Twinkle: Network Power Scheduling in Sensor Networks

Barbarns A. Hoklt and Eric A. Brewer
C'omputer Scienee Division
University of Clalifornia, Berkeley

{hohltb, brewsr jdce . barkelsy . adu

Report No. UCB//C8D-05-1408
April 2005

Computer Science Dividon {ERCS)
LIniversity of California
Berkeley, California 94720

Twinkle: Network Power Scheduling in Sensor Networks

Barbara Hohlt and Eric Brewer

Technical Report No. UCB/CSD-05-1409
April 2005

Computer Science Division
University of California, Berkeley
{ hohltb,brewer} @CS.Berkeley.EDU

We present our experience with Twinkle, the first
implementation of network-layer power scheduling with
real applications. Twinkle uses dynamically created
schedules to schedul e network flows in sensor networks.
The scheduling allows nodes to turn off their radio when
idle, thus saving power. Twinkle supports broadcast and
partial flows for flexibility, and integrates time synchro-
nization to enable scheduling to work on real motes. We
show that it avoids contention, increases fairness, and
that it can achieve power savings of 2-5x for real appli-
cations over existing power-management schemes, and
over 150x compared with no power management.
Finally, we discuss the extensions to the original algo-
rithm needed for real applications.

1 Introduction

Power is one of the dominant problems in wireless
sensor networks. Constraints imposed by the limited
energy storeson individual nodes require planned use of
resources, particularly the radio. Sensor network energy
use tendsto be particularly acute as deployments are | eft
unattended for long periods of time, perhaps months or
years.

Communication is the most costly task in terms of
energy [Asad98,Dohe01,Sohr00,Pott00]. At the com-
munication distances typical in sensor networks, listen-
ing for information on the radio channel is of a cost
similar to transmission of data [Ragh02]. Worse, the
energy cost for anode in idle mode is approximately the
same as in receive mode. Therefore, protocols that
assume receive and idle power are of little consequence
are not suitable for sensor networks. Idle listening, the
time spent listening while waiting to receive packets,
comprises the most significant cost of radio communi-
cation. Even for hand-held devices Stemm et al.
observed that idle listening dominated the energy costs
[Stem97]. Thus, the biggest single action to save power
isto turn the radio off during idle times.

Unfortunately, turning the radio off implies that you
must know that the radio will be idlein advance, and the
easiest way to do thisisto have a schedule. An obvious
approach is to use TDMA to turn the radio off at the
MAC layer during idle slots. However, this requires
tight time synchronization and typically hardware sup-
port.

Scheduling flows helps for multi-hop topologies,
which play a significant role in wireless sensor net-

works. Pottie and Kaiser [Pott00] cover the many
advantages of multi-hop, including reduced energy use
and routing around obstructions. In multi-hop networks
the farthest nodes have more chances to drop packets,
and thus using only hop-by-hop decisions (rather than
flows), as with any MAC-layer approach, tends to
achieve lower bandwidth and less fairness.

In our previous work, we proposed flexible power
scheduling (FPS), which performed network-level
power scheduling at a coarse grain, and used a normal
CSMA MAC layer underneath to resolve collisions due
to imprecise scheduling or overhearing [Hohlt04]. How-
ever, the prototype FPS version had only microbench-
marks of the scheduling algorithm and no performance
evaluation with real applications.

The contributions of this paper are two-fold: 1)
we present evaluations from two real applications

using Twinkle!, our second-generation implementa-
tion of FPS, and 2) we present the extensionsto FPS
required to support real applications. These exten-
sions include support for broadcast (to enable dynamic
queries and two-way communication), network time
synchronization, and in-network aggregation.

In particular, we show that scheduling really does
reduce contention and increase fairness via two
microbenchmarks, and then we provide an application-
level evaluation of the power savings using two real
applications. the Great Duck Island [Main02] deploy-
ment and a TinyDB application that collects data on
Redwood trees [TinyDB02]. We also compare Twinkle
with low-power listening, an alternative proposal for
power savings. Our contributions include:

e The first implementation of network power
scheduling that supports real applications.

« A 4x power savings for the Great Duck Island
application.

« A 4.3x power savings for a 35-mote sensor
network using TinyDB, compared with the default
“duty cycling” power management scheme, and
150X versus no power management.

* A detailed comparison between Twinkle and Low-
Power Listening with measured power data from
real motes. This reveals a 2x or more power
savings due to Twinkle.

1: The name “Twinkle” comes from observing the network: sched-
uling avoids collisions and thus the network twinkles if you turn on an
LED every time a node transmits.

Section 2 presents an overview of the basic approach
and the changes we made to make this approach readlistic.
Section 3 verifies the reduction in contention and
improved fairness due to scheduling, and Sections 4 and 5
present evaluations using two real applications. Finally,
Section 6 discussions some of the implementation details,
Section 7 covers related work, we conclude in Section 8.

2 Twinkle Overview

Flexible power scheduling (FPS) [HohlIt04] introduced
the approach of scheduling the network for power savings
in sensor networks. The FPS protocol proposes atwo-level
architecture that combines coarse-grain scheduling at the
network layer to plan radio on-off times, and smple
CSMA to handle channel access at the MAC-layer. We
outline the basic approach here and discuss the extensions
we have added to further support real application require-
ments.

Power scheduling is primarily useful for low-band-
width long-lived applications. The FPS scheme exploits
the structure of atreeto build the schedule, which makes it
useful primarily for data collection applications, rather
than those with any-to-any communication patterns. We
have added broadcast capability so that we can use the tree
in both directions. Most existing applications fit this
model, including equipment tracking, building-wide
energy monitoring, habitat monitoring [Szew04,
TASKO05], conference-room reservations [ConnOl], art
museum monitoring [Sensicast], and automatic lawn
sprinklers [DigSun].

The basic approach isto use a schedule that tells every
node when to listen and when to transmit. As the band-
width needs are low, most nodes are idle most of the time,
and the radio can be turned off during these periods.
Scheduling has two major requirements. the algorithm
must be adaptive and decentralized.

The primary contribution of FPS was a distributed pro-
tocol for determining a schedule. The scheduling is
receiver initiated. In particular, the schedule spreads from
the root of the tree down to the leaves based on the
required bandwidth: parents advertise available slots and
children that need more bandwidth request a slot. Applied
recursively, this alows bandwidth alocation for all of the
nodes in the network. Although this schedule ensures that
parents and their children are contention free, there may
still be contention due to other nodes in the network or
poor time synchronization; however, this contention israre
and can be handled by anormal CSMA MAC layer.

In FPS, reservations correspond to a unit flow from
source-node to root, and thus the schedule is redly a
schedule of flows. Scheduling flows reduces contention
and increases fairness (which we will show), and form one
reason why higher-level scheduling has more value than
traditional TDMA.

To alow adaptive schedules, advertising continues
after the initial schedule is built. If new nodes arrive, or
bandwidth demands change, children can request more
bandwidth or release some.

Twinkle is our second-generation implementation of
FPS with extensions added for application support. The
basic radio power scheduling remains the same as the
original FPS protocol. These four major extensions are:

Partial Flows. FPS only supports the reservation of
entire flows from the network to the base station.
Twinkle introduces partial flows. A partial flow is
one that terminates at a node other than the root.
For example, Twinkle's partial flows can be used to
enable in-network aggregation, in which the flow
terminates at the node that does the aggregation.

Broadcast: FPS does not support broadcast, which is
a huge practical problem for systems like TinyDB
that need to broadcast queries or parameters to
control data collection. Broadcast uses partial flows
in the reverse direction: each node reserves a
partial flow with its parent that it will use as a
broadcast channel for its children. At the time the
reservation is made the node learns of its parent’s
broadcast channel.

