
Precise Interprocedural Analysis
using Random Interpretation

(Revised version∗)

Sumit Gulwani

gulwani@cs.berkeley.edu

George C. Necula

necula@cs.berkeley.edu

Report No. UCB/CSD-4-1353

August 2005

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Precise Interprocedural Analysis
using Random Interpretation

(Revised version∗)

Sumit Gulwani
gulwani@cs.berkeley.edu

George C. Necula
necula@cs.berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720-1776

ABSTRACT
We describe a unified framework for random interpretation
that generalizes previous randomized intra-procedural anal-
yses, and also extends naturally to efficient inter-procedural
analyses. There is no such natural extension known for de-
terministic algorithms. We present a general technique for
extending any intra-procedural random interpreter to per-
form a context-sensitive inter-procedural analysis with only
polynomial increase in running time. This technique in-
volves computing random summaries of procedures, which
are complete and probabilistically sound.

As an instantiation of this general technique, we obtain
the first polynomial-time randomized algorithm that discov-
ers all linear equalities inter-procedurally in a program that
has been abstracted using linear assignments. We also ob-
tain the first polynomial-time randomized algorithm for pre-
cise inter-procedural value numbering over a program that
uses unary uninterpreted functions.

We present experimental evidence that quantifies the pre-
cision and relative speed of the analysis for discovering linear
equalities along two dimensions: intra-procedural vs. inter-
procedural, and deterministic vs. randomized. We also present
results that show the variation of the error probability in
the randomized analysis with changes in algorithm parame-
ters. These results suggest that the error probability is much
lower than our conservative theoretical bounds.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs; F.3.2
[Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program analysis

This research was supported by NSF Grants CCR-0326577,
CCR-0081588, CCR-0085949, CCR-00225610, CCR-0234689,
NASA Grant NNA04CI57A, Microsoft Research Fellowship for
the first author, and Sloan Fellowship for the second author. The
information presented here does not necessarily reflect the posi-
tion or the policy of the Government and no official endorsement
should be inferred.

∗ An original version of this paper appeared in POPL ’05, January 12-14,
2005, Long Beach, California, USA.

General Terms
Algorithms, Theory, Verification

Keywords
Inter-procedural Analysis, Random Interpretation, Random-
ized Algorithm, Linear Relationships, Uninterpreted Func-
tions, Inter-procedural Value Numbering

1. INTRODUCTION
A sound and complete program analysis is undecidable [13].

A simple alternative is random testing, which is complete but
unsound, in the sense that it cannot prove absence of bugs.
At the other extreme, we have sound abstract interpreta-
tions [3], wherein we pay a price for the hardness of program
analysis in terms of having an incomplete (i.e., conservative)
analysis, or by having algorithms that are complicated and
have long running-time. Random interpretation is a prob-
abilistically sound program analysis technique that can be
simpler, more efficient and more complete than its deter-
ministic counterparts, at the price of degrading soundness
from absolute certainty to guarantee with arbitrarily high
probability [8, 9].

Until now, random interpretation has been applied only to
intra-procedural analysis. Precise inter-procedural analysis
is provably harder than intra-procedural analysis [16]. There
is no general recipe for constructing a precise and efficient
inter-procedural analysis from just the corresponding intra-
procedural analysis. The functional approach proposed by
Sharir and Pnueli [22] is limited to finite lattices of dataflow
facts. Sagiv, Reps and Horwitz have generalized the Sharir-
Pnueli framework to build context-sensitive analyses, using
graph reachability [17], even for some kind of infinite do-
mains. They successfully applied their technique to detect
linear constants inter-procedurally [20]. However, their gen-
eralized framework requires appropriate distributive trans-
fer functions as input. There seems to be no obvious way to
automatically construct context-sensitive transfer functions
from just the corresponding intra-procedural analysis. We
show in this paper that if the analysis is based on random
interpretation, then there is a general procedure for lifting it
to perform a precise and efficient inter-procedural analysis.

Our technique is based on the standard procedure summa-
rization approach to inter-procedural analysis. However, we

1

compute randomized procedure summaries that are prob-
abilistically sound. We show that such summaries can be
computed efficiently, and we prove that the error probabil-
ity, which is over the random choices made by the algorithm,
can be made as small as desired by controlling various pa-
rameters of the algorithm.

We instantiate our general technique to two abstractions,
linear arithmetic (Section 8) and unary uninterpreted func-
tions (Section 9), for which there exist intra-procedural ran-
dom interpretation based analyses. For the case of linear
arithmetic, our technique yields a more efficient algorithm
than the existing algorithms for solving the same problem.
For the case of unary uninterpreted functions, we obtain the
first polynomial-time and precise algorithm that performs
inter-procedural value numbering [1] over a program with
unary uninterpreted function symbols.

In the process of describing the inter-procedural random-
ized algorithms, we develop a generic framework for describ-
ing both intra-procedural and inter-procedural randomized
analyses. This framework generalizes previously published
random interpreters [8, 9], guides the development of ran-
domized interpreters for new domains, and provides a large
part of the analysis of the resulting algorithms. As a novel
feature, the framework emphasizes the discovery of relation-
ships, as opposed to their verification, and provides generic
probabilistic soundness results for this problem.

Unlike previous presentations of random interpretation,
we discuss in this paper our experience with implementing
and using an inter-procedural random interpreter on a num-
ber of C programs. In Section 10, we show that the error
probability of such algorithms is much lower in practice than
predicted by the theoretical analysis. This suggests that
tighter probability bounds may be obtained. We also com-
pare experimentally the randomized inter-procedural analy-
sis for discovering linear equalities with an intra-procedural
version [8] and with a deterministic algorithm [20] for the
related but simpler problem of detecting constant variables.

This paper is organized as follows. In Section 2, we present
a generic framework for describing intra-procedural random-
ized analyses. In Section 3, we explain the two main ideas
behind our general technique of computing random proce-
dure summaries. In Section 4, we formally describe our
generic algorithm for performing an inter-procedural ran-
domized analysis. We prove the correctness of this algo-
rithm in Section 5. We discuss fixed-point computation in
Section 6, and the computational complexity of the algo-
rithm in Section 7. We instantiate this generic algorithm
to obtain an inter-procedural analysis for discovering linear
relationships, and for value numbering in Section 8 and Sec-
tion 9 respectively. Section 10 describes our experiments.

2. INTRA-PROCEDURAL RANDOM
INTERPRETATION

In this section, we formalize the intra-procedural random
interpretation technique, using a novel framework that gen-
eralizes existing random interpreters.

2.1 Preliminaries
We first describe our program model. We assume that

the flowchart representation of a program consists of nodes
of the kind shown in Figure 1(a), (b), (c), and (d). In the
assignment node, x refers to a program variable while e

denotes some expression. A non-deterministic assignment
x :=? denotes that the variable x can be assigned any value.
Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that
our abstraction cannot handle precisely. Non-deterministic
conditionals, represented by ∗, denote that the control can
flow to either branch irrespective of the program state be-
fore the conditional. They are used as a safe abstraction of
conditional guards that our abstraction cannot handle pre-
cisely.

An execution of a random interpreter over a program com-
putes a state ρ at each program point π. A state is a map-
ping from program variables (that are visible at the corre-
sponding program point) to values v that are polynomials
over the finite field Fp for some prime p. (Fp denotes the
field of integers {0, . . . , p-1} where arithmetic is done mod-
ulo p.) These polynomials may simply be elements of Fp

(as in the case of intra-procedural analysis of linear arith-
metic [8]), vectors of elements from Fp

1 (as in the case of
intra-procedural analysis of uninterpreted functions [9]), or
linear functions of program’s input variables (as in the case
of inter-procedural analysis, which is described in this pa-
per). The notation ρ[x← v] denotes the state obtained from
ρ by setting the value of variable x to v.

Often a random interpreter performs multiple, say t, ex-
ecutions of a program in parallel, the result of which is a
sequence of t states at each program point. We refer to such
a sequence of states as a sample S and we write Si to refer
to the ith state in sample S.

A random interpreter processes ordinary assignments x :=
e by setting the value of variable x to the value of expres-
sion e in the state before the assignment node. Expressions
are evaluated using an Eval function, which depends on the
underlying domain of the analysis. We give some examples
of Eval functions in Section 2.3, where we also describe the
properties that an Eval function must satisfy. We use the
notation Eval(e, ρ) to denote the value of expression in state
ρ as computed by the random interpreter.

Non-deterministic assignments x :=? are processed by as-
signing a fresh random value to variable x. A random in-
terpreter executes both branches of a conditional. At join
points, it performs a random affine combination of the join-
ing states using the affine join operator φw. We describe
this operator and its properties in Section 2.2. In presence
of loops, a random interpreter goes around loops until a
fixed point is reached. The number of steps required to
reach a fixed point is bounded above by 1 + kv, where kv

is the maximum number of program variables visible at any
program point (follows from Theorem 5). However, we do
not know if there is an efficient way to detect a fixed point
since the random interpreter works with randomized data-
structures. The random interpreter can use the strategy of
iterating around a loop (maximal strongly connected com-
ponent) (1+kv)β times, where β is the number of back-edges
in the loop. Note that this guarantees that a fixed point will
be reached.

In Section 2.4, we discuss how to verify or discover expres-
sion equivalences from such random executions of a program.

1Note that a vector (v1, . . . , v`) can be represented by the

polynomial
P̀
i=1

zivi, where z1, . . . , z` are some fresh vari-

ables.

2

(a) Assi gnm ent Node (c) Non-determ inist ic
Conditional Node

� : � � ;

� , � , �~

� � � , � � , � �~

*True False

� , � , �

~ ~

~

� 2� 1 1, � 1, � 1 2, � 2, � 2

� : � ?

(b) Non-determ inist ic
Assi gnm ent Node

� , � , �~

� �
~� , � � , � �

(d) Joi n Node

� 2� 1

� , � , �

1, � 1, � 1 2, � 2, � 2~ ~

~

Call P
�

(e) Procedur e Call

� , � , �~

~
� � � , � � , � �

Figure 1: Flowchart nodes

We also give a bound on the error probability in this process.
Finally, in Section 2.5, we give an example of the random
interpretation technique for linear arithmetic to verify as-
sertions in a program.

We use the notation Pr(E) to denote the probability of
event E over the random choices made by a random in-
terpreter. Whenever the interpreter chooses some random
value, it does so independently of the previous choices and
uniformly at random from Fp.

