based techniques to cluster reads and demonstrate 
that the algorithm has excellent robustness and scalability. A direct application of our 
clustering method is to apply statistical error correction methods on the clusters 
produced by our method. The scalability of our clustering method can enable error 
correction on very large data sets. 
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