Long-Term Data Maintenance in Wide-Area Storage Systems:
A Quantitative Approach

Hakim Weather spoon, Byung-Gon Chun, Chiu Wah So, John Kubiatowicz
University of California, Berkeley

Report No. UCB/CSD-05-1404

/l July 2005

[

| Computer Science Division (EECS)
University of California
Berkeley, California 94720

4

Long-Term Data Maintenance in Wide-Area Stor age Systems:
A Quantitative Approach

Hakim Weatherspoon, Byung-Gon Chun, Chiu Wah So, John Kubiatowicz
University of California, Berkeley

July 2005

Abstract

Maintaining data replication levels is a fundamental process of
wide-area storage systems; replicas must be created as storage
nodes permanently fail to avoid data loss. Many failures in
the wide-area are transient, however, where the node returns
with data intact. Given a goal of minimizing replicas created
to maintain a desired replication level, creating replicas in re-
sponse to transient failures is wasted effort. In this paper, we
present a principled way of minimizing costs while maintain-
ing a desired data availability. Design choices include choos-
ing data redundancy type, number of replicas, extra redun-
dancy, and data placement. We demonstrate via trace-driven
simulation that significant maintenance efficiency gains can be
realized in existing storage systems with the correct choice of
strategies and parameters. For example, we show that DHash
can reduce its costs by a factor of 31 while maintaining the
same desired data availability.

1 Introduction

Maintaining data replication levels is a fundamental process of
wide-area storage systems. Wide-area storage systems repli-
cate data to reduce risk of data loss and continually trigger
data recovery by replacing lost replicas as nodes fail. We call
this process data maintenance. It includes data redundancy
schemes, node selection for data placement, monitoring node
availability using heartbeats, detecting node failures by miss-
ing heartbeats and triggering data recovery.

Challenges arise when configuring a storage system for ef-
ficient data maintenance. The bandwidth costs due to data
maintenance choices are affected by node availability and fail-
ure characteristics. For instance, transient node failures where
nodes return from failure with data intact, can increase the
cost of maintaining data availability significantly. Addition-
ally, correlated failures can compromise data availability. Fig-
ure 1 shows an example of the importance of data mainte-
nance. In this example, a replication scheme produced eight
total replicas for some object and seven replicas were required
to be available to satisfy some data availability constraint. Us-
ing a data placement strategy, replicas were then distributed
throughout the wide-area. Over time, a replica in Georgia per-
manently failed, data was lost, and a replica in Washington
transiently failed since only a heartbeat was lost (Figure 1(a)).
As a result of the failures, two new nodes in Arizona and Min-
nesota were chosen and replicas were copied to the new nodes
(Figure 1(b)), we call this data recovery. Notice that the node
in Washington could return from failure with data intact, in

which case, recovery work would have been wasted creating a
new replica.

Many systems effectively use simulation to explore the cost
tradeoffs of data maintenance; however, complete explorations
via simulation have been limited in literature and there are
few studies to compare different storage systems. In general,
simulation can provide a way to study system design alterna-
tives in a controlled environment, explore system configura-
tions that are difficult to physically construct, observe interac-
tions that are difficult to capture in a live system, and compare
the cost tradeoffs over time. For example, Total Recall [5]
showed via simulation that lazy repair can mask transient fail-
ures, delay triggering data recovery and reduce the cost of data
maintenance. However, the simulations have been on the or-
der of weeks which is insufficient to measure the long-term
costs. Moreover, many studies use high-churn P2P file-sharing
traces [5, 6, 22], which represent environments different from
storage system environments. Additionally, the growth of sys-
tems (i.e., the increase of maintained data in the system) has
not been considered. Finally, most systems assume failures are
independent without any quantification. We address these is-
sues by presenting a unified view of storage systems and eval-
uating systems with a long-term PlanetLab trace.

Wide-area storage systems can be realized with a specific
instantiation of data redundancy type, data recovery style, and
data placement strategy. Many systems choose a specific set
of strategies and parameter values, but it is not clear why sys-
tems choose such values. Surprisingly, we found out that the
specific setting of Pond [25] guarantees only two 9’s of data
availability in PlanetLab [2], and that of Dhash [12] is con-
figured to spend very high maintenance bandwidth. These are
all consequences of unprincipled approaches of parameteriz-
ing storage systems for long-term data maintenance.

In this paper, we show that significant efficiency gains can
be realized in existing storage systems with analysis and trace-
driven simulation of maintaining data on a long-term basis. In
particular, we explain a principled way of choosing data re-
dundancy type, number of replicas, recovery style, and data
placement. Our analysis is based on PlanetLab trace, one of
the largest open wide-area systems, and compare many exist-
ing storage system parameterization and their long-term costs
on PlanetLab.

The contributions of this work are as follows:

e We present a unified view of existing wide-area storage sys-
tems in terms of data redundancy type, data recovery style,
and data placement. We evaluate the long-term maintenance

--X-» = Missed Heartbeat
=% = Failed Node

(2) Threshold Reached

costs of the systems using a trace-driven simulation of Plan-
etLab. In particular, we evaluate the specific parameteri-
zations of P2P storage systems such as Dhash, Dhash++,
PAST, TotalRecall, and Pond.

e We demonstrate a principled way to estimate the amount of
extra replication required to reduce data recovery costs due
to lazy repair. We also show how lazy repair can be applica-
ble to distributed hash table (DHT)-based storage systems.

e We show that a variant of a random replica placement such
as one that avoids blacklisted nodes and replaces duplicate
sites is sufficient to avoid the problems introduced by the
most observed correlated failures.

The rest of the paper is organized as follows. We discuss
the challenges of long-term data maintenance in Section 2. In
Section 3, we discuss, at a high level, how a wide-area storage
system maintains data. We describe a PlanetLab trace in Sec-
tion 4. We discuss data recovery in Section 5 and data place-
ment in Section 6. Section 7 shows parameterizing existing
peer-to-peer storage systems. In Section 8, we evaluate and
compare the existing peer-to-peer storage systems and evalu-
ate effects of data recovery, placement, and redundancy type
on the systems. We review related work in Section 9. Finally,
we conclude in Section 10.

2 Challenges

The goal of this work is to address challenges in evaluating
the efficiency of maintaining data availability on a long-term
basis. In respect to data availability, wide-area maintenance
bandwidth can be reduced by the following three methods:
data recovery, placement, and redundancy.

2.1 Data Recovery

Data recovery is key to ensuring data availability while reduc-
ing the maintenance bandwidth. Itis the first area of data main-
tenance that we study. The goal of a successful data recovery
is to repair lost redundancy only when needed and as fast as
necessary. Associated problems can arise from false positives
due to transient failures and repairing redundancy too fast that
other services are adversely affected. Therefore, the challenge
is minimizing the cost due to data recovery given that it is not
possible to differentiate permanent and transient failures.

2.2 Data Placement

The second method we study for reducing wide-area band-
width is data placement. Data placement is the process in

(b) Data Recovered
Figure 1: Example. Maintaining Data in a Wide Area Storage System.

which nodes are selected to store data replicas. The goal of
data placement is to select a set of nodes that can maintain a
user or system specified target data availability while consum-
ing minimal wide-area bandwidth. There are two categories
of data placement: random and selective. Random placement
is used for its simplicity. Its use is often accompanied by the
assumption that each node failure is independent or has low
correlation® with each other. If node failures are not indepen-
dent or have high correlation, the end result could reduce data
availability. In contrast, selective placement chooses specific
nodes that satisfy some constraints (e.g. select nodes that have
been previously shown to have low correlation [32, 16]). One
challenge to data placement is that correlated failures, which
are often conjectured, can compromise the expected minimum
data availability.

2.3 Data Redundancy

The final method we study to reduce cost is the efficient use
of data redundancy. Redundancy is the duplication of data in
order to reduce the risk of data loss. There are two categories
of data redundancy: replication/mirroring and parity/erasure
codes. The limitation with replication/mirroring is that it
increases the storage overhead and maintenance bandwidth
without comparable increase in fault tolerance. In contrast,
parity/erasure codes have a better balance between storage
overhead and fault tolerance. Erasure codes provide redun-
dancy without the overhead of strict replication[9, 14, 26, 31].
However, there are negative consequences to using erasure
codes[27]. Erasure codes are more complex than replication.
As a result, there is a tradeoff between CPU vs data mainte-
nance bandwidth and complexity vs simplicity when consider-
ing the use of erasure codes or replication.

3 Wide-Area Storage System Overview

In this section we present a system model for maintaining data
availability. First, we begin with a set of assumptions about
the system. Second, we present a basic system model. Finally,
we present the redundancy and reconstruction mechanisms.

