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Abstract. The main advantage of inverse iteration over the QR algorithm and Divide & Conquer
for the symmetric tridiagonal eigenproblem is that subsets of eigenpairs can be computed at reduced
cost.

The MRRR algorithm (MRRR = Multiple Relatively Robust Representations) is a clever variant
of inverse iteration without the need for reorthogonalization. stegr, the current version of MRRR
in LAPACK 3.0, does not allow for subset computations. The next release of stegr is designed to
compute a (sub-)set of k eigenpairs with O(kn) operations.

Because of the special way in which eigenvectors are computed, MRRR subset computations are
more complicated than when using inverse iteration. Unlike the latter, MRRR sometimes cannot
ignore the unwanted part of the spectrum.

We describe the problems with what we call ’false singletons’. These are eigenvalues that appear
to be isolated with respect to the wanted eigenvalues but in fact belong to a tight cluster of unwanted
eigenvalues. This paper analyzes these complications and ways to deal with them.
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1. Introduction. The algorithm of Multiple Relatively Robust Representations
(MRRR) [13, 14, 15, 16, 17, 8] is a sophisticated variant of inverse iteration for a
symmetric tridiagonal matrix T [7, 11] that avoids explicit orthogonalization even for
tightly clustered eigenvalues.

The first release of MRRR in the current version 3.0 of LAPACK [1] only com-
puted the full set of eigenpairs. Here, we describe the inclusion of a subset func-
tionality into the MRRR algorithm, similar to the existing one in inverse iteration.
The ability to compute subsets of eigenpairs at reduced cost represents a significant
advantage over the QR algorithm [12] and the Divide & Conquer method [4, 5, 10]
which cannot take advantage of the subset situation.

In order to compute orthogonal eigenvectors without having to resort to Gram-
Schmidt orthogonalization, MRRR takes note of any clusters of close eigenvalues. For
each of these clusters, MRRR computes an appropriate relatively robust representa-
tion LDLT = T − σI from which it computes the eigenvectors, see [14, 15, 16, 17, 8].

When only a subset of eigenvalues is desired, the situation of an end of the wanted
subset being part of a different cluster can pose considerable difficulties. An eigenvalue
at one end of the set of wanted eigenvalues might appear isolated within in the set of

∗Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50F-1650, Berkeley, CA 94720,
USA. oamarques@lbl.gov

†Mathematics Department and Computer Science Division, University of California, Berkeley,
CA 94720, USA. parlett@math.berkeley.edu

‡Computer Science Division, University of California, Berkeley, CA 94720, USA.
voemel@eecs.berkeley.edu

§This work has been supported by a grant from the National Science Foundation (Cooperative
Agreement no. ACI-9619020).

1



2 O. A. Marques, B. N. Parlett, and C. Vömel

wanted eigenvalues but belong to a cluster of close but unwanted eigenvalues. We call
such an eigenvalue a false singleton because it is only a singleton among the wanted
part, not the whole spectrum. We describe the difficulties that such a false singleton
poses to MRRR and how to overcome them.

Section 2 compares standard inverse iteration and the MRRR algorithm. We
emphasize differences in the vector computation that can lead to problems for MRRR
when only a subset of the spectrum is known.

In Section 3, we discuss four different issues when the MRRR algorithm is applied
to subset computations in a way that mimics standard inverse iteration. We also
describe how to address theses issues.

In Section 4, we compare our subset approach to a different one that is used in
the parallel MRRR algorithm [3, 2]. There, one not only works on the wanted subset
of eigenpairs but embeds the subset computation into one for an isolated superset of
the spectrum. This idea guarantees orthogonality between eigenvectors belonging to
non-overlapping subsets of eigenvalues and is essential for the parallel computation.

We discuss the overhead of this approach which makes it unattractive for the
sequential LAPACK algorithm.

2. The differences in computing eigenvectors by inverse iteration and
MRRR. In this section, we describe the algorithmic differences in computing an
eigenvector of a symmetric tridiagonal matrix T by standard inverse iteration (LA-
PACK’s stein) and by the MRRR algorithm (stegr).

