
BINDER: An Extrusion-based Break-In Detector for
Personal Computers

Weidong Cui†, Randy H. Katz†, Wai-tian Tan‡

†Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA

‡Streaming Media Systems Group
Hewlett-Packard Laboratories, Palo Alto, CA

Report No. UCB/CSD-4-1352

October 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

BINDER: An Extrusion-based Break-In Detector for Personal
Computers

Weidong Cui†, Randy H. Katz†, Wai-tian Tan‡

†Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA

‡Streaming Media Systems Group
Hewlett-Packard Laboratories, Palo Alto, CA

Technical Report UCB/CSD-04-1352

Abstract

In this paper, we tackle the problem of automated detection
of break-ins of new unknown threats such as worms, spyware
and adware on personal computers. We propose Break-IN DE-
tectoR (BINDER), a host-based system that detects break-ins
by capturing extrusions, stealthy malicious outgoing network
traffic sent by them. To capture extrusions, BINDER correlates
outgoing network traffic and process information with user ac-
tivity. This is a unique characteristic of personal computers in
contrast to server computers. Since threats tend to run as back-
ground processes and thus do not receive any user input, the in-
tuition behind BINDER is that only processes that receive user
input are allowed to make connections. We implemented a pro-
totype of BINDER on Windows 2000/XP and evaluated it on 6

computers used by different volunteers for their daily work over
5 weeks. Our results show that BINDER can limit the number
of false alarms to at most 5 over 4 weeks on each computer and
the false positive rate to less than 0.03%. We also used both
real-world and controlled environment to demonstrate Bider’s
capability for detecting break-ins. We show that BINDER suc-
cessfully detects all break-ins caused by three adware and four
email worms.

1 Introduction

A variety of threats such as worms, spyware and adware,
have affected both personal and business computing signifi-
cantly. Many research efforts [12, 14, 25] and commercial prod-
ucts [17, 33] have focused on preventing break-ins by filtering
known exploits or unknown ones exploiting known vulnera-
bilities. To protect computer systems from new threats, these
solutions have two requirements. First, some central entities
must rapidly generate signatures of new threats after they are
detected. Second, distributed computer systems must down-
load and apply these signatures to their local databases in time.
However, these requirements can leave computer systems with
obsolete signature database unprotected from newly emerg-
ing threats. In particular, worms can propagate much more
rapidly than humans can respond in terms of generation and
distribution of signatures. An attractive solution is to develop

fast mechanisms for detecting break-ins after they occur, but
without using pre-defined signatures. Such mechanisms can
decrease the danger of information leak and protect comput-
ers and networks, and is complementary to existing signature-
based schemes.

Many threats send malicious outgoing network traffic either for
self-propagation (worms) or for their payloads such as disclos-
ing user information (swore/adware). These malicious network
activities usually happen unknown to users on the compromised
personal computers. We refer to these stealthy malicious out-
going network activities as extrusions1. The key feature of ex-
trusions is that they are not triggered by user input. In con-
trast, most normal traffic is initiated by users. Leveraging this
anomaly of extrusions, we tackle the problem of automated de-
tection of break-ins of new unknown threats such as worms,
spyware and adware on personal computers2 in contradiction
to server computers. In this paper, we present Break-IN DEtec-
toR (BINDER), a host-based system that detects break-ins on
personal computers by capturing extrusions. BINDER can de-
tect certain kinds of break-ins after they occur without priori
signatures.

To capture extrusions, BINDER correlates outgoing network
connections (initiated by the local computer) and process in-
formation with user activities (key strokes and mouse clicks).
We do not consider incoming connections (initiated by a remote
computer) because most of them are malicious by the nature of
personal computers, and firewalls are designed to block such
incoming traffic. BINDER classifies outgoing network connec-
tions into two categories (normal vs. anomalous) and treats
anomalous outgoing connections as extrusions. Since threats
tend to run as background processes and thus do not receive
any user input, the intuition behind BINDER is that only pro-
cesses that receive user input are allowed to make connections.

A key challenge to intrusion detection systems is to avoid false
alarms [4]. Since most normal outgoing network traffic from a

1Extrusion is also defined as unauthorized transfer of digital assets
in some other context.

2In this paper, a personal computer is a computer that is used lo-
cally by a single user at any time.

1

personal computer is initiated by its user, BINDER uses two
simple techniques to solve this problem. By allowing repeated
connections to previous hosts, BINDER can handle the case of
automatic refreshing web pages which is common for news and
sports web sites. BINDER uses whitelisting to cover a small
number of system daemons that need unsupervised network ac-
cess for things like system administration and checking soft-
ware or security updates.

Given that computers running Windows operating systems are
the largest community targeted by malicious attacks, we imple-
ment a prototype of BINDER for Windows 2000/XP. BINDER
was installed and evaluated on 6 computers used by different
volunteers for their daily work over 5 weeks. Our results show
that BINDER can limit the number of false alarms to at most
5 over 4 weeks on each computer and the false positive rate to
less than 0.03%. We also used both real-world and controlled
environment to demonstrate BINDER’s capability for detect-
ing break-ins. We show that BINDER successfully detects all
break-ins caused by three adware and four email worms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we explain our goals and assumptions, and present the
architecture of BINDER. We describe the extrusion detection
algorithm of BINDER in detail in Section 3. We describe the
implementation of BINDER in Section 4. We present evalua-
tions and experimental results in Section 5. In Section 6, we
discuss open issues of possible countermeasures and solutions.
We provide an overview of the related work in Section 7. In
Section 8, we conclude the paper and discuss the plan of future
work.

2 System Design

We start this section by describing our goals, motivation, and
assumptions. Then, we present the architecture of BINDER and
discuss the functionality and interface among its components.

2.1 Overview

The goal of our work is to automatically detect break-ins of new
unknown exploits on personal computers. Our focus on per-
sonal computers is motivated by two observations. First, many
threats such as worms, spyware and adware send out malicious
network traffic unknown to users after they compromise per-
sonal computers. Second, most normal network traffic is initi-
ated by users on personal computers. Leveraging these observa-
tions, we develop Break-IN DEtectoR (BINDER), a host-based
break-in detection system. BINDER detects break-ins by cap-
turing stealthy outgoing network connections referred to as ex-
trusions.

The main objectives we want to achieve for the BINDER design
are:

• Minimal false alarms: This is the critical base for any in-
trusion detection system to be useful in practice.

• Generality: BINDER should work for a large class of
threats without the need for signatures beforehand.

• Security with open design: We want to design BINDER so
threats cannot bypass it by knowing its scheme.

