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Abstract

In this paper, we formulate a new theoretical problem,
namely thereliable broadcast problem in unknown fixed-
identity networks. This problem arises in the context of de-
veloping decentralized security mechanisms in a specific-
class of distributed systems: Consider an undirected graph
G connectingn nodes where each node isaware of only
its neighborsbut not of the entire graph. Additionally, each
node has aunique identityand cannot fake its identity to its
neighbors. Assume thatk among then nodes act in anadver-
sarial manner and the remainingn−k aregoodnodes. Un-
der what constraints does there exist a distributed algorithm
Γ that enables every good nodev to reliably broadcast a mes-
sagem(v) to all other good nodes inG? While good nodes
follow the algorithmΓ, an adversary can additionally discard
messages, generate spurious messages or collude with other
adversaries.

In this paper, we prove two results on this problem. First,
we provide a distributed algorithmΓ that can achieve reli-
able broadcast in an unknown fixed-identity network in the
presence ofk adversaries ifG is 2k + 1 vertex connected.
Additionally, a minimum vertex connectivity of2k + 1 is a
necessary condition for achieving reliable broadcast. Next,
we study the problem of reliable broadcast in sparse net-
works (1−connected and2-connected) in the presence of a
single adversaryi.e.,k = 1. In sparse networks, we show that
a single adversary can partition the good nodes into groups
such that nodes within a group can reliably broadcast to each
other but nodes across groups cannot. For1−connected and
2−connected graphs, we prove lower bounds on the number
of such groups and provide a distributed algorithm to achieve
these lower bounds. We also show that in a power-law ran-
dom graphG(n, α), a single adversary can partition at most
O(n1/α× (log n)(5−α)/(3−α)) good nodes from the remain-
ing set of good nodes.

Addressing this problem has practical implications to two
real-world problems of paramount importance: (a) develop-
ing decentralized security measures to protect Internet rout-
ing against adversaries; (b) achieving decentralized public
key distribution in static networks. Prior works on Byzantine
agreement [19, 12, 25, 14, 3, 4, 26] are not applicable for this
problem since they assume that eitherG is known, or that
every pair of nodes can directly communicate, or that nodes
use a key distribution infrastructure to sign messages. A so-
lution to our problem can be extended to solve the byzantine
agreement problem in unknown fixed-identity networks.

Categories and Subject Descriptors

C.2 [Computer communication networks]

General Terms

security, reliability, theory

Keywords

reliable broadcast, unknown network, byzantine agreement

1 Introduction

Reliable communication between nodes in the presence
of byzantine adversaries is a fundamental problem in dis-
tributed systems [3, 4] that was first considered in the context
of the classic Byzantine General’s problem [25, 19]. Con-
sider a networkG = (V, E) where the edges inE represent
reliable channels between nodes inV . By reliable channels,
we mean channels over which message transmissions can-
not be dropped, tampered, or forged. In the simplest case,
whenG is a clique, reliable communication between every
pair of nodes can be trivially achieved. For a general graph
G, Dolev [12] and Dolevet al. [13] proved that if there arek
faulty nodes, then every pair of nodes can reliably communi-
cate if and only if the underlying graph is2k + 1 vertex con-
nected. Biemel and Frankin [3] showed that the connectivity
constraint can be relaxed if some pairs of nodes share au-
thentication keys. However, if all nodes can be authenticated
using a trusted keyed infrastructure, the problem of reliable
communication becomes simple - any two nodes that have a
path traversing non-faulty nodes can usesignedmessages to
reliably communicate.

Existing works on reliable communication [19, 12, 25, 14, 3,
4, 26] assume that either the graphG is known or that nodes
can use a key distribution infrastructure to sign messages.
There are many practical scenarios in distributed systems
where neither of these assumptions hold. Motivated by this
observation, this paper addresses the following question:In
the absence of a key distribution infrastructure, under what
constraints can one achieve reliable communication when
each node is aware of only its neighbors but not the entire
graphG?

1.1 Problem motivation

The Internet and many social networks that we operate in
today, fall under the category ofunknown fixed-identity net-
works satisfying two properties: (a) each node is assigned
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a unique identity; (b) the entire graph is not known nor
published. For example, the Internet topology comprises of
roughly17, 000 Autonomous systems (AS) where every AS
has a unique identity (AS number) assigned by IANA [1]
which it cannot fake. When a new AS joins the network,
it is only aware of its neighbors but is unaware of the AS
topology. In fact, the complete AS graph structure of the In-
ternet is unknown and is an open research problem to char-
acterize the representativeness of the actual Internet topol-
ogy collected from different measurement studies [9]. Do-
main Name System [23] and Intra-domain routing are two
other real-world examples of unknown fixed-identity net-
works. Mobile ad-hoc networks [17] and P2P networks [24]
are two examples of networks that donot belong to this cat-
egory.

Reliable communication in the presence of adversaries is a
fundamental necessity for improving the security of many of
these networks. We use Internet routing as a motivating ex-
ample. Today’s Internet routing protocols are built on the ba-
sic assumption that all nodes in the network propagate truth-
ful routing information [18, 29, 27]. A single compromised
or mis-configured router acting in an adversarial manner by
propagating spurious routing information can potentially af-
fect reachability to a large fraction of the Internet [22, 20].
While several security measures have been proposed to im-
prove the resilience of Internet routing [18, 27], none of them
have moved towards adoption or deployment since these ap-
proaches typically require an extensive cryptographic key
distribution infrastructure or a trusted central database [1].
Both of these ingredients are very hard to deploy in practice.

Any solution that secures Internet routing in the presence
of adversaries should enable an AS to reliably broadcast its
state to all the other nodes in the network [27]. With a key
distribution infrastructure, this requirement is trivially met
since every node can sign its messages, thereby making veri-
fication straightforward. In this paper, we focus on the prob-
lem of whether one can achieve this key distribution in a
completely decentralized and distributed manner. We formu-
late this problem next.

1.2 Problem formulation

We use the following two definitions in our problem formu-
lation.

Definition An unknown fixed-identity networkU(n,G, N)
comprises ofn nodes connected by an undirected graphG
where each node: (a) has a unique identity it cannot fake; (b)
knows the identities of its neighbors inG; (c) knows a value
N ≥ n which represents a bound on the size of the network.
For ease of convenience, we also refer to these networks as
unknown networks.

Definition An adversarialnode can perform three types of
actions to disrupt reliable broadcast: (a) discard messages

traversing the node; (b) generate spurious messages; (c) col-
lude with other adversaries by exchanging information using
out-of-band communication.

Reliable broadcast problem in unknown fixed-identity
networks: Consider an unknown fixed-identity network
U(n,G, N). Assume thatk among then nodes act in an
adversarialmanner and the remainingn−k are goodnodes
that follow a prescribed algorithm. Under what constraints
does there exist a distributed algorithmΓ that enables every
good nodeA to reliably broadcast a messagem(A) to all
other good nodes inG?

Reliable broadcast is an instantiation of the reliable com-
munication problem where a node intends to communicate
the same message reliably to every other node in the net-
work. Once reliable broadcast is achieved, one can perform
pair-wise reliable communication by exchanging public keys
through reliable broadcast. For this reason, we focus on the
problem of reliable broadcast.

