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In this paper, we formulate a new theoretical problem, C-2[Computer communication networks]

namely thereliable broadcast problem in unknown fixed-
identity networksThis problem arises in the context of de-
veloping decentralized security mechanisms in a specific- security, reliability, theory
class of distributed systems: Consider an undirected graph

G connectingn nodes where each node asvare of only Keywords

its neighborsbut not of the entire graph. Additionally, each
node has anique identityand cannot fake its identity to its
neighbors. Assume thatamong_ thex nodes act in andver- 1 Introduction

sarial manner and the remaining-& aregoodnodes. Un-

der what constraints does there exist a distributed algorithm Reliable communication between nodes in the presence
I" that enables every good nodéo reliably broadcast ames-  of byzantine adversaries is a fundamental problem in dis-
sagem(v) to all other good nodes i&? While good nodes  tributed systems [3, 4] that was first considered in the context
follow the algorithml", an adversary can additionally discard of the classic Byzantine General’s problem [25, 19]. Con-
messages, generate spurious messages or collude with otheider a networlG = (V, E) where the edges iy represent
adversaries. reliable channels between nodes/inBy reliable channels,

we mean channels over which message transmissions can-
not be dropped, tampered, or forged. In the simplest case,
whenG is a clique, reliable communication between every
pair of nodes can be trivially achieved. For a general graph
G, Dolev [12] and Dolewet al.[13] proved that if there ark

faulty nodes, then every pair of nodes can reliably communi-
cate if and only if the underlying graph 2¢ + 1 vertex con-
nected. Biemel and Frankin [3] showed that the connectivity
constraint can be relaxed if some pairs of nodes share au-
thentication keys. However, if all nodes can be authenticated
using a trusted keyed infrastructure, the problem of reliable
communication becomes simple - any two nodes that have a
path traversing non-faulty nodes can sggnedmessages to
reliably communicate.

General Terms

reliable broadcast, unknown network, byzantine agreement

In this paper, we prove two results on this problem. First,
we provide a distributed algorithii that can achieve reli-
able broadcast in an unknown fixed-identity network in the
presence of adversaries it5 is 2k + 1 vertex connected.
Additionally, a minimum vertex connectivity &k + 1 is a
necessary condition for achieving reliable broadcast. Next,
we study the problem of reliable broadcast in sparse net-
works (I1—connected an@-connected) in the presence of a
single adversarie.,k = 1. In sparse networks, we show that

a single adversary can partition the good nodes into groups
such that nodes within a group can reliably broadcast to each
other but nodes across groups cannot. Feconnected and
2—connected graphs, we prove lower bounds on the number
of such groups and provide a distributed algorithm to achieve
these lower bounds. We also show that in a power-law ran- Existing works on reliable communication [19, 12, 25, 14, 3,
dom graphG(n, «), a single adversary can partition at most 4, 26] assume that either the gra@hs known or that nodes
O(n/® x (log n)(5=*)/(3-2)) good nodes from the remain-  can use a key distribution infrastructure to sign messages.
ing set of good nodes. There are many practical scenarios in distributed systems
where neither of these assumptions hold. Motivated by this
observation, this paper addresses the following question:
the absence of a key distribution infrastructure, under what
constraints can one achieve reliable communication when
each node is aware of only its neighbors but not the entire
graphG?

Addressing this problem has practical implications to two
real-world problems of paramount importance: (a) develop-
ing decentralized security measures to protect Internet rout-
ing against adversaries; (b) achieving decentralized public
key distribution in static networks. Prior works on Byzantine
agreement [19, 12, 25, 14, 3, 4, 26] are not applicable for this
problem since they assume that eitldetis known, or that
every pair of nodes can directly communicate, or that nodes
use a key distribution infrastructure to sign messages. A so-The Internet and many social networks that we operate in
lution to our problem can be extended to solve the byzantine today, fall under the category ahknown fixed-identity net-
agreement problem in unknown fixed-identity networks. works satisfying two properties: (a) each node is assigned

1.1 Problem motivation



a unique identity; (b) the entire graph is not known nor traversing the node; (b) generate spurious messages; (c) col-
published. For example, the Internet topology comprises of lude with other adversaries by exchanging information using
roughly 17, 000 Autonomous systems (AS) where every AS out-of-band communication.

has a unique identity (AS number) assigned by IANA [1]

which it cannot fake. When a new AS joins the network, Reliable broadcast problem in unknown fixed-identity

it is only aware of its neighbors but is unaware of the AS networks: Consider an unknown fixed-identity network
topology. In fact, the complete AS graph structure of the In- U(n, G, N). Assume that among then nodes act in an
ternet is unknown and is an open research problem to char-adversariamanner and the remaining—k are goodnodes
acterize the representativeness of the actual Internet topolthat follow a prescribed algorithm. Under what constraints
ogy collected from different measurement studies [9]. Do- does there exist a distributed algorithinthat enables every
main Name System [23] and Intra-domain routing are two good nodeA to reliably broadcast a message(A) to all
other real-world examples of unknown fixed-identity net- other good nodes i:'?

works. Mobile ad-hoc networks [17] and P2P networks [24] Reliable broadcast is an instantiation of the reliable com-

are two examples of networks that dotbelong to this cat- 1, nication problem where a node intends to communicate

egory. the same message reliably to every other node in the net-
Reliable communication in the presence of adversaries is awork. Once reliable broadcast is achieved, one can perform
fundamental necessity for improving the security of many of pair-wise reliable communication by exchanging public keys
these networks. We use Internet routing as a motivating ex-through reliable broadcast. For this reason, we focus on the
ample. Today's Internet routing protocols are built on the ba- problem of reliable broadcast.

sic assumption that all nodes in the network propagate truth-

ful routing information [18, 29, 27]. A single compromised 1.3 Summary of Results

or mis-configured router acting in an adversarial manner by
propagating spurious routing information can potentially af-
fect reachability to a large fraction of the Internet [22, 20]. Theorem 1. Given a bound: on the number of adversaries,
While several security measures have been proposed to imthere exists a distributed algorithin that achieves reliable
prove the resilience of Internet routing [18, 27], none of them broadcast in an unknown fixed-identity netwéfkn, G, N)
have moved towards adoption or deployment since these ap-f and only ifG is 2k + 1 vertex connected.

proaches typically require an extensive cryptographic key

distribution infrastructure or a trusted central database [1]. This result extends the prior result of Dolev [12] for un-

Both of these ingredients are very hard to deploy in practice. known fixed-identity networks. Dolev proved that a mini-

. L mum (2k + 1) vertex connectivity is essential for achieving
Any solution that secures Internet routing in the presence . . ; .
reliable broadcast even if the entire gragh,is known to

of adversaries should enable an AS to reliably broadcast its . .
. . all the nodes. Our result shows that one can achieve reliable
state to all the other nodes in the network [27]. With a key ; .
broadcast even in the case whétés unknown to the nodes

distribution infrastructure, this requirement is trivially met : o - .
since every node can sign its messages, thereby making Veri_prowded the graph satisfies tfif:- 1) connectivity require

o . . ment. The time-complexity of the algorithm is dependent on
fication straightforward. In this paper, we focus on the prob- L . . .

