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The Stein estimator 's and the better positive-part Stein estimator gpS both
dominate the sample mean, under quadratic loss, in the N(g, I) model of dimension
q > 3. Standard large sample theory does not explaill this phenomenon well. Plausi-
ble bootstrap estimators for the risk of 's do not converge correctly at the shrinkage
point as sample size n increases. By analyzing a submodel exactly, with the help of
results from directional statistics, and then letting dimension q -* oo, we find:
* In high dimensions, (s and &S are approximately admissible and approximately
minimax on large compact balls about the shrinkage point. The sample mean is
neither.

* A new estimator of (, asymptotically equivalent to &pS as q -* oo, appears to
dominate &Ps slightly.

* Resampling from a N(t, I) distribution, where k112 estimates ItI2 well, is the key
to consistent bootstrap risk estimation for orthogonally equivariant estimators of
(. Choosing ( to be the Stein estimator or the positive-part Stein!estimator or
the sample mean does not work.

* Estimators of 141 are subject to a sharp local asymptotic minimax bound as q
increases.
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1. Introduction.
For the mean vector g of a q-variate N(g, I) distribution, the sample mean is not

an admissible estimator, under squared-error loss, when dimension q > 3. First proved
by C. Stein (1956) and subsequently sharpened in James and Stein (1961), this re-
markable result came as a surprise to the statistical community. Notable contributions
to our understanding of the Stein phenomenon include Stein (1962), Brown (1966),
Baranchik (1970), Strawderman (1972), Efron and Morris (1973), Stein (1981), Berger
and Wolpert (1983). A valuable survey article is Brandwein and Strawderman (1990).

Large sample theory has difficulty in explaining what Stein estimation is about.
Suppose Y1, Y2,. . . , YK are i.i.d. random q-vectors, each having a N(g, I) distribution
with C unknown and q > 3. Let I( I denote euclidean norm on Rq and let Yf denote
the sample mean vector. The basic Stein estimator

(1.1) gs ~~~~~=[1 - 1 2 Y.

has risk

(1.2) Rq,n(Cs,C) = q nEIs -( = 1C-sEd

which is strictly less than the risk of Yn at every C and equals 2/q at the shrinkage
point g = 0 (James and Stein 1961).

Standard large sample theory tells us that, as ni -+ oo with q fixed:

(a) Both (s and Yn are locally asymptotically minimax estimators at every C, in the
sense of Hajek (1972) and LeCam (1972).

(b) Both Cs and Yn are Hajek regular at every C 7L 0 and are asymptotically least dis-
persed among such regular estimators of C, by virtue of Hajek's (1970) convolution
theorem.

(c) At the shrinkage point C = 0, Yn is still Hajek regular but As is not (van der Vaart
1988).

(d) At every C # 0, the risk of Cs improves upon the risk of Yn by O(n-1) (Ibragimov
and Has'minskii 1981).

None of these results explain the form of Cs or whether significant improvement on
Cs is possible.

Related to the lack of Hajek regularity in point (c) is the inconsistency at the
shrinkage point, as n -+ oo, of plausible bootstrap estimators for the risk Rqn(Cs, gf).
Writing Rn(g) for this risk, two natural parametric bootstrap estimators are Rn(Cs)
and RnJ(Yn). These correspond to resampling from the N(Cs, I) and N(Y, I) distribu-
tions respectively. Consider an arbitrary sequence {(n E Rq} such that n1/2(Cn - C)
h, a fixed finite q-vector. Let Z denote a standard normal random q-vector. Then

(1.3) lim R&(n) = {l ifl (4 0
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where

(1.4) w(h) = - E [ IZ+hl2]

Thus, when =0 and q is fixed as n -* oo, the bootstrap risk estimator Rn((s)
converges in distribution to the non-degenerate random variable w[(1 - (q-2)/Z12)Z],
rather than to the correct risk w(O). Similarly, the alternative bootstrap risk estimator
Rn(Yn) converges in distribution to the non-degenerate random variable w(Z).

This paper pursues the theme that dimensional asymptotics, in which q -* oo,
help to clarify the Stein phenomenon. The basis for this approach is in Stein (1956)
and (1962). Asymptotics in q have received little attention in the subsequent literature
on Stein estimation, but are common in the logically related nonparametric regression
literature, where (i is assumed to depend smoothly upon i.