3.1 Assumptions

We are assuming a read/write archival repository where data is
autonomously maintained long-term. We further assume that
the deletion rate is a significantly small fraction of the overall

1We do not use the statistical definition of correlation; instead, we use
correlation for dependence.

read, write, and data maintenance rates. Finally, we assume
that the read load is balanced across the storage nodes. As a
result of these assumptions, this work focuses on data mainte-
nance, which includes the data write and repair rates, but does
not include read or deletion rates.

We assume that data is maintained on nodes in the wide
area and in professionally managed sites. Sites contribute re-
sources such as nodes and network bandwidth. A node is
analogous to a commaodity PC with CPU, RAM, a small num-
ber of disk drives, and a set of networking ports. Nodes col-
lectively maintain data availability. They are self-organizing,
self-maintaining, and adaptive to changes. The process of
copying data replicas to new nodes to maintain data availabil-
ity is triggered as nodes fail.

3.2 Basic System Model

In general, a wide-area storage system maintains a minimum
data availability with a few mechanisms. The first mechanism
is the abstract use of a directory. The directory knows for each
object the location of each replica and number of total and
remaining? replicas; therefore, it knows how to resolve ob-
ject location requests and when to trigger data recovery. The
directory abstraction gives the storage system location inde-
pendence and allows different data placement schemes to be
implemented. The directory may be a central directory or a
distributed directory where responsibility is partitioned among
the nodes.

The second mechanism is node monitoring that is used to
determine node failure. Each node sends a heartbeat periodi-
cally to the directory and the directory uses the lack of a heart-
beat (detected by a timeout) to trigger data recovery.

Finally, the third mechanism is a data recovery scheme that
is defined by the following three parameters: redundancy type,
threshold, and amount of extra redundancy. The redundancy
type refers to the use of strict replication or different erasure
coding schemes®. The redundancy threshold is the minimum
number of replicas* (or fragments) required to maintain data
availability. And the extra redundancy is used to delay trigger-
ing data recovery. The values of the data recovery parameters
change the behavior of the data recovery process and storage
system as a whole; as a result, we describe the parameters fur-
ther in Section 3.3

3.3 Redundancy and Reconstruction

A storage system works by maintaining at least a threshold
number of replicas. When the amount of redundancy falls be-
low the minimum threshold, the replication level is increased
back to the addition of the threshold and extra redundancy.
There are seven variables of concern when maintaining data
in the wide-area. The redundancy type m, where m is the
required number of components necessary to reconstruct the

2The number of remaining replicas is the number of replicas that reside on
nodes that are currently available.

SErasure codes reduce data maintenance bandwidth[9, 14, 26, 31], but their
use use can be costly in terms of increased processor time and complexity; as
a result, replication is often preferred.

4We use the term replica to refer to both a replica or a fragment.

Parameter Description

Number of replicas required to read object.

Threshold number of replicas required to be available.
extrareplicas.

Total number of replicas (n = th + e).

Total storage overhead factor (k = Z).

Rateof encoding (r = £ = ™ <1).

Node failure detection time.

«Q

@
1 oof co| k|~ | @

I
Q
=)
=y
=

Table 1: Notations.

original data item. For example, m = 1 for replication or
m > 1 for erasure codes [31]. The threshold ¢h is the min-
imum number of replicas required to maintain the target data
availability. That is, when the number of available replicas
decreases below th, new replicas are created. e is the extra
replicas above the threshold. e + 1 replicas have to simulta-
neously be down for data recovery to be triggered. Therefore,
n = th + e is the total number of replicas. When data recov-
ery is triggered, enough new replicas are created to refresh the
total number back to n. Next, the storage and bandwidth cost
is related to the total storage overhead factor k = - = ”“r =
The reC|procaI of the storage overhead factor is the rate of en-
coding r» = ,16 < 1. The rate of encoding is important when
using different erasure coding schemes because the rate is a
measure of computational complexity. Finally, the timeout to
is used to detect a missing heartbeat and determine that a node
has failed. Table 1 summarizes the notations.

Using the variable notations, Figure 1 shows the replication
(m = 1) of one object into a wide area storage system. The
minimum threshold number of replicas (th) is 7 and one extra
replica, e = 1. The total number of replicasisn =7+ 1 =38.
Data recovery is triggered when 2 replicas (e + 1) are simul-
taneously down. The storage overhead factor is k = 7L = 8.
Finally, a node failure has been detected when a heartbeat has
not been received for a period of to time (e.g. 1hr).

4 PlanetLab

Our study examines wide-area storage systems using Planet-
Lab [2] as the example wide-area environment. PlanetLab
is one of the largest open wide-area systems. It currently
includes 588 nodes, hosted by 290 sites, spanning over 25
countries in 5 continents, involving over 124 universities and
companies®. PlanetLab nodes experience many of the cor-
related and transient failures expected in the wide-area such
as correlated failures of co-located nodes, node failures (re-
boot, upgrade, melt down due to heavy load, quarantine for
anomaly analysis, disk failure, power failure), system failures
(upgrade, compromise), and network failures (congestion, par-
titions, misconfigurations). As a result, PlanetLab has been
used to experiment [5, 13, 25], measure [10, 11, 34, 35], and
deploy [3, 20] many wide-area storage systems.

PlanetLab is one of the longest running open wide-area sys-
tems. Itis currently the best suited platform to study long-term
trends since it has available traces that span nearly its entire
history. We expand on the work by Yalagandula et al. [34] that

5Current as of June 25, 2005

1 0.3 1

500
450

Total
Available

number of availabile nodes
frequency

0.02

frequency
cumulative frequency

frequency
cumulative frequen
0.25

{08 . 08

02}

106 0.6

0.15

1 04 0.4

0.1

cumulative frequency
frequency
cumulative frequency

102 0.2

0.05

50 0 .
Feb03 Jun03 Oct03 Feb04 Jun04 Oct04 Feb05 Jun05 15min 1hr
Time

(a) Number of available nodes v Time

i .
lday 10days 100days
Session Time

(b) Sessiontime CDF and PDF

0 . s L Ao
15min 1hr lday 10days 100days

Down Time

(c) Downtime CDF and PDF

[Distribution | Mean(d) [Stddev(d) [Median(m) [Mode(m) | Min(m) |

90th(d) | 99th(d) | Max(d)]

Session 85 235 180 15 15 266 | 1180 | 3767
Down 35 169 45 15 15 59 732 | 388.7
[Availability | 0.700 | 0.249 [0.757 [1000 [0002 | 0.977 [1000 | 1000 |

(d) Sessiontime, Downtime, and Availability Statistics (d=days, m=mins)

Figure 2: PlanetLab Characterization. Details discussed in Section 4.

used three traces in their analysis, but found only PlanetLab’s
trace suitable for study and comparison of long-term trends.

4.1 PlanetLab Wide-area Characteristics

We used the all-pairs ping data set [30] to characterize Plan-
etLab. The data set was collected over a period of two years,
between Feb 16, 2003 to Jun 25, 2005 and included a total of
694 nodes in that time period. We used the data set to charac-
terize the sessiontime, downtime, and lifetime distributions. A
sessiontime is one contiguous interval of time when a node
is available. In contrast, a downtime is one contiguous in-
terval of time when a node is unavailable. A node’s lifetime
is comprised of a number of interchanging session and down
times. Sessiontime and downtime are commonly referred in
the storage literature as a time-to-failure (TTF) and time-to-
repair (TTR), respectively. Additionally, the average session-
time and downtime is the mean-TTF and mean-TTR (MTTF
and MTTR), respectively. The lifetime is the time between
when a node first entered and last left the system (time between
beginning of first session and end of last session). Availability,
the percent of time that a node is up, is the total sum of the ses-
sion time (sum-TTF) divided by the lifetime, which is equiva-
lent to the more commonly Known expression 477 -
We begin by describing how the all-pairs ping data set was
collected and how we used the data set to interpret a node as
being available or not.

The all-pairs ping program collects minimum, average, and
maximum ping times (over 10 attempts) between all pairs of
nodes in PlanetLab. Measurements were taken and collected
approximately every 15 minutes from each node. The 15
minute ping period does not contain enough fidelity to detect
transient failures less than 15 minutes. Measurements were
taken locally from individual nodes’ perspective, stored lo-
cally, and periodically archived at a central location. Failed
ping attempts were also recorded.

We used a single successful ping to determine a node avail-
able. This single ping method of determining node availability
was used by Chun and Vahdat [10] since a single nonfaulty

path is sufficient for many routing algorithms to allow nodes
to communicate.

Figure 2 shows the PlanetLab characteristics using the all-
pairs ping data set. Figure 2(a) shows the (total and available)
number of nodes vs time. It demonstrates how the network
has grown over time. More importantly, it pictorially shows
the number of nodes that we simulated at each time instance
in our trace.