. ! AR the values of, NV and is discussed in detail in Section 4.
lem of whether one can achieve this key distribution in a _ _ _ R _
completely decentralized and distributed manner. We formu- The fixed-identity assumption is critical towards addressing

The primary result we prove in this paper is:

late this problem next. this problem. If this assumption is not met and an adversary
uses different identities to different neighbors, then we can
1.2 Problem formulation show prove the following result:
We use the following two definitions in our problem formu- Lemma 1. For any given integern > 0, there exists an
lation. m-vertex connected netwock onn nodes where each node
is initially aware of the identities of only its neighbors, such
Definition An unknown fixed-identity netwoil(n, G, N) that, a single adversary using multiple identities is sufficient

comprises of: nodes connected by an undirected graph  to disrupt reliable broadcast 6.

where each node: (a) has a unique identity it cannot fake; (b)

knows the identities of its neighbors @, (c) knows a value  An alternative aspect of the problem arises for sparsely con-

N > n which represents a bound on the size of the network. nected networks which do not satisfy t# -+ 1) connectiv-

For ease of convenience, we also refer to these networks agty requirement. In such networks, it is fundamentally impos-

unknown networks sible to achieve reliable broadcast. The best known result for
sparse networks is the non-solvability of the problem [12].

Definition An adversarialnode can perform three types of However, we show that it is possibleltmit the damagehat

actions to disrupt reliable broadcast: (a) discard messagesan adversaries may cause in sparse networks.



In this paper, we study the reliable broadcast in sparse net-vertices with parametes satisfying2 < « < 3, the cu-
works for the specific case of a single adversadry= 1) mulative damage caused by a single adversary is bounded
and show optimality results for this case. Hence, we only by O(n!/® x (logn)®=®)/(3=2)) with high probability.

deal with cases where the connectivity of the underlying net-

work (1—connected and— connected) does not permitreli-  This result has important practical implications for the Inter-
able broadcast even in the presence of a single advéreary  net and many social networks that exhibit structural similar-
k = 1. We quantify the damage that a single adversary can ities to power-law random graphs [2]. In such types of net-
cause along two dimensions, as captured by the following works, the cumulative damage that an adversary may cause
definitions: is very small compared to the size of the network.

Definition An adversary is said to createbsoadcast parti- 1.4 Related Work
tion of sizem, if it can classify the set of good nodds,, into

m groups(X1, ... X,,), such that the following constraints ~ The problem of reliable broadcast (RB) is closely related to
are met: the classic problem of Byzantine agreement (BA) first pro-

posed in [25, 19]. More recent works on the problem of
byzantine agreement include [12, 14, 13]. We summarize the
relationship between the problem of reliable broadcast to the
Byzantine agreement problem with the following observa-
tion:

1. EachX; is non-empty and/;, = X, U... U X,,.
2. Nodes withinX; can reliably broadcast to other nodes
in X; but not to nodes iX; for j # i.

Definition Given a broadcast partitioB = (X1,...X,,)
of V, created by an adversary, the cumulative damage
caused byw is given bymin;|V, — X;|. If X; represents
the largest broadcast group I, then the cumulative dam-
age represents the number of nodes that cannot communicat&he first result implicitly follows from the fact that
with X ;. -RB — - BA. If two good nodes cannot reliably
transmit messages between themselves, then they cannot
The cumulative damage of an adversary measures the numachieve BA. The second result indirectly follows from previ-
ber of nodes that a single adversary can affect. If we con- ous works by Lamporet al.[19, 25] and Dolev [12].
sider Internet routing as an example, this metric represents|, ihe seminal work by Lamport [19, 25], a protocol for
the lower bound on th_e number of nodes that an adversaryByzamine agreement was proposed under the assumption
can affect by propagating bogus messages. We prove the foly, ¢ either; is known or that every pair of nodes can directly
lowing result for reliable broadcast on sparse networks: communicate or that nodes use a key distribution infrastruc-

Theorem 2. Given that an unknown fixed-identity network ture to sign messages. These basic assumptions continue to

U(n,G, N) has exactly a single adversany with degree be necessary in later works [12, 13, 14]. The relationship be-
d(A), the following statements hold: tween BA and RB is also implied in Dolev’s result [12] (the

purifying algorithm presented in Dolev’s paper achieves RB
whendG is known).

ObservationGivenn nodes of whichk are adversarial, then
two results hold: (a) BA—> RB; (b) If RB is achievable,
then one can achieve BAf > 3k + 1.

1. If Gis1—connectedA can create a broadcast partition
of size at mos2 x d(A).

2. If G is2—connected4 can create a broadcast partition ~ An identity-based cryptosystem [28] is an alternative pro-
of size at mosd(A). posal where the identity of a node indicates its public key.

Recent work on identity based encryption (IBE) [7, 11] rep-
These results are optimal in the sense that these represerfeésent the most general implementation of a usable identity-
not only the lower-bound on the amount of damage that an based cryptosystem. While one can envision using IBE to
adversary can cause but also a tight upper-bound. We pro-achieve reliable broadcast, IBE requires a trusted master
vide an algorithm that restricts the amount of damage an server to be entrusted with the private key of all partici-
adversary can cause and achieves the lower bound. WhilgPants. This assumption is, again, undesirable in large-scale
Theorem 2 provides only a bound on the size of a broad- distributed systems.
cast partition, it does not provide a bound on the cumula-
tive damage caused by a single adversary. One can construc2 Path vector signatures
1—connected an@—connected graphs where the cumula-
tive damage i€ (n). However, we show that the cumulative
damage of an adversary in a power-law random graph [2, 10]
is much smaller than as summarized below:

In this section, we describe the conceptpath vector sig-
natures one of the basic building blocks we use to solve the
problem of reliable broadcast. A path-vector signature is a
signature associated with a message that traverses a particu-
Theorem 3. Given an unknown fixed-identity network lar path within the network. These signatures enable a good
U(n,G, N) whereG is a power-law random graph on node todifferentiatebetween genuine messages generated



by good nodes from spurious ones generated by adversaries. 1. Initialization: Every nodev; generates its public key

An adversary (or a set of adversaries) that intends to disrupt a

good nodev from reliably communicating a messagégv),
will attempt to propagate spurious messageé&v) claiming
to be fromv. To defend against such adversaries, we asso-

ciate with each message a specific path-vector signature that

is cryptographically computed and updated by every node

along the path through which the message is propagated, so 3.
that no adversary can tamper with the message. Hence, an

adversary intending to propagate a spurious message claim
ing to be from a good nodeis forced to generatedifferent
signaturein comparison to the same message being gener-
ated by the source.

More formally, apath-vector messagen, s, p) consists of
three parameters: a messagethe identity of the source,
and a pathp containing the identities of the nodes the mes-
sage traverses including the sourceA path-vector signa-
ture, sgn(m, s, p), is a signature corresponding to a path-
vector messagém, s, p) which is initiated by the source
and incrementally updated by every node along the paith

is important to note that if a nodepropagates a path-vector
messagém, s, p) to v, thenv’s identity is already appended
to the pathp by u signifying thatu has propagated the mes-
sage tov. Hence, a node that receives a message should
have its identity as the last node in the path and cannot re-
move its identity (in case; is an adversary). The path-vector
signaturesgn(m, s, p), should satisfy three properties:

1. Verify: Given (m,s,p) and sgn(m,s,p), any node
should be able to verify that the message traversed the
nodes in pattp provided the message was initiated
ats.

