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ABSTRACT
Recent research has explored using Datalog-based languages to ex-
press a distributed system as a set of logical invariants [2, 19]. Two
properties of distributed systems proved difficult to model in Data-
log. First, the state of any such system evolves with its execution.
Second, deductions in these systems may be arbitrarily delayed,
dropped, or reordered by the unreliable network links they must
traverse. Previous efforts addressed the former by extending Datalog
to include updates, key constraints, persistence and events, and the
latter by assuming ordered and reliable delivery while ignoring delay.
These details have a semantics outside Datalog, which increases the
complexity of the language or its interpretation, and forces program-
mers to think operationally. We argue that the missing component
from these previous languages is a notion of time.

In this paper we present Dedalus, a foundation language for
programming and reasoning about distributed systems. Dedalus re-
duces to a subset of Datalog [30] with negation, aggregate functions,
successor and choice, and admits an explicit representation of time
into the logic language. We show that Dedalus provides a declara-
tive foundation for the two signature features of distributed systems:
mutable state, and asynchronous processing and communication.
Given these two features, we address three important properties of
programs in a domain-specific manner: a notion of safety appropri-
ate to non-terminating computations, stratified monotonic reasoning
with negation over time, and efficient evaluation over time via a
simple execution strategy. We also provide conservative syntactic
checks for our temporal notions of safety and stratification. Our
experience implementing full-featured systems in variants of Dat-
alog suggests that Dedalus is well-suited to the specification of
rich distributed services and protocols, and provides both cleaner
semantics and richer tests of correctness.

1. INTRODUCTION
In recent years, there has been a resurgence of interest in Data-

log as the foundation for applied, domain-specific languages in a
wide variety of areas, including networking [20], distributed sys-
tems [5, 8], natural language processing [11], robotics [4], compiler
analysis [14], security [13, 17, 32] and computer games [31]. The re-

sulting languages have been promoted for their compact and natural
representations of tasks in their respective domains, in many cases
leading to code that is orders of magnitude shorter than equivalent
imperative programs. Another stated advantage of these languages
has been the ability to directly capture intuitive specifications of
protocols and programs as executable code.

While most of these efforts were intended to be “declarative” lan-
guages, many chose to extend Datalog with operational features nat-
ural to their application domain. These operational aspects, though
familiar, limit the ability of the language designers to leverage the
rich literature on Datalog: program checks like safety and stratifia-
bility, and optimizations like magic sets and materialized recursive
view maintenance. In addition, in many of these languages the
blend of operational and declarative constructs leads to semantic
ambiguities. This is of particular interest to us in the context of
networking and other distributed systems, both because we have
considerable practical experience with these languages [2, 20], and
because others have examined the semantic ambiguities of these
languages in some depth [23, 26].

In this paper we reconsider declarative programming for dis-
tributed systems from a model-theoretic perspective. We introduce a
declarative language called Dedalus1 that enables the specification
of rich distributed systems concepts without recourse to operational
constructs. Dedalus is a subset of a language with well-studied fea-
tures: Datalog enhanced with negation, aggregate functions, choice,
and a successor relation. Dedalus provides a model-theoretic foun-
dation for the two key features of distributed systems: mutable state,
and asynchronous processing and communication. We show how
these features are captured in Dedalus via a natural incorporation of
time as an attribute of Datalog predicates.

Given the ability to express programs with these two features, we
address three important properties of Dedalus programs: a temporal
notion of safety appropriate to long-running services and protocols,
stratified monotonic reasoning with negation over time, and efficient
evaluation via a simple execution strategy. We also provide con-
servative syntactic checks for our temporal notions of safety and
stratification.

We begin by defining Dedalus0, a restricted sublanguage of Dat-
alog (Section 2). We show how Dedalus0 supports state update
in Section 3, prove temporal safety and stratifiability properties
of Dedalus0 in Section 4, and describe a simple, efficient evalua-

1Dedalus is intended as a precursor language for Bloom, a high-level lan-
guage for programming distributed systems that will replace Overlog in
the BOOM project [2]. As such, it is derived from the character Stephen
Dedalus in James Joyce’s Ulysses, whose dense and precise chapters precede
those of the novel’s hero, Leopold Bloom. The character Dedalus, in turn,
was partly derived from Daedalus, the greatest of the Greek engineers and
father of Icarus. Unlike Overlog, which flew too close to the sun, Dedalus
remains firmly grounded.



tion scheme (Section 5). Finally, we introduce Dedalus by adding
support for asynchrony to Dedalus0 in Section 6. Throughout, we
demonstrate the expressivity and practical utility of our work with
specific examples, including a number of building-block routines
from classical distributed computing, such as sequences, queues,
distributed clocks, and reliable broadcast. We also discuss the cor-
respondence between Dedalus and our prior work implementing
full-featured distributed services in somewhat more operational Dat-
alog variants [2, 20].

2. Dedalus0
We take as our foundation the language Datalog¬ [30]: Datalog

enhanced with negated subgoals. We will be interested in the classes
of statically stratifiable and modularly stratifiable [27] programs,
which we revisit below. For conciseness, when we refer to “Datalog”
below our intent is to admit negation — i.e., Datalog¬.

As a matter of notation, we refer to a countably infinite universe of
constants C—in which C1,C2, . . . are representations of individual
constants—and a countably infinite universe of variable symbols
A = A1, A2, . . .. We will capture time in Dedalus0 via an infinite
relation successor isomorphic to the successor relation on the
integers; for convenience we will in fact refer to the domain Z when
discussing time, though no specific interpretation of the symbols
in Z is intended beyond the fact that successor(x,y) is true iff
y = x + 1.

2.1 Syntactic Restrictions
Dedalus0 is a restricted sublanguage of Datalog. Specifically, we

restrict the admissible schemata and the form of rules with the four
constraints that follow.
Schema: We require that the final attribute of every Dedalus0 pred-
icate range over the domain Z. In a typical interpretation, Dedalus0
programs will use this final attribute to connote a “timestamp,” so
we refer to this attribute as the time suffix of the corresponding
predicate.
Time Suffix: In a well-formed Dedalus0 rule, every subgoal uses
the same existential variable T as its time suffix. A well-formed
Dedalus0 rule must also have a time suffix S as its rightmost head
attribute, which must be constrained in exactly one of the following
two ways:

1. The rule is said to be deductive if S is bound to the value T ;
that is, the body contains the subgoal S = T .

2. The rule is said to be inductive if S is the successor of T ; that
is, the body contains the subgoal successor(T, S).

In Section 6 when we consider Dedalus—a superset of Dedalus0—
we will introduce a third kind of rule to capture asynchrony.