Our results are organized as follows. Section 2 studies the best orthogonally
equivariant estimator (E(PO) of ( in the N((, I) submodel where po = 1 is fixed.
The orthogonal group is transitive on the parameter space of the submodel. We find
an explicit analytical formula for (E(po) by using theory from directional statistics for
the Langevin (or Fisher-von Mises) distribution on the unit sphere. A mathematically
simpler equivariant estimator,

(1.5) (AE(pO) =(Po/IYnI|)1 n

is shown to approximate (E(pO) well in high dimensions. It was the perception of this
approximation that guided the treatment in Steiln (1956) and (1962).

Section 3 develops good estimates p of 1j1 in the full N((, I) model and then
analyzes the adaptive estimators (E(p) and (AEQP) of (. In particular, Section 3.1
establishes that the estimators

(1.6) = i 12- (q - d)/n, A2 = [ -(q-d)/n]+,
d being any constant, are locally asymptotically minimax for IeI2 as q -O oo. Here
[x]+ is the positive-part function, equal to the larger of x and 0. When p2 is taken to
be IYn2 - (q - 2)/n, then (AE(P) is the Stein estimator &s. On the other hand, when
p iS [Yn2 -(q- 2)/n]+, then gAE(P) becomes the positive-part Stein estimator

(q then
q 2

(1.7) ^ +Yn2)

Section 3.2 develops asymptotic optimality results concerning the estimation of
(. We prove that as q -- oo, with pgiven by (1.6), the estimators (E(P3) and (AE(A)
are asymptotically minimax and asymptotically e-admissible on large compact balls
about the origin. The estimator Yn has neither optimality property. The best choice
of the constant d in the estimator (E(p) is not entirely clear. However, a numerical
experiment strongly suggests that, for every q, there exist values of d such that the
estimator (E(P) dominates the positive-part Stein estimator &PS.
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Section 3.3 returns to the question of bootstrapping orthogonally equivariant es-
timators such as Stein's. We prove that resampling from the N(t, I) distribution,
where l112 is an asymptotically efficient estimator of jej2 in the sense of Section 3.1,
yields consistent risk estimators as q -- oo for regular orthogonally equivariant esti-
mators of (. The argument also shows why resampling from the N(,s, I) or N((ps, I)
or N(Y, I) distributions fails. A simple adjustment reduces the bias of the proposed
risk estimators.

2. The Fixed-Length Submodel.
Without any loss of generality, we fix the sample size n at 1. Observed is the

random q-vector X = (X1, .., Xq)' whose distribution is N(d, I), the vector ( E Rq
being unknown. The risk of an estimator =(X) is

(2.1) Rq(q,) = E

Of special interest in this paper are estimators ( that are equivariant under the
orthogonal group: ((OX)= O(X) for every q x q orthogonal matrix 0. Every such
estimator can be written in the form

(2.2) ((X) = h(IXI)X
for some real-valued function h (Stein 1956, Section 3).

2.1. Exact theory. Consider the estimation of ( when 1.1 is fixed at a known
value po and only the direction vector p = g/I is unknown. In this submodel, we
derive the minimum risk equivariant estimator of ( and the minimum risk equivariant
estimator of ( among estimators whose length is po.

The conditional risk, given IXI, of any equivariant estimator (2.2) is

(2.3) q1 [h2(IXl)IX12 - 2h(IXl)E~(('XlIXl) + p2].
Let A= X/IXI denote the direction vector of X. The choice of h that minimizes
(2.3) is

(2.4) ho(IXI) = IL2Edt'XIXI) = poIX LE^j('ftjjXI).
The conditional expectation in (2.4) may be evaluated as follows. When q > 2,

the conditional distribution of ft given IXI is Langevin on the unit sphere in R with
mean direction p = (/j( and dispersion parameter n = pojXI (cf. Watson 1986). The
density of this distribution, relative to spherical surface measure, is aq(is) exp(qp'x),
where

(2.5) aq(n) =(2r)-q/2Kq/2-1- (K

and I>(N.) is the modified Bessel function of the first kind and order Iv (cf. Schou
1978). When q = 1, the conditional distribution of ,A is discrete, supported on the
two points ±1 with

(2.6) Pe(ft = llIXI) = [exp((JXj) + exp(-(IXI)]- exp((jXI)
Pt(= -ii Xj) = [exp((|X ) + exp(-(IXj)]- exp(- lXI).
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From the analysis in Appendix A of Watson (1986), it follows that for every
integer q > 2,

(2.7) E (p' Xil AqA(POIX

where

(2.8) Aq(z) = Iq/2(z)/Iq/21, (z), z > 0.

For q = 1, the conditional distribution (2.6) yields

(2.9) E (t' IAIXI) = tanh(pojXj).