Figure 2(b) and (c) show the frequency and cumulative fre-
quency for the sessiontime and downtime, respectively. Note
that the frequency uses the left y-axis and cumulative fre-
quency uses the right. The mean sessiontime was 204.4 hours
(8.5 days) and mean downtime was 82.8 hours (3.5 days).
Both the sessiontime and downtime distributions were long
tailed and the median times were 3 hours and 0.75 hours, re-
spectively.

The sessiontimes decreased dramatically between October
2004 and March 2005 due to multiple kernel bugs that caused
chronic reboot of PlanetLab nodes (shown in Figure 2(2)). The
chronic reboots within the last six months of the trace doubled
the total number of sessions with mostly short session times.
In particular, the median session time decreased from 55.8
hours (2.3 days) between February 2003 and October 2004
to 3 hours between February 2003 and June 2005. Despite
the decrease in session times, we continue to use PlanetLab
as an example wide-area system to show how storage systems
should adapt to changes over time without loss of data avail-
ability or increase in communication costs.

Table 2(d) summarize the sessiontime, downtime, and node
availability statistics. 50% of the nodes have an availability of
75.7% or higher; however, 22% of the nodes are available less
than 50% of the time.

The all-pair ping data set included more than two-years of
data; however, we could not measure the node lifetime directly
since many of the node names (IP addresses) lasted the entire
time. As a result, we used a technique described by Bolosky
et al. [7] to estimate the expected node lifetime based on node
attrition. In particular, if nodes have deterministic lifetimes,

280

Number of Remaining Nodes

Time

(a) Node Attrition

UpperBound | LowerBound
951 days 663 days
(b) Expected Lifetime Estimates

Figure 3: Node Attrition. Details discussed in Section 4.

then the rate of attrition is constant, and the count of remaining
nodes decays linearly. The expected node lifetime (meaning
the lifetime of the nodes IP address, not physical hardware) is
the time until this count reaches zero [7]. We counted the num-
ber of remaining nodes that started before December 5, 2003
and permanently failed before July 1, 2004. The expected node
lifetime of a PlanetLab node is 951 days (Table 3(b)). Fig-
ure 3(a) shows the node attrition.

4.2

All-pairs ping does not measure permanent failure. Instead,
it measures the availability of a node name (i.e. availability
of an IP address) and not the availability of data on a node.
As a result, all-pairs ping was used to produce an estimated
upper bound on node lifetimes. In addition, we computed an
estimated lower bound on the availability of data on a node
by supplementing the trace with a disk failure distribution ob-
tained from [24] (Table 3(b)). In our experiments, the expected
lifetime of a node lies between the upper and lower bound.

No all-pairs ping data exist between December 17, 2003 and
January 20, 2004 due to a near simultaneous compromise and
upgrade of PlanetLab. In particular, Figure 2(a) shows that
150 nodes existed on December 17, 2003 and 200 existed on
January 20, 2004, but no ping data was collected in between
the dates above.

Issues and Limitations

5 Efficient Data Recovery

Storage systems are required to trigger data recovery and re-
place lost replicas as nodes fail to maintain target data avail-
ability levels. One of the problems with wide-area storage sys-
tems is differentiating permanent failures (data is lost) from
transient failures (node returns with data intact). Figure 4
shows an example of transient and permanent failures over
time. Transient failures that render a node temporarily unavail-
able are due to node reboot, system maintenance, Internet path
outage, etc. In addition to transient failures, failure detection
has a lag; a permanently failed node is classified as alive dur-
ing the lag period. A study found that transient failures occur
often in the wide-area [10].

link failure
(lost heartbeat)

/ reboot
/ ' live

Noy LT L
Nodsg | failed

Status !

failure
detection
lag

|
ermanent | !
|
Trie ailure N\ ' live
Node i
Staius ‘ failed

Time 0123456789 10
Figure 4: Transient and Permanent Failures over Time.

Triggering data recovery due to transient failures can in-
crease the cost of maintaining data severely. Some environ-
ments are very reliable and do not have much transient failures
(e.g. within a data center). In contrast, other environments do
not support durable storage [6] due to too many permanent and
transient failures (e.g. Kazaa, Gnutella, and other high client
churn environments). But for many wide-area systems, like
PlanetLab [2], reliable storage can be supported and transient
failures are common[10].

The cost of maintaining data is determined by the cost due
to permanent failure, transient failure, write, and monitoring
rate.

Work

f(permanent failure, transient failure, write, monitoring)
f(permanent failure) 4 f(transient failure) +
f(write) + f(monitoring) @)

Although the overall cost is additive, the cost due to transient
failures often dominates. Intuitively, the overall data main-
tenance cost is decreased by decreasing the cost due to tran-
sient failures. We decrease the cost due to transient failures by
adding extra replicas. Decreasing the reaction to transient fail-
ure is analogous to decreasing error rate of sending a message
across a noisy channel by adding extra bits. Explicitly, we
tradeoff increased storage for reduced communication while
maintaining the same minimum data availability. The extra
replicas absorb noise. This translates into a decreased rate of
triggering data recovery since it is less likely for the extra repli-
cas to simultaneously be down. Figure 5 illustrates the break-
down in the data maintenance costs as the extra replicas are
increased.

Figure 5 is key. It shows that with no extra replicas the
probability of triggering data recovery due to transient failures
is actually quite high; hence, the cost due to transient failures
is high. In fact, the probability of triggering data recovery is
higher than the probability of a single timeout since the chance
of any one out of n replicas timing out is higher than the prob-
ability of a single timeout. If we add extra replicas and require
that at least all extra replicas simultaneously be down, then the
rate of triggering data recovery drops significantly; similarly,
the cost due to transient failures drops significantly.

The goal is to estimate the optimal number of extra repli-
cas required to minimize work. In the following subsections
we describe data recovery optimizations. In particular, we dis-

........... Permanent
..... Transient
------ Write
.......... “‘“ Monitor
0...
ExtraReplicas e
(linear scale)

Figure 5: Example. Cost per Node of Maintaining Data in a
Wide Area Storage System.

cuss how to set the minimum data availability threshold and
estimate the number of extra replicas that minimize work.

5.1 Estimator Algorithm

In this section, we show how to estimate the amount of extra
replicas required to absorb “noise” and reduce rate of trigger-
ing data recovery. The algorithm works as follows. Given a
target data availability to maintain, first it calculates the mini-
mum threshold number of replicas required (calculation based
on average node availability). It then supplements this number
with a set of extra replicas to absorb noise (calculation based
on average node lifetime, sessiontime, and downtime). Finally,
it triggers data recovery when all extra replicas are simultane-
ously considered down. In the following subsections we first
show how to estimate the minimum data availability threshold,
then we show how to estimate the amount of extra replicas.

5.1.1 Estimating the Minimum Data Availability Thresh-
old

Bhagwan et al. [4] and Blake and Rodrigues [6] demon-
strated how to calculate the minimum data availability thresh-
old for both replication and erasure-resilient data redundancy
schemes. For instance, the minimum data availability for a
replication scheme (m = 1) equals 1-p[no replicas available]
orl—e=1-(1—a)™, where a is the average node avail-
ability, th is the minimum data availability threshold, and ¢
is the probability that no replicas are available. As a result,
th = (logl‘zfja)]. The equality assumes that all nodes are in-
dependent. It also assumes a replication redundancy scheme®.

5.1.2 Estimating the Amount of Extra Replicas

We estimate the optimal number of extra replicas e by synthe-
sizing the cost due to data maintenance as expressed in Equa-
tion 1. In particular, we develop an estimator for each term in
Equation 1, then calculate each term’s cost, and pick e where
the overall cost is minimal. The key is to pick the optimal
number of extra replicas e that reduces the cost due to transient
failures without increasing the cost due to writes or permanent
failures too high. We discuss each terms’ estimator and the
overall data maintenance estimator in turn below.

5The minimum data availability threshold can similarly be calculated for
an erasure coded scheme using equations described by Bhagwan et al. [4] and
Blake and Rodrigues [6]

Variable
1—c¢

Description

Target minimum data availability.

Probability data is unavailable.

Average node availability.

Total amount of unique data.

Total amount of storage (S = kD).

Total number of nodes.

The average lifetime of all N nodes.

u(x) Probability distribution function of downtimes
to Timeout used to determine a node is unavailable.

S BN EIR

tomax Maximum time a node has been unavailable and came back.
Pdr Rate of triggering data recovery
Pto Probability node down longer than timeout to.

Table 2: Notation

Permanent Failure Estimator Permanent failure is the loss
of data on a node. The data maintenance cost due to perma-
nent failures is dependent on the average amount of storage
per node % and the average storage node lifetime 7'.

permanentﬂ = O(i))
N NT

where total storage S is the product of the total amount of
unique data D and storage overhead factor & (i.e. S = kD).
Recall from Section 3.3 that & = thﬁ = --. Equation 2
states that on average the total storage S must be copied to
new storage nodes every average node lifetime 7" period. We
assume that all storage nodes have a finite lifetime (e.g. 1-
3 years) typical of a commodity node, so storage will not be
biased towards one ultra reliable node. Equation 2 has been
discussed in literature by Blake and Rodrigues [6].