Example 1. The following are examples of well-formed deduc-
tive and inductive rules, respectively.
deductive: p(A, B, S) ← e(A, B, T), S = T;

inductive: q(A, B, S) ← e(A, B, T), successor(T, S);

Positive and Negative Predicates: For every extensional predicate
r in a Dedalus0 program P, we add to P two distinguished predicates
r_pos and r_neg with the same schema as r. We define r_pos
using the following rule:

r_pos(A_1,A_2,[...],A_n,S) ←
r(A_1,A_2,[...],A_n,T), S =T;

That is, for every extensional predicate r there is an intensional
predicate r_pos that contains at least the contents of r. Intuitively,

this rule allows extensional facts to serve as ground for r_pos, while
enabling other rules to derive additional r_pos facts.

The predicate r_pos may be referenced in the body or head of
any Dedalus0 rule. We will make use of the predicate r_neg later
to capture the notion of mutable state; we return to it in Section 3.2.
Like r_pos, the use of r_neg in the heads and bodies of rules is
unrestricted.

Guarded EDB: No well-formed Dedalus0 rule may involve any
extensional predicate, except for a rule of the form above.

2.2 Abbreviated Syntax and Temporal Inter-
pretation

We have been careful to define Dedalus0 as a subset of Datalog;
this inclusion allows us to take advantage of Datalog’s well-known
semantics and the rich literature on the language.

Dedalus0 programs are intended to capture temporal semantics.
For example, a fact, p(C1 . . .Cn, Cn+1), with some constant Cn+1

in its time suffix can be thought of as a fact that is true “at time
Cn+1”. Deductive rules can be seen as instantaneous statements:
their deductions hold for predicates agreeing in the time suffix and
describe what is true “for an instant” given what is known at that
instant. Inductive rules are temporal—their consequents are defined
to be true “at a different time” than their antecedents.

To simplify Dedalus0 notation for this typical interpretation, we
introduce some syntactic “sugar” as follows:

• Implicit time-suffixes in body predicates: Since each body
predicate of a well-formed rule has an existential variable T
in its time suffix, we optionally omit the time suffix from each
body predicate and treat it as implicit.

• Temporal head annotation: Since the time suffix in a head
predicate may be either equal to T , or equal to T ’s successor,
we omit the time suffix from the head—and its relevant con-
straints from the body—and instead attach an identifier to the
head predicate of each temporal rules, to indicate the change
in time suffix. A temporal head predicate is of the form:

r(A1,A2,[...],An)@next

The identifier @next stands in for successor(T,S) in the
body.

Example 2. The following are “sugared" versions of deductive
and inductive rules:
deductive: p(A, B) ← e(A, B);

inductive: q(A, B)@next ← e(A, B);

3. STATE IN LOGIC

Time is a device that was invented to keep everything
from happening at once.2

Given our definition of Dedalus0, we now address the persistence
and mutability of data across time—one of the two signature fea-
tures of distributed systems for which we provide a model-theoretic
foundation.

The intuition behind Dedalus0’s successor relation is that it
models the passage of (logical) time. In our discussion, we will say
that ground atoms with lower time suffixes occur “before” atoms
with higher ones. The constraints we imposed on Dedalus0 rules
2Graffiti on a wall at Cambridge University [1].



restrict how deductions may be made with respect to time. First,
rules may only refer to a single time suffix variable in their body,
and hence cannot join across different “timesteps”. Second, rules
may specify deductions that occur concurrently with their ground
facts or in the next timestep—in Dedalus0, we rule out induction
“backwards” in time or “skipping” into the future.

This notion of time allows us to consider the contents of the
EDB—and hence a minimal model of the IDB—with respect to
an “instant in time”: we simply bind the time suffixes (T ) of all
body predicates to a constant. Because this produces a sequence of
models (one per timestep), it gives us an intuitive and unambiguous
way to declaratively express persistence and state changes across
time. In this section, we give examples of language constructs that
capture state-oriented motifs such as persistent relations, deletion
and update, sequences, and queues.

3.1 Simple Persistence
A fact in predicate p at time T may provide ground for deductive

rules at time T , as well as ground for deductive rules in timesteps
greater than T , provided there exists a simple persistence rule of
the form:
p_pos(A1,A2,[...],An)@next ← p_pos(A1,A2,[...],An);

A simple persistence rule3 ensures that a p fact true at time i will be
true ∀ j ∈ Z : j >= i.

3.2 Mutable State
To model deletions and updates of a fact, it is necessary to break

the induction in a simple persistence rule. Adding a p_neg subgoal
to the body of a simple persistence rule accomplishes this:
p_pos(A_1,A_2,[...],A_n)@next ←
p_pos(A_1,A_2,[...],A_n),
¬p_neg(A_1,A_2,[...],A_n);

If, at any time k, we have a fact p_neg(C1,C2,[...],Cn)@k, then
we do not deduce a p_pos(C1,C2,[...],Cn)@k+1 fact. By induc-
tion, we do not deduce a p_pos(C1,C2,[...],Cn)@j fact for any
j > k, unless this p_pos fact is re-derived at some timestep j > k
by another rule. This corresponds to the intuition that a persistent
fact, once stated, is true until it is retracted.

Example 3. Consider the following Dedalus0 program and ground
facts:

p_pos(A, B) ← p(A, B);
p_pos(A, B)@next ← p_pos(A, B), ¬p_neg(A, B);

p(1,2)@101;
p(1,3)@102;
p_neg(1,2)@300;

It is easy to see that the following facts are true: p(1,2)@200,
p(1,3)@200, p(1,3)@300. However, p(1,2)@301 is false be-
cause it was “deleted” at timestep 300.