1.3 Summary of Results

The primary result we prove in this paper is:

Theorem 1. Given a boundk on the number of adversaries,
there exists a distributed algorithmΓ that achieves reliable
broadcast in an unknown fixed-identity networkU(n,G, N)
if and only ifG is 2k + 1 vertex connected.

This result extends the prior result of Dolev [12] for un-
known fixed-identity networks. Dolev proved that a mini-
mum(2k + 1) vertex connectivity is essential for achieving
reliable broadcast even if the entire graph,G, is known to
all the nodes. Our result shows that one can achieve reliable
broadcast even in the case whereG is unknown to the nodes
provided the graph satisfies the(2k+1) connectivity require-
ment. The time-complexity of the algorithm is dependent on
the values ofk, N and is discussed in detail in Section 4.

The fixed-identity assumption is critical towards addressing
this problem. If this assumption is not met and an adversary
uses different identities to different neighbors, then we can
show prove the following result:

Lemma 1. For any given integerm > 0, there exists an
m-vertex connected networkG onn nodes where each node
is initially aware of the identities of only its neighbors, such
that, a single adversary using multiple identities is sufficient
to disrupt reliable broadcast inG.

An alternative aspect of the problem arises for sparsely con-
nected networks which do not satisfy the(2k+1) connectiv-
ity requirement. In such networks, it is fundamentally impos-
sible to achieve reliable broadcast. The best known result for
sparse networks is the non-solvability of the problem [12].
However, we show that it is possible tolimit the damagethat
an adversaries may cause in sparse networks.
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In this paper, we study the reliable broadcast in sparse net-
works for the specific case of a single adversary (k = 1)
and show optimality results for this case. Hence, we only
deal with cases where the connectivity of the underlying net-
work (1−connected and2− connected) does not permit reli-
able broadcast even in the presence of a single adversaryi.e.,
k = 1. We quantify the damage that a single adversary can
cause along two dimensions, as captured by the following
definitions:

Definition An adversary is said to create abroadcast parti-
tion of sizem, if it can classify the set of good nodes,Vg, into
m groups(X1, . . . Xm), such that the following constraints
are met:

1. EachXi is non-empty andVg = X1 ∪ . . . ∪Xm.
2. Nodes withinXi can reliably broadcast to other nodes

in Xi but not to nodes inXj for j 6= i.

Definition Given a broadcast partitionB = (X1, . . . Xm)
of Vg created by an adversaryw, the cumulative damage
caused byw is given bymini|Vg − Xi|. If Xj represents
the largest broadcast group inB, then the cumulative dam-
age represents the number of nodes that cannot communicate
with Xj .

The cumulative damage of an adversary measures the num-
ber of nodes that a single adversary can affect. If we con-
sider Internet routing as an example, this metric represents
the lower bound on the number of nodes that an adversary
can affect by propagating bogus messages. We prove the fol-
lowing result for reliable broadcast on sparse networks:

Theorem 2. Given that an unknown fixed-identity network
U(n, G,N) has exactly a single adversaryA with degree
d(A), the following statements hold:

1. If G is1−connected,A can create a broadcast partition
of size at most2× d(A).

2. If G is2−connected,A can create a broadcast partition
of size at mostd(A).

These results are optimal in the sense that these represent
not only the lower-bound on the amount of damage that an
adversary can cause but also a tight upper-bound. We pro-
vide an algorithm that restricts the amount of damage an
adversary can cause and achieves the lower bound. While
Theorem 2 provides only a bound on the size of a broad-
cast partition, it does not provide a bound on the cumula-
tive damage caused by a single adversary. One can construct
1−connected and2−connected graphs where the cumula-
tive damage isO(n). However, we show that the cumulative
damage of an adversary in a power-law random graph [2, 10]
is much smaller thann as summarized below:

Theorem 3. Given an unknown fixed-identity network
U(n, G,N) whereG is a power-law random graph onn

vertices with parameterα satisfying2 < α < 3, the cu-
mulative damage caused by a single adversary is bounded
byO(n1/α × (log n)(5−α)/(3−α)) with high probability.

This result has important practical implications for the Inter-
net and many social networks that exhibit structural similar-
ities to power-law random graphs [2]. In such types of net-
works, the cumulative damage that an adversary may cause
is very small compared to the size of the network.

1.4 Related Work

The problem of reliable broadcast (RB) is closely related to
the classic problem of Byzantine agreement (BA) first pro-
posed in [25, 19]. More recent works on the problem of
byzantine agreement include [12, 14, 13]. We summarize the
relationship between the problem of reliable broadcast to the
Byzantine agreement problem with the following observa-
tion:

Observation:Givenn nodes of whichk are adversarial, then
two results hold: (a) BA=⇒ RB; (b) If RB is achievable,
then one can achieve BA ifn ≥ 3k + 1.

The first result implicitly follows from the fact that
¬RB =⇒ ¬BA. If two good nodes cannot reliably
transmit messages between themselves, then they cannot
achieve BA. The second result indirectly follows from previ-
ous works by Lamportet al. [19, 25] and Dolev [12].

In the seminal work by Lamport [19, 25], a protocol for
Byzantine agreement was proposed under the assumption
that eitherG is known or that every pair of nodes can directly
communicate or that nodes use a key distribution infrastruc-
ture to sign messages. These basic assumptions continue to
be necessary in later works [12, 13, 14]. The relationship be-
tween BA and RB is also implied in Dolev’s result [12] (the
purifying algorithm presented in Dolev’s paper achieves RB
whenG is known).

An identity-based cryptosystem [28] is an alternative pro-
posal where the identity of a node indicates its public key.
Recent work on identity based encryption (IBE) [7, 11] rep-
resent the most general implementation of a usable identity-
based cryptosystem. While one can envision using IBE to
achieve reliable broadcast, IBE requires a trusted master
server to be entrusted with the private key of all partici-
pants. This assumption is, again, undesirable in large-scale
distributed systems.

2 Path vector signatures

In this section, we describe the concept ofpath vector sig-
natures, one of the basic building blocks we use to solve the
problem of reliable broadcast. A path-vector signature is a
signature associated with a message that traverses a particu-
lar path within the network. These signatures enable a good
node todifferentiatebetween genuine messages generated

3



by good nodes from spurious ones generated by adversaries.
An adversary (or a set of adversaries) that intends to disrupt a
good nodev from reliably communicating a messagem(v),
will attempt to propagate spurious messagesm′(v) claiming
to be fromv. To defend against such adversaries, we asso-
ciate with each message a specific path-vector signature that
is cryptographically computed and updated by every node
along the path through which the message is propagated, so
that no adversary can tamper with the message. Hence, an
adversary intending to propagate a spurious message claim-
ing to be from a good nodev is forced to generate adifferent
signaturein comparison to the same message being gener-
ated by the source.

More formally, apath-vector message(m, s, p) consists of
three parameters: a messagem, the identity of the sources,
and a pathp containing the identities of the nodes the mes-
sage traverses including the sources. A path-vector signa-
ture, sgn(m, s, p), is a signature corresponding to a path-
vector message(m, s, p) which is initiated by the sources
and incrementally updated by every node along the pathp. It
is important to note that if a nodeu propagates a path-vector
message(m, s, p) to v, thenv’s identity is already appended
to the pathp by u signifying thatu has propagated the mes-
sage tov. Hence, a nodev that receives a message should
have its identity as the last node in the path and cannot re-
move its identity (in case,v is an adversary). The path-vector
signature,sgn(m, s, p), should satisfy three properties:

1. Verify: Given (m, s, p) and sgn(m, s, p), any node
should be able to verify that the message traversed the
nodes in pathp provided the messagem was initiated
ats.