Transient Failure Estimator Transient failure is when a
node returns from failure with data intact. Reducing the rate
of triggering data recovery due to transient failures reduces the
amount of unnecessary data recovery. We assume that a time-
out fo is used to determine if a node has failed or not. p,, is
the probability of a single timeout. If there is no extra replicas,
then the probability of at least one node timing out is high; as
a result, the rate of triggering data recovery, pq.., is high. That
is,

pto = P(storage down longer than to)
o0
= /u(w)dz 3)
to
par = P(atleast one storage node down longer than to)
n=th n
= > ()piot=pro)" @
i=1

where u(x) is the probability distribution function of down
times. Figure 2(c) is the downtime distribution for PlanetLab.
Equation 4 is the probability that at least one of the n replicas
times out. Note that the probability of at least one of n replicas
timing out is higher than the probability of a single time out
Dio- This assumes that failures are independent.

Lets now assume we add extra replicas to the minimum data
availability threshold. We require that at least all extra replicas

to simultaneously be down in order to trigger data recovery. As
a result, the rate of triggering data recovery is

par = P(atleast all extra replicas down longer than to)
n=th+e
ny n—i
= > (D)phet—pi0) (5)
i=e+1 t

Equation 5 computes the probability that at least ¢ + 1 nodes
have simultaneously timed out. It also shows that the rate of
triggering data recovery can be reduced by increasing the extra
replicas. For example, given a timeout period to = 1 hour and
a probability of a timeout p;, = 0.25, then for the following
parameterization m = 1,th = 5,e = 4(n = 9 = 5 4 4),
the resulting rate of triggering data recovery is pg,. = 0.049,
which is significantly less than the probability of triggering
data recovery with no extrareplicas p4, = 0.762 (m = 1,th =
5n=>5e=0).

The cost of triggering data recovery is the amount of storage
per node % and the average period for the MTTF and MTTR
(i.e. average session and downtime). The transient term is

. . BW S
transient—— = pg,.- O (6)
N N(MTTF + MTTR)

Write Rate Estimator The write rate is the rate of unique
data being added to the storage system. The cost due to writes
is simply the unique write rate multiplied by the storage over-
head factor k.

. BW .
wrlteT = k- write rate)

Ideally, we want & = th# = - to be small. However, the
cost due to writes may be increased until an optimal number
of extra replicas ¢ is obtained since k depends on e.

Heartbeat Estimator A heartbeat is used to determine
whether a node is alive or not. We assume that each node
serves as a directory node and can trigger data recovery as de-
scribed in Section 3.2. As a result, each node needs to know
the status of all other nodes. The cost per node for monitoring
all other nodes is dependent on the number of nodes N, the
heartbeat timeout period to, and the size of a heartbeat hb,.,
That is,

N

B
heartbeatTW = — - hbs, (8)

Equation 8 states that each node sends a heartbeat to all other
nodes every to period. For most reasonable timeouts, the cost
due to heartbeats will not be a significant fraction of the overall
data maintenance costs. For example, if N = 10000 nodes,
to = 1 hour, and hb,, = 100 B, then heartbeat 2V = 277.8
Bps.

Average bandwidth per Node for Random Placement
th=5,m=1,to=1hr
2 TB of initial unique data

é aggregate unique write rate = 2 GB per day
2 262144
el
2 65536
= 16384
g 4096 [T
< 1024
] L
3 256 . R . .
=
S 0 5 10 15 20
@ e Extra Fragments
total constant
permanent - write rate -------
transient -
(@) to =1 hour
Average bandwidth per Node for Random Placement
th=5m=1
2 TB of initial unique data
aggregate unique write rate = 2 GB per day
Q262144 —
a to = 30mins
I to = 1hr —-
5 131072 to = 4hrs -
[} SN
3 ;
9 65536 3
5
S 32768 |\
= \
b k
= 16384
=]
f=4
IS
o 8192 - - - :
0 5 10 15 20
e Extra Fragments
(b) Vary to

Figure 6: Data Maintenance Estimator for Storage Systems on
PlanetLab.

5.1.3 Example of Applying Data Maintenance Estimator

Figure 6 shows an example of applying the data maintenance
estimator to maintain four 9’s of data availability (i.e. 1 out of
every 10,000 attempts to access an object will fail). We assume
an aggregate amount of unique data is D = 27 B, the aggre-
gate unique write rate is 2G'B per day, the number of nodes
is N = 400, and the timeout value is to = 1 hour. Finally,
we use the expected node availability, lifetime, MTTF, and
MTTR from Figure 2(d) and the downtime distribution from
Figure 2(c). Using the node availability, we calculated the
minimum data availability threshold to be th = 5. Figure 6(a)
shows that the estimated optimal number of extra replicas that
minimizes the cost due to data maintenance is six. Similarly,
Figure 6(b) shows the estimated optimal number of extra repli-
cas for varying number of timeout values.

Notice that data maintenance estimator computation can be
performed locally at a each node with local estimates for the
total number of storage nodes, average node availability, life-
time, MTTF, MTTR, storage per node, and write rate per node.
This is beneficial because the data maintenance estimator can
be performed online so that the storage system parameteri-
zation can adapt to the changing environment characteristics
overtime.

6 Data Placement Strategies

The second component of data maintenance that we study is
data placement. Data placement is the process in which nodes
are selected to store data replicas. The goal of data place-

ment is to select a set of nodes that can maintain a user or
system specified target data availability while consuming min-
imal wide-area bandwidth. It includes selecting nodes that are
likely to be available, not correlated” when failures happen,
and spread load.

There are two categories of data placement: random and se-
lective. Random placement is used for its simplicity. Its use
is often accompanied by the assumption that each node failure
is independent or has low correlation with each other. If node
failures are not independent or have high correlation, the end
result could reduce data availability or increase data mainte-
nance cost to maintain the same data availability. In contrast,
selective placement chooses specific nodes that satisfy some
constraints (e.g. select nodes that have been previously shown
to have low correlation [1, 15, 16, 19, 32]).

Many existing storage systems on PlanetLab use a random
placement strategy; however, many papers in literature have
cited a long-tailed distribution for node downtimes and signif-
icant correlated downtimes for PlanetLab nodes [10, 23, 34].
Random is the choice data placement strategy for many stor-
age systems on PlanetLab because it is a simple algorithm
and most PlanetLab nodes are reliable. Additionally, Random
spreads replicas uniformly across the storage nodes. However,
Random is likely to place replicas on “flaky” nodes as well as
the reliable ones. Moreover, Random is likely to place mul-
tiple replicas in duplicate sites. For example, nearly 22% of
PlanetLab nodes are in Berkeley, so if more than 10 replicas
are used then it is likely more than one will be placed in Berke-
ley.

Unreliable and correlated PlanetLab nodes have been sited
in literature. However, it is not clear to what degree “flaky” and
correlated nodes affect the cost of data maintenance. We com-
pare the data maintenance cost of random placement strate-
gies that blacklist flaky nodes and/or avoid placing multiple
replicas in duplicate sites. In particular, we blacklist nodes
that are available less than 50% of the time; 10% of Planet-
Lab nodes are available less than 50% of the time according
to Figure 2(d)). Additionally, to avoid placing multiple repli-
cas in duplicate sites, we pick another random node to store a
replica if a node in a duplicate site was already selected.

The four variations of random data placement strate-
gies that we compare are Random RandonBl ackl i st
RandonSi t e, and RandonSi t eBl ackl i st. Random
placement picks n unique nodes at random to store repli-
cas. RandomnBl ackl i st placement is the same as Random
but avoids the use of nodes that show long downtimes. The
blacklist is comprised of the top z nodes with the longest to-
tal downtimes. RandonSi t e avoids placing multiple repli-
cas in the same site. RandonSi t e picks n unique nodes
at random and avoids using nodes in the same site. We
identify a site by the 2B IP address prefix. The other cri-
teria can be geography or administrative domains. Finally,
RandonSi t eBl ackl i st placement is the combination of

7We use correlation to mean dependence, not the the statistical definition
of correlation.

Randonti t e and RandonBl ackl i st .

The other category of data placement is selective data place-
ment. \We can set up an optimization problem to minimize
maintenance bandwidth under data availability constraints.
However, this problem is NP-hard. Therefore, we use an of-
fline algorithm based on heuristics. The benefits of these more
sophisticated selective placement strategies are not well un-
derstood in terms of the cost of data maintenance (i.e. reduced
triggering of data recovery; hence, reduced data maintenance
costs). We compare costs of the random placement strategies
discussed above against the best offline algorithm, among the
ones we studied, that uses future knowledge when selecting
nodes for data placement.