2.2 Affine Join Operator
The affine join operator φw takes as input two values v1

and v2 and returns their affine join with respect to the weight
w as follows:

φw(v1, v2)
def
= w × v1 + (1− w)× v2

The affine join operator can be thought of as a selector be-
tween v1 and v2, similar to the φ functions used in static
single assignment (SSA) form [4]. If w = 1 then φw(v1, v2)
evaluates to v1, and if w = 0 then φw(v1, v2) evaluates to
v2. The power of the φw operator comes from the fact that
a non-boolean (random) choice for w captures the effect of
both the values v1 and v2.

The affine join operator can be extended to states ρ in
which case the affine join is performed with the same weight
for each variable. Let ρ1 and ρ2 be two states, and x be a
program variable. Then,

φw(ρ1, ρ2)(x)
def
= φw(ρ1(x), ρ2(x))

For any polynomial Q and any state ρ, we use the notation
[[Q]]ρ to denote the result of evaluation of polynomial Q in
state ρ. The affine join operator has the following useful
properties. Let Q and Q′ be two polynomials that are linear
over program variables (and possibly non-linear over other
variables). Let ρw = φw(ρ1, ρ2) for some randomly chosen
w from a set of size p. Then,

A1. Completeness: If Q and Q′ are equivalent in state ρ1

as well as in state ρ2, then they are also equivalent in
state ρw.

([[Q]]ρ1 = [[Q′]]ρ1) ∧ ([[Q]]ρ2 = [[Q′]]ρ2) ⇒
[[Q]]ρw = [[Q′]]ρw

A2. Soundness: If Q and Q′ are not equivalent in either
state ρ1 or state ρ2, then it is unlikely that they will
be equivalent in state ρw.

([[Q]]ρ1 6= [[Q′]]ρ1) ∨ ([[Q]]ρ2 6= [[Q′]]ρ2) ⇒
Pr([[Q]]ρw = [[Q′]]ρw) ≤ 1

p

2.3 SEval Function
The random interpreter processes an assignment node x :=

e by updating the value of variable x to the value of expres-
sion e in the state before the assignment node. Expressions
are evaluated using the Eval function, which depends on the
underlying abstract domain of the analysis. The Eval func-
tion takes an expression e and a state ρ and computes some
value v. The Eval function plays the same role as an ab-
stract interpreter’s transfer function for an assignment node.
Eval is defined in terms of a symbolic function SEval that
translates an expression into a polynomial over the field Fp.
This polynomial is linear in program variables, and may con-
tain random variables as well, which stand for random field
values chosen during the analysis. (The SEval function for
linear arithmetic has no random variables, while the SEval

function for uninterpreted functions uses random variables.)
Eval(e, ρ) is computed by replacing program variables in
SEval(e) with their values in state ρ, replacing the random
variables with the random values that have chosen for them,
and then evaluating the result over the field Fp. (The ran-
dom values rj are chosen for the random variables yj once
for each execution of the program, and in each execution
the same value rj is used for all occurrences of the random
variable yj .) Following are examples of two Eval functions
that have been described in previous papers.

SEval function for Linear Arithmetic.The random in-
terpretation for linear arithmetic is described in a previous
paper [8]. The following language describes the expressions
in this abstract domain. Here x refers to a variable and c
refers to an arithmetic constant.

e ::= x | e1 ± e2 | c× e

The SEval function for this abstraction simply translates
the linear arithmetic operations to the corresponding field
operations. In essence, Eval simply evaluates the linear ex-
pression over the field Fp.

SEval(e) = e

SEval function for Unary Uninterpreted Functions.The
random interpretation for uninterpreted functions is described
in a previous paper [9]. We show here a simpler SEval func-
tion, for the case of unary uninterpreted functions. The
following language describes the expressions in this abstract
domain. Here x refers to a variable and F refers to a unary
uninterpreted function.

e ::= x | F (e)

3

The SEval function for this abstraction is as follows.

SEval(x) = x

SEval(F (e)) = r1 × SEval(e) + r2

Here r1 and r2 refer to random variables, unique for each
unary uninterpreted function F . Note that in this case,
SEval produces polynomials that have degree more than 1,
although still linear in the program variables.

The SEval function corresponding to the Eval function for
binary uninterpreted functions (as described in [9]) evaluates
expressions to vectors (of polynomials). Note that a vector
(v1, . . . , v`) can however be represented as the polynomial
z1v1 + . . . + z`v` where z1, . . . , z` are fresh variables that do
not occur in the program.

2.3.1 Properties ofSEval Function
The SEval function should have the following properties.

Let x be any variable and e1 and e2 be any expressions.
Then,

B1. Soundness: The SEval function should not introduce
any new equivalences.

SEval(e1) = SEval(e2) ⇒ e1 = e2

Note that the first equality is over polynomials, while
the second equality is in the analysis domain.

B2. Completeness: The SEval function should preserve all
equivalences.

e1 = e2 ⇒ SEval(e1) = SEval(e2)

B3. Referential transparency:

SEval(e1[e2/x]) = SEval(e1)[SEval(e2)/x]

This property (along with properties B1 and B2) is
needed to prove the correctness of the action of the
random interpreter for an assignment node x := e. As
mentioned earlier, the random interpreter computes
the state after an assignment node by updating the
value of x to the value of the polynomial SEval(e) in
the state before the assignment node.

B4. Linearity: The SEval function should be a polynomial
that is linear in program variables. This property is
needed to prove the completeness of the random inter-
preter across join nodes, where it uses the affine join
operator to merge program states.

Properties B1 and B3 are necessary for proving the prob-
abilistic soundness of the random interpreter. Property B2
or property B4 need not be satisfied if completeness is not
an issue. This may happen when the underlying abstraction
is difficult to reason about, yet one is interested in a (proba-
bilistically) sound and partially complete reasoning for that
abstraction. For example, the following SEval function for
“bitwise or operator” (||) satisfies all the above properties
except property B2.

SEval(e1||e2) = SEval(e1) + SEval(e2)

This SEval function models commutativity and associativ-
ity of the || operator. However, it does not model the fact
that x||x = x. In this paper, we assume that the SEval func-
tion satisfies all the properties mentioned above. However,

the results in this paper can also be extended to prove rela-
tive completeness for of the random interpreter if the SEval

function does not satisfy property B2 or B4.
Also, note that the SEval function for linear arithmetic

as described above has the soundness property for linear
arithmetic over the prime field Fp. The problem of reason-
ing about linear arithmetic over rationals can be reduced to
reasoning about linear arithmetic over Fp, where p is chosen
randomly. This is a randomized reduction with some error
probability, and is discussed further in Section 8.

2.4 Error Probability Analysis
A random interpreter performs multiple executions of a

program as described above, the result of which is a collec-
tion of t states, or a sample, at each program point. We can
use these samples to verify and discover equivalences.

The process of verifying equivalences and the bound on
the error probability can be stated for a generic random
interpreter. The process of discovering equivalences is ab-
straction specific; however a generic error probability bound
can be stated for this process when the SEval function does
not involve any random variables (e.g., SEval function for
linear arithmetic).

2.4.1 Verifying Equivalences
Let S be the sample computed by the random interpreter

at some program point π after fixed-point computation. The
random interpreter declares two expressions e1 and e2 to be
equivalent at program point π iff Eval(e1, Si) = Eval(e2, Si)
for all states Si in the sample S. We denote this by S |= e1 =
e2. Two expressions e1 and e2 are equivalent at program
point π iff for all program states ρ that may arise at program
point π in any execution of the program, [[e1]]ρ = [[e2]]ρ. We
denote this by π |= e1 = e2.

The following properties hold:

C1. The random interpreter verifies all valid equivalences.

π |= e1 = e2 ⇒ S |= e1 = e2

C2. With high probability, any equivalence verified by the
random interpreter is correct.

π 6|= e1 = e2 ⇒ Pr(S |= e1 = e2) ≤
„

d

p

«t

d = (njp + δ)(1 + kv)β

Here njp denotes the maximum number of join points in any
procedure, and kv denotes the maximum number of program
variables visible at any program point. δ refers to the max-
imum degree of SEval(e) for any expression that uses as
many function symbols as there are in any procedure. For
example, δ is 1 for the linear arithmetic abstraction. For the
abstraction of uninterpreted functions, δ is bounded above
by the number of function symbols that occur in any proce-
dure. Intuitively, we add njp to δ to account for the multi-
plications with the random weights at join points. Note that
the error probability in property C2 can be made arbitrar-
ily small by choosing p to be greater than d and choosing t
appropriately.

We now briefly sketch the proofs of properties C1 and C2.
Consider a fully-symbolic version of the random interpreter
(similar to the one introduced in Appendix A for the case of

4

inter-procedural analysis) that computes a symbolic state
at each program point, i.e., a state in which variables are
mapped to polynomials in terms of the random weight vari-
ables corresponding to join points, and any other random
variables used in the SEval function. The fully-symbolic
random interpreter discovers exactly the set of valid equiv-
alences at all program points. This can be proved by in-
duction on the number of flowchart nodes analyzed by the
random interpreter (similar to the proof of completeness and
soundness of the fully-symbolic random interpreter for inter-
procedural analysis given in Appendix A). Note that each
state in any sample computed by the random interpreter is
an independent random instantiation of the corresponding
symbolic state computed by the fully-symbolic random in-
terpreter. Property C1 now follows directly. Property C2
follows from the error bound for the Schwartz and Zippel’s
polynomial identity testing algorithm [21, 23], which states
that the probability that two distinct polynomials (of degree
at most d) evaluate to same values on t independent random
instantiations (from a set of size p) is bounded above by (d

p
)t.

2.4.2 Discovering Equivalences
We now move our attention to the issue of discovering

equivalences. Although, this usage mode was apparent from
previous presentations of random interpretation, we have
not considered until now the probability of erroneous judg-
ment for this case.

The process of discovering equivalences at a program point
is abstraction specific. For example, Section 8.1 describes
how to discover equivalences for the abstraction of linear
arithmetic.

The following property states an upper bound on the
probability that the random interpreter discovers any false
equivalence at a given program point for the case when
SEval function does not involve any random variables. Let
S be the sample computed by the random interpreter at
some program point π. Then, the following holds:

C3. With high probability, all equivalences discovered by
the random interpreter are valid.