Standard inverse iteration embodied in LAPACK’s stein treats subset computa-
tions in the same way as the full spectrum case. All eigenvectors are computed from
the matrix T and its eigenvalues. When an eigenvalue is too close to its neighbors,
it is perturbed by a small relative amount. Then one step of inverse iteration with a
random right-hand side is performed. The resulting vector is kept orthogonal to all
previously computed eigenvectors that belong to close eigenvalues. It is scaled and
used as new right-hand side until the iteration converges. See [11, 7] for details.

In contrast, stegr computes a shift σ defining T −σI = LDLT with the following
properties:

• Small relative changes in entries of L and D cause small relative changes in
λ. We call such an (L, D) a Relatively Robust Representation (RRR) for λ.

• The (local shifted) eigenvalue approximation λ̂, |λ − λ̂| = O(ε|λ|) is of about
the same size as its distance to the next closest neighbor. Precisely, let

gap(λ̂) = min
{

|λ̂ − µ| : λ 6= µ, µ ∈ spectrum(LDLT )
}

, then the shift σ is

chosen such that relgap(λ̂) = gap(λ̂)/|λ| is larger than a threshold.
Then the key step is to find a vector v with a small relative residual

‖(LDLT − λ̂I)v‖ = O(nε|λ|).(2.1)

The reward is revealed by the classical gap theorem [6, 12]. Let z denote the true
eigenvector, then

| sin 6 (v, z)| ≤
‖(LDLT − λ̂I)v‖

gap(λ̂)
=

O(nε)

relgap(λ̂)
.(2.2)

We note that the shift σ is chosen incrementally. If the relative gaps of a group
of eigenvalues are too small, then they can be increased by shifting the origin close to
one end of the group. Furthermore, the procedure can be repeated for clusters within
clusters of close eigenvalues.
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This procedure is best represented by a rooted tree [16]. Each node of the graph
represents the RRR for a group Γ of eigenvalues. The root node of this representation

tree is the initial representation that is an RRR for all the wanted eigenvalues, each
leaf corresponds to a a ’singleton’, that is a (shifted) eigenvalue with a large relative
gap.

We now come to the central part of this exposition, the differences in the two
algorithms when computing the eigenvector. A summary of these differences is given
in Table 2.1.

stein stegr

Matrix tridiagonal T (shifted) LDLT ,
twisted Nr∆rNT

r

Right-hand side (scaled) random vector b scaled column of the identity
(corresp. to large entry

of true eigenvector)
Eigenvalue fully accurate accurate to some figures

(perturbed if necessary) (refined by Rayleigh-Quotient)

Iteration multiple steps one step with current λ̂

λ̂ unchanged gradually refine λ̂

(reorthogonal. if needed) to high relative accuracy
Convergence Norm growth in solving relatively small residual

criterion (T − λ̂I)v = b (see (2.9))
Vector support full small if warranted

Table 2.1

Differences between standard inverse iteration (stein) and the MRRR algorithm (stegr).

We have already explained that the MRRR algorithm does not use the original
matrix T but a suitable LDLT factorizations instead. As to the choice of the right-
hand side, the MRRR algorithm need not use a random vector because it is possible
to find the index r of the largest component of the true wanted eigenvector using a
double factorization

(LDLT − λ̂I) = L+D+(L+)T = U−D−(U−)T(2.3)

with O(n) work [14]. By using L+, D+, U−, D−, it is possible to find the index r

of the largest entry in the (true) eigenvector associated with λ̂, provided that λ̂ is
accurate enough.

One major difference between the MRRR algorithm and inverse iteration lies in
the fact that the MRRR algorithm works with local eigenvalue approximations of
(shifted) RRRs. However, when bisection is used, it is more efficient to compute
eigenvalues only to a modest number of digits initially, enough to recognize clusters.
The eigenvalue needs to be known to high relative accuracy only at the point when
the eigenvector is computed. At intermediate stages, while the representation tree
is constructed, eigenvalues only need to be accurate enough to distinguish between
large and small relative gaps. Once the (local) eigenvalue approximation is relatively
isolated from its neighbors, the Rayleigh-Quotient can be used to refine the eigenvalue
more efficiently than bisection.