The offline clairvoyant selective data placement strategy,
named Max- Sum Sessi on, uses future knowledge of node
lifetimes, sessiontimes, and availability to place replicas. In
particular Max- Sum Sessi on places replicas on nodes with
the highest remaining sum of session times. This strategy
places replicas on nodes that permanently fail furthest in the
future and exhibit the highest availability.

7 Parameterizing Existing Storage Systems

Using the parameters described in Section 3.3, we show (in
Section 7.2) the parameterization of five existing storage sys-
tems: Dhash [12], Dhash++ [13], PAST [17], Pond [25], and
TotalRecall [5]. We describe these storage systems since they
have been deployed and measured on PlanetLab, their param-
eterizations are described in literature, and many other notable
storage systems are derived from them.

The existing storage systems that we parameterized fall into
two categories: distributed hash table (DHT) and directory
(DHT+level of indirection). Dhash, Dhash++, and PAST are
DHT-based storage systems and Pond and Total Recall are di-
rectory based-storage systems. A DHT-based storage system
differs from the directory-based storage system that we de-
scribed in Section 3.2; we compare and contrast the differences
in Section 7.1.

In Section 8, we demonstrate the cost of maintaining data
long-term on PlanetLab using these storage system parameter-
izations.

7.1 DHT- and Directory-based Storage Systems

There are quite a few differences between DHT- and directory-
based storage systems. The differences include flexibility for
placement algorithms, triggering of data recovery, object size
constraints, and the number of nodes monitored.

First, a DHT-based placement algorithm is random but re-
strictive; whereas, a directory-based storage system is flexible
to implement many different placement algorithms due to the
level of indirection. The difference in placement algorithms
available to each storage system is based on how the storage
system works.

A DHT-based storage sytem works by consistently hashing
an identifier space over a set of nodes. An identifier is as-
signed to each node using a secure hash function like SHA-1.
Similarly, using the same secure hash function, an identifier is

Root set

(Iocation—ponter maintenance)
Y

(trigger
\ data
', recovery)

(publish/
locate)

ID Sp

ID Space

Replica
(data

1€ recover

(a) DHT (b) Directory
Figure 7: DHT- and Directory- Based Storage System Archi-
tectures.

Z
Repl

assigned to each object. Both node and object identifiers are
drawn from the same name space. The node that is responsi-
ble for a range of identifier space is the root of the identifier
range. For example, in PAST [17], the node whose identifier
is numerically closest to the object identifier (in the identifier
ring), is responsible for the object; whereas, in Dhash [12] the
node whose identifier immediately follows the object identifier
is the root. A DHT prevents data loss when the root node is
unavailable by defining a root set, redundant set of root nodes
that mirror each other. For example, both Chord successor-
list [29] and Pastry leafset [28] are root sets. To be explicit,
each unique identifier has a unique root and each root has a
unique root set (root set; ¢ root set;, Vi # 7). All root sets are
the same size, and the size of a root set is smaller than the size
of the network. Since each object has a unique root, an object
is replicated to a well-defined root set. Figure 7(a) pictorially
shows how a root, root set, and replicas for a particular object
are organized around the identifier ring.

Unlike DHTS, directory-based storage systems such as Total
Recall and Pond use a level of indirection to place, locate, and
maintain data. A level of indirection allows more flexibility
in data placement. Total Recall and Pond implement the direc-
tory abstraction described in Section 3.2, except that they use a
DHT to store location-pointers. To be precise, they store repli-
cas for a particular object on different storage nodes and use a
DHT to store and maintain replica location-pointers. Namely,
each replica (for a particular object) has the same object iden-
tifier®, but a different location. As a result, a particular object
has a unique root node that resolves replica location requests
and triggers data recovery to repair lost replicas. Figure 7(b)
shows a directory system architecture. To trigger data recov-
ery, the root node needs to know the status of all the storage
nodes for a particular object. When a storage node is declared
down, data recovery is triggered.

Second, a directory-based storage system only triggers data
recovery as nodes fail; whereas, a DHT-based storage system
potentially triggers data recovery on node joins and failures.

8Each fragment for a particular object has the same identifier if we use
erasure codes [33].

Parameter || Dhash | Dhash++ | PAST | Pond | TotalRecall

m 1 7 1 16 15

th 5 14 9 24 variable

e 0 0 0 6 10

n 5 14 9 32 th + 10

k 5 2 9 2 ~3

T N/A 1 N/A 1 ~ 2

to (min) <15 <15 <15 <15 <1

Placement DHT- DHT- DHT- Random | Random
Random | Random Random

Table 3: Existing Storage System Parameterization

That is, a DHT continually rebalances data when a node is
added to or removed from the system; while, a directory-based
storage system does not rebalance data. In fact, if the data
placement strategy for a directory is random, then the amount
of data a storage node has is proportional to the node’s current
lifetime in the system.

Third, if using a directory-based storage system, then we
are assuming that the storage due to location-pointers is sig-
nificantly less than the storage due to data and that the total
number of replicas of all objects is greater than the number of
nodes. If either assumption is violated then a directory storage
strategy should not be used.

Finally, DHT and directory based storage systems differ in
the number of nodes they monitor. A DHT has to monitor
only O(n) nodes (i.e. n is the size of the root set and total
number of replicas), where as, a directory has to monitor all N
storage nodes. A directory-based storage system can still be
efficient because the number of replicas per node is assumed
to be greater than the number of nodes.

7.2 Existing Storage Systems

Dhash Dhash is a replicated DHT-based storage system. It
replicates each object onto five storage nodes. It does not de-
fine any extra replicas, so it immediately creates a new replica
as soon as a failure has been detected or a new node joins
the root set. This has been described as eager repair [5].
The placement scheme for Dhash is DHT-Random. A DHT-
Random placement is a random placement scheme since node
identifiers are randomly distributed in a DHT; however, the
node responsible to store a given data item is deterministic
given the node and object identifier. As a result, a DHT-
Random placement scheme is more restrictive than a purely
random placement scheme. Finally, Dhash uses a fairly ag-
gressive timeout value. This is due to the tight coupling be-
tween the storage system and the networking overlay.

Dhash++ Dhash++ is the same as Dhash except that
Dhash++ uses erasure codes instead of replication. Dhash++
usesarater = % erasure code with n = 14 total fragments and
m = 7 fragments required to reconstruct the object. Dhash++
eagerly repairs lost redundancy since it does not define any
extra replicas.

PAST PAST parameterization is the same as Dhash except
that it uses more replicas. PAST maintains logN replicas, so

stores 9 replicas for a system of a 512 storage nodes.

Pond Pond is a directory-based storage system and uses a
level of indirection to place, locate, and maintain data. For
long-term data maintenance of large objects, Pond uses era-
sure codes. Pond uses a rate r % erasure code with
n = 32 total fragments and m 16 fragments required
to reconstruct an object. Pond defines an arbitrary threshold
that is half of n — m, so th = 24 and e = 6. The thresh-
old used in Pond was retrieved from the code available at
http://oceanstore.sourceforge.net.

Total Recall Similar to Pond, Total Recall is a directory-
based storage system and uses erasure codes. However, unlike
all of the above storage systems, Total Recall allows the tar-
get data availability to be specified on a per object bases. Fur-
thermore, Total Recall dynamically maintains a minimum data
availability. That is, the the minimum data availability thresh-
old th fluctuates dynamically as the node availability fluctu-
ates.

Table 3 summarizes the parameterization of the above exist-
ing storage systems.

8 Evaluation

In this section, we present a detailed performance analysis via
a trace driven simulation of maintaining data on PlanetLab.
Our evaluation illustrates the data maintenance characteristics
of existing storage systems and highlights promising ways to
estimate and tune their performance. In particular, we show
that many existing storage systems make arbitrary decisions
that are costly. For instance, we show the estimated number of
extra replicas that yield an order of magnitude reduction in the
amount of bandwidth that Dhash [12] uses to maintain 2TB of
data on PlanetLab.

First, we present our evaluation methodology in Section 8.1.
In Section 8.2, we evaluate existing storage systems. We eval-
uate data recovery optimizations in Section 8.3. In Section 8.4,
we compare data placement strategies. Finally, in Section 8.5
we compare different data redundancy schemes.

8.1 Evaluation Methodology

Our evaluation methodology is discussed in the following
order: trace used, interaction between trace and simulator,
amount of data maintained, target data availability maintained,
node failure detection to maintain data, and cost metrics.

We used the PlanetLab trace supplemented with a disk fail-
ure distribution as described in Section 4. The trace-driven
simulation ran the entire two-year trace of PlanetLab (Fig-
ure 2(a)). The simulator added a node at the time a node was
available in the trace and removed it when it was not available.
Nodes that were not available in the trace were not available in
the simulator (and visa versa).