Pr(∃e1, e2 : π 6|= e1 = e2 ∧ S |= e1 = e2)

≤ n

1− α
αt−kv

where α = 3dt
p(t−kv)

, d = njp(1 + kv)β.

Here n refers to the total number of program points. The
proof of property C3 follows from a more general property
(Property D3 in Section 5.2) that we prove for analyzing the
correctness of an inter-procedural random interpreter. Note
that we must choose t to be at least 1 + kv, and p greater
than 3dt.

This completes the description of the generic framework
for random interpretation. Next, we show an example, and
then we proceed to extend the framework to describe inter-
procedural analyses.

2.5 Example
In this section, we illustrate the random interpretation

scheme for discovering linear equalities among program vari-
ables by means of an example.

Consider the procedure shown in Figure 2 (ignoring for
the moment the states shown on the side). We first consider

� = 3, � = 4, � = 7

� = 3, a = 4, � = 7
� = 23, � = 23

� = 3, a = 4, � = 7
� = 1, � = 1

� = 3, � = 4, � = 7
� = 11, � = 11

� = 3, a = 1, � = 2� = 3, � = 0, � = 3

� : � 0;

� : � � ;

� : � � – 2;

� : � 2;

� : � � – � ;

� : � � – 2� ;

asser t (� + � � 0);

asser t (� � � + �);

� : � 2� + � ;

� : � � – 2� ;

True

True False

False

� 1 = 5

� 2 = 2

*

*

� = 3

Figure 2: A code fragment with four paths. Of the
two equations asserted at the end the first one holds
on all paths but the second one holds only on three
paths. The values of variables shown next to each
edge represent the program states computed in a
random interpretation.

this procedure in isolation of the places it is used (i.e., intra-
procedural analysis). Of the two assertions at the end of
the procedure, the first is true on all four paths, and the
second is true only on three of them (it is false when the
first conditional is false and the second is true). Regular
testing would have to exercise that precise path on which
the second assertion fails, to avoid inferring that the second
equality holds. Random interpretation is able to invalidate
the second assertion in just one (non-standard) execution of
the procedure.

The random interpreter starts with a random value 3
for the input variable i and then executes the assignment
statements on both sides of the conditional using the Eval

function for linear arithmetic, which matches with the stan-
dard interpretation of linear arithmetic. In the example, we
show the values of all live variables at each program point.
The two program states before the first join point are com-
bined with the affine join operator using the random weight
w1 = 5. Note that the resulting program state after the
first join point can never arise in any real execution of the
program. However, this state captures the invariant that
a + b = i, which is necessary to prove the first assertion in
the procedure. The random interpreter then executes both
sides of the second conditional and computes an affine join
of the two states before the second join point using the ran-
dom weight w2 = 2. We can easily verify that the resulting
state at the end of the procedure satisfies the first assertion
but does not satisfy the second. Thus, in one run of the
procedure we have noticed that one of the (potentially) ex-
ponentially many paths breaks the second assertion. Note

5

� = 8 4� , � = 5� 8

� = 8 4� , � = 5� 8
� = 21� 40, � = 40 21 �

� = 8 4� , � = 5� 8
� = 8 3� , � = 3� 8

� = 8 4� , � = 5� 8
� = 9� 16, � = 16 9 �

� = � 2, � = 2� = 0, � = �

� : � 0;

� : � � ;

� : � � – 2;

� : � 2;

� : � � – � ;

� : � � – 2� ;

asser t (� + � � 0);

asser t (� � � + �);

� : � 2� + � ;

� : � � – 2� ;

True

True False

False

� 1 = 5

� 2 = 2

*

*

Input : �

Figure 3: Illustration of random symbolic interpre-
tation on the program shown in Figure 2. Note that
the second assertion is true in the context i = 2, and
the random symbolic program state at the end of
the program satisfies it in that context.

that choosing w to be either 0 or 1 at a join point cor-
responds to executing either the true branch or the false
branch of its corresponding conditional; this is what naive
testing accomplishes. However, by choosing w (randomly)
from a set that also contains non-boolean values, we are able
to capture the effect of both branches of a conditional in just
one interpretation of the program. In fact, there is a very
small chance that the random interpreter will choose such
values for i, w1 and w2 that will make it conclude that both
assertions hold (e.g., i = 2, or w1 = 1).

In an inter-procedural setting, the situation is more com-
plicated. If this procedure is called only with input argu-
ment i = 2, then both assertions hold, and the analysis is
expected to infer that. One can also check that if the ran-
dom interpreter chooses i = 2, then it is able to verify both
the assertions, for any choice of w1 and w2. We look next
at what changes are necessary to extend the analysis to be
inter-procedural.

3. KEY IDEAS
Inter-procedural random interpretation is based on the

standard summary-based approach to inter-procedural anal-
ysis. Procedure summaries are computed in the first phase,
and actual results are computed in the second phase. The
real challenge is in computing context-sensitive summaries,
i.e., summaries that can be instantiated with any context to
yield the most precise behavior of the procedures under that
context. A context for a procedure refers to any relevant in-
formation regarding the values that the input variables of

� = 5� 2 7 = 3
� = 5� 1 7 = 2
� = 5� 1 7 = 2

� = 5� 7

� = 5
� = 3� = � +1

� : � � + 1; � : � 3;

return � ;

Procedur e �

Input : �

asser t (� � 3);

asser t (� � �);

� : � � (2);

� : � � (1);

� : � � (1);

Procedur e �

True False
*

Figure 4: A program that demonstrates unsound-
ness of a single random symbolic run. Note that
the first assertion at the end of procedure B is true,
while the second assertion is not true since proce-
dure A may take different branches in different runs.

that procedure can take.
In this section, we briefly explain the two main ideas

behind the summary computation technique that can be
used to perform a precise inter-procedural analysis using
the SEval function of a precise intra-procedural random in-
terpreter.

3.1 Random Symbolic Run
Intra-procedural random interpretation involves interpret-

ing a program using random values for the input variables.
The state at the end of the procedure can be used as a sum-
mary for that procedure. However, such a summary will
not be context-sensitive. For example, consider the proce-
dure shown in Figure 2. The second assertion at the end of
the procedure is true in the context i = 2, but this condi-
tional fact is not captured by the random state at the end
of the procedure.

Observe that in order to make the random interpretation
scheme context-sensitive, we can simply delay choosing ran-
dom values for the input variables. Instead of using states
that map variables to field values, we use states that map
variables to linear functions of input variables. This allows
the flexibility to replace the input variables later depend-
ing on the context. However, we continue to choose random
weights at join points and perform a random affine join op-
eration.

As an example, consider again the procedure from before,
shown now in Figure 3. Note that the random symbolic state
at the end of the procedure (correctly) does not satisfy the
second assertion. However, in a context where i = 2, the
state does satisfy x = a + i since x evaluates to 2 and a to
0. This scheme of computing partly symbolic summaries is
surprisingly effective and guarantees context-sensitivity, i.e.,
it entails all valid equivalences in all contexts.

3.2 Multiple Runs
Consider the program shown in Figure 4. The first asser-

tion in procedure B is true. However, the second assertion is
false because the non-deterministic conditional in procedure
A can branch differently in the two calls to procedure A,

6

� = [� +1, � +1] � =[5,2] � = [3,3]

� = [5� 7,7 2�]

� : � � + 1; � : � 3;

return � ;

Procedur e �

Input : �

True False
*

Run 1: � = 7(5� 7,7 2�) = 47� 91
Run 1

�
: � = 6(5� 7,7 2�) = 40� 77

Run 2: � = 3(5� 7,7 2�) = 19� 35
Run 2

�
: � = 0(5� 7,7 2�) = 7 2�

Run 3: � = 5(5� 7,7 2�) = 33� 63
Run 3

�
: � = 1(5� 7,7 2�) = 5� 7

Fresh Runs for Procedur e �

� = [47� 2 91, 40� 2 77] = [3,3]
� = [19� 1 35, 7 2� 1] = [16, 5]
� = [33� 1 63, 5� 1 7] = [30,2]

asser t (� � 3);

asser t (� � �);

� : � � (2);

� : � � (1);

� : � � (1);

Procedur e �

Figure 5: Illustration of multiple random symbolic runs for inter-procedural analysis on the program also
shown in Figure 4. In this example, 2 random symbolic runs are computed for each procedure, and are
further used to generate a fresh random symbolic run for every call to that procedure. Run j and Run j′

are used at the jth call site of procedure A while computing the two runs for procedure B. Note that this
technique is able to correctly validate the first assertion and falsify the second one.

even with the same input. If we use the same random sym-
bolic run for procedure A at different call sites in procedure
B, then we incorrectly conclude that the second assertion
holds. This happens because use of the same run at differ-
ent call sites assumes that the non-deterministic conditionals
in the called procedure are resolved in the same manner in
different calls. This problem can be avoided if a fresh or
independent run is used at each call point. By fresh run, we
mean a run computed with a fresh choice of random weights
at the join points.

One approach to generate a fresh run for each call site is
to compute summaries that are parametrized by weight vari-
ables (i.e., instead of using random weights for performing
the affine join operation, we use symbolic weight variables).
Then, for each call site, we can instantiate this summary
with a fresh set of random weights for the weight variables.
The problem with this approach is that the symbolic co-
efficients of linear functions of input variables, which are
assigned to procedure variables (in states computed by the
random interpreter) may have an exponential-size represen-
tation.

Another approach to generate m fresh runs for any pro-
cedure P is to execute m times the random interpretation
scheme for procedure P , each time with a fresh set of ran-
dom weights. However, this may require computing an ex-
ponential number of runs for other procedures. For example,
consider a program in which each procedure Pi calls proce-
dure Pi+1 two times. To generate a run for P0, we need 2
fresh runs for P1, which are obtained using 4 fresh runs for
P2, and so on.