Time Sync: FPS itsalf only requires coarse dot
alignment to synchronize time slots. However, time
synchronization is vital to sensor networks in
general because it is needed to correlate sensor
readings and debugging information after data has
been extracted from the network. Tracking
algorithms and location-based algorithms require
time synchronization as well. This was not
addressed by FPS and we present an efficient
solution based on work from Vanderbilt [Maro04].

Latency Optimizations. The standard scheduling
model of FPS has each flow reserving one dot per
cycle for a given child-parent link. This can lead to
high latency, since a flow makes only one hop of
progress per cycle. Twinkle makes two important
optimizations to reduce latency.

1.We order slots within a cycle so that the parent-
grandparent slot occurs after the child-parent
dot. This alows multiple hops per cycle.

2. We alow fractional reservation of dots, which
enables one transmission every k cycles. This
allows shorter cycle times without requiring
more power, since a fractional slot reservation
requires k times less power. Thus we can
reduce latency by shortening the cycle time
without increasing the required power.

We cover each of these contributions in more detail

in Section 6, after we evaluate Twinkle via a
microbenchmark and two applications.

3 Microbenchmarks

In this section we present two microbenchmarks
conducted on ni ca motes; one on contention and one
on fairness. Figure 1 shows 11 motes arranged in a 3-
hop topology. For each experiment, 6 leaf nodes send

o

I

1 2 4 5 6

Figure 1: Topology used in mica experiments

N
!

100 messages at a rate of one message every 3.2 sec-
onds. Each experiment is repeated 11 times.

3.1 Contention

An important part of network-layer scheduling is
that it should reduce the contention seen at the MAC
layer. There will still be some due to hidden terminals
and imperfect time synchronization, but it should be
greatly reduced.

Backoff Counts of Messages Heard at Base Station

100.00% - ...---------::gliiooooooooooo

90.00% .o Naive

80.00% {2 .-"' u Twinkle

Rl I
00% 1

50.00%

40.00% - ¢

30.00% ‘ ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30 35

Number of Backoffs

Figure 2: CDF of the number of backoffs due to
contention with a normal “naive” application, and the
same traffic using Twinkle. (Both use the same
CSMA Mac.)

Figure 2 represents the the impact of 6 leaf nodesin
atree sending traffic to the root accross 3 hops. We com-
pare one set of experiments that uses scheduled commu-
nication, Twinkle, with a second set that uses
unscheduled communication, naive store-and-forward.
The “naive” application simply sendsthat data at a fixed
rate with no coordination beyond the MAC layer. The
“Twinkle” version uses Twinkle to schedul e the commu-
nication, but transmits at the same rate and the same
amount of traffic, and uses the same underlying MAC
layer. By counting backoffs as they occur and logging
this data at the base station we can compute the CDF for
backoffs for the whole network.

As shown, there is aimost no contention with Twin-
kle, and extensive contention with the naive approach.
This contention is due primarily to the interference

100 -
90 X
Twinkle
80 4
70 A
60 -

50 4

Yield

40 1 —

30 —

20 H —

il BRI BB N

1 2 3 4 5 6

Figure 3: Thoughput (and thus fairness) for six
motes that are three hops from the root.

between grandparents and children, and also to correla-
tionsin traffic due to the periodicity.

3.2 Fairnessand Throughput

Wireless links are inherently lossy and multi-hop
wireless networks additionally suffer from end-to-end
packet loss. Yield, the percentage of packets received at
the destination out of those sent from the source, is often
used to measure packet loss in multi-hop networks.
Link-layer retransmission, adaptive rate control, and
channel—switching are popular techniques for counter-
ing loss in wireless sensor networks. These methods
operate at the link layer, and athough effective, cannot
detect or break end-to-end traffic correlations. A major
source of contention is due to traffic flows interfering
with themselves and with other traffic flows. We use
yield as both a measure of throughput and end-to-end
fairness among traffic flows. For al our experiments we
use the standard TinyOS CSMA MAC with no retrans-
mission, no rate control, and no channel switching, so
that we may observe the actual effect Twinkle has on
end-to-end fairness and throughput.

Figure 3 shows the percentage of messages received
at the base station for Twinkle and Naive from a
microbenchmark using the same setup as Section 3.1.
The X-axis is the sending mote id and the Y-axis is the
percentage of packets received at the base station, or
yield. Note that in the Naive tests, mote 3 is only two
hops from the base station (due to a hardware failure).
This accounts for the higher yield and illustrates the dif-
ference in packet |oss between 3 and 2 hops. The overall
throughput is 96% for Twinkle versus only 25% for
Naive (despite its advantage on mote 3)

Approach | Average | STDDEV | Max/Min
Twinkle 96.4 1.13 1.03
Naive 24.7 6.19* 2.4*

Table 1: Throughput and Fairness
* excludes mote 3 (see text)

To compare flows for fairness, we do not include mote
3for Naive, since it only included two hops. One measure
of fairness is just the standard deviation of the throughput
across the flows, which is +/- 1.13% for Twinkle and +/-
6.2% for Naive. Thus, Twinkle has significantly less vari-
ation despite higher throughput. Second, we compute the
ratio of the max and min throughputs; if the approach is
fair this ratio should be small. For Twinkle, the ratio is
only 1.03, versus about 2.5 for Naive (Table 1). We con-
clude that communication scheduling does indeed increase
throughput and end-to-end fairness.

Finally, note that although we did not use link-layer
retransmission or channel switching, we still achieved
excellent end-to-end throughput. These techniques are
largely complementary to Twinkle and can be used with
Twinkle.

4 Application: Great Duck Island

Our first target application, GDI [Main02,Szew04)], is
a habitat monitoring application deployed on Great Duck
Idand, Maine. GDI is a sense-to-gateway application that
sends periodic readings to a remote base station, which
then logs the data to an Internet-accessible database. The
architecture is tiered, consisting of two sensor patches, a
transit network, and a remote base station. The transit net-
work consists of three gateways and connects the two sen-
sor patches to the remote base station. There are two
classes of mi ca2dot hardware: the burrow mote and the
weather mote. The burrow motes monitor the occupancy
of birds in their underground burrows and the weather
motes monitor the climate above the ground surface. In
this section, we will draw on information about the
weather motes provided by the study of the Great Duck
Island deployment [Szew04].

Of the two weather mote sensor patches, oneis a sin-
glehop network and the other is a multihop network. The
singlehop patch is deployed in an ellipse of length 57
meters and has 21 weather motes. Data is sampled and
sent every 5 minutes. The multihop network is deployed in
a 221 x 71 meter area and has 36 weather motes. Data is
sampled and sent every 20 minutes.

In this section we compare the end-to-end packet
reception, or yield, and power consumption of Twinkle/
FPS with the low-power listening technique [Hill02] used
at Great Duck Idand. Both schemes will be running the
GDI application on a 30 node laboratory testbed. We will
additionally investigate the phenomena of overhearing in
the low-power listening case.

4.1 GDI with Low-Power Listening

The GDI application uses low-power listening to
reduce radio power consumption. In low-power listening,
the radio periodically samples the wireless channel for
incoming packets. If there is nothing to receive at each
sample, the radio powers off, otherwise it wakes up from
low-power listening mode to receive the incoming packet.
Messages include very long preambles, so they are at least
as long as the radio channel sampling interval. The advan-

tages of low-power listening are that it reduces the cost
of idle listening, integrates easily, and is complementary
with other protocols. It is characterized by high end-to-
end packet reception, or yield. This is due to the long
packet preamble acting as an in-band busy-tone.