In order to compute the vector v from the approximation λ̂, the MRRR algorithm
solves

(LDLT − λ̂I)v = erγr, v(r) = 1,(2.4)
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with a normalization factor γr and γ−1
r = [(LDLT − λ̂I)−1]rr. In order to guarantee

(2.1), we solve (2.4) not by standard back substitution but with a twisted factorization

LDLT − λ̂I = Nr∆rN
T
r .(2.5)

where

Nr =



























1
L+(1) 1

. .
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1 U−(r + 1)
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. .
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,

and

∆r = diag(D+(1), . . . , D+(r − 1), γr, D
−(r + 1), . . . , D−(n)).

Since Nrer = er and ∆rer = γrer, the solution of (2.4) is equivalent to solving

NT
r v = er, v(r) = 1,(2.6)

so that

v(i) =

{

−L+(i)v(i + 1) , i = r − 1, . . . , 1,
−U−(i − 1)v(i − 1) , i = r + 1, . . . , n;

(2.7)

this procedure solely uses multiplications, no additions or subtractions are necessary.
The index r in (2.4) is chosen according to

r = arg min
1≤k≤n

|γk|, γ
−1

k = [(LDLT − λ̂I)−1]kk,(2.8)

so that when λ̂ is a good approximation, r corresponds to an above average component
in the true eigenvector.

Standard inverse iteration tries to guarantee a small residual by monitoring the
growth rate in the vector norm when solving the singular system. The MRRR al-
gorithm does not need this. From (2.4) follows immediately that the residual norm

of (λ̂, v) is given by |γr|/‖v‖2, and that the Rayleigh Quotient correction to λ̂ is
|γr|/‖v‖

2
2. Thus, the iteration stops when

|γr|/‖v‖2 = O
(

nεgap(λ̂)
)

(2.9)

which guarantees a small angle O (nε) between the computed and the true eigenvector

according to (2.2); or it terminates when |γr|/‖v‖
2
2 = O(ε|λ̂|), in which case the the

Rayleigh Quotient correction cannot improve |λ̂|. If the residual is not small enough
and the Rayleigh Quotient correction improves the initial approximation, it is applied
and (2.4) is solved with the new improved λ̂. When λ̂ is relatively isolated, the
previously found index r need not be recomputed.
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Lastly, the MRRR algorithm can ’cut off’ the computation of the eigenvector
entries by (2.7) whenever the estimated change of the residual relative to the gap
becomes marginal. Thus, if in the recursion for vr+1, . . . , vn, we find

(|v(k)| + |v(k + 1)|)L+(k)D+(k) = O(εgap(λ̂)),(2.10)

the algorithm sets v(k + 1 : n) ≡ 0. An analogous formula is used for the recursion
for vr−1, . . . , v1. For large values of n and ’localized’ eigenvectors, this device avoids
unnecessary arithmetic effort for negligible parts of the vector.

3. Illustration of possible subset problems. To illustrate the issue, we show
in Figure 3.1 the representation tree of a sample matrix of dimension n = 11. Recall
that the tree represents the cluster structure of the eigenvalues. The root node at the
top of the figure represents an RRR for all eigenvalues which come in several clusters.
For each of these clusters, a new RRR is computed, depicted as the descendants in
the Figure. The leaf nodes at the bottom of the figure are the singletons for which an
eigenvector is computed.

11λ10λ
2λ1λ

2λ1λ 11λ10λ

7λ

λ

Representation tree for full spectrum
 Subset with eigenpairs 4−6 dashed
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Fig. 3.1. The representation tree for the whole matrix. Square boxes correspond to singletons,
rectangular ones correspond to eigenvalue groups for which an individual representation is needed
to improve relative gaps.

In Figure 3.2, we show the representation tree for a chosen subset {4, 5, 6}. In
this case, the root node is an RRR for the wanted eigenvalues only.

Note that with respect to the representation tree of the whole matrix, eigenvalue
4 is part of a cluster that needs to be refined. The (local) eigenvalue 4 finally becomes
a singleton with respect to the child representation. Furthermore, eigenvalues 5, 6 are
part of a larger cluster. With respect to the representation of this cluster, on the
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next deeper level of the representation tree, (local) eigenvalue 5 is a singleton and 6
belongs to a smaller cluster that needs another step of refinement.