2. Append an identity: Let a node with identityx re-
ceives a message(m, s, p) along withsgn(m, s, p). If
x intends to forward the message to a neighbor with
identityy, x should be able to compute the valid signa-
turesgn(m, s, p′), for the message(m, s, p′), wherep′

is the path(p, {y}).
3. Inability to modify: Given a path-vector message,

(m, s, p), an adversaryshould notbe able to produce
a valid signature for any message(m′, s, p′) where
m′ 6= m or p′ is not a path of the form(p, pf ) wherepf

is any other path of identities. In other words, the ad-
versary can append identities to the path but not remove
identities.

We now discuss a simple path signature construction that sat-
isfies these requirements. This construction relies on an un-
derlying conventional public-key signature schemeG, where
G(m,P ) refers to the messagem signed using the public key
P . There are several known schemes that can be used for this
purpose, one example being the El Gamal signature scheme
[15]. Consider a nodev1 sending a messagem to nodevn

over the path(v1, . . . vn). Let each nodevi generate a public
keyg(vi). The prescriptions of our protocol are as follows:

1. Initialization: Every nodevi generates its public key
g(vi), and for(i > 1), communicates it to its neigh-
borvi−1.

2. Message Initiation:The sourcev1 sends the message
m1 = [ (m, s, p1), sgn1 ] to its neighborv2 where
s = (v1, g(v1)), p1 = [ (v1, g(v1)), (v2, g(v2)) ], and
sgn1 = {G((m, s, p1), g(v1))}.

3. Incremental update:Nodevi (i > 1) receives message
mi−1 = [ (m, s, pi−1), sgni−1 ] from its predecessor
vi−1. It then sends messagemi = [ (m, s, pi), sgni ] to
its successorvi+1 wherepi = [ pi−1, (vi+1, g(vi+1)) ]
andsgni = {sgni−1, G((m, s, pi), g(vi))}.

Note that each nodevi includes the identity of its succes-
sor vi+1 in its messagemi. This identity also includes the
public key announced byvi+1. Thus, in essence, the mes-
sage received by nodevi consists of the original message
m, the identity of originators along with its claimed pub-
lic key g(vi), and a path signature where the identity and
public key of each hop is certified by its predecessor. Any
nodevi on the path that receives a message(m, s, p) along
with sgn(m, s, p) can verify the correctness of each indi-
vidual signature according to the signature schemeG. This
construction satisfies the following lemma:

Lemma 2. Any fake path vector messageM = (m, s, p)
generated by an adversarial node with a genuine signature
sgn(M) can only be one of two categories:

1. M was generated by a single adversaryv which gen-
erated fake public keysg′(u) for all identities u that
precedev in p.

2. Two colluding adversariesv, w that occur in p can
insert a spurious path fragment comprising arbitrary
identities (including identities of good nodes) between
v andw in the path. For each such good nodex whose
identity was added byv and w, the adversarial nodes
need to generate a fake public keyg′(x).

It is essential for every node along the path to sign every
message for this lemma to hold and distinguish any fake mes-
sage. If not, an adversary can insert arbitrary path-fragments
with identities and this can perturb the graph-computation
process described in Section 3. This motivates the concept
of a keyed-identity of a node denoted as(x, g(x)), wherex
is the identity andg(x), the claimed public key ofx in a mes-
sage. Every path-vector message contains a string of keyed-
identities. Any message with the keyed-identity(x, g(x))
is distinctly different from a message containing the keyed
identity (x, g′(x)), of which, certainly one of the messages
is bogus (since good nodes do not claim conflicting public
keys). However, given only these two messages, a receiving
node cannot immediately determine as to whetherg(x) or
g′(x) is the genuine public-key ofx. We address this prob-
lem of determining the genuine keyed-identity in the next
section.
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3 Reliable Broadcast Algorithm

Based on the concept of path-vector signatures, we describe
our reliable broadcast algorithm in this section. The algo-
rithm uses two main ideas:

Keyed-identity graph computation: Every good nodex
uses the information from path-vector messages to contin-
uously compute a keyed-identity graphGx, where the nodes
in the graph are of the form(v, g(v)), comprised of the actual
identityv and the claimed public keyg(v). To prevent unnec-
essary path exploration, a path-vector message that contains
no additional information(no new edge or vertex) isnot prop-
agated further.

Determining genuine identities:If the underlying graphG
is 2k +1 vertex connected withk adversaries, then, between
every pair of good nodes, there exists at leastk + 1 vertex
disjoint paths that traverse only good nodes. Hence, in the
keyed-identity graph,Gx, if the number ofidentity-disjoint
paths to a keyed-identity(v, g(v)) is at least(k + 1), thenx
can concludeg(v) to be the genuine public-key correspond-
ing to identityv. Any bogus keyed identity(v, g′(v)) gen-
erated by adversaries can at most traversek vertex disjoint
paths since the identity of at least one adversary should be
present in each path. If a message is not signed by every node
along the path, an adversary can generate spurious edges and
disrupt the computation of disjoint paths. The fact that ad-
versaries can at most provek disjoint paths to a fake node is
critical for the solvability of this problem.

3.1 Asynchronous Broadcast Algorithm

Based on these two ideas, we describe an asynchronous algo-
rithm to achieve reliable broadcast. Given a path-vector mes-
sage(m, s, p) and its signature, we define thekeyed identity
pathPI(m, s, p) associated with(m, s, p) to consist of ver-
tices(vi, g(vi)), wherevi is the identity of a node inp and
g(vi) is the public key ofvi in the signature. We useGx to
denote the keyed-identity graph computed by a nodex with
a set of neighborsN(x). Every good nodex performs the
following set of operations.

BROADCAST(Nodex, NeighborsN(x))

1. Asynchronous node wakeup:A node can either begin
broadcast by itself or begin transmissions upon receipt
of the first message from a neighbor.

2. Initiation: Gx consists of one vertex(x, g(x)).
3. For everyu ∈ N(x), x transmits(m(x), x, [x, u]) to u

along with its signature.
4. Propagation:For every path-vector message(m, s, p)

with signatureS thatx receives fromu ∈ N(x), x per-
forms:

(a) Immediate-neighbor key check:Check if public-
key ofu in S matches the same public-key used in
previous messages. If not, reject(m, s, p). If v ∈
N(x) − {u} appears inp, then the public-key of

v should also match the one directly advertised by
v.

(b) Verify S.
(c) Learn one vertex at a time:Accept the mes-

sage only ifPI(m, s, p) contains at most one new
keyed identity (at the end of the path) not present
in Gx. If so, updateGx with PI(m, s, p).

(d) Message suppression:If PI(m, s, p) adds no new
vertices or edges toGx, ignore the message.

(e) To everyu ∈ N(x), x transmits(m, s, p′) where
p′ = p ∪ {u} after updating the signature.