This calculation agrees conveniently with formula (2.7) for q 1. Thus, by (2.4),
(2.7) and (2.9), the minimum risk orthogonally equivariant estimator of ( in the fixed
length submodel is

(2.10) '(E(PO) = poAq(po|Xj)jz, q> 1.

If we restrict attention to equivariant estimators ( such that po= P, the only
possibilities, according to (2.2), are = ±poA- The positive sign minimizes the con-
ditional risk (2.3). Consequently, the best constrained length equivariant estimator
of ( is

(2.11) GCE(PO) = popI,

in agreement with intuition.
These considerations, the compactness of the orthogonal group on Rq, and the

Hunt-Stein theorem prove the following result.

THEOREM 2.1. In the fixed length submodel where p4jpo, the minimum risk
orthogonally equivariant estimator of ( is (E(po), defined in (2.10). This estimator
is minimax and admissible among all estimators of (. Among estimators of ( whose
length is constrained to be po, the minimum risk orthogonally equivariant estimator
is (CE(po), defined in (2.11). This alternative estimator is minimax and admissible
among all estimators whose length is po.

It is of interest to compare gE with (CE and with two other orthogonally equiv-
ariant estimators: X and

(2.12) cAE(PO) = (Po/1jXj)jt
The latter estimator will be seen to approximate (E(po) for large values of q (Theorem
2.3). While (E(Po) strictly dominates every orthogonally equivariant estimator in the
fixed length submodel, the improvement is large in the case of X and is much smaller
in the case of GAE(PO) or (CE(pO). These points will be clarified through the next two
theorems.
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From (2.3) and (2.7), the risk of the general orthogonally equivariant estimator
-h(IXI)X is

(2.13) Rq(,() = q-1E4[h2(IXj)IX12 - 2poh(IXj)IXjAq(fpojXJ) + p2].
Substituting the appropriate values of h( IXI) into (2.13) yields

THEOREM 2.2. In the fixed length submodel where po,

(2.14) Rq( E(Po)() = -poA2(poAXq)]

(2.15) Rq(cAE(Po),() 2 - 2p3IX[-'Aq(pOIXj) + p4IXL-21

(2.16) Rq((CE(PO),c) q-E42p2 - 2p2Aq(pojXj)].

The risks of the three estimators in Theorem 2.2 can also be computed by Stein's
(1981) method for estimators of the form -X + g(X):

q

(2.17) Rq(, g)=1 + q-1Et[Ig(X)j2 + 2 agi(Xi)/dXi]
i=1

where gi is the ith component of g. This approach yields strikingly different, though
necessarily equivalent, expressions for the risks of the three estimators. For example,
Stein's formula gives

(2.18) Rq(EE(Po),>) = q-Et[{IXj - poAq(poIX1)}2 - 2p{1 - A2(pojXI)}] - 1

From (2.18) and (2.14), we see that the sufficient statistic X is not complete in the
fixed length submodel.

2.2. Properties of Aq(z). Further developments and the calculation of (E(po) rely
on the following results. The function Aq satisfies the recursion

(2.19) Aq(z) =l/Aq-2(Z)- (q - 2)/z, q > 3

by Schou (1978, Appendix A). In particular,

(2.20) Aj(z) = tanh(z)

A3(z) = coth(z) - 1/z
and so forth for odd orders q. The function Aq also satisfies the differential equation

(2.21) A'(z) = 1 - (q - 1)Aq(z)/z - A2(z)
as in Schou (1978, Section 2). For every integer q > 1, Aq(z) is strictly monotone
increasing and concave on z > 0, with AJq(z) < 0,

Aq(0) = 0, lim A =(z) 1

(2.22) A'(0) = l/q, lim Al(z) = 0q ~~~z-+oo
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by Watson (1986, Appendix A). Finally, for every z > 0,

(2.23) lim zAq(qz) = (z2 + 1/4)1/2 - 1/2.
q-4oo

To verify (2.23), let Bq(z) = zAq(qz) and write B(z) for the limit of a convergent
subsequence in {Bq(z) : q > 1}. Equation (2.21) and the second line in (2.22) give

(2.24) 0 =z2 - B(z) - B2(z).

The positive root of (2.24) is B(z) = (Z2 + 1/4)1/2 - 1/2, implying (2.23).