In contrast, with respect to the representation tree for the subset {4, 5, 6}, the
eigenvalue 4 is a singleton. It is relatively isolated from cluster {5, 6} that, on the
next level of the subset representation tree, has local eigenvalues that are relatively
isolated. These differences are summarized in tabular form in Figure 3.3.

 (eigenpairs 4−6)
Subset representation tree

5λ

λ 5
λ 6

λ 5

λ 4
λ

6

λ 6λ 4

Fig. 3.2. The representation tree for the
spectrum subset of the matrix.

Eigenvalue Representation Representation
(index) full spectrum subset

4 2 1
5 2 2
6 3 2

Fig. 3.3. For each eigenvalue, we show
the tree level at which it is a singleton, once
with respect to the representation tree for the
full spectrum and once for the subset. Level
0 denotes the root, level 1 the descendants of
the root, and so on. The level number also
corresponds to the number of refinements of
an eigenvalue before the vector is computed.

In our tests, we have encountered four different problems related to this situation.
We explain them by the example of eigenvalues 4 and 6 of the sample matrix. Two
issues are related to the fact that the subset algorithm does not have knowledge about
unwanted eigenvalues and thus not about the gap, either.

• (A) The convergence of the eigenvalue cannot be reliably judged by (2.9)
if only the one-sided gap to the known part of the spectrum is taken into
account. The (unknown) left gap of eigenvalue 4 or the right gap of eigenvalue
6 can be much smaller and thus the Rayleigh Quotient iteration might stop
prematurely.

• (B) The criterion (2.10) for cutting off the computation of the eigenvector

by (2.7) depends on gap(λ̂). The one-sided gap could be much larger than
the true gap and so give the vector too small a support.

These two problems are not extremely serious. The algorithm could easily compute
a ’sentinel’ eigenvalue on either side of the wanted subset and thus ensure that the
criteria for convergence and support are using the correct gap value.

In order to describe the other two problems, we note that with respect to the RRR
in the subset representation tree, eigenvalues 4 and 6 are each a ’false’ singleton; both
have a relative gap to a neighbor that is not large as can be seen from inspecting the
full tree.

• (C) The bound from (2.2) guarantees a small angle of the computed to the
true vector whenever the residual divided by the gap is of order O(nε). The
MRRR algorithm achieves this by computing a vector with a small relative
residual satisfying (2.1), where the local eigenvalue is so small that its relative
gap is larger than the required threshold. This is not guaranteed for the
extremal eigenvalues 4 and 6 in our example; indeed, in the full spectrum
case, the algorithm would need to compute a new representation to make the
relative gap larger than the threshold. Even with a residual being relatively
small compared to the current local eigenvalue, the ratio of residual to the
true gap can be significantly larger than O(nε).
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• (D) The formula (2.8) yields an index r with the desirable property |v(r)| =

‖v‖infty when |λ̂ − λ| is small enough. Here, ’small enough’ depends on how
isolated λ is from the other eigenvalues. When λ is part of a cluster and
λ̂ is not much closer to λ than to the other cluster members, then γi will
correspond to a linear combination of the eigenvectors associated with the
cluster. As a consequence, |v(r)| may not be large enough to guarantee that
the error angle of the computed vector will be small.

In order to remedy problem (C), we compute the subset RRR very close to the
extremal eigenvalue. This increases its relative gap.

Problem (D) can be overcome by recomputing the minimum γr and thus the
twist index. Another way of reducing the contributions of unwanted eigenvectors
in the computation would be subsequent steps of inverse iteration, however, this
would involve additions and subtractions in the computation and thus a small relative
residual could no longer be guaranteed. We remark that when, in a given matrix,
the right-hand side is very sensitive to the accuracy in λ̂, then the support of the
computed vector can be sensitive, too. In such cases, we have to ensure that no data
from previous iterations is stored in entries that should be zero.