Since mutable persistence occurs frequently in practice, we pro-
vide the persist macro, which takes three arguments: a predicate
name, the name of another predicate to hold “deleted” facts, and the
(matching) arity of the two predicates. The macro expands to the cor-
responding mutable persistence rule. For example, the above p_pos
persistence rule may be equivalently specified as persist[p_pos,
p_neg, 2].
3We can express this rule using a temporal logic assertion that
makes use of the � or “henceforth” operator: ∀A1, . . . , An ∈ C :
p_pos(A1, . . . , An)→ �p_pos(A1, . . . , An).
This assertion states that for any constants A1, . . . , An in the
Herbrand Universe, p_pos(A1, . . . , An) implies that henceforth,
p_pos(A1, . . . , An) will be true.

Mutable persistence rules enable updates. For some time T , an
update is any pair of facts:

p_neg(C_1,C_2,[...],C_n)@T;
p_pos(D_1,D_2,[...],D_n)@T + 1;

Intuitively, an update represents deleting an old value of a tuple and
inserting a new value. Every update is atomic across timesteps,
meaning that the old value ceases to exist at the same timestep
in which the new value is derived—timestep T + 1 in the above
definition.

3.3 Sequences
One may represent a database sequence—an object that retains

and monotonically increases a counter value—with a pair of induc-
tive rules. One rule increments the current counter value when some
condition is true, while the other persists the value of the sequence
when the condition is false. We can capture the increase of the
sequence value without using arithmetic, because the infinite series
of successor has the monotonicity property we require:
seq(B)@next ← seq(A), successor(A,B), event(_);
seq(A)@next ← seq(A), ¬event(_);

Note that these two rules produce only a single value of seq at
each timestep, but they do so in a manner slightly different than our
standard persistence template.

3.4 Queues
While sequences are useful constructs for generating or imposing

an ordering on tuples, programs will in some cases require that
tuples are processed in a particular (partial) order associated with
particular timesteps. To this end, we introduce a queue template,
which employs inductive persistence and aggregate functions in rule
heads to process tuples according to a data-dependent order, rather
than as a set.

Aggregate functions simplify our discussion of queues. Mumick
and Shmueli observe correspondences in the expressivity of Datalog
with stratified negation and stratified aggregation functions [25].
Adding aggregation to our language does not affect its expressive
power, but is useful for writing natural constructs for distributed
computing including queues and ordering.

In Dedalus0 we will allow aggregate functions ρ1 − ρn to appear
in the head of a deductive rule of the form:
p(A1, . . ., An, ρ1(An+1), . . ., ρm(An+m)) ←

q1(A1, . . ., An, An+1), . . ., qm(A1, . . ., An, An+m);
According to this rule, the predicate p contains one row for each

satisfying assignment of A1, . . . , An — akin to the distinct “groups”
of SQL’s “GROUP BY” notation.

Consider a predicate priority_queue that represents a series
of tasks to be performed in some predefined order. Its attributes
are a string representing a user, a job, and an integer indicating the
priority of the job in the queue:
priority_queue(’bob’, ’bash’, 200)@123;
priority_queue(’eve’, ’john’, 1)@123;
priority_queue(’alice’, ’ssh’, 204)@123;
priority_queue(’bob’, ’ssh’, 205)@123;

Note that all the time suffixes are the same. Given this schema, we
note that a program would likely want to process priority_queue
events individually in a data-dependent order, in spite of their coin-
cidence in logical time.

In the program below, we define a table m_priority_queue that
serves as a queue to feed priority_queue. The queue must persist
across timesteps because it may take multiple timesteps to drain it.
At each timestep, for each value of A, a single tuple is projected into
priority_queue and deleted (atomic with the projection) from



m_priority_queue, changing the value of the aggregate calculated
at the subsequent step:
persist[m_priority_queue, del_m_priority_queue, 3]

% find the min priority
omin(A, min<C>) ←
m_priority_queue(A, _, C);

% feed p in the next step
% with the items of min priority
p(A, B, C)@next ←
m_priority_queue(A, B, C),
omin(A, C);

% delete from the next step
% those items of min priority
del_m_priority_queue(A, B, C) ←
m_priority_queue(A, B, C),
omin(A, C);

Under such a queueing discipline, deductive rules that depend on
priority_queue are constrained to consider only min-priority tu-
ples at each timestep per value of the variable A, thus implementing
a per-user FIFO discipline. To enforce a global FIFO ordering over
priority_queue, we may redefine omin and any dependent rules
to exclude the A attribute.

A queue establishes a mapping between Dedalus0’s timesteps and
the priority-ordering attribute of the input relation. By doing so, we
take advantage of the monotonic property of timestamps to enforce
an ordering property over our input that is otherwise very difficult to
express in a logic language. We return to this idea in our discussion
of temporal “entanglement” Section 6.5.2.

4. STRATIFICATION AND SAFETY
In the previous section we demonstrated that Dedalus0 can cap-

ture intuitive notions of persistence and mutability of state via a
stylized use of Datalog. However, the alert reader will note that even
very simple Dedalus0 programs make for unusual Datalog: among
other concerns, persistence rules produce derivations for an infinite
number of values of the time suffix. Traditional Datalog interpreters,
which work against static databases, would attempt to enumerate
these values, making this approach impractical.

However, in the context of distributed systems and networks, the
need for non-terminating “services” or “protocols” is very common.
In this section we show that expressing distributed systems proper-
ties such as persistence and mutable state in logic does not require
dispensing with familiar notions of safety and stratification: we take
traditional notions of acceptable Datalog programs, and extend them
in a way that admits sensible non-terminating programs.

4.1 Stratification in Dedalus0
We first turn our attention to the semantics of programs with

negation. As we will see, the inclusion of time introduces a “source
of monotonicity” in programs that allows for clean minimal model
semantics in some surprising cases, and enables purely syntactic
monotonicity checks for a broad class of temporal programs.

Lemma 1. A Dedalus0 program without negation has a unique
minimal model.

Proof. A Dedalus0 program without negation is a pure Data-
log program. Every pure Datalog program has a unique minimal
model.

We define syntactic stratification of a Dedalus0 program the same
way it is defined for a Datalog program:

Definition 1. A Dedalus0 program is syntactically stratifiable if
there exists no cycle with a negative edge in the program’s predicate
dependency graph.