• Small overhead: BINDER must not use intrusive probing
and affect the performance of the computers it sits on.

Patterns of network traffic and system calls have been used
for intrusion detection [6, 8, 9]. To the best of our knowl-
edge, BINDER is the first system to take advantage of a unique
characteristic of personal computers: user-driven activities. By
trusting the user input, BINDER simply detects break-in ex-
trusions by determining they are unrelated to user actions. In
Section 6, we discuss how BINDER can verify a user input is
not faked or tricked by break-ins.

A natural approach for BINDER to take is to correlate network
traffic with user input directly. However, a “smart” threat can
bypass it by monitoring user input and sending traffic at appro-
priate times. To avoid this, BINDER also uses process informa-
tion to limit the correlation. The intuition behind it is that only
processes that receive user input are allowed to make connec-
tions.

2.2 BINDER Architecture

User Network
Monitor

Process
MonitorMonitor

Extrusion Detector

Operating System Kernel

Figure 1: BINDER Architecture

As a host-based break-in detection system, BINDER correlates
information across three sources: user input, processes, and net-
work traffic. The BINDER architecture is shown in Figure 1.
There are 4 components in a BINDER system: User Monitor,
Process Monitor, Network Monitor, and Extrusion Detector.
The first three components independently collect information
from the operating system (OS) passively in real time and re-
port user, process, and network events to the Extrusion Detec-
tor. APIs for real-time monitoring are specific to every oper-
ating system. In Section 4, we describe the implementation on
Windows operating system. In the following, we explain the
functionality and interface of these components that are gen-
eral to all operating systems.

The User Monitor is responsible for monitoring user input and
reporting user events to Extrusion Detector. It reports a user
input event when observing a user clicks mouse or hits a key.

2

A user input event has two components: the time when it hap-
pens and the ID of the process that receives this user input. This
mapping between a user input and a process is provided by the
operating system. So the User Monitor do not rely on the Pro-
cess Monitor for process information. Since a user input event
has only the time information and the Extrusion Detector only
stores the last user input event, BINDER avoids leaking user
privacy information.

When a process is created or stopped, the Process Monitor cor-
respondingly reports to Extrusion Detector two types of pro-
cess events: process start and process finish. A process start
event includes the time, the ID of the process itself, its image
file name, and the ID of the parent process. A process finish
event has only the time and the process ID.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

DNS Lookup Time

Figure 2: CDF of DNS lookup time on an experimental com-
puter

The Network Monitor audits network traffic and reports net-
work events. For the interest of detecting extrusions, it reports
three types of network events: connection request, data arrival
and domain name lookup. For connection request events, the
Network Monitor checks TCP SYN packets and UDP packets.
A data arrival event is reported when a TCP or UDP packet
with non-empty payload is received. The Network Monitor also
parses DNS lookup packets. It associates a successful DNS
lookup with a following connection request to the same remote
IP address as returned in the lookup. This is important because
DNS lookup may take significant time between a user input and
the corresponding connection request. The Cumulative Distri-
bution Function (CDF) of 2644 DNS lookup times on one of the
experimental computers is shown in Figure 2. We can see that
about 8% DNS lookups take more than 2 seconds. A connec-
tion request event has 5 components: the time, the process ID,
the local transport port number, the remote IP address and the
remote transport port number. Note that the time is the starting
time of its DNS lookup if it has any or the connection itself. The
mapping between network traffic and processes is provided by
the operating system. A data arrival event has the same com-
ponents as a connection request event except that its time is the
time when the data packet is received. A domain name lookup

event has the time, the domain name for lookup, and a list of IP
addresses mapping to it.

Except for domain name lookup results that are shared among
all processes, the Extrusion Detector organizes events based on
processes and maintains a data record for each process. A pro-
cess data record has the following members: the process ID,
the image file name, the parent process ID, the time of the last
user input event, the time of the last data arrival event, and all
the previous normal connections. When a process start event is
received, a process data record is created with the process ID,
the image file name and the parent process ID. The time of the
last user input event is updated when a user input event of the
process is reported. Similarly, the time of the last data arrival
is updated when a data arrival event is received. A process data
record is closed when its corresponding process finish event is
received. All process records are cleared up when the system
is shutdown. The size of the event database is small because
the number of simultaneous processes on a personal computer
is usually less than 100. Based on all the information of user,
process and network events, the Extrusion Detector detects ex-
trusions. The extrusion detection algorithm is presented in the
next section.

3 Extrusion Detection

In this section, we describe the extrusion detection algorithm.
Instead of searching for conditions that can detect extrusions
directly, we look for the cases where normal connections may
be generated. This is in concert with our objectives of mini-
mizing false alarms and detecting a large class of threats (see
Section 2.1). By covering all normal cases, we can first con-
trol false alarms. Then, we can detect any threat that generates
connections in a way that does not match any normal case.

We first motivate the design of the detection algorithm using an
example. Then, we introduce the algorithm with a focus on how
it can detect normal connections correctly. Finally, we discuss
what threats can be detected by this algorithm.

3.1 Motivating Examples

To motivate the design of the detection algorithm, we use an
example of a user visiting a news web site. Let us assume that
the user opens an Internet Explorer (IE) window, goes
to a news web site, then leaves the window idle for answering
a phone call. A list of events generated by these user actions is
shown in Figure 3. In this example, new connections are trig-
gered in four different ways.

• Case I: When the user opens IE by double-clicking
its icon on My Desktop in Windows, the shell pro-
cess explorer.exe (PID=1664) of Windows re-
ceives the user input (Event 1-2), and then starts
the IE process (Event 3). After the domain name
(www.cs.berkeley.edu) of the default homepage is
resolved (Event 4), the IE process makes a connection to
it to download the homepage (Event 5). This connection

3

1 10/01/2004 09:32:33, PID=1664 (user input)
2 10/01/2004 09:32:33, PID=1664 (user input)
3 10/01/2004 09:32:35, PID=2573, PPID=1664, NAME="C:\...\iexplore.exe" (process start)
4 10/01/2004 09:32:39, HOST=www.cs.berkeley.edu, IP=169.229.60.105 (domain name lookup)
5 10/01/2004 09:32:39, PID=2573, LPORT=5354, RIP=169.229.60.105, RPORT=80 (connection request)
6 10/01/2004 09:32:40, PID=2573, LPORT=5354, RIP=169.229.60.105, RPORT=80 (data arrival)
7 10/01/2004 09:32:40, PID=2573, LPORT=5354, RIP=169.229.60.105, RPORT=80 (data arrival)
8 10/01/2004 09:32:43, PID=2573 (user input)
9 10/01/2004 09:32:45, HOST=news.yahoo.com, IP=66.218.75.230 (domain name lookup)