. Append an identity: Let a node with identityz re-
ceives a messagen, s, p) along with sgn(m, s, p). If
x intends to forward the message to a neighbor with
identity y, = should be able to compute the valid signa-
ture sgn(m, s, p'), for the messagén, s, p’), wherep’
is the path(p, {y}).

. Inability to modify: Given a path-vector message,
(m, s, p), an adversarghould notbe able to produce
a valid signature for any message', s,p’) where
m’ # m oryp' is not a path of the fornfp, p) wherep
is any other path of identities. In other words, the ad-
versary can append identities to the path but not remove
identities.

g(v;), and for (i > 1), communicates it to its neigh-

bor’l}i_l.
2. Message Initiation:The sourcev; sends the message
my; = [ (m,s,p1),sgn; ] to its neighborvy where

s = (v1,9(01), p1 = [ (v1,9(01)), (v2,9(v2)) ], and
sgn1 = {G((m, s, p1),g(v1))}.

Incremental updateNodew; (i > 1) receives message
mi—1 = [ (m,s,pi—1),sgn;—1 | from its predecessor
v;—1. It then sends message, = [ (m, s,p;), sgn; | to

its successov; 1 wherep; = [ pi—1, (vit1,9(vit1)) ]
andsgn; = {sgn;—1, G((m, s,pi), g(vi)) }-

Note that each node; includes the identity of its succes-
sorv; 41 in its messagen;. This identity also includes the
public key announced by;, ;. Thus, in essence, the mes-
sage received by nodg consists of the original message
m, the identity of originators along with its claimed pub-
lic key g(v;), and a path signature where the identity and
public key of each hop is certified by its predecessor. Any
nodev; on the path that receives a messége s, p) along
with sgn(m,s,p) can verify the correctness of each indi-
vidual signature according to the signature sché&mé his
construction satisfies the following lemma:

Lemma 2. Any fake path vector messadé = (m,s,p)
generated by an adversarial node with a genuine signature
sgn(M) can only be one of two categories:

1. M was generated by a single adversaryhich gen-
erated fake public keyg'(u) for all identities « that
precedev in p.

. Two colluding adversaries, w that occur inp can
insert a spurious path fragment comprising arbitrary
identities (including identities of good nodes) between
v andw in the path. For each such good nodevhose
identity was added by and w, the adversarial nodes
need to generate a fake public kgyzx).

It is essential for every node along the path to sign every
message for this lemma to hold and distinguish any fake mes-
sage. If not, an adversary can insert arbitrary path-fragments
with identities and this can perturb the graph-computation
process described in Section 3. This motivates the concept
of akeyed-identity of a node denoted dg;, g(x)), wherex

is the identity and(x), the claimed public key of in a mes-

We now discuss a simple path signature construction that sat-sage. Every path-vector message contains a string of keyed-

isfies these requirements. This construction relies on an un-
derlying conventional public-key signature sche@avhere
G(m, P) refers to the message signed using the public key

identities. Any message with the keyed-identity, g(x))
is distinctly different from a message containing the keyed
identity (z, ¢’(z)), of which, certainly one of the messages

P. There are several known schemes that can be used for thigs bogus (since good nodes do not claim conflicting public
purpose, one example being the El Gamal signature schemekeys). However, given only these two messages, a receiving

[15]. Consider a node; sending a message to nodev,,
over the pati{vy, ... v,,). Let each node; generate a public
key g(v;). The prescriptions of our protocol are as follows:

node cannot immediately determine as to whetfler) or
¢'(x) is the genuine public-key of. We address this prob-
lem of determining the genuine keyed-identity in the next
section.



3 Reliable Broadcast Algorithm

Based on the concept of path-vector signatures, we describe

our reliable broadcast algorithm in this section. The algo-
rithm uses two main ideas:

Keyed-identity graph computation: Every good noder
uses the information from path-vector messages to contin-
uously compute a keyed-identity gragh., where the nodes

in the graph are of the forifv, g(v)), comprised of the actual
identityv and the claimed public key(v). To prevent unnec-
essary path exploration, a path-vector message that contain
no additional information(no new edge or vertex)t prop-
agated further

Determining genuine identities:|If the underlying graphz

is 2k + 1 vertex connected with adversaries, then, between
every pair of good nodes, there exists at Idast 1 vertex
disjoint paths that traverse only good nodes. Hence, in the
keyed-identity graph(z,., if the number ofidentity-disjoint
paths to a keyed-identityp, g(v)) is at leastk + 1), thenz

can concludg(v) to be the genuine public-key correspond-
ing to identityv. Any bogus keyed identityv, ¢'(v)) gen-
erated by adversaries can at most travérsertex disjoint

v should also match the one directly advertised by
V.

(b) Verify S.

(c) Learn one vertex at a timeAccept the mes-
sage only ifP;(m, s, p) contains at most one new
keyed identity (at the end of the path) not present
in G,. If so, update=,, with P;(m, s, p).

(d) Message suppressiot: P;(m, s, p) adds no new
vertices or edges t@',, ignore the message.

(e) To everyu € N(z),  transmits(m, s, p’) where
p’ = pU {u} after updating the signature.

5. Flow computation:If the number of identity-disjoint
paths to(v, g(v)) in G, is at least: + 1, thenz deems
v to be a genuine identity ang(v) to be its public
key. By identity disjoint paths, we mean that no two
paths should contain two different vertides g(v)) and
(v, ¢'(v)) which share the same identity

S

The immediate-neighbor key check is necessary to ensure
that if an adversary € N(x), thenv uses only a single
keyed-identity(v, g(v)) in all its messages propagatedito
Any other message that receives (from other neighbors)
which contains the identity is accepted only if it contains

paths since the identity of at least one adversary should bethe same public key(v).
presentin each path. If a message is not signed by every node

along the path, an adversary can generate spurious edges a
disrupt the computation of disjoint paths. The fact that ad-
versaries can at most pro¥edisjoint paths to a fake node is
critical for the solvability of this problem.

3.1 Asynchronous Broadcast Algorithm

Based on these two ideas, we describe an asynchronous algoU(

rithm to achieve reliable broadcast. Given a path-vector mes-
sage(m, s, p) and its signature, we define tkeyed identity
path P;(m, s, p) associated witlfm, s, p) to consist of ver-
tices (v;, g(v;)), wherev; is the identity of a node ip and
g(v;) is the public key ofv; in the signature. We us@, to
denote the keyed-identity graph computed by a noedth

a set of neighborsV(z). Every good node: performs the
following set of operations.

BROADCAST(Node z, Neighbors N (z))

1. Asynchronous node wakeuf: node can either begin
broadcast by itself or begin transmissions upon receipt
of the first message from a neighbor.

. Initiation: G, consists of one vertei:, g(z)).