5. Flow computation:If the number of identity-disjoint
paths to(v, g(v)) in Gx is at leastk + 1, thenx deems
v to be a genuine identity andg(v) to be its public
key. By identity disjoint paths, we mean that no two
paths should contain two different vertices(v, g(v)) and
(v, g′(v)) which share the same identityv.

The immediate-neighbor key check is necessary to ensure
that if an adversaryv ∈ N(x), thenv uses only a single
keyed-identity(v, g(v)) in all its messages propagated tox.
Any other message thatx receives (from other neighbors)
which contains the identityv is accepted only if it contains
the same public keyg(v).

3.2 Proof of Theorem 1: asynchronous ver-
sion

In this section, we will prove Theorem 1 and show that
the asynchronous BROADCAST algorithm will eventu-
ally achieve reliable broadcast in an unknown network
U(n,G, N) if and only if G is 2k +1 vertex connected. This
proof consists of two parts. First, we establish the require-
ment that a minimum2k + 1 vertex connectivity is neces-
sary to achieve reliable broadcast. Next, we show how the
BROADCAST algorithm achieves reliable broadcast.

Minimum (2k+1) connectivity requirement : Consider a
graphH that is2k vertex connected withk adversaries. Con-
sider any vertex cutC of size2k containing thek adversaries
that separatesH into two componentsA andB. Thek adver-
saries can prevent nodes inA from reliably broadcasting to
nodes inB by modifying every messagem(u) from u ∈ A
to m′(u). Nodes inB cannot determine whetherm(u) or
m′(u) is genuine. Therefore,2k vertex connectivity is in-
sufficient to achieve reliable broadcast in the presence ofk
adversaries.

BROADCAST analysis: Let every good node execute the
BROADCAST algorithm to broadcastm(x). Consider a par-
ticular good nodex. For every other good nodev with
public-keyg(v), if (v, g(v)) is a vertex inGx, thenx would
have learnt the messagem(v) in the first path-vector mes-
sage where(v, g(v)) is added toGx since(v, g(v)) was the
last node in that message.

Let Gg = (Vg, Eg) represent the sub-graph comprising of
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all the edges between the set of good nodes. Given thatG is
2k + 1 vertex connected with at mostk adversaries,Gg is at
leastk + 1 vertex connected. If every good nodex can learn
all the edges inEg, then it can definitely compute(k + 1)
identity-disjoint paths to every other good node and hence,
can successfully determine every other good nodev, its pub-
lic key g(v) and messagem(v). To show that the BROAD-
CAST algorithm achieves reliable broadcast, we need to
show that every good node will learn all edges inEg.

To prove that each good node will eventually learnEg, let
us separate the message exchange process between neigh-
boring nodes intorounds. In roundi, let each node exchange
the new path-vector messages it learnt in roundi − 1 with
its neighbors. Within each roundi, every node will learn all
nodes within a distancei from the node. Hence, withinO(n)
rounds every good node will learn all edges inEg and hence
discover all the genuine nodes inG. Finally, the following
simple result on message complexity holds:

Lemma 3. In an unknown networkU(n,G, N), let G com-
prise ofe edges. Whenk = 0, each node transmits at most
e path-vector messages to each neighbor using the BROAD-
CAST algorithm.

This result trivially follows from the message suppression
step in the BROADCAST algorithm. This step ensures that
for each edge inG, a good node propagates only one path-
vector message. In the absence of any adversary (k = 0), the
number of path-vector messages along each link is bounded
by e. In the presence of adversaries (k > 0) generating fake
messages, the number of path-vector messages along each
link depends onk. We discuss this complexity in Section 4.

3.3 Multiple Identities: Proof of Lemma 1

Consider the case where an adversarial node uses different
identities to different neighbors. A single adversary using
multiple identities is sufficient to disrupt reliable broadcast
in certain types of networks however large the connectivity
may be. For any positive integer valuem > 0, one can con-
struct a graphH consisting ofn(> m) vertices which satis-
fies the following two constraints:

1. H is 2m − 2 vertex-connected but not2m − 1 vertex-
connected.

2. H contains a vertex-cutC such thatm − 1 vertices
A1, . . . Am−1 ∈ C have non-overlapping neighbor-sets
N(A1), . . . N(Am−1).

In essence ifA1, . . . Am−1 act as adversaries, then they can
disrupt reliable broadcast inH. Given one such graphH,
construct a new graphH ′ where the verticesA1, . . . Am−1

are collapsed into a single vertexA whose set of neighbors
represent the union of the set of neighbors ofA1, . . . Am−1.
ClearlyH ′ is m-connected. One can show that a single ad-
versarial nodeA using different identities is sufficient to dis-
rupt reliable broadcast inH ′. To do so, the adversaryA

uses different identities to its neighbors inN(Ai) for each
0 < i < m, thereby creating an underlying graph that re-
semblesH.

4 Complexity analysis

In this section, we consider a synchronous version of the
BROADCAST algorithm and analyze its time complexity.
One needs to be careful when analyzing the time-complexity
of an algorithm in an unknown fixed identity network. The
traditional Byzantine agreement literature uses the concept
of rounds [12, 19, 14, 21] to analyze time-complexity. How-
ever, given that the entire network is unknown, enforcing the
global concept of a round is not feasible. On the other hand, a
completely asynchronous mode of communication [5, 21, 8]
is also not suitable for our analysis since it is not possible to
provide time guarantees for message deliveries. Hence, we
revert to the traditional synchronous model andlocally en-
force the concept of time by imposing capacity constraints
on links based on the following definition:

Definition A networkG is said to becapacity-constrained
if every node can only transmitO(1) bits of information to
each of its neighbors in a single unit of time.

Capacity constraints enable us to loosely enforce the con-
cept of a round globally while every node operates locally
at its own link-capacity rates. By enforcing anO(1) capac-
ity constraint on each link, we ensure that the ratio of the
time to deliver a message along a link isO(1). While we
analyze the time complexity of our algorithms based on the
capacity-constrained assumption, it is conceivable that alter-
native measures of time may apply.

4.1 Message scheduling algorithm

To produce a synchronous version of the BROADCAST al-
gorithm for a capacity-constrained network, it is essential to
determine the mechanism used to schedule messages at ev-
ery node. In a capacity constrained network, each node re-
ceives multiple messages from each neighbor but can prop-
agate only one message on each outgoing link. Hence, each
node needs to buffer messages and use a scheduling algo-
rithm to prioritize the messages to be transmitted. The lemma
described below shows that using a simple FIFO scheduling
algorithm does not suffice:

Lemma 4. If every node uses a simple First-in-First-out
(FIFO) queue with an infinite buffer to schedule messages
on each link, there exists an unknown network,U(n,G, N),
whereG is 3−connected such that the minimum time com-
plexity of any algorithm to achieve reliable broadcast in the
presence of a single adversary is2(n−3)/2.