Density and multihop also impact power consump-
tion. The GDI study [Szew04] reports a much higher
power consumption in the multihop patch than the sin-
gle hop patch which resulted in a shortened network
lifetime — 63 of the 90 expected days — for the multi-
hop patch. Two causes are attributed. First, messages
have a higher transmission and reception cost due to
their long preambles. Second, nodes wake up from low-
power listening mode not only to receive their own
packets, but anytime a packet is heard, regardless of the
destination. Overhearing is the main contributor to the
higher power consumption in the multihop patch.

We also observe that although low-power listening
reduces the cost of idle listening it does not reduce the
amount of idle listening, so that at very low data-sam-
pling intervals its advantage declines because the radio
must continue to turn on to check for incoming packets
although there are none to receive. For very low data
rates, we will show that scheduling such as Twinkle
becomes more attractive because the radio (and poten-
tialy other subsystems) can be deterministicaly pow-
ered down until it istime to be used.

Lastly, we consulted with the principle architect of
GDI [SzewczyK] in the analysis, correctness, and verifi-
cation of our methodology.

4.2 GDI with Twinkle

We implemented a version of GDI in TinyOS
[TinyOS00] that uses Twinkle for its radio power man-
agement. This was a rather straight forward integration
that consisted of wiring the GDI application component
to the Twinkle component and disabling low-power lis-
tening. The Vanderbilt TimeSync, SysTime, and SysAl-
am [Maro04] components are used for time
synchronization and timers. At the time of this work,
TimeSync only supported the use of SysTime, which
uses the CPU clock. The implication being, that for
these experiments, GDI was not able to power manage
the CPU. In all of our data presented here, we subtracted
the draw of the CPU as if we had used a low-power
Timer implementation. A version of TimeSync using the
externa crystal will become available shortly.

4.3 GDI Experiments

We conducted a total of 12 experiments on two ver-
sions of the GDI application. GDI-Ipl uses low-power
listening for radio power management and GDI-Twinkle
uses Twinkle for radio power management The experi-
ments were run on a 30-node in-lab multihop sensor net-
work of mica2dot motes.

Twinkle supports data-gathering type applications
like GDI where the majority of traffic is assumed to be
low-rate, periodic, and traveling toward a base station.
We ran a simple routing tree algorithm provided by

Twinkle based on grid locations to obtain a redistic
multihop tree topology and then used the same tree
topology for the 12 experiments. Asis donein the Great
Duck Island deployment, no retransmissions are used in
these experiments.

In each experiment we varied the data sample rate:
30 seconds, 1 minute, 5 minute, and 20 minutes. For
experiments with 30 second and 1 minute sample rates,
100 messages per node were transmitted. For experi-
ments with 5 minute and 20 minute sample rates, 48 and
12 messages were transmitted per node respectively. In
the GDI-Ipl experiments we varied the channel sam-
pling interval: 485 ms and 100 ms. All experiments col-
lected node id, sequence number, routing tree parent,
routing tree depth, node temperature, and node voltage.
The GDI-Twinkle experiments additionally collected
the number of children, number of reserved dots, cur-
rent transmission dot, current cycle, and number of
radio-on dots per sample period.

4.4 Measuring Power Consumption

During the experiments we measured the actual cur-
rent of two nodes located in two separate places of inter-
est in the network. One node, we call the inner node, is
located one hop from the base station and has a heavy
amount of route-through traffic that is similar to its rout-
ing one-hop siblings. This should give us an estimate of
the maximum lifetime of the network. The other nodeis
aleaf node that is one-hop from the base station as well.
As it does not route-through any traffic, we should be
able to see the effect of overhearing on power consump-
tion at a node in a busy part of the network. If the mea-
sured current of the inner node and leaf node are similar
in their active cycles, then we know the inner node is
experiencing overhearing since all other factors remain
the same.

At the lower sample rates, it is not feasible to take a
measurement over the entire sample period, so we
designed our experiments so that we could take some
measurements and extrapolate others. For GDI-Twinkle,
we define a cycle to be 30 seconds. Thus, a full sample
periods for the 30-second, 1-minute, 5-minute, and 20-
minute sample rates are 1, 2, 10, and 40 cycles respec-
tively. We schedule all data traffic during one cycle of
each sample period called the active cycle. The unsched-
uled cycles are called passive cycles. Both active and
passive cycles include protocol traffic (i.e. sending
advertisements and listening for requests). We then
measure the current at the two motes capturing data
from both active and passive cycles during the 1 minute
sample rate experiment. Then we take a running win-
dowed average over afull 1-minute period, which gives
us the power draw for both an active and passive cycle.
Table 2 presents these direct power measurements.

For GDI-Ipl we follow a similar method. We mea-
sure current at the two motes capturing data from both
active and passive periods during the 1-minute sample
period experiment. To represent an active period, we
take a running average over the full 1-minute period.

This also captures al the overhearing that occurs at the
mote during a full period of any given sample rate. To
represent a passive period, we took the longest chain of
data from the measurements in which only idle channel
sampling occurred. From this information we calculate
the power consumption for the 5-minute and 20-minute
sample rate experiments. The 30-second sample rate
was measured separately (not calculated) and is shown
in Figure 2.

4.5 Evaluation

In this section we discuss the results of the datafrom
al 12 experiments, and we also compare with the actual
GDI deployment data.

4.5.1 Power Comparison with L ow-Power Listening

Given the direct power measurements from Table 1,
we can estimate the power consumption for the 5-
minute and 20-minute sample rate experiments. For
example, for Twinkle, we read off the following: an
active cycle at the inner mote consumes 2.18 mW and a
passive cycle consumes 0.33 mW. Given these numbers,
for a 20-minute sampling rate we expect 1 active cycle
and 39 passive cycles, for a weighted average of 0.38
mW. For the leaf mote, an active cycle consumes 0.69
mW and a passive cycle consumes 0.33 mW, giving a
weighted average of 0.34 mW.

Similarly, to compute the GDI-Ipl power consump-
tion at a 20-minute sample rate we assume that for one
minute the application consumes the energy of the
active period and for the remaining 19 minutes the
application consumes the energy of the passive period.
Using the values from Table 2, the inner mote during the
20-minute sample rate Lpl-100 experiment, would con-
sume an average of 4.12 mW ((8.2+19*3.9)/20 =
4.12mW).

Figure 4 shows all four sample periods. the 30-sec-
ond and 1-minute rates are measured, and the 5-minute
and 20-minute periods are estimated as above.

For Twinkle, the inner node consistently has a
greater draw than the leaf node. In contrast, for LPL, the

Power Period | Inner | Leaf
Management (Sec) | (MW) | (mW)
Twinkle active 30 2.18 0.69
Twinkle passive 30 0.33 0.33
L pl-485 active 60 16.5 16.0
Lpl-485 passive 60 0.99 0.99
Lpl-100 active 60 8.20 7.60
Lpl-100 passive 60 3.90 3.90

Table 2: Power Measurement (mW)

inner and leaf nodes consistently have almost the same
draw. This indicates that Twinkle's main power draw
depends on the routed traffic, and in most of the cases
LPL's main power draw depends on the overheard traffic.
However, from Table 2 we see the passive power draw for
LPL-100 is 3.9 mW, which forms an asymptote as the
sample period increases. Overall, as the sample rate gets
lower and the preambles get shorter, overhearing does not
play ashbigrole.