We may evaluate such a program in stratum order as described
in the Datalog literature [30]. It is easy to see that any syntactically
stratified Dedalus0 instance has a unique minimal model because it
is a syntactically stratified Datalog program.

However, many programs we are interested in expressing are not
syntactically stratifiable. Fortunately, we are able to define a syn-
tactically checkable notion of temporal stratifiability of Dedalus0
programs that maps to a subset of modularly stratifiable [27] Datalog
programs.

Definition 2. The deductive reduction of a Dedalus0 program P
is the subset of P consisting of exactly the deductive rules in P.

Definition 3. A Dedalus0 program is temporally stratifiable if its
deductive reduction is syntactically stratifiable.

Lemma 2. Any temporally stratifiable Dedalus0 instance P has
a unique minimal model.

Proof. Case 1: P consists of only deductive rules. In this case,
P’s deductive reduction is P itself. We know P is syntactically
stratifiable, thus it has a unique minimal model.

Case 2: P consists of both deductive and inductive rules. As-
sume that P does not have a unique minimal model. This implies
that P is not syntactically stratifiable. Thus, there must exist some
cycle through at least one predicate q involving negation. Further-
more, this cycle must involve an inductive rule, as P is temporally
stratified.

Since the time suffix in the head of an inductive rule is strictly
greater than the time suffix of its body, no atom may depend neg-
atively on itself—it may only depend negatively on atoms in the
previous timestep. Thus, P′ is modularly stratified over time, using
the definition of modular stratification according to Ross et al. [27].
This guarantees a unique minimal model achievable via standard
bottom-up fixpoint execution.

Example 4. A simple temporally stratifiable Dedalus0 program
that is not syntactically stratifiable.

persist[p, p_neg, 3]

r1
p(A, B, T) ←
insert_p(A, B, T);

r2
p_neg(A, B, T) ←
p(A, B, T),
delete_p(T);

In the Dedalus0 program above, insert_p and delete_p are cap-
tured in EDB relations. This reasonable program is unstratifiable
because p � p_neg∧p_neg � p. But because the successor relation
is constrained such that ∀A, B, successor(A, B)→ B > A, any such
program is modularly stratified on successor. Therefore, we have
pn �

∗ p_negn �
∗ pn+1; informally, earlier values do not depend on

later values.

4.2 Temporal Safety
Next we consider the issue of infinite results raised in the intro-

duction to this section. In traditional Datalog, this is a well-studied
concern. A Datalog program is considered safe if it has a finite
minimal model, and hence has a finite execution. Safety in Datalog
is traditionally ensured through the following syntactic constraints:



Datalog

Stratified Programs

Locally Stratified Programs + EDB

Modularly Stratified Programs + EDB

Temporally  Stratified Programs

¬Datalog

Synactically Checkable

Figure 1: Stratifiability classes. A → B means that every pro-
gram in A is in B.

1. No functions are allowed.

2. Variables are range restricted: all attributes of the head goal
appear in a non-negated body subgoal.

3. The EDB is finite.

These constraints ensure that the Herbrand Universe is finite:
any atom that may be deduced by a safe program may only take
its attributes from the set of all constant symbols appearing in the
program and EDB. In fact, the set of all possible assignments of
these constants to predicate attributes, representing every possible
interpretation, is itself finite.

Since our definition of successor violates these rules, and in-
deed leads to an infinite set of facts, Dedalus0 programs violate this
definition of safety. However, successor models time, not compu-
tation; later sections explain how Dedalus implementations avoid
enumerating the contents of successor at runtime. This section
introduces a notion of termination that allows us to reason about the
safety of Dedalus0 programs.

A Dedalus0 program containing only deductive rules is informally
equivalent to a Datalog program in which all predicates have no time
suffix. If all the rules in such a program meet the conditions above,
then clearly we would like them to meet Dedalus0’s definition of
safety.

Definition 4. A rule is instantaneously safe if it is deductive,
function-free and range-restricted. A Dedalus0 program is instanta-
neously safe if its deductive reduction is instantaneously safe.

The successor relation complicates the discussion of safety, as
it introduces the countably infinite set Z to our universe of constants.

Consider the following Dedalus0 program, which derives a single,
persistent fact:

Example 5. An unsafe Dedalus0 instance?
persist[p, p_neg 2]
p(1, 2)@123;

The single ground fact will cause one deduction for each tuple
in successor. Since successor is infinite, the corresponding
Datalog program is unsafe.

However, observe that each of these deductions produces a tuple
that changes only in its time suffix. We find it useful to distinguish
between unsafe programs and programs that, given a finite EDB,
eventually derive only tuples that are equivalent except in their time
suffixes.

Definition 5. Two sets of ground atoms Γ and Γ′ are equivalent
modulo time if each atom γ ∈ Γ has a corresponding atom γ′ ∈ Γ′

such that γ and γ′ have the same predicate symbol, and the same
assignment of constants to attributes for all attributes except the
time suffix.

Definition 6. We say a Dedalus0 instance is quiescent at time T
if the set of all atoms with time suffix T is equivalent modulo time
to the set of all atoms with time suffix T − 1.

Observation 1. A Dedalus0 instance that is quiescent at time T
will be quiescent until timestamp of the next EDB fact V, i.e. for all
U ∈ Z : V > U >= T. If no EDB fact has a timestamp greater than
T , then the instance will be henceforth quiescent.

Proof. A Dedalus0 program admits only instantaneous and in-
ductive rules, which derive new tuples at the same time as their
ground tuples, or in the immediate next timestep. Thus, the set of
tuples true at time T is completely determined by any tuples true
at time T − 1, and any EDB facts true at time T . Observe that the
integer value of the timestep does not influence the derivation.

If the instance is quiescent at T , then given A, the set of atoms
with timestamp T − 1, and the EDB at T , the program entails A at
timestamp T . Thus in the absence of EDB facts at T + 1, it entails
A at T + 1.

Definition 7. A Dedalus0 instance with finite EDB is temporally
safe if it is henceforth quiescent after some time T .

Definition 8. Given the depends-on relation � and its transitive
closure �∗, an intensional predicate e in a program P is called an
instantaneous predicate if for every predicate p for which e �∗ p
(ie, e depends transitively on p), either p appears in the head of
no inductive rules, or the body of each inductive rule with head p
contains at least one positive instantaneous predicate.