2.3. Asymptotic risks. For t > 0, let

(2.25) rE(t) = t/(1 + t)

and

(2.26) rCE(t) = [1 + {(1 + t)1/2 - t/2}2]t/(1 + t).
Evidently rCE(t) > rE(t) whenever t > 0. The maximum difference between rCE(t)
and rE(t) is only .091. As the next theorem shows, this figure is the maximum
difference between the asymptotic risk of 'CE(Po) and the asymptotic risk of the best
orthogonally equivariant estimator (E(po).

THEOREM 2.3. In the fixed length submodel where 1j1 = po, the following uniform
risk approximations hold for every finite c > 0:

(2.27) lim sup IRq(EE(po), -rE(p2/q)I = 0
q-+oo2<qc

and likewise for Rq((AE(Po), () while

(2.28) lim sup IRq(ACE(po), )-rCE(po/q)l = 0
q-o 2O <qc

q(C P)

Moreover, the estimators (E(po) and (AE(po) are asymptotically equivalent in the sense
that

(2.29) lim sup q1Ej|E(po)I-AAE(Po)l = 0
qo p2<qc

PROOF. Let {Pq : >
1} be any of positive numbers such that p2/q a,

where a is finite. Let {Jq e Rq} be any sequence such that jlqI = pq. To prove (2.27)
it suffices to show that

(2.30) lim Rq((E(pq), q) = rE(a).
q--+o
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Let Xq be a random q-vector with N((q, I) distribution. As q -f oo,

(2.31) lXql2/q -- 1 + a in probability

and therefore, by (2.23),

(2.32) q-1pqlXqjAq(pqjXqj) -+ a in probability.

Limit (2.27) now follows from (2.14) in Theorem 2.2.
Similar reasoning handles the risks of (AE(Po) and (cE(po).
Let

(2.33) Cq = q - A-q)

and observe that

(2.34) q lEJqtE - 'AE2 = Rq( E, gq) + Rq(CAE, q) - 2Etq(Cq).
From (2.31) and (2.32), Cq -* a/(1 + a) in probability. Hence

(2.35) liminf Eeq(Cq) > rE(a).
q--*oo

On the other hand, by Cauchy-Schwarz and (2.27) and its counterpart for CAE(PO),
(2.36) lim sup Eq (Cq) < rE (a).

q-+oo

Conclusion (2.29) now follows from (2.34) and these considerations.

2.4. Geometry of the asymptotics. Figure 1, which is suggested by the figures
in Stein (1962) and Brandwein and Strawderman (1990), exhibits the geometry of
the limits in Theorem 2.3. Under the triangular array asymptotics used to prove
the theorem, the following relations are very nearly true with high probability when
dimension q is large:

(2.37) q-1/2q 12 = a, lq-l2x - q-1/2Cq 12-1 q-"/2Xj2 = 1 + a.

Consequently, the large triangle in Figure 1 is nearly right-angled, with

(2.38) Cos2(0) = a/(1 + a).

The circle in Figure 1 represents the parameter space of the fixed-length submodel in
which q-1/2Cq 12 = a.

As was noted in (2.2), orthogonally equivariant estimators lie along the vector X.
The scaled equivariant estimator q-124 that minimizes the loss jq-12 -q /2(j2 is the
orthogonal projection of q-124 onto X. For large q, the minimizing C approximately
satisfies

(2.32) q 1/2 - q1/2 q cos(I)CO [a/(1 + a)]q/12X
8



with high probability. Algebraically, q"2 coincides asymptotically with q-11k2AE-
On the other hand since minimizing loss also minimizes risk, q-1/2 coincides asymp-
totically with q-1/2(E

Thus, from the geometry,

(2.40) q- E q-1/2AE- a sin2(0) rE(a)

is very nearly true with high probability for large q. This conclusion agrees with limit
(2.28) in Theorem 2.3. Applying Pythagoras' theorem to the smallest right-angled
triangle in Figure 1 yields the asymptotic approximation

(2.41) q-1 VCE- 12 rE(a) + [a/2 all2 cos(0)]2 rcE(a)

in agreement with limit (2.29).

[Figure 1 goes here]

3. The Full Model.
In the full N((, I) model, with ( e R , we can pursue an adaptive strategy for

estimating (: first devise a good estimator A of 1j1 and then form

(E(p) = iAq(fAIjX)A
(3.1) AE( A) = (p2/IX)A

(CE (P pH -

When p2 is taken to be X12 - q + 2 or [jX12 - q + 2]+, then 'AE(P) becomes the Stein
estimator (s or the positive-part Stein estimator (ps, respectively. The proper choice
of A and the performance of the estimators (3.1) for ( are the main themes of this
section.