The approach that we use is to generate the equivalent
of t fresh runs for any procedure P from t fresh runs of
each of the procedures that P calls (for some parameter t
that depends on the underlying abstraction). This approach
relies on the fact that a random affine combination (i.e., a
random weighted combination with sum of the weights being
1) of t runs of a procedure yields the equivalent of a fresh
run for that procedure. For an informal geometric intuition,
note that we can obtain any number of fresh points in a
2-dimensional plane by taking independent random affine

combinations of three points that span the plane.
In Figure 5, we revisit the program shown in Figure 4

and illustrate this random interpretation technique of using
a fresh run of a procedure at each call site. Note that we
have chosen t = 2. The t runs of the procedure are shown in
parallel by assigning a tuple of t values to each variable in
the program. Note that procedure B calls procedure A three
times. Hence, to compute 2 fresh runs for procedure B, we
need to generate 6 fresh runs for procedure A. The figure
shows generation of 6 fresh runs (Runs 1,1′,2,2′,3, and 3′)
from the 2 runs for procedure A. The first call to procedure
A uses the first two (Runs 1 and 1′) of these 6 runs, and
so on. Note that the resulting program states at the end of
procedure B satisfy the first assertion, but not the second
assertion thereby correctly invalidating it.

4. INTER-PROCEDURAL RANDOM
INTERPRETATION

We now describe the precise inter-procedural random in-
terpretation for any abstraction that is equipped with an
SEval function that has the properties discussed in Sec-
tion 2.3.

4.1 Notation
We first describe our program model. A program is a

set of procedures, each with one entry and one exit node.
We assume that each procedure has been abstracted using
the flowchart nodes shown in Figure 1. A procedure call
node is simply denoted by the name of the procedure P ′

that is being called. For simplicity, we assume that the
inputs and outputs of a procedure being called are passed as
global variables. We express the computational complexity
of algorithms in terms of the number of assignment nodes
and for that purpose, we assume that the expression e in an
assignment node is of constant size. We use the following
notation:

• n : Number of nodes.

• na : Number of assignment nodes.

7

• nj : Number of join nodes.

• np : Number of procedure call nodes.

• njp: Maximum number of join nodes in any procedure.

• npp: Maximum number of procedure call nodes in any
procedure.

• kv : Maximum number of program variables visible at
any program point.

• ki: Maximum number of input variables for any pro-
cedure.

• ko: Maximum number of output variables for any pro-
cedure.

The set of input variables of a procedure P includes the set
of all global variables read by procedure P directly as well
as the set of input variables for any procedure P ′ called by
P . Similarly for the set of output variables of a procedure
P .

The random interpreter uses an optimization (described
in Section 4.3) that involves converting the program into
SSA form [4]. With regard to that, we use the following
notation:

• ns : Number of total assignment statements (both phi
assignments and non-phi assignments) in SSA version
of the program.

It has been reported [4] that the ratio of the number of new
phi-assignments introduced (as a result of SSA conversion)
to the number of original assignments typically varies be-
tween 0.3 to 2.8 (i.e., 1.3na ≤ ns ≤ 3.8na) irrespective of
program size.

For describing a bound on the number of steps required
for fixed-point computation, we use the following notation:

• β : Maximum number of back-edges in any program
loop

For a structured flow-graph, β denotes the maximum loop
nesting depth. Based on the experiments that we carried
out, we noticed β to be a small constant in practice, usually
bounded above by 3.

4.2 Basic Algorithm
The inter-procedural random interpreter performs a stan-

dard two-phase computation. The first phase, or the bottom-
up phase, computes procedure summaries by starting with
leaf procedures. The second phase, or top-down phase, com-
putes the actual results of the analysis at each program point
by using the summaries computed in the first phase. In pres-
ence of loops in the call graph and inside procedures, both
phases require fixed-point computation, which we address in
Section 6.

The random interpreter starts by choosing random ele-
ments rj ∈ Fp for any random variables yj that are used
in the SEval function. Every occurrence of variable yj is
replaced by the same random choice rj in all runs2 (unlike

2This is required to prove completeness of the inter-
procedural random interpreter for the operation of produc-
ing a fresh run of a procedure by an affine combination of
the runs in its summary.

intra-procedural case, in which fresh random values are cho-
sen for each run) when evaluating any expression using the
Eval function. We use the notation SEval′(e) to denote the
polynomial obtained from SEval(e) by replacing all occur-
rences of the random variables yj by the random elements
rj that have been chosen (globally) for them. The prime p is
chosen to ensure that the error probability of the random in-
terpreter (which is a function of p among other parameters,
as described in Theorem 3) is small. A 32-bit prime is usu-
ally sufficient in practice. We now describe the two-phase
computation performed by the random interpreter.

4.2.1 Phase 1
A summary for a procedure P , denoted by YP , is either
⊥ (denoting that the procedure has not yet been analyzed,
or on all paths it transitively calls procedures that have not
yet been analyzed), or is a collection of t runs {YP,i}ti=1.
A run of procedure P is a mapping from output variables
of procedure P to random symbolic values, which are lin-
ear expressions in terms of the input variables of procedure
P . The number of runs t should be greater than kv + 2ki

for probabilistic soundness, as predicted by our theoretical
estimates. However, experiments (discussed in Section 10)
suggest that a smaller value of t does not yield any error in
practice.

To compute a procedure summary, the random interpreter
computes a sample S at each program point, as shown in
Figure 1. A sample is either ⊥ or a sequence of t states. A
state at a program point π is a mapping of program variables
(visible at point π) to random symbolic linear expressions
in terms of the input variables of the enclosing procedure.
We use the notation Si to denote the ith state in sample
S. The random interpreter computes a sample S at each
program point from the samples at the immediately preced-
ing program points, and using the summaries computed so
far for the called procedures. The transfer functions for the
flowchart nodes are described below. After the random in-
terpreter is done interpreting a procedure, it computes the
summary of that procedure by simply projecting the sample
(or the t states) at the end of the procedure to the output
variables of the procedure.

Initialization. The random interpreter starts by initializ-
ing the summaries of all procedures, and the samples at all
program points except at procedure entry points to ⊥. The
samples at procedure entry points are initialized by setting
all input variables x to SEval′(x) in all states.

Si(x) = SEval
′(x)

Note that SEval′(x) is simply x for the abstractions of linear
arithmetic and uninterpreted functions.

Assignment Node.See Figure 1 (a).
If the sample S′ before the assignment node is ⊥, then the
sample S after the assignment node is defined to be ⊥. Oth-
erwise, the random interpreter computes S by updating the
value of variable x in each state of sample S′ as follows.

Si = S′
i[x← Eval(e, S′

i)]

Non-deterministic Assignment Node.See Figure 1 (b).
If the sample S′ before the non-deterministic assignment
node is ⊥, then the sample S after the non-deterministic

8

assignment node is defined to be ⊥. Else, the random inter-
preter processes the assignment x :=? by transforming each
state in the sample S′ by setting x to some fresh random
value.

Si = S′
i[x← v], where v = SEval

′(y)[Rand()/y]

The fresh random value v is obtained from the polynomial
SEval′(y) by substituting variable y by a randomly chosen
element from Fp.

Non-deterministic Conditional Node.See Figure 1 (c).
The random interpreter simply copies the sample S before
the conditional node on the two branches of the conditional.

S1 = S and S2 = S

Join Node.See Figure 1 (d).
If any one of the samples S1 or S2 before the join node is ⊥,
the random interpreter assigns the other sample before the
join node to the sample S after the join node. Otherwise,
the random interpreter selects t random weights w1, . . . , wt

and computes the affine join of S1 and S2 with respect to
those weights to obtain the sample S after the join node.

S = φ[w1,...,wt](S
1, S2)

Procedure Call.See Figure 1 (e).
If the sample S′ before the procedure call is ⊥, or if the sum-
mary YP ′ is ⊥, then the sample S after the procedure call
is defined to be ⊥. Otherwise the random interpreter exe-
cutes the procedure call as follows. The random interpreter
first generates t fresh random runs Y1, . . . , Yt for procedure
P ′ using the current summary (t runs) for procedure P ′.
Each fresh run Yi for procedure P ′ is generated by taking
a random affine combination of the t runs in the summary
of procedure P ′. This involves choosing random weights
wi,1, . . . , wi,t with the constraint that wi,1 + · · ·+ wi,t = 1,
and then doing the following computation. Then,

Yi(x) =

tX
j=1

wi,j × YP ′,j(x)

The effect of a call to procedure P ′ is to update the values
of the variables that are written to by procedure P ′. The
random interpreter models this effect by updating the values
of these variables using the fresh random runs Yi (computed
above) as follows. Let the input (global) variables of pro-
cedure P ′ be y1, . . . , yk. Let OP ′ denote the set of output
(global) variables of procedure P ′.

Si(x) =

(
Yi(x)[S′

i(y1)/y1, . . . , S
′
i(yk)/yk] if x ∈ OP ′

S′
i(x) otherwise

4.2.2 Phase 2
For the second phase, the random interpreter also main-

tains a sample S (which is a sequence of t states) at each
program point, as in phase 1. However, unlike phase 1, the
states in phase 2 map variables to values that do not involve
input variables. The samples are computed for each program
point from the samples at the preceding program points in
the same manner as in phase 1 except for the initialization,
which is done as follows:

Initialization. The random interpreter initializes the sam-
ples at all program points except at procedure entry points
to ⊥. The sample at the entry point of the Main procedure
is initialized by setting all input variables x to fresh random
values in all states.

Si(x) = SEval
′(x)[Rand()/x]

As before a fresh random value is obtained from the poly-
nomial SEval′(x) by substituting variable x by a randomly
chosen element from Fp.

The sample S at the entry point of any other procedure
P is obtained as a random affine combination of all the
non-⊥ samples at the call sites to P . Let these samples
be S1, . . . , Sk. Then for any input variable x,

Si(x) =

kX
j=1

wi,j × Sj
i (x)

where wi,1, . . . , wi,k are random weights with the constraint
that wi,1+· · ·+wi,k = 1, for all 1 ≤ i ≤ t. This affine combi-
nation encodes all the relationships (among input variables
of procedure P) that hold in all calls to procedure P .

4.3 Optimization
Maintaining a sample explicitly at each program point

is expensive (in terms of time and space complexity) and
redundant. For example, consider the samples before and
after an assignment node x := e. They differ (at most) only
in the values of variable x.

An efficient way to represent samples at each program
point is to convert all procedures into minimal SSA form [4]
and to maintain one global sample for each procedure in-
stead of maintaining a sample at each program point. The
values of a variable x in the sample at a program point π are
represented by the values of the variable vx,π in the global
sample, where vx,π is the renamed version of variable x at
program point π after the SSA conversion. Under such a
representation, interpreting an assignment node or a proce-
dure call simply involves updating the values of the modified
variables in the global sample. Interpreting a join node in-
volves updating the values of φ variables at that join point
in the global sample.