We simulated maintaining 2TB of initial unique data com-
prised of 32k objects each of size 64MB. Since 64MB is the
same size as a GFS extent [18], we used it as our unit of main-
tenance. Additionally, the storage overhead factor, k¥ = =,
increased the size of the repository. For example, with n = 10

10

and m = 1 the total size of the repository was now 320k repli-
cas and 20TB of redundant data.

In addition to the initial data, we continuously added new
unique data to the repository increasing its size over time. We
used two different write rates to add new data, 10Kbps and
1Kbps per node (e.g. 20GB and 2GB per day with 200 nodes).
To make the write rates concrete, we used the measurement
that an average workstation creates 35MB/hr (or 10Kbps) [7]
of total data. Most of the writes were temporary, so we used a
permanent write rate of 3.5MB/hr (or 1Kbps). Finally, 10Kbps
and 1Kbps per node correspond to 20GB and 2GB of unique
data per node per year added to the repository, respectively.
With an average of 200 nodes, the system would increased in
size at a rate of 20TB and 2TB per year, respectively.

Unless otherwise noted, in most of our experiments we used
replication and maintained a minimum threshold of five repli-
cas (th = 5). We arrived at this minimum threshold by set-
ting the target data availability to four 9’s as suggested by
Rodrigues and Liskov [27] and using equations described in
Section 5.1.2.

We maintained data by implementing timeouts/heartbeats in
the simulator to detect node failures and trigger data recovery
as a result of failed extra replicas. In both directory- and DHT-
based storage systems, heartbeats were sent from an individual
node’s perspective at the same period as the timeout to. A node
in a directory-based storage system sent a heartbeat to all other
nodes. In contrast, a node in a DHT-based storage system sent
a heartbeat to only its root set neighbors (Figure 7(a)). The
timeout used to detect failure was to = 1hr for most of the
experiments, which was picked as a sufficient value after we
experimented with a variety of timeout values ranging from 15
minutes to 4 days. Data recovery was triggered when the extra
replicas plus one, e+ 1, were simultaneously considered down
(description in Section 3).

The simulator measured the total number of repairs trig-
gered vs time and the bandwidth used per node vs time. Addi-
tionally, we measured the average bandwidth per node as we
vary the timeout and extra replicas. Finally, we measured the
average number of replicas available vs time. But we omit this
graph since the number of replicas was actually at least the
threshold.

8.2 Evaluation of Existing Storage Systems

In this section, we measure and compare the cost that existing
storage systems incur to maintain 2TB of initial data and a
daily write rate of 2GB. Further, we show the reduction in cost
after tuning each system. Each system maintains data for two
years on PlanetLab.

The comparison was conducted as follows. First, we param-
eterized each storage system with the configurations described
in literature, as shown in Table 3. Second, we ran each config-
uration through the trace-driven simulation of PlanetLab and
measured their associated costs. Third, using the same param-
eters, we added an estimated number of extra replicas to each
system. Finally, we ran the tuned configuration through the
simulation and measured the associated costs. Table 4 shows

Dhash Dhash++ PAST Pond TotalRecall
(m = 1,th = 5,e=0) | (m = 7,th = 14,e=0) | (m = 1,th = 9,e=0) | (m = 16,th = 24,e=6) | (m = 15,th = 29,e=10)
1—c(in#9s) || 4 3 7 2 4
Repairs 14,431,970 10,550,003 24,701,667 1,041,089 1,312,824
BW/N (Kbps) 516.7 409.0 865.1 61.1 77.6
(a) Before Applying Estimator
Dhash Dhash++ PAST Pond TotalRecall
(m =1,th =5,e=6) | (m = 7th = 14,e=12) | (m = 1,th = 9,e=6) | (m = 16,th = 24,e=16) | (m = 15,th = 29,e=16)
T—e(in#9%s) || 4 3 7 2 4
Repairs 447,204 564,249 984,951 339,727 510,514
BWI/N (Kbps) 755 522 262.3 335 456

(b) After Applying Estimator

Table 4: Cost of Maintaining 2TB of unique data for two years on PlanetLab using Existing Storage System Parameterizations.

(@) costs incurred with parameterizations as described in literature. (b) costs incurred after applying estimator.

The data

availability (1 — ¢€), total number of repairs triggered, and average bandwidth per node are highlighted in the first, second, and
third rows, respectively. Note that the data availability is based on the parameters m and th. to =1hr for each system.

Data Repair Triggered for DHT
=5, m =1, to = 1hr, 32768 objects
32768 |nmal objects, increase 32 objects per 1 day

100000

Bandwidth per Node for DHT
th=5m=1,

2 TB of initial unique data
aggregate unique write rate = 2 GB per 1 day

Average bandW|dth per Node for DHT
to = 1hr th=5m=1
2TB of mmal unique data
aggregate unique write rate = 2 GB per 1 day

2 Mbps
1 Mbps
512 Kbps
256 Kbps
128 Kbps
64 Kbps "
32 Kbps
16 Kbps
8 Kbps £

10000
1000
100
10

1 Mbps i
— to = 15mins
weexe-- to = 1hr

512 Kbps 1 to = dhrs
| to = 8hrs

-- to = 1day
-- to = 2days

256 Kbps &
to = 4days

1
Feb03Jun03 Oct03 Feb04 Jun04 Oct04 Feb05 Jun05
Time

Aggregate Data Repair per Week
Bandwidth per node (bits/sec)

Base (e=0,th=5,n=5) ——
Enhanced (e = 10, th =5, n = 15)

(a) Data Repairs Triggered vs Time

Data Repalr Trlggered for Random
= 1hr, 32768 objects
32768 |n|1|a| objecls increase 32 objecls per 1 day

100000

Feb03Jun03 Oct03 Feb04 Jun04 Oct04 Feb05 Jun05
Base (e=0,th=5n=5) ——
Enhanced (e = 10, th =5, n = 15)

(b) Bandwidth per node vs Time

Bandwidth per Node for Random
th=5m=1,to=1hr
2 TB of initial unique data
aggregate unique write rate = 2 GB per 1 day

128 Kbps |

Time

Bandwidth per node (bits/sec)

64 Kbps
0 10 15

e Extra Replicas

20 25

(c) Average Bandwidth vs Total Replicas

Average bandW|dIh per Node for Random

2TB of |nmal un|que data
aggregate unique write rate = 2 GB per 1 day

512 Kbps
256 Kbps I /i
128 Kbps i
64 Kbps |
32 Kbps
16 Kbps

10000
1000
100
10

256 Kbps

——to = 15mins
e 1hr

128 Kbps

64 Kbps ¢

8 Kbps t

1
Feb03Jun03 Oct03 Feb04 Jun04 Oct04 Feb05 Jun05
Time

Aggregate Data Repair per Week
Bandwidth per node (bits/sec)

Base (e=0,th=5n=5) —
Enhanced (e = 6, th=5,n=11)

(d) Data Repairs Triggered vs Time

Feb03Jun03 Oct03 Feb04 Jun04 Oct04 Feb05 Jun05

Base (e=0,th=5,n
Enhanced (e = 6,th=5,n=11)

(e) Bandwidth per node vs Time

Time

Bandwidth per node (bits/sec)

32 Kbps
0 5 10 15

e Extra Replicas

20 25

=5 ——

(f) Average Bandwidth vs Total Replicas

Figure 8: Data Recovery Optimizations. Figures (a), (b), and (c) use the DHT-based storage system like Dhash and Figures (d),
(e), and (f) use a directory-based storage system with a Random placement. Figures (a) and (d) shows the number of repairs
triggered per week over the course of the trace. Figures (b) and (e) show the average bandwidth per node (averaged over a
week) over the course of the trace. Finally, Figures (c) and (f) show the average bandwidth per node as we vary the number of

extra replicas and timeout values.

the resulting costs in terms of number of repairs triggered and
average maintenance bandwidth per node.

Table 4(a) illustrates that most existing storage systems
made arbitrary configuration decisions that were costly. In
particular, the effective target data availability was often ei-
ther too high or too low; Dhash++ and Pond maintained three
and two 9’s, respectively, and PAST maintained seven 9’s. Fur-
thermore, the number of repairs triggered and associated band-
width per node costs were excessive. For example, Dhash and
its successor Dhash++ used nearly 0.5Mbps for background
maintenance bandwidth. On the other hand, systems tuned
for data maintenance, like TotalRecall, used less resources

11

(77Kbps); however, still made some unnecessary arbitrary de-
cisions like e = 10 extra fragments.

Applying the data maintenance estimator improved the per-
formance of each system. Table 4(b) shows the estimated num-
ber of extra replicas for each system. It also demonstrates sig-
nificant cost reductions to maintain the same data availability
as the untuned systems. For instance, for Dhash, the num-
ber of repairs triggered reduced two-fold from 14M to 447k
and data maintenance bandwidth reduced from 0.5Mbps to
75Kbps. Similar decreases can be seen in Dhash++ and PAST.
Pond and TotalRecall benefited from the data maintenance es-
timator as well, but gains were not as pronounced since the

Average bandwidth per Node for Random
th=5 m=1
2 TB of initial unique data

aggregate unique write rate = 2 GB per 1 day
256 Kbps
128 Kbps #:..,
64 Kbps +
32 Kbps
16 Kbps [.