Proof: We first show that in the particular topology illus-
trated in Figure 1, the delay incurred in transmitting a single
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Figure 1: (a) Packet delay along a linear path. (b) Example topology forG with 2m + 1 nodes withC being an adversarial node.

message fromA to B separated bym capacity-constrained
hops can be as high as2m−1 if intermediary nodes use FIFO
queues. Let this topology be capacity constrained in that ev-
ery node can transmit only one message along every link in
unit time. Let all nodes begin transmission at timet = 0 with
all queues initially being empty. Now, assume that the nodes
Si connected toRi continuously transmit one message every
unit time. In this case, if allRi’s use FIFO queuing, a single
message fromA to B will incur a worst-case delay of2m−1.
Since eachSi transmits one packet per unit time toRi, in the
worst-case,A’s packet reachesR2 from R1 at timet = 2,
reachesR3 at t = 4 and reachesRi+1 at t = 2i. Hence, the
bound2m−1.

Next, using the previous result we construct a topology
where reliable broadcast with FIFO queues has a minimum
time complexity of2(n−3)/2. Consider a modified topology
(as shown in Figure 1(b)) with2m + 1 nodes comprising of
a loop of2m nodes and a central nodeC connected to all
the nodes in the loop. Now let nodeC be the only adver-
sarial node that continuously injects fake path-vector mes-
sages on each of its links. Each such fake message is gener-
ated from a non-existent vertex and also contains an arbitrary
non-existent path. Now, two good nodesA andB can only
communicate through the two paths in the loop of lengthm.
By the previous argument, if all nodes use a FIFO queue
with an infinite buffer, any message fromA to B will in-
cur a minimum delay of2m−1. However, any algorithm that
achieves reliable broadcast should enable at least one mes-
sage to be communicated fromA to B. Hence, the minimum
time complexity of any such algorithm using FIFO queues is
lower bounded by2m−1 = 2(n−3)/2.

The above argument can also be directly extended to the Fair
Queuing discipline where a node divides a link’s capacity
equally amongst all its other neighbors. In the above exam-
ple, FIFO scheduling and Fair queuing does not work pri-
marily because an adversarial node can flood the network
with spurious messages and delay the delivery of packets.

4.1.1 Identity-based rate limiting

The goals of identity-based rate-limiting are two-fold: (a)
hold nodes accountable for every message they transmit and
limit the capability of adversaries to flood messages; (b) as-

sociate a higher priority to the messages from lesser-known
nodes which have not received enough opportunities to trans-
mit messages. To achieve these, the key idea is torate-limit
messagesacross identities and keyed-identities. To do so, the
algorithm computes two simple metrics:

1. Identity priority: Let I1(u, t) represent the number of
path-vector messages transmitted prior to timet with
identityu in the path. A message(m, s, p) has an iden-
tity priority p1(m, s, p) which is the maximum value of
I1(u, t) for all identitiesu ∈ p.

2. Keyed-identity priority:Let I2((u, g(u)), t) represent
the number of messages transmitted prior to timet with
keyed identity(u, g(u)) in the keyed-identity path. The
keyed-identity priorityp2(m, s, p) of a message is the
maximum value ofI2((u, g(u)), t) over all keyed iden-
tities (u, g(u)) in the path.

The scheduling strategy is as follows:

1. Schedule message(m, s, p) with the lowest identity pri-
ority, p1(m, s, p).

2. If multiple messages have the same minimum identity
priority, schedule the message among them with the
lowest keyed-identity priority,p2(m, s, p).

3. Use FIFO as a final tie-breaking rule.

The rationale behind maintaining two separate priorities is
two-fold. First, theidentity-based priorityis essential to pre-
vent an adversary to use multiple keyed identities and prop-
agate spurious messages. For example if we use only keyed-
identity priorities in the topology illustrated in Figure 1(b),
the lower bound argument used in the case of FIFO holds
in this case too. Second, the keyed-identity based count is
essential because an adversary can artificially increase the
identity-based count of a good node by inserting the good
node in a path. However, an adversary cannot artificially in-
crement the keyed-identity based count of a node.

4.2 BROADCAST algorithm complexity

We useGg = (Vg, Eg) to represent the sub-graph ofG com-
prising of only the good nodesVg andEg, the set of edges
between them. AssumingGg is connected, letdiam(Gg) de-
note its diameter. We prove the following theorem on the
BROADCAST algorithm.

7



R1 R2 BA Rm

X

(a)

R1 R2 BA Rm

X1 2 kX X

(b)
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Theorem 4. Given a boundk on the number of adver-
saries and a bound∆ ondiam(Gg) in an unknown network
U(n, G,N), the BROADCAST algorithm with identity-rate
limiting (IRL) achieves reliable broadcast in:

1. O(N2n log n) time fork = 0.
2. O(N3n log n) time fork = 1.
3. O((k + 1)∆N2n log n) time fork > 1.

Proof. In a capacity constrained network, a node can trans-
mit only O(1) bits per unit time. For simplicity, we bound
the total number of bits consumed by every path-vector mes-
sage byO(n log n) (log n bits for each identity andn for the
maximum number of signatures in a message). We analyze
the complexity separately for three cases:

Lemma 5. Whenk = 0, BROADCAST + IRL achieves reli-
able broadcast inO(ne log n) time wheree is the number of
edges inG.

Proof: If the first node initiates transmission at timet =
0, every node will receive a wake up signal aftern path-
vector message transmissions given that the diameter ofG
is bounded byn. After wakeup, the message suppression
step in the BROADCAST algorithm ensures that every node
learnsG after e message transmissions along each edge.
Since each node will always have a new path-vector message
to transmit and that each message hasO(n log n) time com-
plexity for transmission on a link, BROADCAST requires
O(en log n) time to converge.

Lemma 6. Whenk = 1, BROADCAST+IRL achieves reli-
able broadcast inO(n2e log n) time.

Proof: We first analyze a simple scenario as illustrated in
Figure 2(a) where nodesA andB arem + 1 hops away and
A propagates one message toB in the presence of an adver-
saryX that continuously injects packets along each hop in
the path (No other node propagates any message in this ex-
ample). If all transmissions begin att = 0 with the identity
based counts set to zero, the IRL algorithm will ensure that
for every message thatA propagates,X can at most insertm
messages, one along each of the linksXRi. Hence,A’s mes-
sage is delivered toB within (m + 1)n log n time assuming
a simple upper bound ofn log n bits for each message.

In the general case, from the proof of Lemma 5, we know
that every good node needs to receivee different path-vector

messages to completely learn the good graphGg. To ana-
lyze the worst-case time bound, we analyze each such mes-
sage in isolation. Each message(m, s, p) that traverses a
pathp comprising of|p| good nodes experiences a delay of
(|p| + 1)n log n since an adversaryX can inject spurious
messages (either directly or indirectly) for each node along
p. |p| represents the length of pathp and is clearly bounded
by n−1. Hence, each message in isolation if delivered one at
a time is delivered to a good node inO(n2 log n) time. The
time to delivere messages is bounded byO(n2e log n) time.

Lemma 7. For a general valuek, given a bound∆ ≥
diam(Gg), using BROADCAST+IRL, every good node
achieves reliable broadcast afterO((k + 1)∆en log n) time.

Proof Sketch:Much like Lemma 6, we consider a sim-
ple scenario of two good nodesA and B separated bym
hops (as shown in Figure 2(b)), except that the adversaries
X1, . . . , Xk continuously inject messages at every nodeRi

along the path. Unlike Lemma 6, we show that the delay in-
curred by every message fromA in this case can be as high as
O((k +1)m×n log n). In the general case, given a bound∆
ondiam(Gg), the information about every edge inGg can be
transmitted along a path of at most∆ hops. Hence, the max-
imum time required to discovere edges inGg is bounded by
O((k + 1)∆en log n).