This completes the description of the inter-procedural ran-
dom interpretation. Next, we estimate the error probability
of the random interpreter.

5. ERROR PROBABILITY ANALYSIS
In this section, we estimate the error probability of the

random interpreter. We show that the random interpreter is
complete, i.e. it validates all correct equivalences (property
D4). On the other hand, we show that with high probability
(over the random choices made by the random interpreter),
the random interpreter does not validate a given incorrect
equivalence (Theorem 3). We also show that if the SEval

function does not involve any random variables (e.g., SEval
function for linear arithmetic), then with high probability
(over the random choices made by the random interpreter),
the random interpreter validates only correct equivalences
(Theorem 3). For the purpose of establishing these results,
we first state and prove some useful properties of the samples
computed by the random interpreter in phase 1 and phase
2.

9

5.1 Analysis of Phase 1
We first introduce some terminology. We use the term in-

put context, or simply context, for a procedure P to denote
a mapping of input variables of procedure P to polynomi-
als that are linear in program variables. For any context
C, let Abs(C) denote the set of equivalences (involving vari-
ables that have mappings in C) in the abstract domain that
are implied by C, i.e., Abs(C) = {e1 = e2 | Eval(e1, C) =
Eval(e2, C)}. For any polynomial Q, and any context (or
state) C, we use the notation Q[C] to denote the polynomial
obtained from Q by substituting all variables that have map-
pings in C by those mappings.

Let π be some program point in procedure P . Let A be
some set of paths that lead to π from the entry point of
procedure P . We say that an equivalence e1 = e2 holds at
π along paths A in context C iff the weakest precondition of
the equivalence e1 = e2 along all paths in A belongs to the
set Abs(C). We denote this by Holds(e1 = e2, A, C).

We say that a state ρ entails an equivalence e1 = e2 in
context C, denoted by ρ |=C e1 = e2, when Eval(e1, ρ)[C] =
Eval(e2, ρ)[C]. We say that a sample S entails an equiva-
lence e1 = e2 in context C, denoted by S |=C e1 = e2, when
all states in S do so.

Let S be the sample computed by the random interpreter
(in phase 1) at a program point π in procedure P after
analyzing a set of paths A. The following properties hold.

D1. Soundness (Phase 1): Suppose that the SEval func-
tion does not involve any random variables. With high
probability, in all input contexts, S entails only the
equivalences that hold at π along the paths analyzed
by the random interpreter (i.e., with high probability,
for all input contexts C and all equivalences e1 = e2,
¬(Holds(e1 = e2, A, C)) ⇒ ¬(S |=C e1 = e2)). The
error probability γ1(S) (assuming that the samples
computed before computation of S satisfy property
D1) is bounded above as follows:

γ1(S) ≤ pki

„
αt−kv

1− α

«
, where α =

3dSt

p(t− kv)

We use the notation dS to refer to the number of join
points and procedure calls along any path analyzed by
the random interpreter immediately after computation
of sample S. A formal definition of dS is given in
Appendix A.

D2. Completeness (Phase 1): In all input contexts, S en-
tails all equivalences that hold at π along the paths
analyzed by the random interpreter (i.e., for all input
contexts C and all equivalences e1 = e2, Holds(e1 =
e2, A,C)⇒ S |=C e1 = e2).

For the purpose of proving property D1, we hypothetically
extend the random interpreter to compute a fully-symbolic
state at each program point, i.e., a state in which variables
are mapped to polynomials in terms of the input variables
and random weight variables corresponding to join points
and procedure calls (see Appendix A for details). A key
part of the proof strategy is to prove that the fully-symbolic
state at each point captures exactly the set of equivalences
at that point in any context along the paths analyzed by the
random interpreter. In essence, a fully-symbolic interpreter
is sound and complete, even though it might be computa-
tionally expensive. The proof of this fact is by induction

on the number of flowchart nodes analyzed by the random
interpreter (Lemma 9 in Appendix A). We now prove prop-
erty D1 using the following two steps.

We first bound the error probability that a sample S with
t states does not entail exactly the same set of equivalences
as the corresponding fully-symbolic state ρ̃ in a given con-
text. The following lemma specifies a bound on this error
probability, which we denote by γ′1(S).

Lemma 1. γ′1(S) ≤ αt−kv

1−α
, where α = 3dS t

p(t−kv)
.

The proof of Lemma 1 is in Appendix C.
Next we observe that it is sufficient to analyze the sound-

ness of a sample in a smaller number of contexts (compared
to the total number of all possible contexts), which we refer
to as a basic set of contexts. If a sample entails exactly the
same set of equivalences as the corresponding fully-symbolic
state for all contexts in a basic set, then it has the same prop-
erty for all contexts. Let N denote the number of contexts
in any smallest basic set of contexts. The following theorem
specifies a bound on N .

Lemma 2. N ≤ pki .

The proof of Lemma 2 is in Appendix D.
The probability that a sample S is not sound in any of

the contexts is bounded above by the probability that S is
not sound in some given context multiplied by the size of
any basic set of contexts. Thus, the error probability γ1(S)
mentioned in property D1 is bounded above by γ′1(S)×N .

The proof of property D2 is by induction on the number
of flowchart nodes analyzed by the random interpreter, and
is similar to the proof of completeness of the fully symbolic
state given in Appendix A.

5.2 Analysis of Phase 2
A sample S computed by the random interpreter in phase

2 at a program point π in procedure P has the following
properties.

D3. Soundness (Phase 2): Suppose that the SEval func-
tion does not involve any random variables. With high
probability, S entails only the equivalences that hold at
π along the paths analyzed by the random interpreter.
The error probability γ2(S) (assuming that the sam-
ples computed before computation of sample S satisfy
property D3, and all samples computed in phase 1 sat-
isfy property D1) is bounded above as follows:

γ2(S) ≤ αt−kv

1− α
, where α =

3dSt

p(t− kv)

dS is as described in property D1. A formal definition
of dS is given in Appendix A.

D4. Completeness (Phase 2): S entails all equivalences
that hold at π along the paths analyzed by the random
interpreter.

The proof of property D3 is an instantiation of the proof
of Lemma 1, and follows from it by choosing the context C
to be the identity mapping. The proof of property D4 is an
instantiation of the proof of property D2, and follows from
it by choosing the context C to be the identity mapping.

Property D4 implies that the random interpreter discovers
all valid equivalences. We now use the properties D1 and D3
to prove the following theorem, which establishes a bound
on the total error probability of the random interpreter.

10

Theorem 3 (Probabilistic Soundness Theorem).
Let H1 = 1 + kv(ki + 1) and H2 = 1 + kv. Let q = nH1β
and d = max{(njp + npp)H1β, (nj + np)H2β}. Suppose that
p > (3dt)2. If SEval function does not involve any ran-
dom variables, then the probability that all random samples
computed by the random interpreter satisfy only those equiv-
alences that hold at the corresponding program points is at
least 1 − 2q

1−α
αt−t0 , where α = 3dt

p(t−kv)
and t0 = kv + 2ki.

In general, the probability that the random interpreter does
not verify a given false equivalence e0 = e′0 is bounded below
by 1 − 2q

1−α
αt−t0 − δ

p
. Here δ refers to the maximum de-

gree of SEval(e) for any expression e that uses a maximum
of 2sH2(nH1)

nH1(nH2)
nH2 +s′ function symbols, where s is

the maximum number of function symbols in any assignment
node, and s′ is the maximum number of function symbols in
expressions e0 and e′0.

Proof. It follows from the discussion after Theorem 4
and Theorem 5 in the next section that the random inter-
preter goes around each loop at most H1β times in phase
1 and H2β times in phase 2 for fixed-point computation.
Hence, the random interpreter computes at most nH1β sam-
ples in phase 1 and nH2β samples in phase 2. Also, note that
the value of dS in the bounds on the probabilities γ1(S) and
γ2(S) (which bound the unsoundness of a sample S) is at
most (njp+npp)H1β in phase 1 and (nj+np)H2β in phase 2.
This implies that the total error probability of the random
interpreter for the case when SEval function does not involve
any random variables is bounded above by 2q

1−α
αt−t0 .

We now prove an upper bound on the probability that the
random interpreter with a general SEval function validates
an incorrect equivalence. Let P0 be the original program,
and let e0 = e′0 be some equivalence that does not hold in
program P0 at some program point π. Let P1 be the program
obtained from P0 by replacing all expressions e by SEval(e).
Let e1 = SEval(e0) and e′1 = SEval(e′0). It follows from
the properties B1, B2 and B3 of the SEval function that
the equivalence e1 = e′1 does not hold in program P1 (at
program point π).

Let P2 be the program obtained from P1 by substituting
all random variables yj in the SEval function by the random
values rj chosen by the random interpreter. Similarly, let
e2 = e1[rj/yj] and e′2 = e′1[rj/yj]. We now show that the
probability (over the choice of the random values rj) that
P2 does not satisfy e2 = e′2 (at program point π) is bounded
above by δ

p
. Let P ′

1 and P ′
2 be the programs without any

procedure calls obtained from programs P1 and P2 respec-
tively using the procedure inlining technique described in
Appendix B. The programs P ′

1 and P ′
2 satisfy the same set

of equivalences as the programs P1 and P2 respectively at
the corresponding points. Each procedure in the programs
P ′

1 and P ′
2 has at most nmax = 2(nH1)

nH1(nH2)
nH2 nodes.

Since P ′
1 does not satisfy the equivalence e1 = e′1 (at pro-

gram point π) it follows from Theorem 5 that there must
be a path of length nmaxH2 (from the entry point of the
procedure enclosing point π to π) along which the equiva-
lence e1 = e′1 is not satisfied. Let ρ1 be the state obtained
by executing the program P ′

1 along that path. Note that
e1[ρ1] 6= e′1[ρ1]. Let ρ2 = ρ1[rj/yj]. The degrees of the
polynomials e2[ρ2] and e′2[ρ2] are bounded above by δ. It
follows from the Schwartz and Zippel’s polynomial identity
testing theorem that the probability that e2[ρ2] = e′2[ρ2] is
at most δ

p
. Hence, the probability that P ′

2 (or equivalently

P2) satisfies the equivalence e2 = e′2 (at program point π) is
at most δ

p
.