3.1. Estimation of Ij12. The following triangular array central limit theorem
suggests good estimators for tI 2:

LEMMA 3.1. Let {fq e Rq} be any sequence such that Veq12/q --+ a < oo as q -0 oo.

Then

(3.2) £[q-112(jX12 - q - q 12) .jq] N(0, 2 + 4a).

The weak convergence in (3.2) is implied by the algebraic representation

(3.3) IX12 = q +J q12 + {jX - q12 -q} + 2q(X- q)
and the Lindeberg-Feller theorem. To apply the latter, note that £[IXjJlq} depends
on (q only through IfqI. Hence, there is no loss of generality in taking each component
of (q to be q-1/2JqI.
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The next theorem gives a local asymptotic minimax bound on the mean squared
error of estimators of jf12 in high dimension. The proof is in Section 4.

THEOREM 3.2. In the full N(t, I) model, for every finite a > 0,

(3.4) lim liminfinf sup q- 2)2 > 2 + 4a,
c-0oo q-_xj°P 1/q-aj<q-1/2C

the infimum being taken over all estimators p.

The lower bound (3.4) is sharp in the following sense: if A2 = jX12 - q + d or
[jX 2 - q + d]+, where d is a constant, then

(3.5) lim sup q 'E~(A2 _ It12)2 = 2 + 4a
q--c0 11I12/q-aljq-I/2C

for every finite c > 0. This assertion is immediate from Lemma 3.1. In particular,
the uniformly minimum variance unbiased estimator of jt12, which is p2 = jX12 - q, is
locally asymptotically minimax among all estimators of IfI2 as dimension q increases.
The UMVU has the unfortunate property of being negative with positive probability.

An analogous lower bound for estimators of 1j1 is

(3.6) lim lim inf inf sup Ee( A - >H)2. (1 + 2a)/(2a).
C D+00 qoop ll2q- l< l2

It is attained asymptotically by the estimator

7 = [1X12 q + 2

where d is any constant.

3.2. Estimation of t. We begin by computing the risks of the adaptive estimators
(3.1) when p is given by (3.7). Since these adaptive est'imators are orthogonally
equivariant, it follows from (2.3) that

(3.8) RqQ E(/E), ) = q E[p2A 2(pXl)- 21(jAq(jJXj) Aq(jIXj) + He 2]

(3.9) Rq (tAE()P = q 1EP[ 4-X2 - 2p2I| JIXI-'A9(I4IXI) + I6I2]

(3.10) Rq((CE(A),) q-E)[ 2=- 2pA3jlAq(jlIIXj) + If12].
Formula (3.9) is also valid for A2 = 1X12 - q + d. Thus, it applies to both the Stein
estimator and the positive-part Stein estimator, which arise when d = 2. This choice
of d is known to minimize the risk of 'AE(P).

The selection of d to minimize the risk of gE(P) is less clear. A numerical study
based on 40,000 Monte Carlo samples and double-precision arithmetic suggests that,
when q = 3 and d = 2.85 or when q = 5 and d = 2.7, the estimator (E(P) dominates
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the positive-part Stein estimator. Figure 2 exhibits the risk function difference com-
puted in the experiment for q = 3. We conjecture that, for every q, there exist choices
of d, depending on q, such that (E(p) dominates the positive-part Stein estimator.
Any such improvement in risk must tend to zero as q -* oo, because of the next
result.

[Figure 2 goes here]

THEOREM 3.3. In the full N((, I) model with p2 = [IX12 - q + dJ+, the following
risk approximations hold for every finite c > 0:

(3.11) lim sup IRq((E( ), ) - rE(1 l/q) I = 0
q-o 1~j2<qc

and likewise for Rq (6AE(1p), 6), while

(3.12) lim sup IRq(CE(), ) - rcE(po/q)I =0-
q-+oo 1~2<qc

Moreover, the adaptive estimators (EE(P) and 6AE(?) are asymptotically equivalent in
the sense that

(3.13) lim sup q1E4E1E(fA) - 'AE(P)2 = 0.
q --o 1ej2<qc

The proof of this theorem is similar to that for Theorem 2.3, relying on an asymp-
totic analysis of the exact risks given in (3.8) to (3.10). Equations (3.11) and (3.12)
indicate that the exact risks are better plotted against 1612/q rather than 1l12. Figure
3 displays in this fashion the risk functions of the positive-part Stein estimator when
q = 3,5,9,19 (solid curves), computed from 40,000 Monte Carlo samples. The dotted
curve in Figure 3 is the limiting risk function as q - oo, given by (3.11) and (2.25).
The rate of convergence seems quick.