Stoppage constraint:The final element of the proof is the
stoppage constraint. Since no node is aware of the values
of n ande, each good node cannot determine when the full
graph is learned. We use the boundN to represent a bound
on n andN2 as a bound one, the number of edges. These
bounds need to be applied only on the number of messages
but not on the size of each message. Hence, we can still retain
theO(n log n) bound on the maximum time complexity of a
single message. Replacing these bounds in Lemmas 5, 6 and
7 completes the proof.

4.3 Lower-bound time complexity

We show the following lower-bound on the time complexity
of any reliable broadcast algorithm.

Lemma 8. Given a boundk on the number of adversaries,
there exists a capacity constrained networkU(n,G, N)
whereG is 2k + 1 vertex connected, such that any algo-
rithm that achieves reliable broadcast inU(n,G, N) has a
minimum time complexity of2k.
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We refer the reader to the Appendix for a proof sketch of
this result. Notice the wide gap between the lower-bound re-
sult and the time complexity of our algorithm. Addressing
this complexity gap is an open research problem; our work
primarily illustrates the existence of an algorithm to achieve
reliable broadcast but does not target optimality.

4.4 Limitations of capacity-constraints

Analyzing the time complexity of a distributed algorithm
with capacity constraints on link-topologies is a very restric-
tive model. Lemma 4 illustrates the limitation of FIFO in the
face of a single adversary, where a single message transmis-
sion can be exponentially complex with capacity constraints.
In other words, many simple distributed algorithms includ-
ing the emulation of a single round in a Byzantine agreement
algorithm has exponential complexity. Given this, the bound
for the casek > 1 of the BROADCAST algorithm should be
viewed as a worst-case bound (where an adversary generates
infinite bogus message) which is not completely reflective of
the real-life scenario. In a realistic setting, we would expect
the asynchronous version of the BROADCAST algorithm to
have much lower run-time complexity and anticipate an ad-
versary to generate only a finite number of bogus announce-
ments. With finite bogus announcements from adversaries,
the complexity is polynomial in the number of nodes with
capacity constraints.

5 Sparse networks

In this section, we describe our results for the problem of
reliable broadcast in1−connected and2−connected graphs
in the presence of a single adversaryi.e.,k = 1.

5.1 Lower bound of Theorem 2

In this section, we show the existence of1−connected and
2−connected graphs such that a single adversary with a de-
greed can create broadcast partitions of sizes2d andd re-
spectively in these graphs. This establishes the lower bound
on the size of a broadcast partition that a single adversary can
create in1-connected and2−connected graphs. In this anal-
ysis, we assume that the adversary is aware ofG while good
nodes are aware of only their neighbors. This assumption is
valid since the adversary can first learn aboutG from good
nodes and then propagate spurious messages. The following
lemmas establish the lower-bound.

Lemma 9. There exists a treeG such that an adversarial
nodeA in G with degreed can create a broadcast partition
of size2d in U(n,G,N).

Proof: We first analyze the case whend = 1. Let G0 be a
tree rooted at a noder (refer Figure 3(a)). Letv be a child
of r such that the sub-tree rooted atv is non-empty and does
not contain the adversarial nodeA. Let T (v) represent the
set of nodes in the sub-tree rooted atv (excludingv) and

V
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Q

R
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M

Figure 4:An example topology for the penalty based defense strat-
egy.

let T ′(v) = V − T (v)− {v,A}. Pick any treeG0 such that
T (v) andT ′(v) are non-empty. For every nodeu ∈ T (v) that
attempts to reliably broadcast a messagem(u), let A propa-
gate a spurious messagem′(u) as if u propagated the mes-
sage (as illustrated in Figure 3(a)). Since no node inT ′(v)
is directly adjacent to any node inT (v), these nodes will
receive two messagesm(u) and m′(u) and cannot figure
out which message is genuine. All genuine messages from
T (v) are routed throughv and all spurious messagesm′(u)
are routed throughA and nodes inT ′(v) cannot determine
which node to believe. Hence no node inT ′(v) can reliably
communicate with any node inT (v). Thereby,A creates a
broadcast partition(T (v) ∪ {v}, T ′(v) ∪ {v}) of size2.

For the general case, we can create a treeG with d replicas of
G0 with the vertexA merged across all these replicas (as il-
lustrated in Figure 3(b)). In this case, by simply dropping all
good messages traversing it,A can created separate compo-
nents which cannot reliably broadcast to each other. Within
each such component,A acts as a leaf node and can create a
broadcast partition of size2. Hence,A can create a broadcast
partition of size2d.

Lemma 10. There exists a 2-connected graphG such that an
adversarial nodeA in G with degreed can create a broad-
cast partition of sized in U(n, G,N).

Proof: Consider the graphG illustrated in Figure 3(c), where
P1, . . . Pd are paths of good nodes such that the end-points
of each path connect to two separate verticesA andv. In this
case,A has degreed. For every nodeui ∈ Pi that intends to
reliably broadcast a messagem(ui), A propagates a message
m′(ui) to all its neighbors inPj wherej 6= i. Hence, every
nodeuj ∈ Pj will receive two messages:m(ui) (through
v) andm′(ui); hence for everyui ∈ Pi (i 6= j), uj cannot
ascertain which of the two messages is genuine. Therefore,
no pair of nodes(ui, uj) , ui ∈ Pi anduj ∈ Pj , j 6= i, can
reliably communicate.A creates a broadcast partition (P1 ∪
{v}, . . . , Pd ∪ {v}) of sized.

5.2 Defensive strategy

Now, we describe an optimal penalty-based defensive strat-
egy that a good node uses to limit the size of a broadcast par-
tition that an adversary can cause to the lower bound. This
mechanism works only fork = 1. The defensive strategy
uses one key corollary that directly follows from Theorem 1:
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Corollary 1: Let H be a 2−connected subgraph ofG in
an unknown networkU(n,G, N), comprising of only good
nodes. In the presence of a single adversary,M , every node
in H can reliably broadcast to all nodes inH.

We explain the intuitive idea behind the penalty-based de-
fense strategy using an example illustrated in Figure 4. Let
H(v) represent the set of all keyed-identities that have a2
identity disjoint paths tov. An adversaryM cannot disrupt
any of these nodes. In this example, however,M attempts to
disrupt reliable communication to multiple nodesP , Q, R,
S which connect (directly or indirectly) using good paths to
different nodesA,B,C andD in H(v). From the perspec-
tive of v, M andA disagree onP , M andB disagree onQ,
M andC onR and finallyM andD onS. Hence, ifv asso-
ciates a penalty with a node for every identity-disagreement,
thenM obtains the maximum penalty of4 while the nodes
A, B,C, D each obtain a penalty of1. Therefore,v notesM
to be a suspicious candidate and filtersM ’s messages and
chooses the genuine identities propagated byA, B,C, D.

Now, we present the penalty-based algorithm based on the
idea explained above. Initially, every nodex executes the
BROADCAST+IRL algorithm for the case ofk = 1 and
computes the keyed-identity graphGx. Next, they apply the
following penalty algorithm onGx.