The next thing to notice is at the higher sample rates,
LPL-485 has a higher power consumption than LPL-100,
but at the lower sample rates, LPL-485 has a lower power
consumption than LPL-100. This reveals a relationship
within LPL where as the cost of transmitting increases
with longer preambles, the cost of channel sampling
decreases with longer sampling intervals.

Finally, we added a newer variation of LPL to the fig-
ure, called Pulse. Pulse was developed as part of BMAC
[Pola04], and it optimizes the power consumption of LPL
by listening for energy in the channel rather than a
decoded preamble. This reduces the cost of listening sub-
stantially. We can compute the active and passive esti-
mates for Pulse given our power traces and Table 2 from
the BMAC paper, which provides the raw listening cost.
Although Pulse does perform better than LPL, it is still 2x
to 5x higher power consumption than Twinkle.

Across the board, Twinkle has better power consump-
tion than LPL, with improvements that range from 2x
(over Pulsefor low rates) to 10x (in cases where the listen-
ing interval is poorly chosen).

4.5.2 Yield and Fairness

Table 3 shows the average yield (end-to-end packet
reception) for all 12 experiments, and the ratio of the best
and worst throughputs (Max/Min). This ratio indicates
fairness: lower ratios are more fair.

At 30 seconds, the LPL-485 network is saturated due
to the long preambles and this accounts for its low yield.

Sample Period: 30 sec

Sample Period: 1 min

Power (mW)

Lpl-485
M Lpl-100
Pulse

10 % O Twinkle

Power (mW)

72\

Inner Leaf Inner Leaf

Sample Period: 5 min Sample Period: 20 min

Figure 4: Relative power consumption of Twinkle
and LPL for four different sample periods. Pulse is a
newer version of LPL discussed below.

Power Sam_ple Yield Ma_lx/
Scheme | Period Min
Twinkle 05 0.80 211
Twinkle 1 0.90 1.74
Twinkle 5 0.84 1.92
Twinkle 20 0.83 2.4

Lpl-485 0.5 0.40 15.6
Lpl-485 1 0.68 94.0
Lpl-485 5 0.72 11.8
Lpl-485 20 0.69 12.0
Lpl-100 0.5 0.85 3.45
Lpl-100 1 0.83 2.23
Lpl-100 5 0.78 2.76
Lpl-100 20 0.77 4.00

Table 3: Yield and Fairness Comparison

Overdl, both Twinkle and LPL-100 are significantly
better than L PL-485. Twinkle shows better fairness than
LPL-100 and, other than the 30 second sample rate,
Twinkle has higher yield than LPL-100.

4.5.3 Understanding the GDI Field Study

Viewing the data in comparison to the data provided
by the GDI study [Szew04], we find the results in the
laboratory are remarkably close to the results in the
field.

The Great Duck Idland deployment used a low-
power listening channel sampling interval of 485 ms, a
data sample period of 20 minutes in the multihop patch,
and a data sample period of 5 minutes in the singlehop
patch.

Table 6 presents results taken from the GDI field
study, labeled GDI-485, and includes data from four of
our in-lab experiments, labeled LPL-485 and Twinkle.
For each row, we report the sample period, average
yield, inner and leaf power consumption, and the num-
ber of nodes in the experiment. For GDI-485, the yield
figure represents the average yield from the first day of
deployment.

A close comparison can be drawn between LPL-485
and GDI-485 at the 20 minute sample rate. LPL-485 has
a power draw of ~1.76 mW while GDI-485 has a power
draw of 1.6 mW. The GDI-485 figure is expected to be
lower for two reasons: in the laboratory, the two mea-
sured nodes are from the busier section of the testbed,

| S| via | (e | L |
GDI-485 5 0.70 n/a 071 | 21
(single)

GDI-485 20 0.70 | 1.60 na | 36
(multi)

Lpl-485 5 072 | 409 | 399 | 30
Lpl-485 20 069 | 177 | 1.74 | 30
Twinkle 5 084 | 052 | 036 | 30
Twinkle 20 083 | 038 | 034 | 30

Table 6: Comparison of our lab data with the
actual GDlI field study

and the testbed has a constant |oad rather than a decreas-
ing one. In the GDI deployment, some multihop motes
died and stopped sourcing traffic, which is why we
report yield from the first day of deployment.

Theyield data is extremely close as well. All yields
for LPL-485 and GDI-485 are ~70%. The only large dif-
ference between the two data sets is the power con-
sumption at the 5-minute sample period. This is easily
explained by recalling that at the 5-minute sample
period, GDI-485 is singlehop while LPL-485 is multi-
hop, and the LPL-485 measurements include a large
amount of overhearing.

The closeness of the LPL-485 and GDI-485 data
gives us high confidence in the corrrectness of our
methodology and the results of our laboratory experi-
ments. We expect the Twinkle numbers are a good esti-
mate of how Twinkle would do were we to have access
to afield deployment. Our laboratory experiments show
that Twinkle consumes at least 4x less power and pro-
vides about 14% better yield.

5 Application: Redwoods with TinyDB

Our second target application, TinyDB [TinyDB02],
is a distributed query processor for TinyOS motes.
TinyDB consists of a declarative SQL-like query lan-
guage, a virtual database table, and a Java API for issu-
ing queries and collecting results.

Conceptually the entire network is viewed as a sin-
gletable called sensors where the attributes are inputs of
the motes (e.g., temperature, light). Queries are issued
against the sensors table via the Java APl and dissemi-
nated throughout the network. The SQL language is
extended to include an “EPOCH DURATI ON’ clause that
specifies the samplerate. A typical query lookslikethis:

SELECT nodei d,
FROM sensors
EPOCH DURATION 3 nmin

tenperature

TinyDB allows up to two queries running concur-
rently: one for sensor readings and one for network
monitoring. In theory, TinyDB can support multiple
concurrently running queries, however, the current strat-
egy for duty cycling and synchronization of sensor data
readings has had implications for what is actually feasi-
ble. To FPS, queries in general are viewed as increases
or decreases in demand. The notion of why a change in
demand occurs (e.g. whether it is one or more queries) is
transparent to FPS. This makes TinyDB an ideal target
application for Twinkle.

In this section we compare the power savings of
TinyDB using Twinkle versus TinyDB using application
level duty cycling — the power management scheme
currently used in TinyDB. We estimate the power sav-
ings of the two approaches using the TinyDB Redwood
deployment in the Berkeley Botanical Garden
[BotGar04] as our topology and traffic model.

5.1 Estimating Power Consumption

As it is not feasable to directly measure the power
consumption of 35 motes, we use the following three-
part methodol ogy:

1. Estimate the amount of time the radio is on and
off for each scheme. Our metric for this will be
radio on time per hour, measured in seconds.

2. For Twinkle, we validate this estimate in Section
5.5 by looking in detail at one of the motes. The
radio on time for duty cycling is easy to estimate.

3. We use actual measured current from ni ca and
mi ca2 motes to estimate power consumption
from radio on/off times. (In the GDI application
we measured the current directly during the
experiment.)

This combination provides a reasonably accurate
overall view of power consumption, which although not
perfect is certainly very accurate relative to the 5x (Sec-
tion 5.4) advantage in power shown by Twinkle.

Lastly, we consulted with the principle architect of
TinyDB [Madden] on analysis, correctness, and verifi-
cation of our methodology.

5.2 Topology and Traffic Model

The Redwood deployment has 35 mica2dot motes
dispersed across two trees reporting to one base station
in the Berkeley Botanical Gardens. Each tree has 3 tiers
of 5 nodes each and 2 nodes placed at each crest. One
tree has 1 additional node at a bottom branch. Every 2.5
minutes each mote transmits its query results, which are
multi-hopped and logged at the base station.