. For everyu € N(z), x transmits(m(x), z, [z, u]) tou
along with its signature.

. Propagation:For every path-vector message., s, p)
with signatureS thatx receives fromu € N(x), = per-
forms:

(&) Immediate-neighbor key checheck if public-
key ofu in S matches the same public-key used in
previous messages. If not, rejéet, s, p). If v €
N(xz) — {u} appears ip, then the public-key of

n

:9.2 Proof of Theorem 1: asynchronous ver-
sion

In this section, we will prove Theorem 1 and show that
the asynchronous BROADCAST algorithm will eventu-
ally achieve reliable broadcast in an unknown network
n, G, N) ifand only if G is 2k + 1 vertex connected. This
proof consists of two parts. First, we establish the require-
ment that a minimun2k + 1 vertex connectivity is neces-
sary to achieve reliable broadcast. Next, we show how the
BROADCAST algorithm achieves reliable broadcast.

Minimum (2k+1) connectivity requirement: Consider a
graphH that is2k vertex connected with adversaries. Con-
sider any vertex cuf’ of size2k containing the: adversaries
that separateH into two componentsgl andB. Thek adver-
saries can prevent nodes.ihfrom reliably broadcasting to
nodes inB by modifying every message(u) fromu € A

to m/(u). Nodes inB cannot determine whethen(u) or
m/(u) is genuine. Thereforek vertex connectivity is in-
sufficient to achieve reliable broadcast in the presende of
adversaries.

BROADCAST analysis: Let every good node execute the
BROADCAST algorithm to broadcast(x). Consider a par-
ticular good noder. For every other good node with
public-keyg(v), if (v, g(v)) is a vertex inG, thenz would
have learnt the message(v) in the first path-vector mes-
sage wherév, g(v)) is added ta&, since(v, g(v)) was the
last node in that message.

Let G, = (V,, E,) represent the sub-graph comprising of



all the edges between the set of good nodes. Giverzhsat uses different identities to its neighbors W A;) for each

2k + 1 vertex connected with at moktadversaries7, is at 0 < i < m, thereby creating an underlying graph that re-
leastk + 1 vertex connected. If every good nodean learn semblesH .

all the edges inE,, then it can definitely computé: + 1)

identity-disjoint paths to every other good node and hence,4 Complexity analysis

can successfully determine every other good ngdes pub-

lic key g(v) and message(v). To show that the BROAD-
CAST algorithm achieves reliable broadcast, we need to
show that every good node will learn all edgegtin

In this section, we consider a synchronous version of the
BROADCAST algorithm and analyze its time complexity.
One needs to be careful when analyzing the time-complexity
of an algorithm in an unknown fixed identity network. The
To prove that each good node will eventually ledfp, let traditional Byzantine agreement literature uses the concept
us separate the message exchange process between neigbf rounds [12, 19, 14, 21] to analyze time-complexity. How-
boring nodes inteounds In rounds, let each node exchange ever, given that the entire network is unknown, enforcing the

the new path-vector messages it learnt in rourd1 with global concept of a round is not feasible. On the other hand, a
its neighbors. Within each rouridevery node will learn all ~ completely asynchronous mode of communication [5, 21, 8]
nodes within a distancefrom the node. Hence, withi@?(n) is also not suitable for our analysis since it is not possible to

rounds every good node will learn all edgedipand hence  provide time guarantees for message deliveries. Hence, we
discover all the genuine nodes @ Finally, the following revert to the traditional synchronous model dadally en-
simple result on message complexity holds: force the concept of time by imposing capacity constraints

Lemma 3. In an unknown networkf (n, G, N, let G com- on links based on the following definition:

prise ofe edges. Whek = 0, each node transmits at most

¢ path-vector messages to each neighbor using the BRoaAD-Definition A network G is said to becapacity-constrained
CAST algorithm. if every node can only transmi?(1) bits of information to

each of its neighbors in a single unit of time.

This result trivially follows from the message suppression

step in the BROADCAST algorithm. This step ensures that Capacity constraints enable us to loosely enforce the con-

for each edge 7, a good node propagates only one path- cept of a round globally while every node operates locally

vector message. In the absence of any advergasy (), the at its own link-capacity rates. By enforcing &K1) capac-

number of path-vector messages along each link is boundedty constraint on each link, we ensure that the ratio of the

by e. In the presence of adversariés* 0) generating fake  time to deliver a message along a link@1). While we

messages, the number of path-vector messages along eaciinalyze the time complexity of our algorithms based on the

link depends ork. We discuss this complexity in Section 4.  capacity-constrained assumption, it is conceivable that alter-
native measures of time may apply.

3.3 Multiple Identities: Proof of Lemma 1

Consider the case where an adversarial node uses differenf"l Message scheduling algorithm

identities to different neighbors. A single adversary using To produce a synchronous version of the BROADCAST al-
multiple identities is sufficient to disrupt reliable broadcast gorithm for a capacity-constrained network, it is essential to
in certain types of networks however large the connectivity determine the mechanism used to schedule messages at ev-
may be. For any positive integer value > 0, one can con-  ery node. In a capacity constrained network, each node re-
struct a graptH consisting ofn(> m) vertices which satis-  ceives multiple messages from each neighbor but can prop-
fies the following two constraints: agate only one message on each outgoing link. Hence, each
node needs to buffer messages and use a scheduling algo-
rithm to prioritize the messages to be transmitted. The lemma
described below shows that using a simple FIFO scheduling
algorithm does not suffice:

1. H is 2m — 2 vertex-connected but n@in — 1 vertex-
connected.

2. H contains a vertex-cuf’ such thatm — 1 vertices
Ay, ... A,,_1 € C have non-overlapping neighbor-sets

N (A1), ... N(Ap-1). Lemma 4. If every node uses a simple First-in-First-out
In essence ifdy, ... A,,_1 act as adversaries, then they can (FIFO) queue with an infinite buffer to schedule messages

disrupt reliable broadcast if. Given one such grapf/, on each link, there exists an unknown netwdrkn, G, N),
construct a new grapHl’ where the vertices!y,... A, 1 whereG is 3—connected such that the minimum time com-
are collapsed into a single vertekwhose set of neighbors  plexity of any algorithm to achieve reliable broadcast in the
represent the union of the set of neighborsdef... A,,_1. presence of a single adversary2g —3)/2,

Clearly H' is m-connected. One can show that a single ad-
versarial noded using different identities is sufficientto dis-  Proof: We first show that in the particular topology illus-
rupt reliable broadcast if’. To do so, the adversant trated in Figure 1, the delay incurred in transmitting a single



(b)

Figure 1: (a) Packet delay along a linear path. (b) Example topologyfarith 2m + 1 nodes withC' being an adversarial node.

message froml to B separated byn capacity-constrained  sociate a higher priority to the messages from lesser-known
hops can be as high a&~! if intermediary nodes use FIFO  nodes which have not received enough opportunities to trans-
gueues. Let this topology be capacity constrained in that ev-mit messages. To achieve these, the key idea liat&slimit

ery node can transmit only one message along every link in messageacross identities and keyed-identities. To do so, the
unit time. Let all nodes begin transmission at titre 0 with algorithm computes two simple metrics:

all queues initially being empty. Now, assume that the nodes 1 Identity priority: Let I (u, ¢)
S; connected td?; continuously transmit one message every
unit time. In this case, if alR;’s use FIFO queuing, a single
message froml to B will incur a worst-case delay & 1.
Since eacl$; transmits one packet per unit timef&, in the
worst-case A’s packet reache®; from R; at timet = 2,
reachesis att = 4 and reache®,; att = 2¢. Hence, the

represent the number of
path-vector messages transmitted prior to timeith
identity » in the path. A messaden, s, p) has an iden-
tity priority p1(m, s, p) which is the maximum value of
I (u, t) for all identitiesu € p.