[Figure 3 goes here]

We turn now to the main result of this section-the asymptotic optimality of
A A A

(E(P) and (AE(P) as dimension q increases. An estimator ( is said to be c-admissible
on Bq(c) = E(e Rq : 112 < qc} if there does not exist another estimator ( such that

(3.14) Rq(d,g) < Rq((,)-
for every ( E Bq(c).

THEOREM 3.4. In the full N((, I) model, for every finite c > 0,

(3.15) lim inf inf sup Rq(4,E) > rE(c)
q- oo flj2<qc
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the infimum being taken over all estimators I.If p2 = [1X12 - q + d]+ then for every
finite c > 0,

(3.16) lim sup Rq( E(Ep),() = rE(C)
q--co jtJ2<qc

A

and AE(3) is c-admissible on Bq(c) for all sufficiently large q. The same assertions
hold for gAE(P), in which case =2= jX12 - q + d also works.

The theorem is proved in Section 4. It entails that both the positive-part Stein
estimator and the Stein estimator, as well as the new estimator gE(pA), are asymp-
totically minimax and asymptotically c-admissible on large compact balls about the
origin. The estimator X has neither property, because

(3.17) lim sup Rq(X,i) = 1
q-oo JtJ2<qc

in contrast to (3.16). Similarly, (CE(p) lacks both asymptotic optimality properties.

3.3. Estimation of risk. Stein's formula (2.17) generates unbiased estimators for
the risks of gE(p) and gAE(p) that are consistent as q -- oo. Because this approach
requires considerable algebra, at least in the case of (E(P), it seems worth looking
for simpler bootstrap or asymptotic risk estimators. Three such risk estimators are
discussed in what follows.

Let gi be any orthogonally equivariant estimator of (, with risk

(3.18) Rq ((I),=)rq(I1I2).

We say thatgi is regular if, for every sequence {gq E Rq} such that JCqj2/q a as q
increases, we have

(3.19) lim rq(Ifq 12) = r(a)
q- 0oo

for some function r that does not depend on the sequence {gq}. By Theorem 3.3,
the estimators gCE(p), gE(p) and gAE(I) are each regular in this sense, the function
r being respectively rCE, rE and rE.

The estimator (cE(A), defined by (2.11) and (3.7) is just

(3.20) gCE(p) = [1 - (q - d)/IX12]+V X.

As estimators of the risk Rq(&, g), let us consider the parametric bootstrap estimator

(3.21) RB -rq(=(CE )

and the asymptotic estimator

(3.22) RA = r(J cE( A)I2/q).
12



Both RB and RA are always non-negative, a property not intrinsic to Stein's unbiased
estimator of risk.

THEOREM 3.5. Suppose that 6I is a regular orthogonally equivariant estimator of 6.
Then

(3.23) lrn sup P4IRB- Rq( I,)j > El > 0
q-+oo° j2<qc

for every e > 0 and every finite c > 0. If r is a continuous function, then the same
limit also holds for RA.

PROOF. The argument by contradiction for (3.23) rests on the following fact: the
convergence lq --+ a implies that

(3.24) VcE(P)I/lq = -2Iq* a

in probability, because of Lemma 3.1. Consequently, by the regularity of ,

(3.25) RB -* r(a)
in probability. If r is continuous, then also

(3.26) RA-+ r(a)
in probability. Since Rq (cI,q) r(a) by regularity, the theorem follows.

The calculation of RB and RA is straightforward in the case of the estimators
(E(P) and (AEQA). On the one hand, it follows from (3.22) and Theorem 2.3 that

(3.27) RA = lCE52/(q + V(CEI2)
for (E(pA) or (AE( A). On the other hand, let X* be a random q-vector whose conditional
distribution given X is N((CE(),I). Let E* denote conditional expectation with
respect to this distribution and let ( stand for the bootstrap recalculation (i(X*).
Then

(3.28) RB= q E*JI - &j2
for the regular orthogonally equivariant estimator (I. In the case of (E(PA) or 6AE(A),
representation (3.28) provides the basis for a simple Monte Carlo approximation to
RB.