The routing scheme uses link estimation to parent
switch, so the topology changes over time. By examin-
ing the records in the redwood database, we derived the
actual topology information. From this, a genera topol-
ogy was constructed that reflectsits state the majority of
thetime.

Out of 35 nodes, generally 2/3 of the nodes are one hop
from the base station and 1/3 of the nodes are two hops
from the base station at any given time. We start by com-
puting the radio on time per hour for the case with no
power management:

60 sec/mn * 60 min/hour = 3600 sec/hour
No power management = 3600 sec/hour

This number is the average amount of time each radio
ison per hour for the whol e deployment. We next estimate
this metric for duty cycling followd by an estimate for
FPS.

5.3 Duty Cycling

In TinyDB duty cycling, the default power manage-
ment scheme, all nodes wake up at the same time for a
fixed waking period every EPOCH. During the waking
period nodes exchange messages and take sensor readings.
Outside the waking period the processor, radio, and sen-
sors are powered down. Estimating the radio-on time is
thus straightforward: al 35 nodes wake up at the same
time every 2.5 minutes for 4 seconds and exchange mes-
sages. The sample rate is thus 24 samples per hour. Each
node is on for 96 sec/hour.

24 sanpl es/ hour * 4 sec/sanple = 96 sec/ hour

Duty Cycling = 96 sec/hour

As expected, this approach is subject to very high
packet |osses due to the contention produced by exchang-
ing packets at nearly the same time. A recent TinyDB
empirical study [TASKO5] shows high losses, between
43% and 50%, and high variance using duty cycling.
Although we did not test it explicitly, there is no reason to
expect the yield for Twinkle (or low-power listening)
would deviate from the 80% shown in the previous sec-
tion.

5.4 Twinkle

Topology, time-slot duration, protocol traffic, and data
traffic are factorsin estimating the radio-on time for Twin-
kle. We will use the same topology as above for estimating
the radio-on time of the 35 nodes. Time-slot duration and
number of slots per cycle are configuration parameters in
Twinkle. For this example, the time slot duration is 128 ms
and there are 1172 dots per cycle, which is roughly 2.5
minutes. The advertising frequency is once per cycle.

Figure 5 depicts our subtree topology and traffic
model. Solid lines represent data traffic (T/R) that is for-
warded from the network to the base station every cycle.
Dashed lines represent a Broadcast channel used for proto-
col traffic (B/RB). The Broadcast channel is used for
TinyDB queries and network protocol messages.

Given the topology and traffic we can now calculate
the radio-on time for each node. Node 0 is the base station

Figure 5: Topology and Traffic for Estimates

and has no cost. There is an additiona cost of 3 time
slots per cycle to do an adaptive advertisement (A) once
per cycle: one advertisement and 2 receive pending.

Node| T| R |B|RB|A

1 1 0|1 0 3

2 2 1|1 1 3

3 1 0|1 0 3

Table 7: Traffic per Cycle (number of time slots)

For each node the cost is 0.767 seconds per cycle:

5(T/R) + 4(B/RB)+ 9(A)

18 * 128ns

2.3 sec/cycl e per 3 nodes
0. 767 sec/cycle (per node)

At 24 samples per hour, on average, each node is on
18.4 sec/hour:

24 sanpl es/ hour * 0.767 sec/cycle
= 18. 4 sec/ hour

Twinkle = 18.4sec/hour

This is a savings of 5.2x compared with the duty
cycle approach and 196x compared with no power man-
agement. In addition, the radio-on timeis actually over-
estimated. Transmit dots do not leave the radio on for
the whole dot since they can stop once their message is
sent; thisis shown in detail in the next section.

5.5 Twinkle Validation

We implemented a prototype of TinyDB that uses
Twinkle for radio power management. To validate our
prototype, we ran the following experiment on three
m ca2dot motes and one mi ca2 mote as base station
arranged in atopology shown in Figure 5. We monitored
intermediate Node 2 while it forwarded packets and sent
advertisements once per cycle. There are 64 dots of 128
ms each per cycle. We instrumented TinyDB-Twinkle to

On/Off

L]

143400 144400

V8

141400 142400
Time (milliseconds)

State

145400

146400 148400

_

7

Ok
Il

147400 BERcv Pending

B Advert

OReceive
H Transmit
Idle

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Slot Number

Figure 6: A subsection of the validation experiment. The bottom graph shows the measured Twinkle state
versus time and the slot number; this section shows about one cycle with 64 slots per cycle and 128ms slots.
The top graph shows actual radio on/off times. Note that the radio is always off for Idle cycles and that for
Transmit cycles the on time is just long enough to transmit the queued messages.

record the time of each call to turn the radio on and
radio off, the beginning time of each time slot, and the
state of each dot. From the TinyDB Java tool we issue

the query:

SELECT nodei d
FROM sensor s
EPOCH DURATI ON 8192 ns

The intermediate mote is connected to an Ethernet
device, and the debug records are logged over the net-
work to afile on the PC. The regular query results are
multi-hopped to the base station and displayed by the
Javatool.

In this experiment, we expect to have 1 advertise-
ment, 2 receive pending slots, 3 transmit slots (oneis a
broadcast), 2 receive slots, and 56 idle slots per 64-slot
cycle. We validated both the use of slots and the radio
on/off times:

Metric Slots | Idle%
Predicted Idle Slots 56/64 | 89.1%
Measured Idle Slots 56/64 | 89.1%

Measured Radio Off Time — 91%

Note that the radio off timeis higher than the percentage
of idle slots because Transmit slots turn the radio off
early — as soon as their messages have been sent.

Figure 6 shows a subsection of the validation experi-
ment. The bottom graph shows the measured Twinkle
state versus time and the slot number; this section shows
the active portion of a cycle (slots not shown are idle).
The top graph shows actual radio on/off times (millisec-
onds). Note that the radio is aways off for Idle slots and
that for Transmit slots the on timeis just long enough to
transmit the queued messages. In this experiment, the
time slot duration is 128 ms, there are 64 dots per cycle,
and the advertising frequency is once per cycle. This cut
shows two adaptive advertising slots, which is fine
given that they are actually in two different cycles.

This experiment validates our methodology and
shows that the power estimate for Twinkle in the previ-

Mote Asleep CPU CPU+Radio
Mical 0.01 04 8.0
Mica2 0.03 39 20
Table 8: Power Consumption of Motes (mA)

Scheme RadioOn Time | Ratio

None 3600 196

Duty Cycling 96 52
Twinkle 184 1

Table 9: On Times (seconds per hour)

ous section is actually conservative (since we count all
of the Transmit slot time).

5.6 Power Savings

Finally, given the validated radio on times, we can
estimate the power savings. First, however we need to
know the current draw for a mote depending on whether
or not theradio is on, and/or the CPU is on. We obtained
the results shown in Table 8 via an oscilloscope tracing

the motes during our experi ments.2 Given these current
draws, we estimate power consumption as:
Power (mAh) = (On tine)*(On draw)
+ (Of time)*(Of draw
Using this equation and the radio-on times summarized
in Table 9, we estimate the power consumption in Fig-
ure7.

In all cases, both Duty Cycling and Twinkle perform
substantially better (lower power) than no power man-
agement, so we focus on the difference between Twinkle
and Duty Cycling.

The biggest issue for estimating the power savingsis
whether or not the CPU is asleep when the radio is off.
Neither system needs the CPU per se during idle times,
but some sensors may require CPU power. Thus we

2. M ca2 radio power varies from 7.4 to 15.8 mA depending on
transmit power, plus 7.8 mA for the active CPU draw for a tota of
15.2t0 23.6 mA. We use 20mA as an overall estimate.