Now suppose that the program P2 does not satisfy the
equivalence e2 = e′2 (at program point π). Observe that
performing random interpretation over program P0 (using
the SEval function for the underlying abstraction) to decide
the validity of the equivalence e0 = e′0 (at program point
π) is equivalent to performing random interpretation over
program P2 (using the identity SEval function) to decide
the validity of the equivalence e2 = e′2 (at program point
π). It follows from the result established for the case when
SEval function does not involve any random variables that
the probability that the random interpreter validates the in-
correct equivalence e2 = e′2 in program P2 (at program point
π) is at most 2q

1−α
αt−t0 . The desired result now follows from

the union bound on this probability and the probability that
program P2 satisfies the equivalence e2 = e′2 (at program
point π).

Note that for the case when SEval function does not in-
volve any random variables, Theorem 3 gives a bound on the
error probability for the process of discovering (all) equiva-
lences; while for the general case, it specifies a bound on the
error probability for verification of a (single) given equiva-
lence3. The theorem implies that for probabilistic soundness
we need to choose t to be greater than kv + 2ki. It may be
possible to prove better bounds on t for specific abstractions
(e.g., we only require t > 6 for the case of unary uninter-
preted functions, as discussed in Section 9). For the case
when SEval function does not involve any random variables,
p needs to be greater than (3dt)2. However, for the general
case, we need to choose p to be greater than δ, which im-
plies that we need to perform arithmetic with numbers that
require O(log δ) bits for representation. For example, the
value of δ for the theory of unary uninterpreted functions
is 2sH2(nH1)

nH1(nH2)
nH2 + s′, and this implies that the

arithmetic should be performed with numbers that require
O(nkv log n) bits for representation. However, we feel that
this analysis is very conservative, and experiments suggest
that 32-bit primes are good enough in practice.

6. FIXED-POINT COMPUTATION
The notion of loop that we consider for fixed-point com-

putation is that of a maximal strongly connected compo-
nent (SCC). For defining SCCs in a program in an inter-
procedural setting, we consider the directed graph represen-
tation of a program that has been referred to as supergraph
in the literature [17]. This directed graph representation
consists of a collection of flowcharts, one for each procedure
in the program, with the addition of some new edges. For
every edge to a call node, say from node m1 to call node
m2 with the call being to procedure P , we add two new
edges: one from node m1 to start node of procedure P , and
the other from exit node of procedure P to node m2. Now
consider the DAG of SCCs of this directed graph represen-
tation of the program. Note that an SCC in this DAG may
contain nodes of more than one procedure4 (in which case

3The error probability for verification of m equivalences
can be obtained by multiplying the error probability of one
equivalence by m.
4This happens when the call graph of the program contains
a maximal strongly connected component of more than one
node.

11

it contains all nodes of those procedures).
In both phase 1 and phase 2, the random interpreter pro-

cesses all SCCs in the DAG in a top-down manner. It goes
around each SCC until a fixed point is reached. In phase
1, a sample computed by the random interpreter represents
sets of equivalences, one for each context. A fixed point is
reached for an SCC in phase 1, if for all points π in the SCC
and for all contexts C (for the procedure enclosing point π),
the set of equivalences at π in context C has stabilized. In
phase 2, a sample computed by the random interpreter rep-
resents a set of equivalences; and a fixed point is reached for
an SCC, if for all points π in the SCC, the set of equivalences
at π has stabilized. Let H1 and H2 be the upper bounds
on the number of iterations required to reach a fixed point
across any SCC in phase 1 and 2 respectively.

Theorem 4 (Fixed Point Theorem for Phase 1).
Let ρ̃1, . . . , ρ̃m be the fully-symbolic states computed by the
random interpreter in phase 1 at some point π inside a loop
in successive iterations of that loop such that ρ̃i does not
imply the same set of equivalences as ρ̃i+1 in some context.
Then, m ≤ H1, where H1 = 1 + kv(ki + 1).

Proof. We first introduce some notation. Let ρ be any
state that maps variables x1, . . . , xa to polynomials that are
linear in input variables y1, . . . , yb. Let ρ(xj) = vj(b+1) +

bP
i=1

vi+(j−1)(b+1)yi, where the polynomials vi do not involve

the input variables y1, . . . , yb. We use the notation R(ρ) to
denote the vector (v1, . . . , va(b+1), 1). For any fully-symbolic
state ρ̃, we use the notation V(ρ̃) to denote the smallest
vector space generated by {R(ρ̃)[vi/wi] | vi ∈ Fp} over the
field Fp, where R(ρ̃)[vi/xi] denotes the vector obtained from
R(ρ̃) by replacing all weight variables wi by some choices of
elements vi from Fp.

Consider the vector spaces V(ρ̃i) and V(ρ̃i+1). Note that
V(ρ̃i) is included in V(ρ̃i+1) since ρ̃i is an instantiation of
ρ̃i+1. Also, note that V(ρ̃i) 6= V(ρ̃i+1) since ρ̃i does not
imply the same set of equivalences as ρ̃i+1 in some con-
text. Hence, Rank(V(ρ̃i)) < Rank(V(ρ̃i+1)). Note that
Rank(V(ρ̃1)) ≥ 1 and Rank(V(ρ̃m)) ≤ 1+kv(ki+1). Hence,
m ≤ 1 + kv(ki + 1).

Theorem 5 (Fixed Point Theorem for Phase 2).
Let ρ̃1, . . . , ρ̃m be the fully-symbolic states computed by the
random interpreter in phase 2 at some point π inside a loop
in successive iterations of that loop such that ρ̃i does not
imply the same set of equivalences as ρ̃i+1 in some context.
Then, m ≤ H2, where H2 = 1 + kv.

The proof of Theorem 5 is similar to the proof of Theo-
rem 4 and follows from the observation that Rank(V(ρ̃m)) ≤
1 + kv.

We have described a worst-case bound on the number of
iterations required to reach a fixed point. However, we do
not know if there is an efficient way to detect a fixed point
since the random interpreter works with randomized data-
structures. The random interpreter can use the strategy of
iterating around a loop (SCC) H1β times in phase 1 and for
H2β times in phase 2, where β is the number of back-edges
in the loop. Note that this guarantees that a fixed point will
be reached. This is because if a fixed point is not reached,
then the set of equivalences corresponding to at least one of
the samples (computed by the random interpreter) at the

target of the back-edges must change, and it follows from
Theorem 4 and Theorem 5 that there can be at most H1 or
H2 such changes at each program point in phase 1 or phase
2 respectively.

7. COMPUTATIONAL COMPLEXITY
We assume that the random interpreter performs the op-

timization of maintaining one global state in the SSA ver-
sion of the program as discussed in Section 4.3. Under that
optimization, a join operation reduces to processing phi-
assignments at that join point. We also assume unit cost for
each arithmetic operation and that the size of polynomial
SEval(e) is linear in size of expression e. We estimate the
running time of the random interpreter for phase 1, which
dominates the running time for phase 2. The cost of process-
ing each assignment, both phi and non-phi, is O(kit). The
cost of processing a procedure call is O(kikot

2). For fixed-
point computation, the random interpreter goes around each
loop at most H1β times. Assuming β to be a constant,
the running time of the random interpreter is O(nsH1kit +
npH1kikot

2). It follows from Theorem 3 that for probabilis-
tic soundness, we need to choose t to be greater than kv+2ki.
This yields a total complexity of O(nsk

2
vk

2
i + npk

3
vk

2
iko) for

the random interpreter.
If we regard ki and ko to be constants, since they de-

note the size of the interface between procedure boundaries
and are supposedly small, and the number of procedure call
nodes np to be significantly smaller than the number of as-
signment nodes ns, then the complexity of the random inter-
preter reduces to O(nsk

2
v), which is linear in the size of the

program and quadratic in the maximum number of visible
program variables at any program point.

8. SPECIAL CASE OF LINEAR
ARITHMETIC

In this section we discuss the use of inter-procedural ran-
dom interpretation to discover linear equalities among pro-
gram variables that take rational values. The basic strategy
is to discover the linear equalities among program variables
over a randomly chosen prime field Fp (rather than the infi-
nite field of rationals) using the SEval function described in
Section 2.3. This is followed by mapping back the discovered
equalities to the field of rationals.

The motivation for first solving the problem over a ran-
domly chosen prime field (as opposed to directly solving over
the infinite field of rationals) comes from the need to avoid
manipulating large numbers. For example, consider the pro-
gram shown in Figure 6. Any summary-based approach for
discovering linear equalities will essentially compute the fol-
lowing summaries for procedures Pm and P ′

m:

Pm(x) = 22m

x

P ′
m(x) = 22m

x

Note that representing the arithmetic constant 22m

using
standard decimal notation requires Ω(2m) digits. The prob-
lem of manipulating large numbers can be avoided by per-
forming computations over a small finite field Fp, where
prime p is chosen randomly.

In the next section, we discuss how to discover linear
equalities (over the field of rationals) at any program point
from the sample computed at that point by performing ran-

12

P0(x) = { return 2x; }

Pi(x) = { y := Pi−1(x); return Pi−1(y); }

P ′
0(x) = { return 2x; }

P ′
i (x) = { y := P ′

i−1(x); return P ′
i−1(y); }

Main() = { y1 := Pm(0); y2 := P ′
m(0);

assert(y1 = y2); }

Figure 6: A program of size O(m) for which any
deterministic summary based inter-procedural anal-
ysis requires Ω(2m) space and time for manipulat-
ing arithmetic constants (assuming standard binary
representation). The program contains 2m+3 proce-
dures Main, Pi and P ′

i for i ∈ {0, . . . , m}. A randomized
analysis does not have this problem.

dom interpretation over the field Fp for some randomly cho-
sen prime p.

8.1 Discovering Linear Equalities
For discovering linear equalities at a program point π, the

random interpreter extracts relationships from the sample S
computed by it at program point π. This is done by assum-
ing a relationship of the form α +

P
j

αjxj = 0 among the

variables xj ’s that are visible at π, and then solving for the
unknowns α and αj ’s from the following set of simultaneous
linear equations:

α +
X

j

αjSi(xj) = 0 1 ≤ i ≤ t

The above system of equations may have a parametrized so-
lution (instead of a unique solution). From the parametrized
solution, we may obtain a linearly independent set of solu-
tions by repeatedly plugging 1 for one of the parameters and
0 for the rest. A more useful set of linear equalities may be
those that involve few variables (as opposed to potentially
all visible variables), e.g., variable equalities, constant vari-
ables, or induction variables. These may be discovered by
assuming more specific templates like x = α or x = α1y+α2,
and solving for the unknowns α’s as above.