The proof of Theorem 3.4 makes it clear why resampling from the N(6E(A), I) or
N((AE(A), I) or N(X, I) distribution does not give consistent bootstrap estimators of
the risk Rq(EJ,7 ). The difficulty is that Jtq2/q -+ a implies that

k(E(p) I/q -.. a2/(1 + a)
(3.29) AE(P)I/ /qa2/(1 + a)

IXI2/q-- 1+ a
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in probability. None of these limits has the value a that is required for consistency
of the corresponding bootstrap risks. As is illustrated in Figure 2, both (E(P) and
'AE(P) are too short while X is too long. The length of 'CE is just right.

A possible drawback to the risk estimator RA and RB is non-negligible bias when
q is small. To address the question of reducing bias, let

(3.30) b j) EeRA- Rq(t,I)

and define the bias-adjusted risk estimator to be

(3.31) RBA RA -

The second term on the right-side of (3.31) is a bootstrap estimator for the bias of
RA. Let

(3.32) R= r(l*1lq)
denote the asymptotic risk estimate recalculated on the bootstrap sample X*. Then

A A A A

(3.33) RBA = RB + RA- E*RA,
A A A

Thus, RBA can be viewed as a modification of either RA or of RB. A Monte Carlo
algorithm for approximating RBA follows immediately from the representation (3.33).

The effectiveness of the bias adjustment may be assessed by considering a special
case: estimating the risk of the Stein estimator (S. In this instance,

RA = ICE II(q + V(CE )

(3.34) RB = 1 -E* [(X*12q
RBA=RB+RA- E*[IE 12/(q+I±CE 1)].

On the other hand, Stein's unbiased estimator for the risk of (s is just

A ~(q -2)2/Iq
(3.35) RU = 1- IX12

Taylor expansions based on (3.3) show that the biases of RA and RB are O(q-') while
the bias of RBA is O(q-2). All four estimators are consistent for the risk of 's and
differ only by terms of order Op(q-').

More precisely, suppose that k(q12/q -- a as q increases. Then, by (1.2), (3.3) and
Taylor expansion,

(3.36) Rq(,s, q) = rE(|tqIl2/q) + q-rE1(J( l2/q) + O(q2)

where rE is given by (2.25) and

(3.37) rE l(t) = (1 + t)-3[2(1 + t)2 + 2t2].

14



The function rE l(t) is positive for every non-negative t, in agreement with Figure 3.
Moreover,

(3.38) RB = rE(j(CEj/q) + q 1rE,l(jCEj2/q) + Op(q2).

From (3.34) and (3.3),

(3.39) EE RA = rE(Jfqj /q) - q-1rE,2(|jq12 /q) + O(q-2),

where

(3.40) rE,2(t) = (1 + t)-3[2 - d + (4 - d)t].

When d 2, rE,2 is positive for every positive t. On the other hand, from (3.38),
(3.36) and (3.3),

(3.41) EqRRB =Rq(c,s,Iq) - q1 rE,2(q 2/q) + O(q 2).

Thus

(3.42) Bias(RA,)q) =-q-'[rE,2( Vqj2/q) + rE,1(jq 12/q)] + O(q-2)
Bias(RB, ,q) =-q- rE,2(1jqj?l/q) + O(q-2)

The extra term in the bias of RA reflects the amount by which the asymptotic risk
rE(Igq 12j/q) understates the actual risk.

From (3.39),

(3.43) E*(RA) =RA-q rE,2(CEC /q) + Op(q2).

Combining (3.42) and (3.43) with expression (3.33) for RBA establishes

(3.44) Bias(RBA,4q) = O(q)

A numerical example. Measurements of thickness were made on four samples of
green "one-inch" redwood boards produced at a lumber mill in northern California.
Each sample of boards was the outcome of a different sequence of sawing operations.
The data was gathered as part of a study on how resawing errors accumulate in the
cutting of a log into boards. The measured average thicknesses for the four samples
were, in inches,

(3.45) X = (0.91, 0.89, 0.91, 0.89).

Previous data indicated that the components of X could be treated as realizations of
independent normal random variables having different means but a common variance
=2= 0.00022. The target thickness for the boards in the four samples was 0.87 inch.

Taking this target thickness as shrinkage point and rescaling appropriately for
the variance yields the estimated mean thicknesses

(3.46) 's = (0.905, 0.879,0.905,0.879).
15



Set d = 2 in the definition (3.20) of gCE and consider the normalized risk r -2Rq(cs,I)
The asymptotic and bootstrap risk estimates associated with (3.46) are then

(3.47) RA= 0.00771, RB= 0.00925, RBA = 0.00941

while Stein's unbiased risk estimate is

(3.48) RU = 0.00935.