8 Kbps T
4 Kbps T
2 Kbps
1 Kbps

Bandwidth per node (bits/sec)

10 15
e Extra Replicas

Total BW
Permanent BW

e

Transient BW
Write BW

,,,,,,,

(a) Cost Breakdown vs Number Replicas (1Kbps)

Bandwidth per node (bits/sec)

Average bandwidth per Node for Random
th=5 m=1
2 TB of initial unique data

aggregate unique write rate = 20 GB per 1 day

1 Mbps T
512 Kbps g-.
256 Kbps
128 Kbps -
64 Kbps £
32 Kbps ;..
16 Kbps -
8 Kbps
4 Kbps

10 15 20
e Extra Replicas

Total BW

Permanent BW s

(b) Cost Breakdown vs Number Replicas (10Kbps)

s

Transient BW
Write BW

,,,,,,,

Figure 9: Cost Breakdown for Maintaining Minimum Data Availability for 2 TB of unique data. (a) and (b) Cost breakdown
with a unique write rate of 1Kbps and 10 Kbps per node, respectively. Both (a) and (b) fix the data placement strategy to
Randomand timeout to = 1hr. The cost due to heartbeats is not shown since it was less than 1Kbps.

systems parameters have already been tuned for data main-
tenance. However, the data maintenance estimator removes
much of the ambiguity even for TotalRecall and Pond.

In addition to static configurations, the data maintenance es-
timator can be applied online as described in Section 5.1.3. For
instance, we modeled TotalRecall where the target data avail-
ability was four 9’s (same as above) and threshold and extra
replicas were dynamically maintained according to the cur-
rent data maintenance estimator. This online data maintenance
estimator further reduced the number of repairs triggered to
266,518

8.3 Evaluation of Data Recovery Optimizations

Our second analysis evaluates the use of data recovery opti-
mizations. For this analysis, we maintain four 9’s of data avail-
ability using a DHT- and directory-based storage system with
a timeout value of to = 1hr. In Figure 8, we measure the num-
ber of repairs triggered and average bandwidth per node over
time for the optimal and worst number of extra replicas. Addi-
tionally, we show the breakdown in cost in Figure 9. Note that
the DHT-based storage system parameterization is the same as
Dhash (i.e. m = 1 and th = 5) and the directory-based data
placement strategy is Random

The results in Figure 8 show that in both the DHT- and
directory-based storage system (Figures a-c and d-f, respec-
tively), the configurations that use the estimated optimal num-
ber of extra replicas use at least an order of magnitude less
bandwidth per node than with no extra replicas. More im-
portantly, Figures (c) and (f) show that large timeout values
exponentially decrease the cost of data maintenance; however,
the increase in node failure detection potentially compromises
data availability. An alternative solution was a linear increase
in extra replicas which similarly exponentially decreased the
cost of data maintenance without sacrificing data availability.
Figures (c) and (f) are consistent with the expected costs as
depicted in Figure 6(b).

Figure 9 showed the breakdown in bandwidth cost for main-
taining a minimum data availability threshold and extra repli-
cas. Figure 9 fixed both the timeout to = 1hr and data place-
ment strategy to Random Figure 9(a) and (b) used a per node

12

unique write rate of 1Kbps and 10Kbps, respectively. Both
Figures 9(a) and (b) illustrated that the cost of maintaining
data due to transient failures dominated the total cost. The
total cost was dominated by unnecessary work. As the num-
ber of extra replicas, which are required to be simultaneously
down in order to trigger data recovery, increased, the cost due
to transient failures decreased. Thus, the cost due to actual per-
manent failures, which was a system fundamental characteris-
tic, dominated. The difference between Figure 9(a) and (b) is
that the cost due to permanent failures dominated in (a) and the
cost due to new writes dominated in (b). Finally, the cost due
to sending heartbeats to each node in an all-pairs ping fashion
once an hour was insignificant. These results are consistent
with the data maintenance estimator depicted in Figure 6(a).

8.4 Evaluation of Data Placement Strategies

Our third evaluation compares data placement strategies. We
first compare the different random, DHT, and clairvoyant data
placement strategies. Table 5 shows for all the placement
strategies the total number of repairs triggered, average band-
width per node, and percentage of improvement over Random
Additionally, Table 5 the average and standard deviation of the
number of replicas per node. The storage system parameters
were replication redundancy scheme m = 1, minimum thresh-
old number of replicas th = 5, and a heartbeat timeout to =
1hr. The size of the blacklist for the RandonBl ackLi st and
Randonti t eBl ackl i st placement strategies was the top
35 nodes with the longest total downtimes. Table 5 shows how
the data placement strategies differ in cost for the estimated
optimal number of extra replicas e = 6; thus, the total number
of replicas per object was n = 11.

Table 5 shows that more sophisticated placement strate-
gies exhibited noticeable increase in performance; that is,
fewer repairs triggered compared to Random For ex-
ample, the RandonSi t eBl ackl i st placement showed a
4.38% improvement over Random which was slightly more
than the sum of parts, 1.87% and 2.47% for RandonSi t e
and RandonBl ackl i st, respectively. The clairvoy-
ant placement strategy exhibited a 7.67% improvement
(Max- Sum Sessi on). The DHT placement consumed more

Data Placement Strategy. (m = 1, th = 5, n = 11, |blacklist| = 35, to = 1hr)
Random | DHT | RandomSite | RandomBlacklist | RandomSiteBlacklist | Max-Sum-Session
Repairs 227,242 447,204 223,003 221,618 217,291 209,815
% Improvement -96.80 1.87 247 4.38 7.67
BW/N (Kbps) 75.5 121.8 745 74.2 73.2 70.5
% Improvement -61.37 1.25 1.70 2.94 6.62

[#Replicas/N

[1386.2 + 1126.6 | 1439.9 + 684.4 | 1381.0 + 1140.5 | 1391.8 + 1182.1 |

13865 + 11937 |

1388.9 £ 12133 |

Table 5: Comparison of Data Placement Strategies. n = 11 and e = 6.

Total Data Repair Triggered for Random

32768 initial objects, increase 32 objects per 1 day

le+08

' optfmal détarepéir
worst datarepair —————
1le+07 ¢ — eeemaeennee T

le+06

100000

number of datarepair

10000

4 6 8 10 12 14
m (required to reconstructed)

(0] 2 16

(a) Total Data Repairs Triggered vs m

Average bandwidth per Node for Random
to=1hr
2 TB of initial unique data
aggregate unique write rate = 2 GB per 1 day

5 T T T T T

3 i P L
17} L optimal average bandwidth-

e 512 Kbps worst average bandwidth -
=7 st

&L 256 Kbps -

o

<= /

L 128 Kbps [

=

5

S 64Kbps \N

=

=

< ' T]
o

4 6 8 10 12 14
m (required to reconstructed)

2 16

(b) Bandwidth per node vs m

Figure 10: Data Redundancy. m (the number of replicas/fragments required to reconstruct an object) vs Cost. (a) Cost—-number
of triggered data repairs. (b) Cost—average bandwidth per node.

bandwidth per node and triggered more data repairs than
Randony however, the distribution of the number of replicas
per node was more uniform for DHT as can be seen with the
smaller standard deviation of 684 replicas per node.

8.5 Evaluation of Data Redundancy

Our final analysis compares the use of replication and coding
data redundancy schemes. As we vary the data redundancy
type m, Figure 10 shows the optimal and worst total num-
ber of repairs (Figure 10(a)) and average bandwidth per node
(Figure 10(b)). Higher erasure types (e.g. m > 1) show sim-
ilar benefits in using extra replicas. The advantage of using
erasure codes is that extra replicas can be added without sig-
nificantly increasing the storage overhead factor. For example,
the storage overhead factor was k = thﬁ = 5—4{6 = 11 for
the optimal extra replicas with m = 1; whereas, the storage
overhead was k = 3LH8 ~ 3 using erasure codes m = 16.
However, the benefit of coding is reduced since the number of
repairs triggered increases resulting in a similar average opti-
mal bandwidth per node of approximately 64Kbps.

9 Related Work

Many wide-area storage systems use timeouts/heartbeats to
detect node failures. Wide-area storage systems often use
heartbeats to determine that a node is available and lack of
a heartbeat to determine a node is unavailable. After a node is
classified as unavailable, the system may trigger data recovery.
The problem is triggering data recovery unnecessarily. In par-
ticular, It is well known that in distributed systems it is often
not possible to determine the exact reason two nodes cannot
communicate. For example, it is not possible for a node to
distinguish a network partition (lossy link to bad router con-
figuration), a node being transiently down, and a permanent

13

failure (data on node removed permanently from the network).
Many well known wide area storage systems trigger data re-
covery almost immediately after a timeout [12, 17, 20]. Some
systems, however, use erasure codes and delay triggering data
recovery [5, 8, 13, 21, 25].