At the end of this section, we stress that the aforementioned problems are very
relevant in actual computations. While we have used the sample matrix from Fig-
ures 3.1 and 3.2 for illustration of the issues, we actually have encountered the de-
scribed problems in tests on real matrices. We report some examples in Table 3.1.
The first two tridiagonal matrices were obtained from running the Lanczos algorithm,
with a starting vector filled with ones and no reorthogonalization, on the matrices
bcsstk01/bcsstm01 and bcsstk10/bcsstm10, respectively. These are structural
engineering matrices and part of the Rutherford-Boeing Sparse Matrix Collection [9].
The third matrix stems from computational quantum chemistry, we obtained it from
G. Fann.

Matrix Dimension Subset Failure type
T bcsstkm01 48 7 - 19 (A),(D)
T bcsstkm10 1086 501 - 985 (B)

Fann07 (SINGLE) 120 52 - 59 (C)
Table 3.1

Examples of failures encountered in MRRR subset computations.

4. Embedding the subset representation tree into the tree of the whole
matrix. In the previous section, we have discussed the issues of the MRRR algorithm
being applied to subset computations in a way that mimics standard inverse iteration.
This section briefly compares our approach to the so-called ’conformal embedding’ of
the subset representation tree that is used in the parallel MRRR algorithm [3, 2]

In Figure 4.1, we illustrate this approach by the example from Figure 3.1.
The algorithm starts with an isolated superset of the wanted eigenpairs. For

simplicity of presentation, we assume it to be the full spectrum. Then, the relevant

part of the full representation tree is constructed. We compute those representations
that define at least one of the wanted eigenvalues. The procedure is then repeated.
The subset algorithm thus mimics the version for the full spectrum while omitting
the computation of irrelevant representations.

The advantage of the embedded approach is that the algorithm produces mu-
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Fig. 4.1. Illustration of the conformal embedding of the subset representation tree into the
representation tree of the whole matrix (compare to Figures 3.1 and 3.2).

tually orthogonal sets of eigenvectors for non-overlapping subsets of eigenvalues. In
particular, the eigenvectors from the subset computation are consistent with those
computed from the full spectrum. This is not guaranteed by standard inverse iter-
ation like stein. In particular, the (parallel) ScaLAPACK version P SYEVX does
not guarantee orthogonality between subsets of eigenvectors on different processors.

However, there are two serious drawbacks that make, in our opinion, the embed-
ded approach prohibitive for the sequential algorithm.

• By comparison, we can see that the embedded tree from Figure 4.1 can be
deeper than the subset representation tree from Figure 3.2. Thus the overhead
in computing intermediate RRRs is larger.

• The embedded algorithm requires us to find a superset of the wanted eigen-
values that is well isolated so that the embedding is conformal to the tree for
full spectrum. Depending on the matrix and the wanted subset, this over-
head can be substantial compared to O(nk) operations for the algorithm from
Section 3 that focuses on the wanted eigenpairs only.

5. Summary and conclusions. In this paper, we described four different issues
and pitfalls of the MRRR algorithm when it mimics the inverse iteration approach
for subset computations. Problems arise when an end of the wanted subset is a false
singleton, that is it is part of a separate cluster.

We have discussed two possible modifications to the original algorithm. Both take
note of the cluster structure around the set of wanted eigenvalues. The first approach
only requires knowledge of the nearest neighbors to the wanted subset. The second
approach is based on a conformal embedding of the subset representation tree.

These two approaches have different advantages and drawbacks.
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The first approach guarantees that the computed subset vectors are orthogonal
to each other and have a small residual. This is similar to the promise made by
inverse iteration: LAPACK’s stein, at the additional cost of Gram-Schmidt orthogo-
nalization, only guarantees numerical accuracy within the wanted subset. There is no
guarantee that the computed subset eigenvectors are consistent with those computed
from the full matrix spectrum.

The second approach makes this guarantee and is thus the method of choice
for the parallel implementation. However, we have pointed out that the embedding
requires a greater overhead because it includes a (potentially much larger) subset of
the wanted eigenvalues.

Taking into account all these arguments, we chose the first approach for the
MRRR subset algorithm because of its small extra cost. The second approach has its
place in the parallel MRRR algorithm.
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their comments on a first draft of this paper.
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