10 10/01/2004 09:32:45, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (connection request)
11 10/01/2004 09:32:47, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)
12 10/01/2004 09:32:47, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)
13 10/01/2004 09:32:48, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)
14 10/01/2004 09:32:48, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)
15 10/01/2004 09:32:50, HOST=us.ard.yahoo.com, IP=216.136.232.142,216.136.232.143 (domain name lookup)
16 10/01/2004 09:32:50, PID=2573, LPORT=5359, RIP=216.136.232.142, RPORT=80 (connection request)
17 10/01/2004 09:32:51, HOST=us.ent4.yimg.com, IP=192.35.210.205,192.35.210.199 (domain name lookup)
18 10/01/2004 09:32:51, PID=2573, LPORT=5360, RIP=192.35.210.205, RPORT=80 (connection request)
19 10/01/2004 09:32:52, PID=2573, LPORT=5359, RIP=216.136.232.142, RPORT=80 (data arrival)
20 10/01/2004 09:32:52, PID=2573, LPORT=5360, RIP=192.35.210.205, RPORT=80 (data arrival)
21 10/01/2004 09:32:53, PID=2573, LPORT=5359, RIP=216.136.232.142, RPORT=80 (data arrival)
22 10/01/2004 09:32:53, PID=2573, LPORT=5360, RIP=192.35.210.205, RPORT=80 (data arrival)
23 10/01/2004 09:43:01, HOST=news.yahoo.com, IP=66.218.75.230 (domain name lookup)
24 10/01/2004 09:43:01, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (connection request)
25 10/01/2004 09:43:02, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)
26 10/01/2004 09:43:02, PID=2573, LPORT=5357, RIP=66.218.75.230, RPORT=80 (data arrival)

......

Figure 3: An example of events generated by browsing a news web site.

Dnew oldD oldD
Dprev

T

1,2 3 4,5 6,7 8 9,10 25,2623,2411,12 13,14 15,16 17,18 19,20 21,22

Figure 4: A time diagram of events in Figure 3.

of IE is triggered by the user input events of its parent
process of explorer.exe.

• Case II: After the user clicks a bookmark of
news.yahoo.com in the IE window (Event 8),
the domain name is resolved as 66.218.75.230
(Event 9). Then the IE process makes a connection to it
to download the HTML file (Event 10). This connection
is triggered by the user input event of the same process.

• Case III: After receiving the HTML file in 4 packets
(Event 11-14), IE goes to retrieve two image files from
us.ard.yahoo.com and us.ent4.yimg.com.
Then IE makes connections to them (Event 16,18) after
the domain names are resolved (Event 15,17). These two
connections are triggered by the data arrival events of the
same process.

• Case IV: According to a setting in the web page, IE starts
refreshing the web page for updated news 10 minutes later.
This connection (Event 24) repeats the previous connec-
tion (Event 10).

It is natural for a user input or data arrival event to trigger a
new connection in the same process (Case II and III). However,
Case I implies that it is necessary to correlate events among pro-
cesses. There are a small number of system daemons that need
unsupervised network access for things like system administra-
tion and software update. In BINDER, we handle these with
whitelisting. In general, a normal connection must be triggered
by one of the rules below

• Intra-process rule: A connection of a process may be trig-
gered by a user input, data arrival or connection request
event of the same process.

4

• Inter-process rule: A connection of a process may be trig-
gered by a user input or data arrival event of another pro-
cess.

• Whitelisting rule: A connection of a process may be trig-
gered according to a rule in the whitelist.

To verify if a connection is triggered by the intra-process rule,
we just need the single process information stored in the pro-
cess data record in the Extrusion Detector. However, we need
to monitor all possible inter-process communications (in a gen-
eral concept rather than the one used in process programming)
to verify if a connection is triggered by the inter-process rule.
This contradicts our objective of small overhead. Instead, we
use the following two rules to approximate it.

• Parent-process rule: A connection of a process may be
triggered by a user input or data arrival event received
by its parent process before it is created.

• Web-browser rule: A connection of a web browser process
may be triggered by a user input or data arrival event of
other processes.

The web-browser rule cannot be covered by the parent-process
rule because, when a user clicks a hyperlink in a window of
a process, the corresponding web page is loaded by an exist-
ing web browser process if there is any. The advantages of this
approximation are that the two rules only rely on the process
information stored in the Extrusion Detector and they cover a
dominant fraction of connections triggered by the inter-process
rule.

Our evaluations in Section 5 show that the intra-process,
parent-process and web-browser rule along with whitelisting
have a very good coverage (99.97%) of how normal connec-
tions may be triggered.

3.2 Detection Algorithm

The detection algorithm is based on the intra-process, parent-
process and web-browser rule as well as whitelisting. Since
whitelisting is OS dependent, we discuss the whitelist of our
Windows implementation in Section 4. The main idea of the al-
gorithm is to limit the delay from a triggering event to a connec-
tion request event. There are three possible delays for a connec-
tion request though some of them may not exist. In Figure 4, we
show them in a time diagram of events in Figure 3. For a con-
nection request made by process P , we define the three delays
as follows

• Dnew: The delay since the last user input or data arrival
event received by the parent process of P before P is cre-
ated. It is the delay from Event 1 to 5 in Figure 4.

• Dold: The delay since the last user input or data arrival
event received by P . In Figure 4, it is the delay from Event
8 to 10, from Event 14 to 16, and from Event 14 to 18. Note

that the triggering event can be from any process if P is a
web browser according to the web browser rule.

• Dprev: The delay since the last connection request to the
same host or IP address made by P . It is the delay from
Event 10 to 24 in Figure 4.

As Dold is the reaction time of a process, Dnew includes the
loading time of a process as well. For normal connections, Dold

and Dnew are in the order of seconds while Dprev is in the or-
der of minutes. Depending on how a normal connection is trig-
gered, it must have at least one of the three delays fall into a
normal range. This is the basic idea behind the detection algo-
rithm. The extrusion detection algorithm needs 3 parameters for
the upper bound of the delays (defined as D

upper
new , D

upper

old , and
D

upper
prev).

In the design of the extrusion detection algorithm, we assume
the Extrusion Detector can learn rules from previous false
alarms. Each rule includes an application name (the image file
name of a process) and a remote host name. The rule means any
connection to the host made by a process of the application is
always normal.