The alternative to increasing the number of extra replicas is
increasing the timeout as suggested by [27]. The problem with
increasing the timeout too high is compromising the minimum
data availability since the time to detect a permanent failure
is high. Whereas, increasing the number of extra replicas de-
creases the rate of triggering data recovery without compro-
mising the minimum data availability.

Erasure codes reduce data maintenance bandwidth[9, 14,
26, 31], but are orthogonal to extra replicas. Erasure-resilient
systems were not designed to handle noisy node failure sig-
nals. Instead, erasure codes are used to lazily repair lost repli-
cas while ensuring data availability. They are a natural fit
with a minimum data availability threshold and extra replicas.
However, as far as we know, all systems that use erasure codes
define an arbitrary threshold; as a result, they define an arbi-
trary number of extra replicas. We define a principled way to
tune the number of extra replicas.

There is a cost to using erasure codes and sometimes repli-
cation is desired. Erasure codes are processor intensive to pro-
duce, as a result, there is a tradeoff between CPU and network-
ing when considering the use of erasure codes or replication.
Additionally, replication is desired for simplicity. For exam-
ple, most Distributed Hash Tables (DHTS) prefer simplicity
and use replication.

Extra replicas do not reduce the cost due to permanent fail-
ures, but it reduces the cost due to transient failures. Blake
and Rodrigues [6] quantified the cost of a storage system due
to permanent failures; extra replicas and/or erasure codes do

not prevent this cost. Use of extra replicas is independent of
erasure codes. Extra replicas and a minimum data availability
threshold work with both systems using replication as well as
systems using erasure codes.

Data placement is widely studied in the theory and sys-
tems community. For instance, the so-called “File allocation
problem” [16] (FAP) discussed by Dowdy and Foster has fre-
quently been formulated as an optimization problem. Dowdy
and Foster survey over fifty papers in literature that formulate
FAP as a proper optimization problem with formal constraints
and an objective function, then apply standard optimization
procedures to solve it. e.g. linear or integer programming,
gradient descent, etc. More recently, Keeton has formulated
storage configuration for data availability as an optimization
problem for local area clusters. Similarly, FARSITE [15], has
formulated data placement in the corporate environment as
an optimization problem. Some systems attempt to group re-
lated nodes into clusters and place data replicas into separate
clusters [32]. Finally, some algorithms attempt to place data
on nodes that are as dissimilar as possible to avoid catastro-
phes [19]. The problem with the optimization, clustering, and
catastrophe avoidance setups is that they are often NP-Hard,
are performed offline, and usually are the result of a static
analysis that considers past relationships and does not consider
the complex dynamic interactions between nodes such as those
caused by transient failures.

10 Conclusion

Storage systems have to replace lost redundancy due to per-
manent storage node failures. The significant problem in wide-
area storage systems is that such systems experience high rates
of transient failures due to Internet path outages, network par-
titions, software bugs, hardware failures, and so on; the prob-
lem is that it is not possible to differentiate permanent from
transient failures. In this paper, we present a principled way
of choosing data redundancy type, number of replicas, extra
redundancy, and data placement. We found that existing stor-
age systems are often configured to have low data availability
or high maintenance bandwidth with analysis and trace-driven
simulations of maintaining data on a long-term basis. Signif-
icant maintenance efficiency gains can be realized in existing
storage systems with the correct choice of strategies and pa-
rameters.

As future work, we would like to apply our empirical study
results to running systems. In particular, we want to modify
deployed DHTSs such as OpenDHT [20] to perform lazy repair
and tune dynamically the data redundancy parameters based
on changing system conditions.

References

[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and
A. \Veitch. Hippodrome: Running circles around storage ad-
ministration. In Proc. of USENIX File and Sorage Technolo-
gies (FAST), January 2002.

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, , and M. Wawrzoniak. Op-
erating system support for planetary-scale network services. In
Proc. of NSDI, March 2004.

(2]

14

[3] M. Beck, T. Moore, and J. S. Plank. An end-to-end approach to
globally scalable network storage. In Proc. of ACM SGCOMM
Conf., August 2002.

R. Bhagwan, S. Savage, and G. Voelker. Replication strategies
for highly available peer-to-peer storage systems. Technical
Report CS2002-0726, U. C. San Diego, November 2002.

R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. \oelker. To-
talrecall: Systems support for automated availability manage-
ment. In Proc. of NSDI, March 2004.

C. Blake and R. Rodrigues. High availability, scalable storage,
dynamic peer networks: Pick two. In Proc. of HOTOS May
2003

[4]
[5]

(6]

W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of
a serverless distributed file system deployed on an existing set
of desktop PCs. In Proc. of Sgmetrics, June 2000.

J. Cates. Robust and efficient data management for a distributed
hash table. Master’s thesis, MIT, June 2003.

Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and
P. Yianilos. Prototype implementation of archival intermem-
ory. In Proc. of IEEE ICDE, pages 485-495, February 1996.
B. Chun and A. Vahdat. Workload and failure characterization
on a large-scale federated testbed. Technical Report IRB-TR-
03-040, Intel Research, November 2003.

F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A de-
centralized network coordinate system. In Proc. of ACM SG-
COMM Conf., August 2004.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. Sto-
ica. Wide-area cooperative storage with CFS. In Proc. of ACM
SOSP, October 2001.

F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a dht for low latency and high throughput.
In Proc. of NSDI, March 2004.

R. Dingledine, M. Freedman, and D. Molnar. The freehaven
project: Distributed anonymous storage service. In Proc. of the
\Workshop on Design Issues in Anonymity and Unobservability,
July 2000.

J. R. Douceur and R. P. Wattenhofer. Large-Scale Simulation
of Replica Placement Algorithms for a Serverless Distributed
File System. In Proc. of MASCOTS 2001.

L. W. Dowdy and Derrell V. Foster. Comparative models of the
file assignment problem. ACM Computing Surveys, 14(2):287-
313, 1982.

P. Druschel and A. Rowstron. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. of ACM SOSP, 2001.

S. Ghemawat, H. Gobioff, and S. Leung. The google file sys-
tem. In Proc. of ACM SOSP, pages 29-43, October 2003.

F. junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. M.
Voelker. Surviving internet catastrophe. In Proc. of USENIX
Annual Technical Conf., May 2005.

B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring
adoption of dhts with openhash, a public dht service. In Proc.
of IPTPS, February 2004.

J. Kubiatowicz et al. Oceanstore: An architecture for global-
scale persistent storage. In Proc. of ASPLOS 2000.

R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost
of reliability in peer-to-peer overlays. In Proc. of IPTPS Febru-
ary 2003.

S. Nath, H. Yu, P.G. Gibhons, and S. Seshan. Tolerating corre-
lated failures in wide-area monitoring services. Technical Re-
port IRP-TR-04-09, Intel Research, May 2004.

D. Patterson and J. Hennessy. Computer Architecture: A Quan-
titative Approach. Forthcoming Edition.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: the OceanStore prototype. In Proc. of
USENIX File and Storage Technol ogies (FAST), 2003.

S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weather-
spoon, and J. Kubiatowicz. Maintenance free global storage
in oceanstore. In Proc. of |IEEE Internet Computing. IEEE,
September 2001.

[27] R. Rodrigues and B. Liskov. High availability in dhts: Erasure

[7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]
[22]

(23]

[24]
[25]

[26]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

coding vs. replication. In Proc. of IPTPS March 2005.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large scale peer-to-peer systems.
In Proc. of IFIP/ACM Middleware, November 2001.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. of ACM S GCOMM Conf. ACM,
August 2001.

Jeremy Stribling. Planetlab all-pairs ping.
http://infospect.planet-lab.org/pings.

H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. repli-
cation: A quantitative comparison. In Proc. of IPTPS, March
2002.

H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz. Intro-
spective failure analysis: Avoiding correlated failures in peer-
to-peer systems. In Proc. of Intl. Workshop on Reliable Peer-
to-Peer Distributed Systems, October 2002.

H. Weatherspoon, C. Wells, and J. Kubiatowicz. Naming and
integrity: Self-verifying data in peer-to-peer systems. In Proc.
of Intl. Workshop on Future Directions of Distributed Systems,
2002.

P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Seshan.
Beyond availability: Towards a deeper understanding of ma-
chine failure characteristics in large distributed systems. In
Proc. of USENIX Wbrkshop on Real, Large Distributed Systems
(WORLDS), December 2004.

H. Yu and A. Vahdat. Consistent and automatic replica regen-
eration. In Proc. of NSDI, March 2004.

15