PENALTY (Node x, Graph Gx)

1. We declare a keyed-identity(y, g(y)) to begenuineif x
has two identity disjoint paths to(y, g(y)).

2. The tail-end of a keyed-identity(v, g(v)) is the path
from the node(y, g(y)) to (v, g(v)) in Gx such that
(y, g(y)) is the last genuine node in any path fromx
to (v, g(v)).

3. An identityu has aconflictif there are at leasttwokeyed
identities with the same identity inGx.

4. Penalty assignment:The penaltyof an identityu is
the number of distinct conflicting identitiesy for which
some keyed-identity(u, g′(u)) appears in the tail-end
of a keyed-identity(y, g(y)).

Node-selection criteria:Based on the penalties assigned to
identities, the criteria for selecting nodes is simple. For each
keyed identity,(v, g(v)) that has a conflict, determine the
maximum penaltyof the identityu that appears in the tail-end
of (v, g(v)). Choose the keyed-identity with theminimum
value of the maximum penalty. If no unique minimum exists,

then we declare the identity as non-identifiable.

Revisiting the example in Figure 4,v will notice P,Q, R and
S to be conflicting identities. The genuine keyed-identity
of P propagated byM will have a maximum penalty of1
while the fake keyed-identity generated by the adversaryM
will have a penalty of4. Hence, the penalty based algorithm
chooses the genuine keyed-identities forP,Q, R, S.

The following lemma holds regarding the penalty-based al-
gorithm:

Lemma 11. In an unknown networkU(n,G, N), if all good
nodes use the BROADCAST+IRL+PENALTY algorithm for
determining genuine nodes, a single adversary with degree
d(A) can create a broadcast partition of size at most: (a)
d(A) if G is 2−connected; (b)2×d(A) if G is 1−connected.

The proof of Lemma 11 is presented in the Appendix. This
lemma completes the proof of Theorem 2.

5.3 Proof sketch of Theorem 3

Finally, we provide a proof sketch for Theorem 3 described
in Section 1.3 where we show that given a power-law ran-
dom graph (PLRG)G(n, α) on n nodes with parameterα
(2 < α < 3), the cumulative damage that a single adversary
can cause is bounded byO(n1/α× (log n)(5−α)/(3−α)) with
high probability. We prove two results on power-law random
graphs to show this result.

Lemma 12. Every PLRG,G(n, α) for large values ofn has

a 3-connected subgraphH with O(n/((log n)
α−1
3−α )) vertices

with high probability.

Lemma 13. Given a PLRGG(n, α) and a random vertex
v with degreed, the number of vertices that get discon-
nected from the largest component inG − {v} is bounded
byd(log n)(5−α)/(3−α) with high probability.

We refer the reader to the Appendix for a proof sketch of
these lemmas. To quantify the cumulative damage an ad-
versary A can cause, letA have a maximum degree in
G of n1/α. The number of vertices solely reliant onA is
bounded byn1/α × (log n)(5−α)/(3−α). Given that there ex-
ists a sub-graphH which is 3−connected,A cannot affect
any node within this subgraph. Also, all these nodes can re-
liably broadcast all their messages withinH. Additionally,
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every vertexv has one or more (indirect) neighbors within
H. For every identityv that A propagates a spurious mes-
sage, the penalty value ofA increments by1 and so does
the penalty value of the indirect neighbors ofv in H. If A
targets specific identities such that the indirect neighbors of
these identities are distributed among different vertices inH,
thenA obtains the maximum penalty value and hence is al-
ways ignored. To prevent this,A can at most target identities
connected to a specific vertexu in H such that the penalties
of u andA from the perspective of other nodes is the same.
If A targets any additional identity which has a different in-
direct neighbor inH, thenA’s penalty overshootsu. Hence,
to maximize the cumulative damage,A should target only
those identities that solely rely on eitherA or u or both to
connect toH. Using Lemma 12, we can bound this number
by 4× n1/α × (log n)(5−α)/(3−α).

6 Conclusions and Implications

In this paper, we study the problem of reliable broadcast in
unknown fixed-identity networks. The results presented in
this paper on this problem is of practical significance for
several widely-used distributed systems including the Inter-
net, Domain Name Service (DNS). From a theoretical stand-
point, two immediate implications that follow are:decen-
tralized key-distributionandbyzantine agreement. If reliable
broadcast is achievable, then every good node can broad-
cast its public-key to other good nodes in the system thereby
achieving key-distribution in a decentralized manner. This
result has important ramifications for building decentralized
security mechanisms for Internet routing as illustrated in [29]
and DNS. Apart from key distribution, reliable broadcast is
an essential building block for achieving byzantine agree-
ment in unknown networks. The correspondence between
the two is described earlier in Section 1.4.

The sparse network results have important ramifications for
Internet routing. The Internet topology at the autonomous
system is1−connected and therefore cannot handle even a
single adversarial node. The best-known previous result on
reliable broadcast for sparse networks is that the problem is
not solvable. Here, we show that one can limit the damage of
an adversary by using penalty-based filtering. Specifically,
for, Internet-like graphs which are modeled based on power-
law random graphs, we show that a single adversary can
cause very little damage. While the overall Internet topology
is sparse, there are sub-graphs within this topology which ex-
hibit high vertex connectivity. Within these sub-graphs, per-
fect reliable communication is achievable.

Two specific open problems that arise from this work are:
(a) Can the connectivity requirements be relaxes for inde-
pendent adversaries? (b) Can we solve this problem without
assuming a known bound on the number of adversaries? Im-
provements in the time complexity and the communication
overhead of our schemes are possible areas of future work.
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A Proof sketch of Lemma 8

To illustrate the lower bound, consider the topology illus-
trated in Figure 5(a) where nodesA0 and Ak+1 are con-
nected by a path of lengthk + 1 and thek adversaries
X1, . . . Xk directly connect to the nodes along the path. In
this example topology, the adversaries can delay the propa-
gation of a single message fromA0 to Ak+1 by a minimum
time of2k.

For simplicity, we assume that the propagation of a single
message takes unit time along a link. The basic idea of the
argument is that for every message thatAi−1 transmits toAi,
Xi can transmit a message toAi. SinceAi cannot differenti-
ate a message fromAi−1 andXi, it has to accord both mes-
sages equal priority. Hence, for a single message fromA0,
X1 can transmit one message thereby forcingA1 to propa-
gate2 messages toA2. Extending the argument,Ai−1, in the
worst case, propagates2i−1 messages toAi to finally prop-
agate a single message fromA0. During this period,Xi can
propagate an equal number of message delayingA0’s mes-
sage toAi+1 by time 2i+1. Hence, in the worst case,A0’s
message needs2k time to reachAk+1.

Based on this example, consider the graphH illustrated in
Figure 5(b), where every nodeAi (in the previous figure) is
replaced with a cliqueYi of sizek+1 and each clique is con-
nected to the next with a matching of sizek + 1. The adver-
sarial nodesX1, . . . Xk form a complete clique.H is 2k + 1
connected withk adversaries. As in the previous example,
let Xi continuously inject bogus messages to all nodes in
the cliqueYi. To achieve reliable broadcast inH, every node
in Y0 needs to propagate at least one message to nodes in
Yk+1. The previous argument can be extended to show that
this message transmission fromY0 to Yk can be delayed by
2k in the worst case.