We propose the following conservative test for temporal safety. A
program is guaranteed to be temporally safe if every rule is either:

1. An instantaneously safe rule, or

2. An inductive rule in which the head predicate occurs also in
the body with the same variable bindings for all attributes
save the time suffix, or

3. An inductive rule that has at least one instantaneous predicate
as a positive subgoal in the body.

While a temporally safe program is henceforth quiescent after
some time T , a temporally unsafe program changes infinitely. Note
that the Dedalus0 program in Example 5 is temporally safe because
r1 satisfies the second condition above.

Lemma 3. A temporally stratifiable Dedalus0 instance is tempo-
rally safe if it has a finite EDB and every rule is one of the kinds 1-3
above.

Proof. Assume the program is temporally unsafe. That is, there
exists no time T such that ∀U >= T , the set of all atoms with
timestamp U is equivalent modulo time to the set of all atoms with
timestamp T − 1. Let E be the maximum timestamp of any fact in
the EDB.

Observe that every rule r of kind 3 may only entail a finite number
of facts—as the EDB is finite—and thus may entail no facts at a
timestamp greater than some maximum timestamp Vr <= E + 1 ∈ Z.
Since a Dedalus0 program has a finite set of rules we know ∃V ∈
Z : ∀r : V >= Vr, and thus V <= E + 1.



We now consider times T such that T > E + 1. By the above
argument, no rules of kind 3 entail any facts with a timestamp greater
than E + 1. Recall that no EDB atoms are true at any timestamp
greater than E. Thus, any facts with timestamp greater than E + 1
are entailed by rules of kind 1 or 2.

Consider the set of equivalence classes modulo time of all pos-
sible atoms, A, given the Herbrand universe. We know A is finite,
as the Herbrand Universe is finite. Therefore, if the program is
temporally unsafe, then B, the set of atoms entailed by the program,
both contains and excludes infinitely many members of at least one
equivalence class in A (i.e. something “infinitely oscillates in time”
between being true and false). Since the program has finitely many
rules, at least one rule must entail infinitely many atoms (from at
least one of the equivalence classes from A). Thus, it is easy to see
that there must be a cycle that contains some predicate P and ¬P.

We show there exists such a cycle containing only rules of kind 1,
which implies that the program is temporally unstratifiable. In order
for such a cycle to exist, P must transitively depend on ¬P, and ¬P
must transitively depend on P. Thus, the program contains a rule J1

with ¬P in its body, and some predicate R in its head, as well as a
rule J2 that is transitively dependent on R, with P in its head.

Case 1: P , R. In this case, J1 must be of kind 1, as for any
Q , P, a rule of kind 2 with P in the head may not directly entail
Q given P. J2 must also be of kind 1—if it is of kind 2, then it
necessarily contains P in its body, so it cannot entail P unless P is
entailed by some other rule. If J2 contains R in its body, then the
program is syntactically unstratifiable. But if J2 does not contain R
in its body, then it contains some predicate S transitively entailed
by R; wlog the body contains R. Thus, the program is syntactically
unstratifiable.

Case 2: P = R. In this case, J1 and J2 are the same rule: P← ¬P.
Thus, the program is syntactically unstratifiable.

Thus, the program is temporally unstratifiable, which contradicts
our assumption.

Example 6. A Dedalus0 instance with a temporally unsafe de-
ductive rule.

p(A, B) ← q(A);

The program above has a temporally unsafe deductive rule that
corresponds to an unsafe rule in Datalog: it is not range-restricted.
The head variable B could range over an infinite set of constants.

Example 7. A Dedalus0 instance that is temporally unsafe due
to infinite oscillation.

flip_flop(B, A)@next ← flip_flop(A, B);
flip_flop(0, 1)@1;

The above program exemplifies temporally unsafe induction. Even
though it contains no function symbols, and all variables are range-
restricted, it entails infinite oscillation of the p predicate.

We can imagine interesting examples of temporally unsafe pro-
grams, and do not forbid them in Dedalus0.

5. EVALUATION
In previous sections, we extended the notions of stratifiability and

safety to Dedalus0 programs. In this section, we address the third
and final property of Dedalus0 programs that we want to ensure—
efficient execution.

Unfortunately, the direct application of traditional bottom-up
Datalog execution strategies like semi-naive evaluation results in a
rather literal and inefficient notion of the idea of “persistence.” If a
fact is true across a long sequence of timesteps, bottom-up evaluation

Algorithm 1 Temporal Evaluation
// rewrite program
foreach persistent predicate P(A1, . . . , An) do

// include “old facts” in the current timestep
addRule P(A1, . . . , An,T )← P_store(A1, . . . , An).

// identify “new” derived facts
addRule ∆+

P(A1, . . . , An)←
P(A1, . . . , An,T ),¬P(A1, . . . , An,T − 1).

// identify “new” facts that are “to-be-deleted”
addRule ∆−P ← P_neg(A1, . . . , An,T ).

end for
foreach rule R do

foreach persistent predicate P(A1, . . . , An,T ) in R’s body
do

substitute P_store(A1, . . . , An) for P(A1, . . . , AN ,T )
end for

end for
// evaluate program starting at “minimum” EDB timestamp
let t = u ∈ Z : ∃P(A1, . . . , An, u),@Q(B1, . . . , Bm, v) : v < u
repeat

replace T with t in the rewritten program, and compute
a fixpoint of the result via semi-naive evaluation

foreach persistent predicate P(A1, . . . , An) do
P_store(A1, . . . , An) :=

P_store(A1, . . . , An) ∪ ∆+
P(A1, . . . , An)

P_store(A1, . . . , An) :=
P_store(A1, . . . , An) \ ∆−P(A1, . . . , An)

end for
// t becomes the least larger timestamp with an atom
if ∃u ∈ Z : u > t,∃P(A1, . . . , An, t),@v : v > t ∧ v < u then

let t = u
else

let t = ∅

end if
until t = ∅

will persistently “re-derive” that fact inductively for each timestep,
and the number of derivations in a program will be infinite simply to
maintain persistence in time. Instead, we would like an incremental
evaluation strategy that allows an external agent to examine the state
of the database at any timestep t without requiring O(t) inductive
derivations for persistence. The intuitive strategy would be to use
a memory device, “storing” a fact on first derivation and “deleting”
it at the timestep that the induction is broken. In this section we
derive such a strategy via a combination of program rewriting and
an operational evaluation loop, in the style of semi-naive evaluation.