Given a connection request, the detection algorithm works as
follows:

• If it is in the rule set of previous false alarms, then it is
normal;

• If it is in the whitelist, then it is normal;

• If Dprev exists and is less than D
upper
prev , then it is normal;

• If Dnew exists and is less than D
upper
new , then it is normal;

• If Dold exists and is less than D
upper

old , then it is normal;

• Otherwise, it is anomalous.

The order of comparison is chosen for optimizing parameters to
decrease false negatives. We check the rules of previous false
alarms and whitelist first because they are used to minimize
false positives. We check Dprev before Dnew and Dold because
it is larger than the latter two in orders and has less impact on
false negatives. Since D

upper

old controls if a connection is nor-
mal after a process is created, it has more impact on false nega-
tives. By checking Dold in the end, we can avoid the cases that
have large Dold values but meet one of the first four conditions.
Therefore, we can choose D

upper

old with a smaller value without
increasing false alarms.

After detecting an extrusion, the Extrusion Detector can raise
an alarm with related information such as the process ID, the
image file name, and the connection information. Further pos-
sible actions responding to threats are discussed for future work
in Section 8.

5

3.3 Detecting Threats

We have focused on designing the extrusion detection algorithm
to detect normal connections correctly. In this section, we dis-
cuss why connections made by a large class of threats can be
detected as extrusions by the algorithm.

The goal of our work is to detect worms, spyware and ad-
ware on personal computers. Unlike worms, spyware and ad-
ware cannot propagate themselves and thus require user input
to infect a computer system. Worms can be classified as self-
activated worms such as Blaster [21] and user-activated worms
such as email worms. While break-ins of user-activated worms
must have user input, those of self-activated worms must have
a vulnerable process receive malicious data. Most threats also
infect a system in such a way that the malicious processes will
be started automatically when the system is restarted. There-
fore, when a threat breaks into a personal computer, the break-
in can be split into two phases by the time of the first restart of
the victim computer. The difference of these two phases is how
malicious processes of a threat are started. In the first phase,
malicious processes are started either by an existing infected
process or by a user accidentally with user input or data arrival
in history. In the second phase, malicious processes are started
by the operating system without any user input or data arrival in
history. Moreover, threats tend to run as background processes
to avoid being detected or shutdown by computer users. A fea-
ture of background processes is that they do not receive any
user input.

In the second phase of a break-in, BINDER can detect the
break-in by capturing the first connection made by its mali-
cious processes as an extrusion. This is because their parent
processes do not receive any user input before they are cre-
ated. And they do not receive any user input after they are cre-
ated. Therefore, Dold, Dnew and Dprev do not exist for such a
connection. Thus BINDER can be guaranteed to detect break-
ins of worms, spyware and adware after the victim computer
is restarted. We will prove this by showing that BINDER suc-
cessfully detects three adware in a real-world environment and
some well-known email worms in a controlled environment.

In the first phase of a break-in, connections made by malicious
processes may not be initially detected as extrusions. This is be-
cause, before they are started, their parent processes may have
received user input (e.g., a user opens a virus attachment in an
email client program) or data arrival (e.g., a vulnerable pro-
cess receives malicious traffic). However, BINDER can detect
a break-in by observing even a single extrusion it makes. In
Section 5, we will show that BINDER successfully detects the
adware Spydeleter [3] and three email worms Beagle [20], Net-
Sky [23] and Swen [24] in the first phase of their break-ins.

In Section 6, we discuss possible countermeasures a break-in
can take to bypass BINDER in both phases. For each counter-
measure, we also discuss possible containment approaches.

4 System Implementation

We implement a prototype of BINDER for Windows 2000/XP.
This is because computers running Windows operating systems
are the largest group attacked by the most threats [16]. The pro-
totype demonstrates the feasibility of BINDER and enables us
to evaluate it with real users in real-world environment. Though
this prototype is implemented in the application space, we as-
sume a BINDER system runs in the kernel space if it is adopted
in practice. In this section, we first present the implementation
of the User Monitor, Process Monitor and Network Monitor.
Then, we describe the whitelist used in the Extrusion Detector.

4.1 User Monitor

The function of the User Monitor is to report user input
events including the time and process ID. The User Moni-
tor is implemented based on Windows Hooks API [29]. It
uses three hook procedures, KeyboardProc, MouseProc
and CBTProc. KeyboardProc is used to capture keyboard
events while MouseProc is used to capture mouse events.
MouseProc can provide the information of which window
will receive a mouse event. Since KeyboardProc cannot
provide the same information for a keyboard event, we use
CBTProc to capture events when a window is about to re-
ceive the keyboard focus. After determining which window will
receive a user input event, the User Monitor uses procedure
GetWindowThreadProcessId to get the process ID of the
window.

4.2 Process Monitor

The objective of the Process Monitor is to report process start
and process finish events. The Process Monitor is implemented
based on the built-in Security Auditing on Windows 2000/XP
[30]. By turning on the local security policy of auditing
process tracking (Computer Configuration/Windows
Settings/Security Settings/Local
Policies/Audit Policy/Audit process
tracking), the Windows operating system can audit
detailed tracking information for process start and finish
events. The Process Monitor uses psloglist [13] to parse
the security event log and generates process start and process
finish events.

4.3 Network Monitor

The Network Monitor aims to report connection request,
data arrival and domain name lookup events. It is built on
TDIMon [18] and WinDump [31] which requires WinPcap
[32]. TDIMon monitors activity at the Transport Driver Inter-
face (TDI) level of networking operations in the operating sys-
tem kernel. It can capture all network events associated with
process information. Since TDIMon does not capture complete
DNS packets, The Network Monitor uses WinDump for this
purpose. Based on the information collected by TDIMon and
DNS packets captured by WinDump, the Network Monitor re-
ports network events to the Extrusion Detector.

6

4.4 Extrusion Detector

The detection algorithm of the Extrusion Detector was de-
scribed in Section 3. Here we focus on the whitelist mecha-
nism in our Windows implementation. The whitelist in our cur-
rent implementation has 15 rules. These rules can be classi-
fied into three categories: system daemons, software updates
and network applications automatically started by Windows.
A rule for system daemons has only a program name. Pro-
cesses of the program are allowed to make connections at any
time. In our current implementation, we have 5 system dae-
mons including System, spoolsv.exe, svchost.exe,
services.exe and lsass.exe. A rule for software up-
dates has both a program name and an update web site. Pro-
cesses of the program are allowed to connect to the update web
site at any time. In this category, we now have 6 rules that covers
Symantec, Sygate, ZoneAlarm, Real Player, Microsoft Office,
and Mozilla. For network applications automatically started by
Windows when it starts, we currently have 4 rules for messen-
ger programs of MSN, Yahoo!, AOL, and ICQ. These programs
are allowed to make connections at any time.