B Upper bound analysis of Theorem 2

We first analyze the penalty algorithm for two simple
1−connected and2−connected graphs, namely, trees and cy-
cles. Later we use these cases for analyzing general graphs.

Analysis for trees: In the simplest case, let the adversary,
w, be a leaf node in a treeT and propagate bogus messages
about l genuine identitiesv1, . . . vl in T . Let g(vi) be the
genuine public keys advertised andg′(vi) be the fake public
keys generated byw. Let Pi represent the path inT from w
to the identityvi. Let r be the last common vertex along all
these pathsPi (beyondr the paths diverge, as illustrated in
Figure 6(a)). LetTr refer to the sub-tree to the right, rooted
atr andT ′(r) be the remaining sub-tree that containsw (not
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containingr). The noder will maintain a penalty ofl for
all vertices in the path fromr to w (excludingr). Hence the
value ofs(vi, g

′(vi)) is l. However, since the paths diverge at
r, the values ofs(vi, g(vi)) < l for all i. Hence,r will choose
the genuine identitiesvi over the bogus identities propagated
by w. Whenr filters out the bogus messages fromw and
broadcasts the chosen identity, the nodes inTr can reliably
broadcast between themselves. On the other hand, any node
in T ′(r) will associate a value ofl for both s(v, g(vi)) and
s(v, g′(vi)) since all these nodes (exceptw) will maintain
a penalty ofl with both w andr. Hence, these nodes can-
not reliably communicate with nodes inT (r) but can broad-
cast within themselves. Therefore, a leaf nodew can create
a broadcast partition of size at most2 in T .

Extending the argument to an adversaryw of degreed in a
treeT . T − {w} hasd disjoint sub-trees. Clearly, to cause
maximum damage,w should not propagate any good mes-
sages across these disjoint sub-trees. Hencew acts as a leaf
node in each sub-tree and can thereby create a broadcast par-
tition of at most size2d.

Analysis for cycles: Consider the cycle illustrated in Fig-
ure 6(b) where nodew has a left neighboru1 and right neigh-
borv1. w clearly should not propagate any message fromu1

to v1 and vice-versa. We call an identityv to beaffectedif
w propagates a bogus message aboutv. Also, we refer to
the orientation of the cycle beginning fromu1 as the left
portion of the cycle and the opposite orientation beginning
from v1 to be the right portion of the cycle. To maximize the
damage,w should propagate bogus messages about the left
portion throughv1 and about the right portion tou1 (since
this minimizes the chance of intermediary nodes filteringw’s
messages) (refer Figure 6(c)). Also, it is tow’s disadvantage
to propagate two bogus messages about the same identity to

bothu1 andw1.

Let w propagatek1 bogus messages tou1 andk2 messages
to u2. Letx andy be the first unaffected nodes in the left and
right portion of the cycle (refer Figure 6(c)). Letg(v) be the
genuine public key of identityv andg′(v), the fake public
key generated byw.

Consider a vertext in the pathu1x. For every vertexz in the
path v1y, the penalty values ofs((z, g(z)) and s(z, g′(z))
thatt maintains are both equal tok1. Hencet cannot differen-
tiate between the two keyed identities and hence cannot com-
municate withz. However, for any vertexz in the pathu1x,
the penalty value ofs(z, g(z))is smaller thans(z, g′(z)).
Hence all nodes withinu1x can reliably communicate within
themselves. All nodes in the pathxy can reliably commu-
nicate their public keys to all the nodes since they are un-
affected. In the limiting case,x and y are the same node.
Hence, in a cycle, a single adversaryw creates a broadcast
partition of size2, namelyu1x andv1x (with x = y).

2-connected graphs (Proof Sketch): Let G be a
2−connected graph with a single adversaryw of degree
d(w). Using Corollary 1, ifH is a 2−connected sub-graph
of G comprising only of good nodes, we can merge all
these vertices to create a single vertex forH. Let G′ be
the graph obtained after shrinking all2−connected compo-
nentsH to single vertices inG. ClearlyG′ − {w} is a tree
since it contains no2−connected subgraphs. Also, sinceG′

is 2−connected,w connects to all the leaf nodes ofG′ (ex-
cept in the trivial case whenG−{w} is 2-connected,G′ con-
tains only2 vertices). We can extend the cycle argument to
show thatw can create a broadcast partition of sizedG′(w) in
G′ wheredG′(w) is the degree ofw in G′. In the case when
dG′(w) is even, we can identifydG′(w)/2 non-vertex over-
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lapping cycles (exceptw) and apply the cycle argument to
each in isolation. WhendG′(w) is odd, we handle a special
case where two cycles have an overlapping path fragment
(where we use the lower bound argument for2−connected
graphs to show a broadcast partition of size3 for overlapping
cycles). In the limiting case, we havedG′(w) = d(w) as il-
lustrated earlier in the lower-bound analysis in Figure 3(c).
Hence,w can create a broadcast partition of sized(w) in G.

1-connected graphs:Let G be a1−connected graph with
an adversaryw of degreed(w). Using corollary 1, if we col-
lapse all2− connected sub-graphs inG to single vertices, the
remaining graphG′ resembles a tree with cycles involving
only the adversarial nodew. Letd1(w) represent the number
of neighbors ofw in the2-connected portion ofG′ (involv-
ing w) and letd2(w) be the remaining set of vertices. Using
the previous case,w can create a broadcast partition of size
at mostd1(w) in the 2−connected portion and a broadcast
partition of at most2×d2(w) in the remaining portion of the
graph (tree case). Hence, the maximum size of a broadcast
partition isd1(w) + 2 × d2(w) which is upper-bounded by
2× d(w) (givend1(w) + d2(w) ≤ d(w)).

C Power-law random graph lemmas

C.1 Proof Sketch of Lemma 12

Let Gλ represent the subgraph ofG induced by all vertices
with a degree at leastλ = (log n + 3 log log n)1/(3−α).
The number of vertices inGλ is O(n/λα−1). We prove this
lemma by showing the following key steps:

1. The expected degree of every node inGλ is at least s
λ3−α = log n + 3 log log n.

2. There exists an Erdos-Renyi subgraphH of Gλ where
each node has an expected degreeλ1/(3−α).

3. Using Bollobas’s result [6] on Erdos-Renyi graphs, we
showH is 3−connected with high probability.

Hence, the subgraphGλ with O(n/((log n)
α−1
3−α )) vertices is

3−connected with high probability.

C.2 Proof Sketch of Lemma 13

This follows directly by applying Lemma1 and a conduc-
tance result by Gkantsidiset al. [16] in power-law random
graphs. LetT (v) be the set of nodes that are separated from
the largest componentL(v) in G − {v}. Consider a unit
flow to be routed between every pair of nodes inG. Any
flow from T (v) to L(v) has to be routed viav. Given all
links have unit capacity, Gkantsidiset al.show that there ex-
ists a way to route the demand such that all links have flow
O(n log2 n). Hence, we get the bound that|T (v)|× |L(v)| is
O(dn log2 n). From Lemma 11,L(v) contains a2-connected

graph with at leastO(n/((log n)
α−1
3−α )) vertices. Combining

the two results, we obtain the required bound.
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