Kz 2 withi (P on Wi ¥ with TP sl g

oy [§ JESTES 1
i B U Posas 1
:] |
£ om) ™
¥
§ H
o = 1
| | I
i P i S ' Taarrine
T L G
i mith CPLUcn

Wi with (P e

i Tamrkis

Titaby - ot 2 oy

VA, -5 - D s

T iron . EXiy
Figure 7: Estimating power savings for two families
of motes (Mical, top, and Mica2, bottom), with the
CPU on or asleep when the radio is off. Each vertical
axis has a different scale, and in all cases the “No
power savings” column goes off the top (with the
value shown). Light gray is the off power consumed
(per hour), while dark gray is the on power.

expect for both the mi cal and ni ca2 the “CPU adeep”
numbers are more realistic and we will quote these in our
overall conclusions. However, we include the “CPU on”
case for completeness. Note that even for cases where the
CPU is needed for sensor sampling, the “CPU asleep”
graph is more accurate, since the CPU would be asleep
most of the time.

For the CPU on case, Twinkle outperforms Duty
Cycling by 37% on the ni cal and 8% on the ni ca2,
which has a higher CPU current draw. Compared to no
power management, the advantage for Twinkle is 18X and
5X respectively.

For the morerealistic “ CPU asleep” case, i.e. the CPU
is asdeep during Idle dots, Twinkle outperforms Duty
Cycling by 4.4X on the M cal and 4.3X on the M ca2.
Note that thisis consistent with the 5.2X reduction in radio
on time. Compared to no power management, the advan-
tage for Twinkle is 160X and 150X respectively.

Thus to summarize, for the TinyDB application with
the Redwood study workload, we see a power savings of
about 4.3X over Duty Cycling and 150X over no power
management.

6 Discussion

In this section, we cover some of the details of Twin-
kle, including the key elements to support real applica-
tions.

6.1 Partial Flows and Broadcast

Twinkle proposes a new reservation type called par-
tial flows. A partia flow is one that terminates at some
node other than the root, i.e. the reservation is not from
source to sink. Partial flows can be used to support vari-
ous operations such as data aggregation, data compres-
sion, and query dissemination.

A broadcast channel is an instance of a partial flow.
In Twinkle, upon joining the network, each node
acquires at least one partial flow reservation that termi-
nates at its parent. Thisis called the Comm channel and
is used by the node as a broadcast channel for sending
synchronization packets and forwarding messages
injected from the base station. Twinkle protocol mes-
sages aways include the slot number of the Comm
channel. In this way, children nodes know in which slot
to listen for broadcasts from their parent.

Twinkle maintains two forwarding queues. one for
forwarding commands away from the base station and
one for forwarding packets toward the base station.
When a node receives a command message it invokes
the appropriate command handler and places the mes-
sage on the command queue for forwarding. The Comm
channel is shared; both injected commands and synchro-
nization packets use the same channel. The convention
isif thereisacommand to be forwarded that is sent first
followed by the time sync packet.

if current slot == Conm sl ot
i f command in command queue
br oadcast command nessage
endi f
br oadcast sync packet

endi f

The GDI application in Section 4 used the Comm
channel for time sync packets and injecting commands
to start and stop the experiments. The TinyDB applica-
tion in Section 5 used the Comm channel for time sync
packet and injecting TinyDB queries.

6.2 Time Synchronization

The FPS protocol itself only requires coarse syn-
chronization of time dots. Many applications, however,
reguire a notion of global time to correlate sensor read-
ings or debugging information. Others require precise
time synchronization for their tracking and localization
algorithms. Therefore we have added support for time
synchronization in Twinkle.

We chose to integrate the Flooding Time Synchroni-
zation Protocol (FTSP) [Maro04] with Twinkle. The
FTSP approach combines MAC layer timestamping
with skew compensation. In collaboration with the
FTSP developers we added two interfaces to FTSP:

i Reservation Window i

1 | | I S

slot

Figure 8: Reservation Windows

Ti meSyncMbde and Ti meSyncNotify. Ti meSync-
Mode allows Twinkle to explicitly schedule time sync
messages. Ti meSyncNoti fy alows Twinkle to know
when time sync messages have been sent and received
by FTSP. Twinkle schedules time sync messages during
the Comm channel as discussed in the previous section.

We found FTSP worked very well with Twinkle. For
m ca2dot and m ca2, FTSP yields a 1 microsecond
per hop accuracy in a connected multihop network. The
FTSP time stamping alone has an average error of 25
microseconds with a maximum error of 50 microsec-
onds.

6.3 Latency Optimizations

Any scheduling scheme will impose larger per hop
latencies than those that store and immediately forward.
If scheduling is done per slot per cycle, asin FPS, then
assuming messages are forwarded in FIFO order, it can
take up to the time of an entire cycle to forward a packet
to the next hop. If cycles are very large, then this may
impose too much latency for some applications.

Twinkle improves on per hop latency by proposing
two scheduling optimizations;

1. Reservation Windows
2. Fractional Flows

6.3.1 Reservation Windows

We observe that FPS employs receiver initiated
scheduling. That is to say the selection and assignment
of reservations dots is always made from the perspec-
tive of the receiving (route-through) node. We outline
the steps to make a reservation below.

1. Parent selects an idle slot and advertises the slot.

2. Child hears the advertisements and sends a
request for the dot.

3. Parent receives the request and sends an
acknowledgement.

Here the parent node is the route-through node, clos-
est to the base station. In Step 1, FPS selects an idle slot
at random from its entire cycle of dots. As a latency
optimization, Twinkle makes a simple modification to

the protocol. Instead of selecting the slot from the entire
cycle, Twinkle selects the slot from a subset called res-
ervation window.

Given a cycle length of size m, the reservation win-
dow isadiding window whose sizeisw wherew <= m.
The window beginsw dots prior to the last transmit slot
that the parent node reserved with its parent (the grand-
parent). In this way, using only local information, the
slot being advertised to the child is aways within w of
the dot where it will be forwarded - putting an upper
bound on the per hop latency of the network.

Other than w <= m, Twinkle does not restrict the
value of w or whether it should be afixed global value or
an adaptive local value. For example, Twinkle might be
extended to support some types of soft Quality of Ser-
vice requirements by including the value of w in proto-
col messages.

Figure 8 shows 3 cycles of the schedule of a parent
node that is scheduling some route-through traffic. Here
the reservation window w = 4. In Cycle 0, the last
transmit slot was scheduled at dot 5, and sincew = 4,
the next receive slot will be selected from between slots
land4in Cycle 1.

6.3.2 Fractional Flows

Fractional flows are a smple but useful optimiza-
tion. Instead of giving a node one sot every cycle, a
node may instead use the slot once every k cycles,
which allows for very infrequent slots without the need
for long cycles.

Conversely, this is aso a latency optimization. An
application designer can reduce latency by decreasing
the cycle time, since this will reduce the delaysin amul-
tihop network. Without fractional flows, such adecrease
implies an increase in power, since a node is sending
more often. With fractional flows, the designer can
changes some nodes to fractional slots to maintain a
consistent power profile as the cycle time decreases.
Combined with reservation windows, which coordinate
the schedule, fractional flows allow fine-grain control
over the tradeoff between latency and power savings.

7 Related Work

Power consumption is an important issue in wireless
sensor networks. Energy optimizations must be consid-
ered throughout all layers of the hardware and software
architecture. Energy issues for sensor networks are
explored in [Dohe01,Pott00,Ragh02]. These works
make clear that communication is the most costly task in
terms of energy on the wireless node.