If BINDER is deployed, managing the whitelist for an average
user is very important. Rules for system daemons usually do
not change until the operating systems are upgraded. Since the
number of softwares that require regular updates is small and
do not change very often, the rules for software updates can
be updated by some central entity adopting BINDER. Though
rules in the last category have to be configured individually for
each system, we believe some central entity can provide help
by maintaining a list of applications that fall into this category.
A mechanism similar to PeerPressure [26] may be used to help
an average user configure her own whitelist.

5 Evaluations

We evaluated BINDER in two environments. First, we in-
stalled it on 6 Windows computers used by different volunteers
for their daily work, and collected traces over 5 weeks since
September 7th, 2004. Second, we tested BINDER on a sample
set of well-known email worms in a controlled testbed using
VMWare [19].

5.1 Methodology

To evaluate BINDER with different values for the three param-
eters D

upper

old , D
upper
new and D

upper
prev , we used offline, trace-based

experiments. We collected traces of user input, process infor-
mation, and network traffic from the 6 computers that installed
the prototype of BINDER. A summary of the collected trace is
shown in Table 1. On one hand, these computers were used for
daily work, so the traces are real-world. On the other hand, our
experimental population is small due to the difficulty of get-
ting user commitment for a long term study on their daily work
computers. However, from the summary of the collected traces
in Table 1, we can see that they have good diversity with respect
to hardware, operating system, and user behavior.

The most important design objective of BINDER is to minimize

false alarms while maximizing detected extrusions. In our ex-
periments, we used the number of false alarms rather than the
false positive rate to evaluate BINDER. This is because users
who respond to alarms are more sensitive to the absolute num-
ber than a relative rate. When BINDER detects extrusions, it
is based on connections. However, when we count the number
of false alarms, we do not use the number of misclassified nor-
mal connections directly. This is because a false alarm covers
a series of consecutive connection requests. Therefore, for mis-
classified normal connections, we split them into groups and
count each group as one false alarm.

5.2 Parameter Selection

In this section, we discuss how to choose values for the three
parameters D

upper

old , Dupper
new and D

upper
prev . The goal of parameter

selection is to make the parameters as small as possible under
the condition that the number of false alarms is acceptable. We
assume the rules of whitelisting described in Section 4.4 are
fixed. The performance metric is the number of false alarms.
Based on the real-world traces, we calculate Dold, Dnew and
Dprev for all connection request events for every user. Then we
take the 90th, 95th and 99th percentile for all three parameters
and calculate the number of false alarms for each percentile.
The results are shown in Table 2.

From Table 2 we can see that D
upper

old , Dupper
new and D

upper
prev must

be different for different users because they are dependent on
computer speed and user pattern. Thus, they should be selected
on a per-user base. We can also see that the performance of tak-
ing the 90th percentile is not acceptable and the improvement
from taking the 95th percentile to the 99th percentile is small.
Therefore, the parameters can be selected by choosing some
value in the 95th percentile according to user’s preference. For
conservative users, we should choose smaller values. The per-
centiles can be obtained by training BINDER over a period of
virus-free time. Without training, these parameters can also be
chosen based on user’s preference. Dupper

old and D
upper
new can take

values between 30 and 60 seconds, while D
upper
prev can take val-

ues between 1200 and 3600 seconds.

In the real-world experiments of detecting break-ins, we take
the 95th percentile values for the two infected computers. In
the controlled experiments, We take 30 seconds, 30 seconds and
800 seconds for D

upper

old , Dupper
new and D

upper
prev , respectively. Note

that D
upper

old can be greater than D
upper
new because the reaction

time from a user input or data arrival event to a connection
request event is dependent on the instant running condition of a
computer.

5.3 False Alarms

By choosing parameters correctly, we expect to achieve min-
imal false alarms. From Table 2 we can see that there are at
most 5 false alarms for each computer by choosing the 99th
percentile. The false positive rate is 0.03%. We manually check
these remaining false alarms and find that they are caused by
one of the three reasons:

7

Table 1: Summary of Collected Traces

User Machine OS Trace (Days) # of User Events # of Process Events # of Network Apps # of TCP Conns

A Desktop WinXP 27 35270 5048 33 33480
B Desktop WinXP 26 80497 12502 35 15450
C Desktop WinXP 23 24781 7487 55 36077
D Laptop Win2K 23 99928 8345 28 9784
E Laptop WinXP 13 8630 2448 21 10210
F Laptop WinXP 12 20490 5402 20 7592

Table 2: Parameter selection for Dold, Dnew and Dprev

User 90% (s) 95% (s) 99% (s)
User Dold Dnew Dprev # of FAs Dold Dnew Dprev # of FAs Dold Dnew Dprev # of FAs

A 18 11 142 15 33 15 752 5 79 21 4973 3
B 15 12 64 23 28 21 260 7 79 22 3329 5
C 14 14 28 20 25 15 134 5 74 33 2272 1
D 16 81 213 3 33 81 715 3 85 81 4611 2
E 19 12 539 5 32 14 541 4 93 90 4216 3
F 14 8 80 10 27 13 265 5 79 31 3633 2

Table 3: Break-down of false alarms according to causes.

User Inter-Process Whitelist Collection Total
A 2 1 0 3
B 4 1 0 5
C 1 0 0 1
D 0 1 1 2
E 1 1 1 3
F 0 1 1 2

• Incomplete information of inter-process event sharing.
4 of the 5 false alarms of User B are caused by this.
We observe that PowerPoint follows IE to connect
to the same IP address while the parent process of the
PowerPoint process is the windows shell. We hy-
pothesize this is due to the usage of Windows API
ShellExecute.

• Incomplete whitelisting. For example, connections made
by Windows Application Layer Gateway Service are
treated as extrusions. This is easy to fix if a BINDER sys-
tem is well engineered.

• Incomplete trace collection. BINDER was accidentally
turned off in the middle of trace collection.

A break-down of the false alarms is shown in Table 3. We can
see that BINDER can achieve minimal false alarms if it is well
engineered and executed.

Linux

WinXP
on

VMWare

Gateway

DNS QueryOutbound

Inbound

Figure 5: A controlled testbed for email worm detection

5.4 Controlled Testbed

To test BINDER with a large class of real threats, we set up a
controlled testbed. It is very difficult to run this kind of experi-
ments. We overcame several obstacles to make it possible.