2. Keyed-identity priority:Let I>((u,g(u)),t) represent
the number of messages transmitted prior to timéth

bound2™ ", keyed identity(u, g(u)) in the keyed-identity path. The
Next, using the previous result we construct a topology keyed-identity priorityps(m, s, p) of a message is the
where reliable broadcast with FIFO queues has a minimum maximum value of»((u, g(u)), t) over all keyed iden-
time complexity of2(»=3)/2, Consider a modified topology tities (u, g(u)) in the path.

(as shown in Figure 1(b)) withm + 1 nodes comprising of
a loop of2m nodes and a central node connected to all ) _ _ _
the nodes in the loop. Now let nodg be the only adver- 1. Schedule message:, s, p) with the lowest identity pri-
sarial node that continuously injects fake path-vector mes- ority, p;(m, 5,p)- o . .
sages on each of its links. Each such fake message is gener- 2 If multiple messages have the same minimum identity
ated from a non-existent vertex and also contains an arbitrary ~ Priority, schedule the message among them with the

The scheduling strategy is as follows:

non-existent path. Now, two good noddsand B can only lowest keyed-identity priorityp, (1, s, p).

communicate through the two paths in the loop of length 3. Use FIFO as a final tie-breaking rule.

By the previous argument, if all nodes use a FIFO queue The rationale behind maintaining two separate priorities is
with an infinite buffer, any message fror to B will in- two-fold. First, theidentity-based prioritys essential to pre-

cur a minimum delay o2™~*. However, any algorithm that  vent an adversary to use multiple keyed identities and prop-
achieves reliable broadcast should enable at least one mesagate spurious messages. For example if we use only keyed-
sage to be communicated frafto 5. Hence, the minimum  identity priorities in the topology illustrated in Figure 1(b),
time complexity of any such algorithm using FIFO queues is the lower bound argument used in the case of FIFO holds
lower bounded bp™~! = 2(»=3)/2 in this case too. Second, the keyed-identity based count is

The above argument can also be directly extended to the Fai€Ssential because an adversary can artificially increase the
Queuing discipline where a node divides a link’s capacity dentity-based count of a good node by inserting the good
equally amongst all its other neighbors. In the above exam- N0de in a path. However, an adversary cannot artificially in-
ple, FIFO scheduling and Fair queuing does not work pri- crement the keyed-identity based count of a node.

marily because an adversarial node can flood the network

with spurious messages and delay the delivery of packets. 4.2 BROADCAST algorithm complexity

We useG, = (V,, E,) to represent the sub-graph@fcom-
prising of only the good nodek, and £, the set of edges
The goals of identity-based rate-limiting are two-fold: (a) between them. Assumir@, is connected, lefiam(G,) de-
hold nodes accountable for every message they transmit andhote its diameter. We prove the following theorem on the
limit the capability of adversaries to flood messages; (b) as- BROADCAST algorithm.

4.1.1 Identity-based rate limiting
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Figure 2: (a) Single adversary case. (b) Example topology for the case when.

Theorem 4. Given a boundk on the number of adver- messages to completely learn the good grégh To ana-
saries and a boundk ondiam(G,) in an unknown network  lyze the worst-case time bound, we analyze each such mes-
U(n,G, N), the BROADCAST algorithm with identity-rate  sage in isolation. Each message, s,p) that traverses a

limiting (IRL) achieves reliable broadcast in: pathp comprising of|p| good nodes experiences a delay of
1. O(N?nlogn) time fork = 0. (Ip| + l)nlog.n sinqe an adyers_ar;X can inject spurious
2. O(N3nlogn) time fork = 1. messages (either directly or |nd|rectly). for each node along
3. O((k + 1)AN2?nlogn) time fork > 1. p. |p| represents the length of pathend is clearly bounded

byn—1. Hence, each message in isolation if delivered one at

. ) a time is delivered to a good node@(n? logn) time. The
Proof. In a capacity constrained network, a node can trans- ime to delivere messages is bounded Byn2elogn) time.
mit only O(1) bits per unit time. For simplicity, we bound
the total number of bits consumed by every path-vector mes-

sage byO(nlogn) (log n bits for each identity and for the Lemma 7. For a general valuek, given a boundA >
maximum number of signatures in a message). We analyzediam(Gy), using BROADCAST+IRL, every good node
the Complexity Separate'y for three cases: achieves reliable broadcast aftél‘((k + 1)A€TL log TL) time.

Lemma 5. Whenk = 0, BROADCAST + IRL achieves reli- Proof Sketch:Much like Lemma 6, we consider a sim-

able broadcast irO (ne log n) time wheree is the number of ~ ple scenario of two good node$ and B separated byn
edges inG. hops (as shown in Figure 2(b)), except that the adversaries

X4,..., X} continuously inject messages at every ndtle
along the path. Unlike Lemma 6, we show that the delay in-
curred by every message frasnin this case can be as high as
O((k+1)™ x nlogn). Inthe general case, given a boufd
ondiam(Gy), the information about every edgedh, can be
transmitted along a path of at masthops. Hence, the max-
imum time required to discoveredges inG, is bounded by
k+1)%enlogn). O

Proof: If the first node initiates transmission at time=

0, every node will receive a wake up signal aftempath-
vector message transmissions given that the diametéf of
is bounded byn. After wakeup, the message suppression
step in the BROADCAST algorithm ensures that every node
learns G after e message transmissions along each edge.
Since each node will always have a new path-vector messageo ((

to transmit and that each message 68 log n) time com- Stoppage constraint:The final element of the proof is the
plexity for transmission on a link, BROADCAST requires stoppage constraint. Since no node is aware of the values
O(enlogn) time to converge. [ of n ande, each good node cannot determine when the full

graph is learned. We use the bouNdto represent a bound
Lemma 6. Whenk = 1, BROADCAST+IRL achieves reli-  ony and N2 as a bound omr, the number of edges. These
able broadcast ir0(n*elog n) time. bounds need to be applied only on the number of messages
but not on the size of each message. Hence, we can still retain
Proof: We first analyze a simple scenario as illustrated in theO(nlogn) bound on the maximum time complexity of a
Figure 2(a) where node$ andB arem + 1 hops away and  single message. Replacing these bounds in Lemmas 5, 6 and
A propagates one messagean the presence of an adver- 7 completes the proof. O
sary X that continuously injects packets along each hop in
the path (No other node propagates any message in this ex4,.3  |ower-bound time complexity
ample). If all transmissions begin &= 0 with the identity
based counts set to zero, the IRL algorithm will ensure that Ve show the following lower-bound on the time complexity
for every message that propagatesX can at most insert of any reliable broadcast algorithm.
messages, one along each of the lixkB,;. Hence,A’s mes-
sage is delivered t® within (m + 1)nlog n time assuming
a simple upper bound aflog n bits for each message.