Note that the coefficients of the linear equalities thus dis-
covered are expressed modulo p (since the random inter-
preter performs arithmetic modulo p to avoid the problem of
dealing with large numbers). The challenge now is to obtain
the original rational coefficients, assuming that these ratio-
nal coefficients involve integers with small absolute value. In
other words, given z ∈ Fp, we want to obtain small integers
m1 and m2 such that m1

m2
= z mod p, i.e., m1 = m2z mod p.

Note that if both m1 and m2 have absolute value less thanp
p
2
, then m1 and m2 are unique.

Given z ∈ Fp, the problem of finding smallest m1 and
m2 such that m1

m2
= z mod p is equivalent to the problem

of finding the shortest (in terms of the Euclidean norm)
non-zero vector in the set A = {(m1, m2) | m1 − m2z =
0 mod p}. The latter problem can be solved by using lattice
reduction techniques [2]. Since the set A is 2-dimensional

Rationalize(z,p)
u1 = (z, 1);
u2 = (p, 0);
do

if (‖u1‖ > ‖u2‖) then swap u1 and u2;

a :=
j
〈u1,u2〉
‖u1‖2

m
;

u2 := u2 − au1;
while (‖u1‖ > ‖u2‖);
return u1;

Figure 7: A procedure to obtain small rational co-
efficients from their images in Fp. Here 〈u1, u2〉 de-
notes the inner product of vectors u1 and u2, i.e., if
u1 = (a1, b1) and u2 = (a2, b2), then 〈u1, u2〉 = a1a2+b1b2.

‖u‖ denotes the Euclidean norm
p〈u, u〉, and bfe de-

notes the integer closest to f .

in this case, we can simply use Gaussian reduction algo-
rithm [5], which is similar to the Euclidean algorithm for
computing the greatest common divisor of two numbers.
The procedure Rationalize shown in Figure 7 implements
this algorithm and returns the pair m1 and m2, given z and
p.

The correctness of the procedure Rationalize follows from
the invariant that both vectors u1 and u2 belong to the set
A and their norm decreases in each iteration of the while
loop. The while loop terminates with u1 being the short-
est vector in set A and u2 being the next shortest vector.
We now sketch a proof that the while loop in the proce-
dure Rationalize terminates in at most dlog 2pe iterations.
The value of ‖u2‖ in the first iteration is p. Its value in the
last iteration is at least

p
p
2
, which is a lower bound for the

length of the second shortest vector in the set A. (This is
because there can be at most one pair of m1 and m2 such
that m1

m2
= z mod p and |m1|, |m2| <

p
p
2
. Hence, it must

be the case that at least one element of either the short-
est vector or the second shortest vector must have absolute
value at least

p
p
2
. This implies that the length of the second

shortest vector is bounded below by
p

p
2
.) It can be proved

that ‖u2‖ decreases by a factor of at least
√

2 in each itera-

tion. Hence, the loop terminates in at most dlog√2

„
p√

p
2

«
e

iterations. However, experiments show that on the average
6 iterations are needed for a 32-bit prime.

We now describe some heuristics (as an alternative to
implementing the procedure Rationalize) to discover the
original rational coefficients from their images in Fp. We
can compute and store the following mapping Ip (indexed
by its image) for a randomly chosen prime p and some small
integer constant c beforehand.

Ip

„
m1

m2

«
= m1×m−1

2 mod p −c ≤ m1 ≤ c, 1 ≤ m2 ≤ c

Hence, given z, we can lookup the store to immediately out-
put m1 and m2 such that m1

m2
= z mod p. This approach

works if the absolute values of the numerator and denomi-
nator are at most c.

Another alternative is to assume that the denominators
of the coefficients of the linear equalities are 1, or in fact
any known constant m. In this case, given z and m, we can

13

estimate m1 such that z = m1
m

mod p as follows:

m1 =

(
m′

1 if m′
1 < p

2

m′
1 − p otherwise

where

m′
1 = (z ×m) mod p

In either of the above solutions (for obtaining rational
numbers from their images in Fp), we need to verify the
linear equalities thus discovered. This is because we do not
know beforehand whether the assumption on the numerators
and denominators (of the rational coefficients in the linear
equalities) being small hold or not. Hence, we need to run
the random interpreter again with a new randomly chosen
prime p′ and verify the linear equalities discovered in the
first round.

In the next section, we estimate the additional error prob-
ability that arises in the process of mapping the linear equal-
ities discovered over a randomly chosen prime field to the
field of rationals. We then discuss the computational com-
plexity of the inter-procedural random interpreter for the
abstraction of linear arithmetic.

8.2 Error Probability Analysis
The error probability of the random interpreter can be

decomposed into two parts. The special case in Theorem 3
gives the error probability of the random interpreter assum-
ing that the linear equalities are to be discovered over the
prime field Fp. We now estimate the remaining error prob-
ability that results from performing the computations over
the prime field Fp instead of the infinite field of rationals
(Theorem 6), and then mapping the results back to ratio-
nals Theorem 8). This error probability is a function of the
size of the set from which the prime is chosen randomly;
hence, it suggests how big the size of this set should be in
order to obtain a specific upper bound on the error proba-
bility.

Performing computations over a prime field preserves all
true linear equalities, but may introduce some spurious lin-
ear equalities. For example, consider the following program
fragment, where c is some prime number.

if (*) then x := 1 else x := c + 1;
assert (x = 1);

The assertion at the end of the program is false, but if the
arithmetic is performed over the prime field Fp for p = c,
then the assertion becomes true. However, note that the
probability of choosing the prime number p to be c is small
since the prime number p is chosen from a large enough set
of primes. It follows from Theorem 6 (stated and proved be-
low) that, in general, the probability of such spurious linear
equalities being introduced is small.

The process of discovering the true coefficients of linear
equalities from the coefficients expressed in the prime field
can also introduce some error. For example, consider the
following program fragment:

x := c;

The linear equality x = c holds at the end of the above
program fragment. Suppose p ≤ c ≤ 3p/2. Let c′ = c mod
p. Then, the technique suggested in Section 8.1 will yield

the incorrect linear equality x = c′, if c′ mod p′ = c mod p′,
where p′ is the second randomly chosen prime for performing
random interpretation over the prime field F′p to verify the
equalities discovered during the first round. However, it
follows from Property 7 (stated below) that the probability
of choosing the prime number p′ to be such that c′ mod p′ =
c mod p′ is small since the prime number p′ is chosen from
a large enough set of primes. It follows from Theorem 8
(stated and proved below) that in general the probability of
discovering such incorrect coefficients in linear equalities is
small.

Before stating the theorems that bound the desired error
probabilities, we first introduce some notation. Let s be
a bound on the size of all expressions e that occur in the
assignment node x := e or conditional node e = 0 in terms of
the number of additions. Let cm be a bound on the absolute
value of the coefficients that occur in these expressions. Let
bm = 1+nmax(nmax +1)(log s+log cm) bits, where nmax =
2(nH1)

nH1(nH2)
nH2 .

Theorem 6. The probability that performing arithmetic
over the prime field Fp when p is chosen randomly from
[1, pm], introduces any spurious linear equalities is bounded
above by n

2a , if pm = 2a+1b′m log (2ab′m), where b′m = (bm +

1)(kv + 1)2.

The proof of Theorem 6 can be found in [7]. We sketch
here the main idea. It can be shown that an appropriate de-
terministic summary based algorithm (along the lines of one
described in [14]) can represent the numerator and denom-
inator of the value of variables in different states using at
most bm = 1+nmax(nmax +1)(log s+log cm) bits. We then
observe that no spurious linear equalities are introduced at
a given program point if the determinant of an appropriate
matrix, with at most kv + 1 rows and columns and with en-
tries that require at most bm bits for representation, remains
non-zero when the arithmetic operations are performed over
Fp. The probability of such an event happening is given by
the following property.

Property 7. The probability that two distinct b bit inte-
gers are equal modulo a randomly chosen prime from [1, pm]
is at most 1

u
for pm ≥ 2ub log (ub).

The proof of Property 7 follows from the prime number the-
orem which states that the number of prime numbers less
than x is at least x

log x
.

Theorem 8. Suppose the prime p′ used for verifying the
linear equalities discovered in the first round is chosen ran-
domly from [1, pm]. Let c′m be the bound on the absolute
value of the coefficients of the linear equalities discovered
in the first round. Then, the probability of incorrect verifi-
cation of the coefficients is bounded above by nkv

2a , if pm =

2a+1b′m log (2ab′m), where b′m = (bm+c′m)(kv+1)+log (kv + 1).

The proof of Theorem 8 is also based on Property 7 and
can be found in [7].

Theorem 6 and Theorem 8 suggest that the random in-
terpreter must perform arithmetic with primes that require
O(nkvki log n) bits for representation (assuming s and cm

to be constants). However, we feel that this is a conser-
vative analysis, and we do not know of any program that
illustrates this worst-case behavior. Experiments discussed
in Section 10 suggest that even 32-bit primes do not yield
any error in practice.

14

� : � � 1; � : � � 3;

Input : � , � 2, � 3

� : � � 2;

� : � 4;

� : � � ;

� : � 0;

� : � 0;

{ � = � 1, � = 4, � = � 1 }

{ � = � 2, � = 4, � = � 2 }

{ � = � 3, � = 4, � = � 3 }

{ � = � 1, � = � 1, � = 5 }

{ � = � 2, � = � 2, � = 5 }

{ � = � 3, � = � 3, � = 5 }

{ � = � 1, � = 0, � = 0 }

{ � = � 2, � = 0, � = 0 }

{ � = � 3, � = 0, � = 0 }

Few inst antiations of
(for random val ues of i’s)

{ � = 1� 1 + 2� 2 + (1 1 2) � 3,

� = 34 + 4� + (1 3 4)0,

� = 3� + 45 + (1 3 4)0 }

Determ inist ic Sum m ary:

Random ized Sum m ary:

� : � � ;

� : � 5;

*

*

Figure 8: Illustration of the difference between
the deterministic summary computed by MOS al-
gorithm and the randomized summary computed by
our algorithm.