We were targeting at email worms because they are a big threat
to personal computers. However, we found it is very difficult
to obtain real email worms. First, we were not successful to
use Google to find virus email attachments. Second, the email
server in our institution is managed very well. So we cannot
get virus emails from our own email accounts. We finally used
several channels to get virus emails. We set up our own mail
server and published an email address to Usenet groups. This
helped us get the email worm Swen [24] which exploits the
email addresses published in Usenet groups. We also asked for
help from other colleagues in the research community. A col-
league forwarded a Beagle [20] virus email to us. In the end,
we were lucky to convince the administrators in our institution
to give us more than 1000 unique virus email attachments they
captured over a week. We are in the process of taking an exten-
sive experiments on these 1000+ virus email attachments.

8

For every email worm, we need a clean Window operating sys-
tem to test with. It would be very slow if we had to reinstall
Windows for every test. We used VMWare [19] to avoid this
problem. The advantage of using VMWare is that we can dis-
card an infected system and get a new one just by copying a few
files.

When we tested with real email worms, we need to be ex-
tremely careful about containing them. However, if the testbed
is completely isolated from the Internet, email worms will not
be able to make connection requests due to failures of domain
name lookup. To solve this problem, we allowed DNS traffic to
get through the gateway. However, we can only test if BINDER
can detect the first connection made by a break-in email worm
as an extrusion because its behavior is unpredictable after it due
to the fact that it can not connect to the outside.

The testbed is shown in Figure 5. It consists of a Linux com-
puter and a network gateway. We run Windows XP on VMWare
[19] that runs on the Linux computer. The network gateway is
used to block outgoing traffic except for DNS traffic.

5.5 Detecting Break-Ins

We have shown that BINDER can limit false alarms very well.
Here we discuss how BINDER detects break-ins. We use ex-
perimental results from both the real-world and controlled en-
vironment.

In the real-world experiments, among the 6 computers, one is
infected by adware Gator [2] and CNSMIN [1] and another
one is infected by adware Gator and Spydeleter [3]. In particu-
lar, the second computer was compromised by Spydeleter after
BINDER was installed.

In a controlled environment, we test BINDER on a sample
set of well-known email worms including Beagle [20], NetSky
[23], Mydoom [22], and Swen [24]. in a controlled environ-
ment.

As we discussed in Section 3.3, BINDER can be guaranteed to
detect break-ins after a victim computer is restarted but may not
detect those whose behavior is similar to normal processes right
after their break-ins. In both the real-world and controlled envi-
ronment, BINDER successfully detected break-ins of all three
adware and four email worms after the victim computer was
restarted. In the rest of this section, we focus on the problem of
detecting break-ins right after they happen.

For a connection request to be treated as normal, one of the
three delays Dold, Dnew and Dprev must exist and is less than
the upper bound. Due to our limited access to real malicious
code, we cannot prove what percentage of today’s threats vi-
olate these conditions during a computer break-in. In the fol-
lowing, we show that BINDER can detect the break-ins of the
adware Spydeleter in the real-world environment and the email
worm Beagle, NetSky and Swen in the controlled environment.

In Figure 6, we show a stripped list of events logged during the
break-in of the adware Spydeleter. Note that all IP addresses
are anonymized. Two related processes not shown in the list are

a process of explorer.exe with PID 240 and a process of
svchost.exe with PID 960. After IE is opened, a user con-
nects to a site with IP 12.34.56.78. The web page has code to
exploit a vulnerability in mshta.exe which processes .HTA
files. After .mshta.exe is infected by the malicious .HTA
file it downloads from 87.65.43.21, it starts a series of pro-
cesses of ntvdm.exe which provides an environment for a
16-bit process to execute on a 32-bit platform. Then, a process
of ntvdm.exe starts a process of ftp.exe which makes a
connection request to 44.33.22.11.

Since the prototype of BINDER does not have complete in-
formation for verifying if a connection is triggered accord-
ing to the inter-process rule (see Section 3), the connec-
tion made by mshta.exe is detected as an extrusion. This
is because its parent process is svchost.exe rather than
iexplore.exe, though it is the latter process that triggers
its creation. If BINDER had complete information for inter-
process event sharing, it detects the connection request made
by ftp.exe as an extrusion. This is because both the pro-
cess of ftp.exe and its parent process of ntvdm.exe does
not have any user input or data arrival event in history. So all
of Dold, Dnew and Dprev do not exist. The connection made
by ftp.exe is used to download malicious code. Therefore,
BINDER’s detection plus some appropriate actions could have
stopped the adware from infecting the computer.

As we discussed in the previous section, we can only test if
BINDER can detect the first connection made by a break-in
email worm as an extrusion because its behavior is unpre-
dictable after it. Among the four email worms we test, BINDER
successfully detects the first connection request made by Bea-
gle, NetSky and Swen but not MyDoom.

• Beagle: The real worm code bawindo.exe is em-
bedded in the attachment of joke.com. When the at-
tachment is opened, joke.com is executed with email
client Outlook Express as its parent process. Then
joke.com executes bawindo.exe. When the process
of bawindo.exe makes a connection request, BINDER
detects it as an extrusion. This is because both this pro-
cess and its parent process do not receive any user in-
put or data arrival events, though its grand-parent process
of Outlook Express receives user input when the at-
tachment is opened.

• Swen: Similar to the Beagle case, the worm code is em-
bedded in the attachment. So it is detected by BINDER.

• NetSky: The worm code itself is the attachment. After the
attachment is opened, the worm code is executed. How-
ever, it makes its first connection 90 seconds later. So
Dnew of this connection request is 90 seconds, which is
larger than D

upper
new as 30 seconds.

• MyDoom: The worm code itself is the attachment. After
the attachment is opened by a user, the malicious pro-
cess makes its first connection request immediately. So its

9

1 10/02/2004 14:40:10, PID=2368, PPID=240, NAME="C:\...\iexplore.exe" (process start)
2 10/02/2004 14:40:15, PID=2368 (user input)
3 10/02/2004 14:40:24, PID=2368 (user input)
4 10/02/2004 14:40:24, PID=2368, LPORT=1054, RIP=12.34.56.78, RPORT=80 (connection request)
5 10/02/2004 14:40:24, PID=2368, LPORT=1054, RIP=12.34.56.78, RPORT=80 (data arrival)
......

6 10/02/2004 14:40:28, PID=2552, PPID=960, NAME="C:\...\mshta.exe" (process start)
7 10/02/2004 14:40:29, PID=2552, LPORT=1066, RIP=87.65.43.21, RPORT=80 (connection request)
7 10/02/2004 14:40:29, PID=2552, LPORT=1066, RIP=87.65.43.21, RPORT=80 (data arrival)
......