5.1 Temporal Evaluation Over Storage
The traditional description of semi-naive evaluation takes a recur-

sive Datalog program, rewrites it to a non-recursive “delta” program,
and executes that program in a loop bracketed by state modifications.
In that spirit, we present a strategy we call “temporal evaluation,”
which takes a Dedalus0 program, rewrites it to a Datalog program
that refers to a single timestep, and executes that program in a loop—
once per timestep—bracketed by state modifications. Algorithm 1
presents this strategy. Note that the Dedalus0 rules are written
in their native “unsugared” syntax because we rewrite them into
Datalog that strays from Dedalus0 conventions:

Observe that the final loop of Algorithm 1 binds the time suffix
of each rule by replacing it with a constant value from a previous
timestep. This “marches” through time in order, skipping steps
that have no changes. A simple proof by induction shows that



for each timestep t, the temporal evaluation yields a database that
corresponds to the minimal model of the original Dedalus0 program
with the successor relation truncated to the prefix ending at t.

6. ORDERING AND ASYNCHRONY
Until now we have restricted our discussion to Dedalus0. In

this section we introduce Dedalus, a superset of Dedalus0 that
also admits the choice construct [12] to bind time suffixes. Choice
allows us to model the inherent nondeterminism in communication
over unreliable networks that may delay, lose or reorder the results
of logical deductions. We also describe a syntactic convention to
employ this communication model for “horizontal partitions” of
relations on different machines.

6.1 Choice
An important property of distributed systems is that individual

computers cannot control or observe the temporal interleaving of
their computations with other computers. One aspect of this uncer-
tainty is captured in network delays: the arrival “time” of messages
cannot be directly controlled by either sender or receiver. In this
section, we enhance our language with a traditional model of non-
determinism from the literature to capture these issues: the choice
construct as defined by Greco and Zaniolo [12].

The subgoal choose((X1), ((X2)) may appear in the body of
a rule, where X1 and X2 are vectors whose constituent variables
occur elsewhere in the body. Such a subgoal enforces the functional
dependency X1 → X2, “choosing” a single assignment of values to
the variables in X2 for each variable in X1.

The choice construct is nondeterministic. In a model-theoretic in-
terpretation of logic programming, a nondeterministic program must
have a multiplicity of stable models—that is it must be unstratifiable.
Greco and Zaniolo define choice in precisely this fashion: the choice
construct is expanded into an unstratifiable strongly-connected com-
ponent of rules, and each possible choice is associated with a dif-
ferent model. Each such model has a unique, non-deterministic
assignment that respects the given functional dependencies. In our
discussion, it may be helpful to think of one such model chosen non-
deterministically—a non-deterministic “assignment of timestamps
to tuples.”

6.2 Distribution Model
The choice construct will capture the non-determinism of multiple

communicating agents in a distributed system, but we want to use
it in a stylized way to model typical notions of distribution. To
this end Dedalus adopts the “horizontal partitioning” convention
introduced by Loo et al. and used in many subsequent efforts [21].
To represent a distributed system, we consider some number of
agents, each running a copy of the same program against a disjoint
subset (horizontal partition) of each predicate’s contents. We require
one attribute in each predicate to be used to identify the partitioning
for tuples in that predicate. We call such an attribute a location
specifier, and prefix it with a # symbol in Dedalus.

Finally, we constrain Dedalus rules so that the location specifier
variable in each body predicate be the same—i.e. the body contains
tuples from exactly one partition of the database, logically colocated
(on a single “machine”). If the head of the rule has the same location
specifier variable as the body, we call the rule “local,” since its
results can remain on the machine where they are computed. If the
head has a different variable in its location specifier, we call the
rule a communication rule. We now proceed to our model of the
asynchrony of this communication, which is captured in a syntactic
constraint on the heads of communication rules.

6.3 Asynchronous Rules
In order to represent the nondeterminism introduced by distri-

bution, we admit a third type of rule, called an asynchronous rule.
A rule is asynchronous if the relationship between the head time
suffix S and the body time suffix T is unknown. Furthermore, S
(but not T ) may take on the special value > which means “never.”
Derivation at > indicates that the deduction is “lost,” as time suffixes
in rule bodies do not range over >.

We model network nondeterminism using the choice construct to
choose from a value in the special time predicate, which is defined
using the following Datalog rules:
time(>);
time(S) ← successor(S, _);

Each asynchronous rule with head predicate p(A1, . . . , An) has the
following additional subgoals in its body:
time(S), choose((A1, . . . , An,T), (S)),

where S is the timestamp of the rule head. Note that our use of
choose incorporates all variables of each head predicate tuple,
which allows a unique choice of S for each head tuple.

Example 8. A well-formed asynchronous Dedalus rule:

r(A, B, S) ←
e(A, B, T),
time(S), choose((A, B, T)), (S));

We admit a new temporal head annotation to sugar the rule above.
The identifier async implies that the rule is asynchronous, and
stands in for the additional body predicates. The above example
expressed using async is:

Example 9. A sugared asynchronous Dedalus rule:

r(A, B)@async ← e(A, B);

6.4 Asynchrony and Distribution in Dedalus
As a syntactic constraint of Dedalus, the communication rules

introduced in the previous section (rules that differ in head and body
location specifiers) are required to be asynchronous. This restricts
our model of communication between agents in two important ways.
First, by restricting bodies to a single agent, the only communica-
tion modeled in Dedalus occurs via communication rules. Second,
because all communication rules are asynchronous, agents may only
learn about time values at another agent by receiving messages (with
unbounded delay) from that agent. Note that this model says nothing
about the relationship between the agents’ clocks; they could be
non-monotonically increasing, or they could respect a global order.