Lemma 8. Given a bound: on the number of adversaries,
there exists a capacity constrained netwdiKn,G, N)
where G is 2k + 1 vertex connected, such that any algo-
In the general case, from the proof of Lemma 5, we know rithm that achieves reliable broadcast ii(n, G, N) has a
that every good node needs to receiwifferent path-vector ~ minimum time complexity af.



We refer the reader to the Appendix for a proof sketch of
this result. Notice the wide gap between the lower-bound re-
sult and the time complexity of our algorithm. Addressing
this complexity gap is an open research problem; our work
primarily illustrates the existence of an algorithm to achieve
reliable broadcast but does not target optimality.

4.4 Limitations of capacity-constraints Figure 4: An example topology for the penalty based defense strat-

Analyzing the time complexity of a distributed algorithm ey

with capacity constraints on link-topologies is a very restric- |4t T'(v) = V — T(v) — {v, A}. Pick any treeG, such that

tive model. Lemma 4 illustrates the limitation of FIFO inthe v) andT” (v) are non-empty. For every nodes T'(v) that
face of a single adversary, where a single message transmiséttempts to reliably broadcast a message), let A propa-
sion can be exponentially complex with capacity constraints. gate a spurious message(u) as if u propagated the mes-

In other words, many simple distributed algorithms includ- sage (as illustrated in Figure 3(a)). Since no nod@’ifv)

ing the emulation of a single round in a Byzantine agreement ;¢ directly adjacent to any node ifi(v), these nodes will
algorithm has exponential complexity. Givep this, the bound (oceive two messages(u) and m’(u) and cannot figure

for the casé: > 1 of the BROADCAST algorithm should be ¢, \yhich message is genuine. All genuine messages from
viewed as a worst-case bound (where an adversary generatefn(v) are routed through and all spurious messages (u)
infinite bogus message) which is not completely reflective of 5.0 1outed throught and nodes if” (v) cannot determine

the real-life scenario. Ir_1 a realistic setting, we Would_expect which node to believe. Hence no nodelif(v) can reliably
the asynchronous version of the BROADCAST algorlthm 10 communicate with any node if(v). Thereby,A creates a
have much lower run-time qo_mplexny and anticipate an ad- poadcast partitiofZ'(v) U {v}, T (v) U {v}) of size2.
versary to generate only a finite number of bogus announce- ] .

ments. With finite bogus announcements from adversaries,FO' the general case, we can create a@eeth d replicas of -
the complexity is polynomial in the number of nodes with G with the vertexA merged across all these replicas (as il-

capacity constraints. lustrated in Figure 3(b)). In this case, by simply dropping all
good messages traversingdt,can createl separate compo-
5 Sparse networks nents which cannot reliably broadcast to each other. Within

each such componem, acts as a leaf node and can create a

In this section, we describe our results for the problem of pr9adcast partition of size Hence A can create a broadcast
reliable broadcast im—connected and—connected graphs  partition of size2d. [

in the presence of a single adversaey, k = 1.
Lemma 10. There exists a 2-connected gra@tsuch that an

5.1 Lower bound of Theorem 2 adversarial noded in G with degreed can create a broad-
, ) i cast partition of sizel in U(n, G, N).

In this section, we show the existencelefconnected and
2—connected graphs such that a single adversary with a de-proof: Consider the grapt illustrated in Figure 3(c), where
greed can create broadcast partitions of sizdsandd re- P,,... P, are paths of good nodes such that the end-points
spectively in these graphs. This establishes the lower boundgf each path connect to two separate vertidedv. In this

on the size of a broadcast partition that a single adversary cancgse 4 has degred. For every nodes; € P; that intends to
create inl-connected and—connected graphs. In this anal-  rejiably broadcast a messaggu;), A propagates a message
ysis, we assume that the adversary is awai@ ahile good /() to all its neighbors inP; wherej # i. Hence, every
nodes are aware of only their neighbors. This assumption iSpodew; € P; will receive two messagesn(u;) (through
valid since the adversary can first learn abGutrom good v) andm/ (u;); hence for every,; € P, (i # j), u; cannot
nodes and then propagate spurious messages. The followingscertain which of the two messages is genuine. Therefore,
lemmas establish the lower-bound. no pair of nodesu,, u;) , u; € P; andu; € P;,j # i, can
reliably communicateA creates a broadcast partitioR; (U

Lemma 9. There exists a tre& such that an adversarial .
{v},..., PyU{v}) of sized. O

nodeA in G with degreed can create a broadcast partition
of size2d in U(n, G, N). 5.2 Defensive strategy

Proof: We first analyze the case whéen= 1. Let G, be a Now, we describe an optimal penalty-based defensive strat-
tree rooted at a node (refer Figure 3(a)). Let be a child egy that a good node uses to limit the size of a broadcast par-
of r such that the sub-tree rootedwait non-empty and does tition that an adversary can cause to the lower bound. This
not contain the adversarial node Let T'(v) represent the ~ mechanism works only fok = 1. The defensive strategy
set of nodes in the sub-tree rootedvafexcludingv) and uses one key corollary that directly follows from Theorem 1:
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(a) Graph G o (b) d replicas of Go —A (c) 2—connected graph example

Figure 3: Lower bound analysis for sparse graphs: (a) An exampled@gavith adversaryA being a leaf node. (b) Example tree with
adversaryA having degred. (c) Example2-connected graph.

Corollary 1: Let H be a2—connected subgraph a in then we declare the identity as non-identifiable.
an unknown network/(n, G, N'), comprising of only good
nodes. In the presence of a single adversafy,every node
in H can reliably broadcast to all nodes if.

Revisiting the example in Figure 4 will notice P, @), R and

S to be conflicting identities. The genuine keyed-identity
of P propagated byl/ will have a maximum penalty of
We explain the intuitive idea behind the penalty-based de- while the fake keyed-identity generated by the adverddry
fense strategy using an example illustrated in Figure 4. Let will have a penalty oft. Hence, the penalty based algorithm
H(v) represent the set of all keyed-identities that has& a chooses the genuine keyed-identities ), R, S.

identity disjoint paths ta. An adversaryM cannot disrupt
any of these nodes. In this example, howewérattempts to
disrupt reliable communication to multiple nodgs @, R,
S which connect (directly or indirectly) using good paths to Lemma 11. In an unknown network (n, G, N), if all good
different nodesA, B,C and D in H(v). From the perspec- nodes use the BROADCAST+IRL+PENALTY algorithm for
tive of v, M and A disagree orP, M and B disagree or, determining genuine nodes, a single adversary with degree
M andC on R and finallyM andD on S. Hence, ifv asso- d(A) can create a broadcast partition of size at most: (a)
ciates a penalty with a node for every identity-disagreement, d(A) if G is2—connected; (b2 x d(A) if G is 1—connected.
then M obtains the maximum penalty dfwhile the nodes