Many researchers are investigating software solu-
tions to reduce communication costs. There is ongoing
research in the areas of energy efficient channel access,
routing, topology management, and in-network process-
ing.

We based Twinkle on our previous FPSwork at Ber-
keley [Hohlt04]. We made many changes to support real

application, the largest of which are discussed in Section 6
(and Section 2).

In the area of energy-efficient MAC layers, there are
two broad classes of approaches: contention based
[Pamas98,SMAC02,Dam03] and TDMA based
[Sohr99,ArisD2,Conn03]. PAMAS [Pamas98] enhances
the MACA protocol with the addition of a signaling chan-
nel. It powers down the radio when it hears transmissions
over the data channel or receptions over the signaling
channel. SMAC [SMACO02] incorporates periodic listen/
dleep cycles of fixed sizes similar to 802.11 PS mode. In
order to communicate, neighboring nodes periodically
exchange their listen schedules. In the listen phase nodes
transmit RTS/CTS packets and in the sleep phase nodes
either transmit data or seep if there is no data to send. T-
MAC [Dam03] is avariation on SSMAC. Instead of using
a fixed listen window size, it transmits all messages in
bursts of variable length, and sleeps between bursts.

Although Twinkleisnot aMAC protocol, we draw our
inspiration from the TDMA-based energy-aware solutions.
TDMA based protocols have natural idle times built into
their schedules where the radio can be powered down.
Additionally they do not have to keep the radio on to
detect contention and avoid collisions. Centralized energy
management [Aris02] uses cluster-heads to manage CPU
and radio consumption within a cluster. Centralized solu-
tions usually do not scale well because inter-cluster com-
munication and interference is hard to manage. Self
organization [Sohr99] is non-hierarchical and avoids clus-
ters altogether. It has a notion of super frames similar to
TDMA frames for time schedules and requires a radio
with multiple frequencies. It assumes a stationary network
and generates static schedules. This scheme has less than
optimal bandwidth allocation. Slot reservations can only
be used by the node that has the reservation. Other nodes
cannot reuse the dot reservation.

ReOrgReSync[Conn03] uses a combination of topol-
ogy management (ReOrg) and channel access (ReSync)
and relies on a backbone for connectivity. Relay Organiza-
tion is a topology management protocol which systemati-
cally shifts the network’s routing burden to energy-rich
nodes (wall powered and battery powered nodes). Relay
Synchronization (ReSync), is a TDMA-like protocol that
divides time into epochs. Nodes periodically broadcast
small intent messages at a fixed time which indicate when
they will send the next data message. All neighbors listen
during each others intent message times. It assumes a low
datarate and only one message per epoch can be sent.

Energy-efficient routing in wireless ad-hoc networks
has been explored by many authors, see
[Roye99,Yu01,Karp00,Haas0D2] for examples. Topology
management approaches exploit redundancy to conserve
energy in high-density networks. Redundant nodes from a
routing perspective are detected and deactivated. Exam-
ples of these approaches are GAF [GAFO01] and SPAN
[SPANO1]. Our approach does not seek to find minimum
routes or redundancy.

These protocols are designed for systems that
require much more general communication throughout
the network.

8 Conclusions

We demonstrated that Twinkle can save 2-5x of the
power consumption for real applications that already
use power management of some kind. We saw a 2-4x
improvement for the GDI application, and about 4x for
the TinyDB Redwoods deployment. We also covered
several important enhancements to the idea of network-
layer power scheduling to make it arealistic alternative
for real deployments, including integration of time sync,
support for broadcast and aggregation, and latency opti-
mizations.

References

[Aris02] K.A. Arisha, M.A. Youssef, M.F. Younis, "Energy-aware
TDMA based MAC for sensor networks," |[EEE IMPACCT
2002, New York City, NY, USA, May 2002.

[Asad98] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J.
Kaiser, H. O. Marcy, "Wireless integrated network sensors: low
power systems on a chip," ESSCIRC '98. Proceedings of the
24th European Solid-State Circuits Conference, The Hague,
Netherlands, September 1998.

[Atmel] Atmel Corporation: AVR 8-bit RISC processor. http:/
www.atmel .com/atmel/products/AVR.

[Span01] B. Chen, K. Jamieson, H. Baakrishnan, and R. Morris,
"Span: an energy-efficient coordination algorithm for topology
maintenance in ad hoc wireless networks," MobiCom 2001,
Rome Italy, July 2001.

[Conn01] W.S. Conner, L. Krishnamurthy, and R. Want, "Making
everyday life a little easier using dense sensor networks,"
Proceeding of ACM Ubicomp 2001, Atlanta, GA, Oct. 2001.

[Conn03] W.S. Conner, J.Chhabra, M. Yarvis, L.Krishnamurthy,
"Experimental Evaluation of Topology Control and
Synchronization for In-building Sensor Network Applications,”
ACM Workshop on Wireless Sensor Networks and
Applications, September 2003.

[XBow] Crossbow Technology Inc.: http://www.xbow.com/Products/
Wireless_Sensor_networks.htm.

[Dam03] T.van Dam, K. Langendoen, "An Adaptive Energy-Efficient
MAC Protocol for Wireless Sensor Networks," SENSY S 2003,
Los Angeles, CA, USA, November 2003.

[DigSun] Digital Sun, Inc.: http:/digitalsun.com

[Dohe01] L. Doherty, B.A. Warneke, B.E. Boser, K.S.J. Pister,
"Energy and Performance Considerations for Smart Dust,”
International Journal of Parallel Distributed Systems and
Networks, Volume 4, Number 3, 2001, pp. 121-133.

[RBS02] J. Elson, L. Girod and D. Estrin, "Fine-grained network time
synchronization using reference broadcasts,” OSDI 2002,
Boston, MA, USA, December 2002.

[Gane03] S.Ganeriwal, R.Kumar, M.B.Srivastava, “Timing-sync
Protocol for Sensor Networks,” SensSys 2003, Los Angeles,
CA, USA, November 2003.

[nesCO3] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
C. Culler, "The nesC Language: A Holistic Approach to
Networked Embedded Systems," Programming Language
Design and Implementation, San Diego, CA, USA, June 2003.

[HaasD2] Z. Haas, J. Hapern, and L. Li, "Gossip-based ad-hoc
routing," IEEE INFOCOM 2002, New York, NY, USA, June
2002.

[HilloO] J. Hill, P. Bounadonna, and D. Culler, "Active Message
Communication for Tiny Network Sensors" http:/
webs.cs.berkeley.edu/togmedia.html.

[TinyOS00Q] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K.SJ. Pister, "System architecture directions for networked
sensors,” ASPLOS 2000, Cambridge, MA, USA, November
2000.

[Hillo2] J. Hill, D. Culler, "Mica: a wireless platform for deeply
embedded networks," IEEE Micro, 22(6):12-24, November/
December 2002.

[Hohit04] B. Hohlt, L. Doherty, E. Brewer, "Flexible Power
Scheduling for Sensor Networks, " IPSN 2004, Berkeley, CA,
USA, April 2004.

[BotGar04] W. Hong, "TASK In Redwood Trees',
today.cs.berkel ey.edu/retreat-1-04/weihong-task-redwood-
talk.pdf, NEST Retreat, Jan 2004.

[PolaD4] J.Podastre JHill,D.Culler,"Versatile Low Power Media
Access for Wireless Sensor Networks', SenSys 2004,
Baltimore, ML,USA.

[Szewczyk] Robert Szewczyk. Persona correspondence. September
2004.