6.5 Temporal Monotonicity
Nothing in our definition of asynchronous rules prevents tuples

in the head of a rule from having a timestamp that precedes the
timestamp in the rule’s body. This is a significant departure from
Dedalus0, since it violates the monotonicity assumptions upon
which we based both Algorithm 1 and our proof of temporal strati-
fication. On an intuitive level, it may also trouble us that rules can
derive head tuples that exist “before” the body tuples on which they
are grounded; this violates intuitive notions of causality and admits
the possibility of temporal paradoxes.

We have avoided restricting Dedalus to rule out such issues, as
doing so would reduce its expressiveness. Recall that simple mono-
tonic Datalog (without negation) is insensitive to the values in any
particular attribute. Hence Dedalus programs without negation are
also well-defined regardless of any “temporal ordering” of deduc-
tions: in monotonic programs, even if tuples with timestamps “in



the future” are used to derive tuples “from the past,” there is an
unambiguous least minimal model.

For non-monotonic Dedalus0 programs, the monotonicity of the
time suffix ensures us a unique minimal model in many cases. When-
ever we can guarantee monotonicity of the time suffix for Dedalus
programs, our results from Section 4.1 still apply for all models
produced by the choice construct.

6.5.1 Practical Implications
Given this discussion, in practice we are interested in three

asynchronous scenarios: (a) monotonic programs (even with non-
monotonicity in time), (b) non-monotonic programs whose seman-
tics guarantee monotonicity of time suffixes and (c) non-monotonic
programs where we have domain knowledge guaranteeing mono-
tonicity of time suffixes. Each represents practical scenarios of
interest.

The first category captures the spirit of many simple distributed
implementations that are built atop unreliable asynchronous sub-
strates. For example, in some Internet publishing applications (we-
blogs, online fora), it is possible due to caching or failure that a
“thread” of discussion arrives out of order, with responses appearing
before the comments they reference. In many cases a monotonic
“bag semantics” for the comment program is considered a reasonable
interface for readers, and the ability to tolerate temporal anomalies
simplifies the challenge of scaling a system through distribution.

The second scenario is achieved in Dedalus0 via the use of
successor for the time suffix. The asynchronous rules of Dedalus
require additional program logic to guarantee monotonic increases
in time for predicates with dependencies. In the theoretical literature
of distributed computing, this is known as a causal ordering, and is
enforced by distributed clock protocols. We review one classic pro-
tocol in the Dedalus context in Section 6.6; including this protocol
into Dedalus programs ensures temporal monotonicity.

Finally, certain computational substrates guarantee monotonic-
ity in both timestamps and message ordering—for example, some
multiprocessor cache coherency protocols achieve this. When tem-
poral monotonicity is given, the proofs of temporal stratification and
Algorithm 1 both apply.

6.5.2 Entanglement
Consider the asynchronous rule below:
p(A, B, N)@async ←
q(A, B)@N;

Due to the async keyword in the rule head, each p tuple will take
some unspecified time suffix value. Note however that the time
suffix N of the rule body appears also in an attribute of p other than
the time suffix, recording a binding of both the time value of the
deduction and the time value of its consequence. We call such a
binding an entanglement. Note that in order to write the rule it was
necessary to not sugar away the time suffix in the rule body.

Entanglement is a powerful construct. It allows a rule to reference
the logical clock time of the deduction that produced one (or more)
of its subgoals; this supports protocols that reason about partial
ordering of time across machines. More generally, it exposes the
infinite successor relation to attributes other than the time suffix,
allowing us to express concepts such as infinite sequences.

6.6 Lamport Clocks
Recall that Dedalus allows program executions to order message

timestamps arbitrarily, violating intuitive notions of causality by
allowing deductions to “affect the past.” This section explains how
to implement Lamport clocks [15] atop Dedalus, which allows pro-
grams to ensure temporal monotonicity, by reestablishing a causal

order despite derivations that flow backwards through time.
Consider a rule p(A,B)@async ← q(A,B). By rewriting it to:
persist[p, p_neg, 2]
p_wait(A, B, N)@async ← q(A, B)@N;
p_wait(A, B, N)@next ← p_wait(A, B, N)@M, N ≥ M;
p(A, B)@next ← p_wait(A, B, N)@M, N < M;

we place the derived tuple in a new relation p_wait that stores any
tuples that were “sent from the future” with their sending time “en-
tangled”; these tuples stay in the p_wait predicate until the point
in time at which they were derived. Conceptually, this causes the
system to evaluate a potentially large number of timesteps (if N
is significantly less than the timestamp of the system when the tu-
ple arrives). However, if the runtime is able to efficiently evaluate
timesteps when the database is quiescent, then instead of “waiting”
by evaluating timesteps, it will simply increase its logical clock to
match that of the sender. In contrast, if the tuple is “sent into the
future,” then it is processed using the timestep that receives it.

This manipulation of timesteps and clock values is equivalent
to conventional descriptions of Lamport clocks, except that our
Lamport clock implementation effectively “advances the clock” by
preventing derivations until the clock is sufficiently advanced, by
temporarily store incoming tuples in the p_wait relation.

We gloss over one detail here: Lamport clocks rely upon a “tie-
breaking” function to ensure that no two events have the same
timestamp. In Dedalus, such a function could be implemented via
another use of choice, or by a program convention like appending
a unique node identifier to each timestamp to prevent “ties.”

6.7 Reliable Broadcast
Distributed systems cope with unreliable networks by using mech-

anisms like broadcast and consensus protocols, timeouts and re-
tries, and often hide the nondeterminism behind these abstractions.
Dedalus supports these notions, achieving encapsulation of nonde-
terminism while dealing explicitly with the uncertainty in the model.
Consider the simple broadcast protocol below:
sbcast(#Member, Sender, Message)@async ←

smessage(#Agent, Sender, Message),
members(#Agent, Member);

sdeliver(Member, Sender, Message) ←
sbcast(Member, Sender, Message);

Assume the table members is a persistent relation given to us,
containing the broadcast membership list. The protocol is straight-
forward: if a tuple appears in smessage (an EDB predicate), then it
will be sent to all members (a multicast). The interpretation of the
non-deterministic choice implied by the @async rule indicates that
order and delivery (i.e. finite delay) are not guaranteed.