A, B,C, D each obtain a penalty af Thereforep notesiM The proof of Lemma 11 is presented in the Appendix. This
to be a suspicious candidate and filtd&s messages and lemma completes the proof of Theorem 2.

chooses the genuine identities propagatedibi, C, D.
5.3 Proof sketch of Theorem 3

Now, we present the penalty-based algorithm based on the
idea explained above. Initially, every nodeexecutes the  Finally, we provide a proof sketch for Theorem 3 described

The following lemma holds regarding the penalty-based al-
gorithm:

BROADCAST+IRL algorithm for the case of = 1 and in Section 1.3 where we show that given a power-law ran-
computes the keyed-identity graph.. Next, they apply the ~ dom graph (PLRG)7(n,a) on n nodes with parametex
following penalty algorithm ortx . (2 < a < 3), the cumulative damage that a single adversary
PENALTY (Node z, Graph G.,) can cause is bounded I}(n'/* x (log n)(®=®)/(B=2)) with

. . o high probability. We prove two results on power-law random
1. We declare a keyed-identity, g(y)) to begenuinef graphs to show this result.

has two identity disjoint paths t@;, g(y)).

2. Thetail-end of a keyed-identity(v, g(v)) is the path ~ Lemma 12. Every PLRG((n, «) for large values of: has
from the node(y, g(y)) to (v,g(v)) in G, such that a 3-connected subgrapti with O(n/((log n)?f%i)) vertices
(y,9(y)) is the last genuine node in any path fram  with high probability.
to (v, 9(v)).

3. Anidentityu has aconflictif there are at leastvokeyed
identities with the same identity i@,

4. Penalty assignment:The penaltyof an identityu is
the number of distinct conflicting identitiesfor which

some keyed-identityu, ¢’(u)) appears in the tail-end )
e ; yu, ' (1)) app We refer the reader to the Appendix for a proof sketch of
of a keyed-identity(y, g(v)). . :
] o ) . these lemmas. To quantify the cumulative damage an ad-
Node-selection criteria:Based on the penalties assigned to versary A can cause, letd have a maximum degree in
identities, the criteria for selecting nodes is simple. For each 7 of ;,1/2. The number of vertices solely reliant ot is

keyed identity,(v, g(v)) that has a conflict, determine the pounded bya'/® x (logn)®~®)/3=2)_Given that there ex-
maximum penaltgf the identityu that appears in the tail-end  stg 5 sub-graptif which is 3—connected A cannot affect

of (v,g(v)). Choose the keyed-identity with theinimum 41y node within this subgraph. Also, all these nodes can re-
value of the maximum penalty no unique minimum exists,  |iaply broadcast all their messages withih Additionally,

Lemma 13. Given a PLRGG(n, «) and a random vertex
v with degreed, the number of vertices that get discon-
nected from the largest componentGh— {v} is bounded
by d(logn)(®~)/(3=) with high probability.
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every vertexv has one or more (indirect) neighbors within  Acknowledgments
H. For every identityv that A propagates a spurious mes-
sage, the penalty value of increments byl and so does
the penalty value of the indirect neighborswofn H. If A
targets specific identities such that the indirect neighbors of
these identities are distributed among different verticds,in
then A obtains the maximum penalty value and hence is al-
ways ignored. To prevent thigl can at most target identities

The authors owe a lot of gratitude to Satish Rao, Richard
Karp, Jayanthkumar Kannan and Subhash Khot for provid-
ing insightful technical comments on this work. The au-
thors also thank the anonymous reviewers, Matthew Caesar,
Michael Freedman, Brighten Godfrey, Dilip Joseph, Karthik
Lakshminarayanan and Sriram Sankaran who have provided
invaluable feedback towards improving the presentation.

connected to a specific vertexin H such that the penalties
of w and A from the perspective of other nodes is the same.
If A targets any additional identity which has a different in-
direct neighbor inH, then A’s penalty overshoots. Hence,

to maximize the cumulative damage, should target only
those identities that solely rely on eithdror « or both to
connect toH . Using Lemma 12, we can bound this number
by 4 x n'/® x (logn)®-)/G=a) O

6 Conclusions and Implications

In this paper, we study the problem of reliable broadcast in
unknown fixed-identity networks. The results presented in
this paper on this problem is of practical significance for
several widely-used distributed systems including the Inter-
net, Domain Name Service (DNS). From a theoretical stand-
point, two immediate implications that follow ardecen-
tralized key-distributiorandbyzantine agreemerift reliable

broadcast is achievable, then every good node can broad-

cast its public-key to other good nodes in the system thereby
achieving key-distribution in a decentralized manner. This
result has important ramifications for building decentralized
security mechanisms for Internet routing as illustrated in [29]
and DNS. Apart from key distribution, reliable broadcast is
an essential building block for achieving byzantine agree-
ment in unknown networks. The correspondence between
the two is described earlier in Section 1.4.

The sparse network results have important ramifications for
Internet routing. The Internet topology at the autonomous
system isl—connected and therefore cannot handle even a
single adversarial node. The best-known previous result on
reliable broadcast for sparse networks is that the problem is
not solvable. Here, we show that one can limit the damage of
an adversary by using penalty-based filtering. Specifically,
for, Internet-like graphs which are modeled based on power-
law random graphs, we show that a single adversary can
cause very little damage. While the overall Internet topology

is sparse, there are sub-graphs within this topology which ex-
hibit high vertex connectivity. Within these sub-graphs, per-

fect reliable communication is achievable.

Two specific open problems that arise from this work are:
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(a) Can the connectivity requirements be relaxes for inde- [11]

pendent adversaries? (b) Can we solve this problem without
assuming a known bound on the number of adversaries? Im-

provements in the time complexity and the communication [12]

overhead of our schemes are possible areas of future work.
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Proof sketch of Lemma 8

To illustrate the lower bound, consider the topology illus-
trated in Figure 5(a) where nodek and Ay, are con-
nected by a path of lengthk + 1 and thek adversaries
Xy,... X} directly connect to the nodes along the path. In
this example topology, the adversaries can delay the propa-
gation of a single message frofy to Ay by a minimum

In time of 2%,

For simplicity, we assume that the propagation of a single
message takes unit time along a link. The basic idea of the
argument is that for every message that ; transmits toA;,

X; can transmit a message . SinceA; cannot differenti-
ate a message from;_, and.X;, it has to accord both mes-
sages equal priority. Hence, for a single message figm

X, can transmit one message thereby forcihgto propa-
gate2 messages td,. Extending the argument;_,, in the
worst case, propagatés ! messages tal; to finally prop-
agate a single message frotg. During this period X; can
propagate an equal number of message delayigig mes-
sage toA;; by time 21, Hence, in the worst casely’s
message need time to reachA; ;.

Based on this example, consider the grdphllustrated in
Figure 5(b), where every nod¢; (in the previous figure) is
replaced with a cliqu&;; of sizek+ 1 and each cligue is con-
nected to the next with a matching of size- 1. The adver-
sarial nodesXy, ... X form a complete cliqueH is 2k + 1
connected witht adversaries. As in the previous example,
let X; continuously inject bogus messages to all nodes in
the cliqueY;. To achieve reliable broadcastih, every node

in Yy needs to propagate at least one message to nodes in
Yi+1. The previous argument can be extended to show that
this message transmission frdrjp to Y;, can be delayed by

2% in the worst case.