These numbers agree qualitatively with the preceding asymptotic theory in (3.42)
and (3.44). As expected, RA shows a substantial downward bias, RB shows a smaller
downward bias, and the adjusted bootstrap estimator RBA is the closest in value to
the unbiased risk estimate Ru.

4. Proofs.

PROOF OF THEOREM 3.2. To simplify notation, let

(4.1) Sq(pA, qlEq(,p2 - IW2)2, cr2 = 2 + 4a.

Suppose that the theorem is false. Then there exists c > 0 such that

(4.2) liminfinf sup Sq(A,l) < a2 _-
q-oo P JJtJ2/q_aJ<q1/2C

for every c > 0. Fix c. By going to a subsequence, we may assume without loss of
generality that

(4.3) inf sup Sq(A,l) < 72 -c/2
P jtJ2/q-aJ<qI/2c

for every q. Hence, there exists an estimator sequence {Iq} such that

(4.4) Sq( Aq, q) < a2 - c/4, q > 1,

for every (q such that I11q 12/q - a < q112C.
For each q, the estimation problem in (3.4) is invariant under the orthogonal group

on Rq. The induced group on the decision space consists solely of the identity map.
By the Hunt-Stein theorem and (4.4), there exist orthogonally equivariant estimators
{PI,q} such that

(4.5) Sq(pI,q, q) < U2 - c/4, q > 1,

for every (q such that IJIq12/q - al < q1/2c. Moreover

(4.6) =2 qgq(X1X2)

for some function gq; that is, A1q depends on X only through jXj2.
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For any Ihi < c, take (q such that Jlq12/q = a + q'1/2h. Let

(4.7) Wq = q-1/2oc'l[IX12 - q - kq 12]

Then

Sq(AI,q,q)= Etq{q"/2[gq(jX12) - a] -h}2
(4.8) = J{ql/2[4q (u) - a]j-h}2- Wq [(U- h)/cf]du

where

(4.9) gq(U) = gq[ql/2u + qa + a].

Let w(x) = 2 A A, where A > 0 is finite. By Lemma 3.1, the local central limit
theorem, and (4.8),

(4.10) Sq(PI,q,Iq) > Jw{q/2[3q (U)- a] - h}&10q[(U- h)/a]du
= E{w(Vq - h)cr-1p[(U - h)/a]/sc(U/oa)} + o(l)

where U has the standard normal distribution with density 0 and VQ = q1/2[q(U) -a].
By going to a subsequence, we may assume that the {(Vq, U)} converge weakly, as
random elements of Rq x R, to (V, U). Hence, by Fatou's lemma,

liminfSq(pI,q,7q) > E{w(V -h)o- p[(U -h)1a]1p(U1o)}q-+oo

(4.11) = J E[w(V - h)IU = u] a-i<'[(u - h)/of]du

= JJ|w(v - h)K(dv, u) c'-l[(u - h)/a]du

where K(dv, u) is the probability element of the conditional distribution of V given
U =u.

Let the constant A in the definition of u tend to infinity. Inequalities (4.5) and
(4.11) then yield

(4.12) JJ Iv - h2K(dv, u)of-&p[(u - h)/o]du < C-2- /4

for every Ih < c. Since the choice of c > 0 was arbitrary, (4.12) contradicts the
classical minimax bound for randomized estimators of h in the N(h, cr2I) model under
squared error loss.

PROOF OF THEOREM 3.4. The estimation problem is invariant under the
orthogonal group. By the Hunt-Stein theorem,

(4.13) inf sup Rq( ,)> inf sup Rq(cz,()
( 1(|<qc &. 1 12<qc
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the infimum on the right side being taken only over orthogonally equivariant estima-
tors (I. By Theorem 2.1,

(4.14) inf sup Rq( i,f) > inf sup Rq(VI,() = SUp Rq[tE(q 2c"2),(].
(I 1(j2<qc (I 1j12=qc 1e12=qc

In view of Theorem 2.3, equation (2.27), the right side of (4.14) converges to rE(c)
as q -* oo, proving (3.15).

Conclusion (3.16) is immediate from Theorem 3.3.
Suppose (E(p) is not e-admissible on Bq(c) for all sufficiently large q. Then there

exists a sequence {qj} tending to infinity and estimators { qj } such that

(4.15) Rqj((qj,,) < Rqj( E(E ), )-6, J 1

for every ( E Bqj(c). In view of (3.16),

(4.16) liminf sup Rqj(cqj,() . rE(c) - 6
q--oo ~eBq,(c)

contradicting (3.15).
The last claim in Theorem 3.4 now follows from Theorem 3.3.
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