8 10/02/2004 14:40:34, PID=2896, PPID=2552, NAME="C:\...\ntvdm.exe" (process start)
9 10/02/2004 14:40:35, PID=2988, PPID=2896, NAME="C:\...\ ftp.exe" (process start)

10 10/02/2004 14:40:35, PID=2988, LPORT=1068, RIP=44.33.22.11, RPORT=21 (connection request)
......

Figure 6: A stripped list of events logged during the break-in of adware Spydeleter.

Dnew is very small. BINDER treats it as a normal connec-
tion. This happens because the user herself executes the
code. So BINDER cannot tell if it is the user’s attention
to run it and let it make network connections. However,
BINDER may detect it afterwords. In the next section, we
discuss possible solutions for extending BINDER to han-
dle this problem.

6 Attacking BINDER

We have shown that BINDER can detect break-ins of existing
worms, spyware and adware if they send malicious outgoing
traffic unknown to users. We devote this section to discussions
of potential countermeasures against BINDER if its scheme
is known to attackers. We focus on malicious false negatives
which allow break-ins to send malicious traffic without being
detected. For each countermeasure, we will also discuss pos-
sible containment approaches. Though we try to investigate all
possible attacks against BINDER, we cannot argue that we have
considered all possible vulnerabilities.

• Direct attacks: As a host-based system targeting at detect-
ing break-ins after they have occurred, BINDER faces the
danger of being stopped by break-ins. However, we expect
a BINDER system from prototype at application level to
deployed service within the kernel. Thus deactivation of
BINDER itself is a clear sign of break-ins.

• Faking user input: BINDER is built based on the assump-
tion that user input can be trusted. A possible countermea-
sure is to fake user input by using APIs provided by the
operating system. For example, the SendInput function
in Windows synthesizes keystrokes, mouse motions, and
button clicks. A possible solution is to monitor the related
APIs and ignore or treat user input events generated by
them differently. A tool called APISpy32 [7] provides ev-
idence for the feasibility of monitoring system APIs. If a
trustworthy computing base [10] is deployed, it becomes
easier to differentiate hard and soft user input events.

• Tricking the user to generate input: Another way for break-
ins to obtain user input events is to trick a user to click on
its window. This kind of pop-up windows are similar to
extrusions in the sense that they are not triggered by user
input! We can apply the same idea of detecting extrusions
to detect pop-ups. If a process opens its first window with-
out receiving any user input or its parent process receiving
any user input before it is created, then it is a pop-up win-
dow. Any user input in this window will be ignored for
triggering network connections.

• Hiding under processes: In modern operating systems,
processes become more complex. Many tasks are exe-
cuted at the thread level. A possible countermeasure is to
let a break-in install itself as a DLL library file, which
can be automatically loaded by Windows shell process
explorer.exe. Under the current design of BINDER,
this malicious thread can make connections whenever the
process of explorer.exe receives user input. A possi-
ble solution is to extend BINDER to monitor activities on
the thread level. In fact, every window in Windows operat-
ing system is associated with a process and a thread. Thus
a malicious thread in a process cannot make connections
when another thread in the process receives user input.

• Covert Channels: A very tricky countermeasure is to have
a legitimate process or thread make connections and use it
as a covert channel to leak information. For example, spy-
ware can have an existing IE process or thread download
a web page of a tweaked hyperlink by using some API
provided by Windows shell right after a user clicks on the
IE window of the same process or thread. A collusive re-
mote server can get private information from the tweaked
hyperlink. A possible solution to this problem is to moni-
tor related APIs in such a way that we can tell the tweaked
hyperlink was provided by a malicious process or thread.

• Using a user input to hide: During a break-in, if the mali-
cious process is started by a user (as the case of MyDoom),
it can use a countermeasure to bypass BINDER before the

10

victim computer is restarted. Though the malicious pro-
cess may not receive any user input after it is created, it
just needs to maintain a connection to a collusive remote
site to keep receiving some data packets regularly. Then
BINDER would think any new connections made by it are
triggered by those data packets. A possible solution is not
to allow a process to make new connections if it has not
received any user input for some period of time. We are
now studying how long that period should be based on our
real-world traces.

We believe, by extending the current design of BINDER, we
can avoid the countermeasures above. We plan to study the fol-
lowing solutions:

• Restrict conditions on how a normal connection may be
triggered;

• Extend the Process Monitor to Thread Monitor;

• Apply the idea of extrusion detection to pop-up window
detection;

• Add a System API Monitor to BINDER.

7 Related Work

Many research efforts [12, 14, 25] and commercial prod-
ucts [17, 33] have focused on preventing break-ins by filter-
ing known exploits or unknown ones exploiting known vulner-
abilities. Bro [12] and Snort [14] are both Network-based In-
trusion Detection Systems, which monitor network traffic and
drop malicious traffic of known exploits. Shield [25] is a so-
lution for preventing vulnerability-specific, exploit-generic at-
tacks by using network filters built on known vulnerabilities.
Commercial security products as Symantec Norton AntiVirus
[17] and ZoneAlarm [33] are Host-based Intrusion Detections
Systems. They monitor not only network traffic but also appli-
cations and file system on the monitored host. Complementary
to these solutions, BINDER targets at detecting break-ins of
unknown new exploits before their signatures are widely dis-
tributed.

ZoneAlarm’s Program Control provides a static control over
which program is allowed to send outgoing traffic. It requires
users to construct a complete list of legitimate network pro-
grams, which is beyond the capability of an average user. In
contrast, BINDER uses whitelisting to cover exceptions only.
Most rules used in BINDER can be decided before it is in-
stalled.

Anomaly-based intrusion detection have been studied for de-
tecting unknown exploits. [6] uses short sequences of system
calls executed by running processes to detect anomalies caused
by intrusions. [8] proposes a data mining framework for con-
structing feature and training models of network traffic for in-
trusion detection. Recent work of [9] correlates simultaneous
anomalous behaviors from different perspectives to improve the

accuracy of intrusion detection. The performance of anomaly-
based approaches is very limited in practice due to its high false
positive rate. BINDER leverages the observation that most nor-
mal traffic is triggered by users to achieve minimal false alarms.

In the past few years, computer worms have been a big threat
to both personal computing [21] and large networks [11]. Fast
worm detection and containment becomes critical since worms
can propagate much more rapidly than human response [15].
Most research efforts have focused on random scanning worms.
[28] is a rate-limiting solution that throttles the rate of new con-
nections made by a compromised host. [27] proposes a solution
to contain random scanning worms in an enterprise environ-
ment at very high speed by leveraging hardware acceleration.
BINDER can detect a large class of worms that infect personal
computers.