B Upper bound analysis of Theorem 2

We first analyze the penalty algorithm for two simple
1—connected an?—connected graphs, namely, trees and cy-
cles. Later we use these cases for analyzing general graphs.

Analysis for trees: In the simplest case, let the adversary,
w, be a leaf node in a tréE and propagate bogus messages
about/ genuine identities),...v; in T. Let g(v;) be the
genuine public keys advertised agidv;) be the fake public
keys generated by. Let P; represent the path iy from w

to the identityv;. Let r be the last common vertex along all
these pathg>; (beyondr the paths diverge, as illustrated in
Figure 6(a)). Letl’. refer to the sub-tree to the right, rooted
atr and7”(r) be the remaining sub-tree that containgnot
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containingr). The noder will maintain a penalty of for

all vertices in the path from to w (excludingr). Hence the
value ofs(v;, ¢’ (v;)) isl. However, since the paths diverge at
r, the values of(v;, g(v;)) < I foralli. Hencey will choose
the genuine identities; over the bogus identities propagated
by w. Whenr filters out the bogus messages framand
broadcasts the chosen identity, the node,ircan reliably
broadcast between themselves. On the other hand, any nod
in T (r) will associate a value dffor both s(v, g(v;)) and
s(v, ¢'(v;)) since all these nodes (excep) will maintain

a penalty ofl with both w andr. Hence, these nodes can-
not reliably communicate with nodes T(r) but can broad-
cast within themselves. Therefore, a leaf nadean create
a broadcast partition of size at masin 7.

Extending the argument to an adversarpf degreed in a
treeT. T — {w} hasd disjoint sub-trees. Clearly, to cause
maximum damagey should not propagate any good mes-
sages across these disjoint sub-trees. Hanaets as a leaf
node in each sub-tree and can thereby create a broadcast pa
tition of at most sized.

Analysis for cycles: Consider the cycle illustrated in Fig-
ure 6(b) where node has a left neighboi;, and right neigh-
borv;. w clearly should not propagate any message frgm

to v; and vice-versa. We call an identityto be affectedif

w propagates a bogus message ahouAlso, we refer to
the orientation of the cycle beginning from as the left
portion of the cycle and the opposite orientation beginning
from v to be the right portion of the cycle. To maximize the
damagew should propagate bogus messages about the left
portion throughv; and about the right portion te; (since
this minimizes the chance of intermediary nodes filterirs
messages) (refer Figure 6(c)). Also, it isuts disadvantage

bothu; andw;.

Let w propagatek; bogus messages tq andks, messages
tous. Letx andy be the first unaffected nodes in the left and
right portion of the cycle (refer Figure 6(c)). Letv) be the
genuine public key of identity and¢’(v), the fake public
key generated by.

gonsider a vertekxin the pathu, . For every vertex in the
path vy, the penalty values of((z, g(z)) and s(z,¢'(2))
thatt maintains are both equal kq. Hencet cannot differen-
tiate between the two keyed identities and hence cannot com-
municate withz. However, for any vertex in the pathu; z,

the penalty value of(z, g(z))is smaller thans(z, ¢'(2)).
Hence all nodes within, 2 can reliably communicate within
themselves. All nodes in the path can reliably commu-
nicate their public keys to all the nodes since they are un-
affected. In the limiting case;y andy are the same node.
Hence, in a cycle, a single adversarycreates a broadcast
pr)artition of size2, namelyu; 2 andv;z (with = y).
2-connected graphs (Proof Sketch):Let G be a
2—connected graph with a single adversasyof degree
d(w). Using Corollary 1, ifH is a2—connected sub-graph
of G comprising only of good nodes, we can merge all
these vertices to create a single vertex for Let G’ be
the graph obtained after shrinking &l-connected compo-
nentsH to single vertices irG. Clearly G’ — {w} is a tree
since it contains n@—connected subgraphs. Also, sinGé

is 2—connectedyw connects to all the leaf nodes 6f (ex-
ceptin the trivial case whefi — {w} is 2-connected(=’ con-
tains only2 vertices). We can extend the cycle argument to
show thatw can create a broadcast partition of sige(w) in

G’ wheredg (w) is the degree ofv in G'. In the case when
de (w) is even, we can identifgs (w)/2 non-vertex over-

to propagate two bogus messages about the same identity to
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lapping cycles (excepb) and apply the cycle argument to
each in isolation. Whed (w) is odd, we handle a special
case where two cycles have an overlapping path fragment
(where we use the lower bound argument Zerconnected
graphs to show a broadcast partition of siZer overlapping
cycles). In the limiting case, we havg, (w) = d(w) as il-
lustrated earlier in the lower-bound analysis in Figure 3(c).
Hence,w can create a broadcast partition of sie) in G.

1-connected graphsiLet G be al—connected graph with
an adversary of degreed(w). Using corollary 1, if we col-
lapse alR— connected sub-graphsdnto single vertices, the
remaining grapha’ resembles a tree with cycles involving
only the adversarial node. Letd; (w) represent the number
of neighbors ofw in the 2-connected portion o’ (involv-

ing w) and letds(w) be the remaining set of vertices. Using
the previous casey can create a broadcast partition of size
at mostd; (w) in the 2—connected portion and a broadcast
partition of at mos® x ds(w) in the remaining portion of the
graph (tree case). Hence, the maximum size of a broadcast
partition isd; (w) + 2 x dz(w) which is upper-bounded by
2 x d(w) (givend; (w) + dz(w) < d(w)).

C Power-law random graph lemmas
C.1 Proof Sketch of Lemma 12

Let G represent the subgraph @finduced by all vertices
with a degree at least = (logn + 3loglogn)/(3=2),
The number of vertices itv, is O(n/\*~1). We prove this
lemma by showing the following key steps:

1. The expected degree of every nodedR is at least s
A3~ =logn + 3loglog n.

2. There exists an Erdos-Renyi subgrdptof G where
each node has an expected degr&é*—*).

3. Using Bollobas’s result [6] on Erdos-Renyi graphs, we
showH is 3—connected with high probability.

Hence, the subgraph, with O(n/((log n)%)) vertices is
3—connected with high probability. [

C.2 Proof Sketch of Lemma 13

This follows directly by applying Lemma and a conduc-
tance result by Gkantsids al. [16] in power-law random
graphs. Lefl'(v) be the set of nodes that are separated from
the largest component(v) in G — {v}. Consider a unit
flow to be routed between every pair of nodesdn Any
flow from T'(v) to L(v) has to be routed via. Given all
links have unit capacity, Gkantsidisal. show that there ex-
ists a way to route the demand such that all links have flow
O(nlog®n). Hence, we get the bound that(v)| x |L(v)] is
O(dnlog® n). From Lemma 11L(v) contains &-connected
graph with at leas©(n/((log n)%)) vertices. Combining
the two results, we obtain the required bound.]
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