The program shown below makes use of the multicast primitive
provided by broadcast_simple, and uses it to implement a basic
reliable broadcast using a textbook mechanism [24] that assumes
any node that fails to receive a message sent to it has failed. When
broadcast completes, all nodes that have not failed have received the
message.

Our simple two-rule broadcast program is augmented with the fol-
lowing rules, so that if a node receives a message, it also multicasts
it to every member before delivering the message locally:



smessage(Agent, Sender, Message) ←
rmessage(Agent, Sender, Message);

buf_bcast(Sender, Me, Message) ←
sdeliver(Me, Sender, Message);

smessage(Me, Sender, Message) ←
buf_bcast(Sender, Me, Message);

rdeliver(Me, Sender, Message)@next ←
buf_bcast(Sender, Me, Message);

Note that all network communication is initiated by the @async
rule from the original simple broadcast. The @next is required
in the rdeliver definition in order to prevent nodes from taking
actions based upon the broadcast before it is guaranteed to meet the
reliability guarantee.

Implementing other disciplines like FIFO and atomic broadcast
and consensus are similar exercises, requiring the use of ordered
queueing and sequences.

7. RELATED WORK

7.1 Updateable State
Many deductive database systems, including LDL [7] and Glue-

Nail [10], admit procedural semantics to deal with updates using
an assignment primitive. In contrast, languages proposed by Cleary
and Liu [9, 18, 22] retain a purely logical interpretation by admitting
temporal extensions into their syntax and interpreting assignment
or update as a composite operation across timesteps [18] rather
than as a primitive. We follow the latter approach, but differ in
several significant ways. First, we model persistence explicitly in
our language, so that like updates, it is specified as a composite
operation across timesteps. Partly as a result of this, we are able to
enforce stricter constraints on the allowable time suffixes in rules: a
program may only specify what deductions are visible in the current
timestep, the immediate next timestep, and some future timestep,
as opposed to the free use of intervals allowed in rules in Liu et al.
Our simple inductive approach to persistence obviates the need to
evaluate stabbing queries on time “ranges.”

U-Datalog [6] addresses updates using syntax annotations that
establish different interpretations for the set of updated relations
and the IDB, interpreting update atoms as constraints and using
constraint logic programming techniques to test for inconsistent
derivations. Similarly, Timed Concurrent Constraint Programming
(TCCP) [28, 29] handles nonmonotonic constructs in a CLP frame-
work by outputting a new (possibly diminished) store and constraint
program at each timestep.

Lamport’s TLA+ [16] is a language for specifying concurrent
systems in terms of constraints over valuations of state, and temporal
logic that describes admissible transitions. The notion of state pred-
icates being distinguishable from actions in that they are “invariant
under stuttering” is similar to our declarative definition of table
persistence. Two distinguishing features of Dedalus with respect to
TLA+ is our minimalist use of temporal constructs (next and later),
and our unified treatment of temporal and other attributes of facts,
enabling the full literature of Datalog to be applied both to temporal
and instantaneous properties of programs.

7.2 Distributed Systems
Significant recent work ([2, 5, 8, 20], etc.) has focused on apply-

ing deductive database languages extended with networking primi-
tives to the problem of specifying and implementing network pro-
tocols and distributed systems. Implementing distributed systems
entails a data store that changes over time, so any useful implemen-

tation of such a language addresses the updateable state issue in
some manner. Existing distributed deductive languages like NDlog
and Overlog adopt a chain of fixpoints interpretation. All rules are
expressed as straightforward Datalog, and evaluation proceeds in
three phases:

1. Input from the external world, including network messages,
clock interrupts and host language calls, is collected.

2. Time is frozen, the union of the local store and the batch of
events is taken as EDB, and the program is run to fixpoint.

3. The deductions which cause side effects, including messages,
writes and deletions of values in the local store, and host
language callbacks are dealt with.

Unfortunately, the language descriptions give no careful speci-
fication of how and when deletions and updates should be made
visible, so the third step is a “black box.” Loo et al. [19] proved
that classes of programs with certain monotonicity properties (i.e.
programs without negation or fact deletion) are equivalent (specifi-
cally, eventually consistent) when evaluated globally (via a single
fixpoint computation) or in a distributed setting in which the chain
of fixpoints interpretation is applied at each participating node, and
no messages are lost. Navarro et al. [26] proposed an alternate
syntax that addressed key ambiguities in Overlog, including the
event creation vs. effect ambiguity. Their solution solves the prob-
lem by introducing procedural semantics to the interpretation of the
augmented Overlog programs. A similar analysis was offered by
Mao [23].

8. CONCLUSION
Datalog has inspired a variety of recent applied work, which touts

the benefits of declarative specifications for practical implementa-
tions. We have developed substantial experience building significant
distributed systems [2, 3, 8, 20] using hybrid declarative/imperative
languages such as Overlog [20]. While our experience with those
languages was largely positive, the combination of Datalog and im-
perative constructs often clouded our understanding of the “correct”
execution of single-node programs that performed state updates.
This work developed in large part as a reaction to the semantic
difficulties presented by these distributed logic languages.

Through its reification of time as data, Dedalus allowed us to
achieve the goal of a declarative language without sacrificing crit-
ically expressive features for the distributed systems domain. We
believe that Dedalus is as expressive as Overlog, whose operational
semantics [2] are essentially the same as those described in Algo-
rithm 1. Formalizing this intuition is difficult because the semantics
of Overlog are not well specified. Instead, we are currently validat-
ing our practicality by “porting” many of our Overlog programs to
Dedalus.

In Dedalus, state update and communication differ from logical
deductions only in terms of timing. In the local case, this allows
us to express state update without giving up the clean semantics of
Datalog; unlike Datalog extensions that use imperative constructs
to provide such functionality, each Dedalus rule expresses a logi-
cal invariant that will hold over all program executions. However,
interactions with external processes, and primitives such as asyn-
chronous and unreliable communication introduce nondeterminism
which Dedalus models with choose. Our hope is that modeling
external processes and events with a single primitive will simplify
formal program verification techniques for the distributed systems
domain. Two natural directions in this vein are to determine for a
given Dedalus program whether Church-Rosser confluence holds



for all models produced by choice, or to capture finer-grained no-
tions like serializability of such models with respect to transaction
identifiers embedded in EDB facts.
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