[5] uses extrusion detection to stop spams. They leverage the
anomaly that spam relayed by a compromise system is un-
known to users and often sent to non-existing email addresses.

8 Conclusions and Future Work

In this paper, we propose Break-IN DEtectoR (BINDER), a
host-based system that detects break-ins of worms, spyware
and adware on personal computers by capturing extrusions. The
main contributions of this paper are:

• BINDER takes advantage of a unique characteristic of
personal computers: user-driven activities. By trusting the
user input, BINDER simply detects break-in extrusions by
determining they are unrelated to user actions. This im-
plies a new direction for tackling the problem of intrusion
detection on personal computers.

• We have shown that BINDER limits false alarms very well
and can detect a large class of threats. BINDER has very
small overhead since it monitors the system passively for
selective events and the size of its event database is in the
order of the number of simultaneous processes.

• We tested BINDER on a sample set of real email worms
on a controlled testbed. Our experience on conducting this
kind of experiments is useful for other researchers.

In the future, we plan to extend the design of BINDER to
minimize malicious false negatives. We also plan to study the
advantage of sharing extrusion information among distributed
BINDER systems. Finally, we want to set up a formal model
for the user, process and network events and use it to solve the
problem of detecting break-ins with user input in history.

Acknowledgments

We are grateful to Minghua Chen, Yanmei Li, Mukund Se-
shadri, Rui Xu, Fang Yu, Haibo Zeng, Jianhui Zhang and Wei
Zheng for their generous help of allowing us to install and eval-
uate BINDER on their computers. We are thankful to Dan El-
lis, Jaeyeon Jung, Jon Kuroda and Zhenmin Li for sharing virus

11

emails with us. We would like to thank Chris Karlof, Yaping Li
and Zhi-Li Zhang for their insightful comments on a draft of
this paper. Special thanks go to David Wagner and Li Yin for
their helpful discussion and valuable feedback.

References

[1] Adware.CNSMIN, http://www.trendmicro.com/vinfo/
virusencyclo/default5.asp?VName=ADW CNSMIN.A.

[2] Adware.Gator, http://securityresponse.symantec.com/
avcenter/venc/data/adware.gator.html.

[3] Adware.Spydeleter, http://netrn.net/spywareblog/
archives/2004/03/12/how-to-get-rid-of-spy-deleter/.

[4] S. Axelsson, “The base-rate fallacy and its implications
for the difficulty of intrusion detection,” in Proceedings of
the 6th ACM Conference on Computer and Communica-
tion Security, 1999.

[5] R. Clayton, “Stopping spam by extrusion detection,” in
Proceedings of the First Conference on Email and Anti-
Spam, Mountain View, CA, USA, July 2004.

[6] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion de-
tection using sequences of system calls,” Journal of Com-
puter Security, vol. 6, no. 3, pp. 151–180, 1998.

[7] Y. Kaplan, “API spying techniques
for Windows 9X, NT and 2000,”
http://www.internals.com/articles/apispy/apispy.htm.

[8] W. Lee and S. Stolfo, “A framework for constructing fea-
tures and models for intrusion detection systems,” ACM
Transactions on Information and System Security, vol. 3,
no. 4, November 2000.

[9] Z. Li, J. Taylor, E. Partridge, Y. Zhou, W. Yurcik, C. Abad,
J. J. Barlow, and J. Rosendale, “Uclog: A unified, cor-
related logging architecture for intrusion detection,” in
the 12th International Conference on Telecommunication
Systems - Modeling and Analysis (ICTSM), 2004.

[10] Microsoft, “Next-generation secury computing base,”
http://www.microsoft.com/resources/ngscb/default.mspx.

[11] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver, “Inside the slammer worm,” August 2003.

[12] V. Paxson, “Bro: a system for detecting network intruders
in real-time,” Computer Networks, vol. 31, no. 23-24, pp.
2435–2463, 1999.

[13] PsTools, http://www.sysinternals.com/ntw2k/freeware/
pstools.shtml.

[14] Snort, The Open Source Network Intrusion Detection
System, http://www.snort.org/.

[15] S. Staniford, V. Paxson, and N. Weaver, “How to own the
internet in your spare time,” in Proceedings of the 11th
Usenix Security Symposium, August 2002.

[16] Symantec Internet Security Threat Report,
http://enterprisesecurity.symantec.com/content.cfm?
articleid=1539, September 2004.

[17] Symantec Norton Antivirus, http://www.symantec.com/.

[18] TDIMon, http://www.sysinternals.com/ntw2k
/freeware/tdimon.shtml.

[19] VMWare Inc., http://www.vmware.com/.

[20] W32.Beagle.AR@mm, http://securityresponse.symantec.com/
avcenter/venc/data/w32.beagle.ar@mm.html.

[21] W32.Blaster.Worm, http://securityresponse.symantec.
com/avcenter/venc/data/w32.blaster.worm.html.

[22] W32.MyDoom.V@mm, http://securityresponse.symantec.
com/avcenter/venc/data/w32.mydoom.v@mm.html.

[23] W32.NetSky.P@mm, http://securityresponse.symantec.
com/avcenter/venc/data/w32.netsky.p@mm.html.

[24] W32.Swen.A@mm, http://securityresponse.symantec.
com/avcenter/venc/data/w32.swen.a@mm.html.

[25] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier,
“Shield: Vulnerability-driven network filters for prevent-
ing known vulnerability exploits,” in Proceedings of ACM
SIGCOMM, August 2004.

[26] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M.
Wang, “Automatic misconfiguration troubleshooting with
peerpressure,” in Usenix OSDI, San Francisco, CA, De-
cember 2004.

[27] N. Weaver, S. Staniford, and V. Paxson, “Very fast con-
tainment of scanning worms,” in Proceedings of the 13th
Usenix Security Symposium, August 2004.

[28] M. M. Williamson, “Throttling viruses: Restricting propa-
gation to defeat malicious mobile code,” HP Labs Bristol,
Tech. Rep. Technical Report HPL-2002-172, 2002.

[29] Windows Hooks API, http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/winui/winui/
windowsuserinterface/windowing/hooks.asp.

[30] Windows Security Auditing,
http://www.microsoft.com/technet/security/prodtech/
win2000/secwin2k/09detect.mspx.

[31] WinDump, http://windump.polito.it/.

[32] WinPcap, http://winpcap.polito.it/.

[33] ZoneAlarm, http://www.zonelabs.com/.

12