[Szew04] R.Szewczyk, A.Manwaring, J.PolastreJ.Anderson,
D.Culler,"An Anaysis of a Large Scale Habitat Monitoring
Application”, SenSys 2004,Batimore, ML,USA, November
2004.

[TASKO5] P. Buonadonna, J. Hellerstein, W. Hong, D. Gay, S.
Madden, "TASK: Sensor Network in a Box", European
Workshop on Wireless Sensor Networks 2005, Istanbul, Turkey,
February 2005.

[802.11] LAN MAN Standards Committee of the |IEEE Computer
Society, "IEEE Standard 802.11, Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications,”
|EEE, August 1999.

[Kahn99] JM. Kahn, R.H. Katz, and K.S.J. Pister, "Next century
challenges: mobile networking for Smart Dust," MobiCom
1999, Seattle, WA, August 1999.

[Karp00] B. Karp and H.T. Kung, "GPSR: Greedy Perimeter Stateless
Routing for wireless networks," MobiCom 2000, Boston, MA,
USA, August 2000.

[Madden] Samuel Madden. Personal correspondence. March 2004.

[TinyDB02] S.R. Madden, M.J. Franklin, JM. Hellerstein, and W.
Hong, "TAG: a tiny aggregation service for ad-hoc sensor
networks," 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, USA, December 2002.

[Main02] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J.
Anderson, "Wireless sensor networks for habitat monitoring,"
WSNA 2002, Atlanta, GA, USA, September 2002.

[Mang96] W. Mangione-Smith and PS. Ghang, "A low power
medium access control protocol for portable multi-media
systems," 3rd International Workshop on Mobile MultiMedia
Communications, September 25-27, 1996.

[Maro04] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, "The Flooding
Time Synchronization Protocol,” SenSys 2004, Baltimore, MD,
USA, November 2004.

[Pott0O0] GJ. Pottie, W.J. Kaiser, "Wireless Integrated Network
Sensors," Communications of the ACM, vol. 4, no. 5, May
2000.

[Pamas98] C.S. Raghavendra and S. Singh, "PAMAS - Power aware
multi-access protocol with signaling for ad hoc networks,"
ACM Communications Review, vol. 28, no. 33, July 1998.

[Ragh02] V. Raghunathan, C. Schurgers, S. Park, and M.B.
Srivastava, "Energy-aware wireless microsensor networks,"
|EEE Signal Processing Magazine, vol. 19, no. 2, March 2002.

[RFM] RFMonolithics: http://www.rfm.com/products/data/
tr1000.pdf.

http://

[Roye99] E. M. Royer and C-K. Toh. "A review of current routing
protocols for ad-hoc mobile wireless networks," |EEE Personal
Communications, April 1999.

[Sensicast] Sensicast Systems: http://www.sensicast.com.

[Sohr02] K. Sohrabi, W.Merrill,J.Elson, L.Girod,F.Newberg, and
W.Kaiser,"Scalable Self-Assembly for Ad Hoc Wireless Sensor
Networks," |[EEE CAS Workshop 2002, Pasadena CA, USA,
September 2002.

[Sohr00] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, "Protocols
for sef-organization of a wireless sensor network,” IEEE
Personal Communications, Oct. 2000.

[Sohr99] K. Sohrabi and GJ. Pottie, "Performance of a novel self-
organization for wireless ad-hoc sensor networks," |EEE
Vehicular Technology Conference, 1999, Houston, TX, May
1999.

[Stem97] M. Stemm and R. Katz, "Measuring and reducing energy
consumption of network interfaces in hand-held devices,"
IEICE Trans. on Communications, vol. E80-B, no. 8, pp. 1125-
1131, August 1997.

[Wo001] A. Woo and D. Culler, "A transmission control scheme for
media access in sensor networks," in Proceedings of the ACM/
IEEE International Conference on Mobile Computing and
Networking, Rome, Italy, July 2001, ACM.

[Wo003] A. Woo, T. Tong, D. Culler, "Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks,"
SENSY S 2003, Los Angeles, CA, USA, November 2003.

[Xu0l] S. Xu, T. Saadawi, "Does the IEEE 802.11 MAC Protocol
Work Well in Multihop Wireless Ad Hoc Networks?' |IEEE
Communication Magazine, June 2001.

[GAFO1] Y. Xu, J. Heidemann, D. Estrin, "Geography-informed
energy conservation for ad hoc routing,” MobiCom 2001,
Rome, Italy, July 2001.

[SMACO02] W. Ye, J. Heidemann, D. Estrin, "An energy-efficient
MAC protocol for wireless sensor networks,” IEEE INFOCOM
2002, New York City, NY, USA, June 2002.

[Yu01] Y. Yu, R. Govindan, and D. Estrin. "Geographical and Energy
Aware Routing: a recursive data dissemination protocol for
wireless sensor networks,” UCLA Computer Science
Department Technical Report UCLA/CSD-TR-01-0023, May
2001.

	Twinkle: Network Power Scheduling in Sensor Networks
	1 Introduction
	2 Twinkle Overview
	1. We order slots within a cycle so that the parent- grandparent slot occurs after the child-pare...
	2. We allow fractional reservation of slots, which enables one transmission every k cycles. This ...
	3 Microbenchmarks
	3.1 Contention
	Figure 1: Topology used in mica experiments
	Figure 2: CDF of the number of backoffs due to contention with a normal “naive” application, and ...

	3.2 Fairness and Throughput
	Figure 3: Thoughput (and thus fairness) for six motes that are three hops from the root.

	Table 1: Throughput and Fairness
	4 Application: Great Duck Island
	4.1 GDI with Low-Power Listening
	4.2 GDI with Twinkle
	4.3 GDI Experiments
	4.4 Measuring Power Consumption

	Table 2: Power Measurement (mW)
	4.5 Evaluation
	4.5.1 Power Comparison with Low-Power Listening
	Figure 4: Relative power consumption of Twinkle and LPL for four different sample periods. Pulse ...

	Table 3: Yield and Fairness Comparison
	Table 4:
	Table 5:
	4.5.2 Yield and Fairness
	4.5.3 Understanding the GDI Field Study

	Table 6: Comparison of our lab data with the actual GDI field study
	5 Application: Redwoods with TinyDB
	5.1 Estimating Power Consumption

	1. Estimate the amount of time the radio is on and off for each scheme. Our metric for this will ...
	2. For Twinkle, we validate this estimate in Section 5.5 by looking in detail at one of the motes...
	3. We use actual measured current from mica and mica2 motes to estimate power consumption from ra...
	5.2 Topology and Traffic Model
	5.3 Duty Cycling
	5.4 Twinkle
	Figure 5: Topology and Traffic for Estimates

	Table 7: Traffic per Cycle (number of time slots)
	5.5 Twinkle Validation
	Figure 6: A subsection of the validation experiment. The bottom graph shows the measured Twinkle ...

	5.6 Power Savings

	Table 8: Power Consumption of Motes (mA)
	Table 9: On Times (seconds per hour)
	Figure 7: Estimating power savings for two families of motes (Mica1, top, and Mica2, bottom), wit...
	6 Discussion
	6.1 Partial Flows and Broadcast
	6.2 Time Synchronization
	6.3 Latency Optimizations
	Figure 8: Reservation Windows

	1. Reservation Windows
	2. Fractional Flows
	6.3.1 Reservation Windows

	1. Parent selects an idle slot and advertises the slot.
	2. Child hears the advertisements and sends a request for the slot.
	3. Parent receives the request and sends an acknowledgement.
	6.3.2 Fractional Flows

	7 Related Work
	8 Conclusions