8.3 Computational Complexity
As discussed in Section 7, the inter-procedural random

interpreter has a complexity of O(nskvk
2
i t+npkvk

2
ikot

2) (as-
suming unit cost for each arithmetic operation). It follows
from Theorem 3 that for probabilistic soundness, we need
to choose t to be greater than kv + 2ki. However, we feel
that our analysis for probabilistic soundness is conservative.
Experiments discussed in Section 10 suggest that even t = 3
does not yield any error in practice if we want to verify equal-
ities (among any number of program variables), or discover
equalities between 2 program variables.

8.4 Related Work
Recently, Muller-Olm and Seidl gave a deterministic algo-

rithm (MOS) that discovers all linear equalities in programs
that have been abstracted using non-deterministic condi-
tionals [14]. The MOS algorithm is also based on comput-
ing summaries of procedures. However, their summaries are
deterministic and consist of linearly independent runs of the
program. The program shown in Figure 8 illustrates the dif-
ference between the deterministic summaries computed by
MOS algorithm and the randomized summaries computed
by our algorithm. The MOS algorithm maintains the (lin-
early independent) real runs of the program, and it may
have to maintain as many as kv(ki+1) runs. The runs main-
tained by our algorithm are fictitious as they do not arise in
any concrete execution of the program; however they have
the property that (with high probability over the random
choices made by the algorithm) they entail exactly the same
set of equivalences in all contexts as do the real runs. Our

algorithm needs to maintain only a few runs. The conserva-
tive theoretical bounds show that more than kv + 2ki runs
are required, while experiments suggest that even 3 runs
are good enough (if we want to verify linear equalities, or
discover linear equalities between 2 program variables).

The authors have proved a complexity of O(nk8
v) for the

MOS algorithm assuming a unit cost measure for arithmetic
operations. It turns out that the arithmetic constants that
arise in MOS algorithm may be large enough that Ω(2n)
bits for required for representing constants, and hence Ω(2n)
time is required for performing a single arithmetic operation.
The program shown in Figure 6 illustrates such an exponen-
tial behavior of MOS algorithm. The MOS algorithm can
also use the technique of avoiding large arithmetic constants
by performing arithmetic modulo a randomly chosen prime.
However this makes MOS a randomized algorithm; and the
complexity of our randomized algorithm remains better than
that of MOS. It is not clear if there exists a polynomial time
deterministic algorithm for this problem.

Sagiv, Reps and Horwitz gave an efficient algorithm (SRH)
to discover linear constants inter-procedurally in a program
[20]. Their analysis considers only those affine assignments
whose right hand sides contain at most one occurrence of a
variable. However, our analysis is more precise as it treats
all affine assignments in a precise manner, and also it dis-
covers all linear equalities (not just constants).

The first intra-procedural analysis for discovering linear
equalities was given by Karr way back in 1976 [11]. The
fact that it took several years to obtain an inter-procedural
analysis to discover all linear relationships in programs that
have been abstracted using linear arithmetic assignments
demonstrates the complexity of inter-procedural analysis.

9. SPECIAL CASE OF UNINTERPRETED
FUNCTIONS

In this section, we discuss the use of inter-procedural ran-
dom interpretation for discovering Herbrand equivalences
among program sub-expressions that have been abstracted
using unary uninterpreted functions. This abstraction is
useful for modeling fields of data-structures and can be used
to compute must-alias information.

Note that we restrict our attention to unary uninterpreted
functions (instead of considering the more general binary
uninterpreted functions). This is because in the case of
binary uninterpreted functions, expressions are mapped to
vectors rather than scalars. The size of these vectors is lin-
early proportional to the depth of any expression computed
by the program along any acyclic path [9]. In an inter-
procedural setting, the depth of such expressions can be
exponential in the size of the program. Hence, unless we
can prove the conjecture that the size of the vectors need
only be logarithmic in the size of the program (as men-
tioned in [9]), the complexity of processing each node will
be exponential in the size of the program, which is perhaps
not any worst-case better than a non-summary based inter-
procedural analysis (which involves reducing the problem of
inter-procedural analysis to intra-procedural analysis by do-
ing procedure inlining as described in Appendix B). Since
we are interested in polynomial-time complexity algorithms
in this paper, we leave out the discussion of the complexity of
the inter-procedural analysis for binary uninterpreted func-
tions. However, the inter-procedural random interpretation

15

technique described in this paper is applicable to reasoning
about binary uninterpreted functions too.

9.1 Error Probability Analysis
Since the SEval function for unary uninterpreted func-

tions contains random variables, the general case in Theo-
rem 3 applies, which specifies a bound on the error prob-
ability for verification of one equivalence. The total error
probability of the random interpreter is given by the prod-
uct of this error probability (for verification of one equiv-
alence) with the number of equivalences between program
sub-expressions verified by the random interpreter.

For probabilistic soundness, Theorem 3 requires choosing
t to be greater than kv + 2ki. However, for the specific
case of unary uninterpreted functions, we require t to be
only greater than 6. This is because of the following reason.
Observe that any equivalence in the abstraction of unary
uninterpreted functions involves only 2 program variables.
Also, observe that the validity of any equivalence (at any
program point) depends on the relationship between at most
2 input variables of the enclosing procedure. Hence, the
proof of Theorem 3 can be specialized to the specific case
of unary uninterpreted functions by substituting kv = 2 and
ki = 2, which yields the desired constraint that t need only
be greater than 6.

9.2 Computational Complexity
It follows from the above discussion that for probabilistic

soundness, we need to choose t to be greater than 6. This
yields a total complexity of O(nskvk

2
i + npkvk

2
iko) for the

random interpreter (assuming unit cost for each arithmetic
operation).

9.3 Related Work
There have been a number of attempts at developing intra-

procedural algorithms for the problem of discovering equiva-
lences in a program with non-deterministic conditionals and
uninterpreted functions. For a long time, all the known al-
gorithms were either exponential or incomplete [12, 18, 19].
We presented the first randomized [9] as well as a deter-
ministic [10] polynomial time complete algorithm for this
problem.

Recently, Müller-Olm, Seidl, and Steffen have given an al-
gorithm to detect Herbrand equalities in an inter-procedural
setting [15]. Their algorithm is complete (i.e., it detects
all valid Herbrand equalities) for side-effect-free procedures
that have only one return value. Their algorithm can also
detect all Herbrand constants. In contrast, our random in-
terpretation based inter-procedural analysis detects all equiv-
alences without any restriction on the number of return val-
ues, or global values affected by a procedure. However, our
algorithm has a polynomial time complexity bound only for
unary uninterpreted functions.

Gil and Itai have characterized the complexity of a similar
problem, that of type analysis of object oriented programs
in an inter-procedural setting [6].

10. EXPERIMENTS
In this paper, we have expanded the body of theoretical

evidence that randomized algorithms have certain advan-
tages, such as simpler implementations and better computa-
tional complexity, over deterministic ones. We now describe
our experience with experimenting some of these algorithms.

t p = 983 p = 65003 p = 268435399
E1 E2 E3 E1 E2 E3 E1 E2 E3

2 1.7 0.2 95.5 0.1 0 95.5 0 0 95.5
3 0 0 64.3 0 0 3.2 0 0 0
4 0 0 0.2 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0

E1 : % of incorrect variable constants x = c reported
E2 : % of incorrect variable equalities x = y reported
E3 : % of incorrect dependent induction variables reported

Table 1: Percentage Ei of incorrect relationships of
different kinds discovered by the inter-procedural
random interpreter as a function of the number of
runs t and the randomly chosen prime p on a collec-
tion of programs, which are listed in Table 2. For
example, with t = 2 and p = 983, the random inter-
preter discovered 3501 variable constants, of which
59 were incorrect; hence, E1 = 59

3501−59
× 100 ≈ 1.7%.

The total number of correct relationships discovered
were 3442 variable constants, 4302 variable equalities,
and 50 dependent induction variables.

The goals of these experiments are threefold: (1) measure
experimentally the soundness probability and its variation
with certain parameters of the algorithm, (2) measure the
running time and effectiveness of the inter-procedural ver-
sion of the algorithm, and compare it to the intra-procedural
version, and (3) perform a similar comparison with a deter-
ministic inter-procedural algorithm.

We ran all experiments on a Pentium 1.7GHz machine
with 1Gb of memory. We used a number of programs, up to
28,000 lines long, some from the SPEC95 benchmark suite,
and others from similar measurements in previous work [20].
We measured running time using enough repetitions to avoid
timer resolution errors.

We have implemented the inter-procedural algorithm de-
scribed in this paper, in the context of the linear equalities
domain. The probability of error grows with the complexity
of the relationships we try to find, and shrinks with the in-
crease in number of runs and the size of the prime number
used for modular arithmetic. The last two parameters have
a direct impact on the running time.5

We first ran the inter-procedural randomized analysis on
our suite of programs, using a variable number of runs, and
prime numbers of various sizes. We consider here equalities
with constants (x=c), variable equalities (x=y), and linear
induction variable dependencies among variables used and
modified in a loop (dep).6 Table 1 shows the number of er-
roneous relationships reported in each case, as a percentage
of the total relationships found for the corresponding kind.

These results are for programs with hundreds of vari-
ables; and our analysis for probabilistic soundness requires
t > kv + 2ki, yet in practice we do not notice any errors for
t ≥ 4. Similarly, our theoretical estimates of the error prob-

5For larger primes, the arithmetic operations cannot be in-
lined anymore.
6We found many more linear dependencies, but report only
the induction variable ones because those have a clear use
in compiler optimization.

16

Random Inter-procedural Random Intra-procedural Det. Inter-procedural
Program Size inp x=c x=y dep Time2 Time3 ∆x=y ∆x=c ∆dep Speedup3 ∆inp Speedup2

go 29K 63 1700 796 6 47.3 70.4 170 260 3 107 17 1.9
ijpeg 28K 31 825 851 12 3.8 5.7 34 1 9 24 3 2.3
li 23K 53 392 2283 9 34.0 51.4 160 1764 6 756 20 1.3
gzip 8K 49 525 372 2 2.0 3.05 200 12 1 39 6 2.0
bj 2K 0 117 9 0 1.2 1.8 0 0 0 11 0 2.3
linpackc 2K 14 86 16 1 0.07 0.11 17 1 1 9 0 1.8
sim 2K 3 117 296 0 0.35 0.54 3 11 0 22 0 1.7
whets 1K 9 80 2 6 0.03 0.05 17 1 0 9 0 1.5
flops 1K 0 52 4 4 0.02 0.03 0 0 0 22 0 2.0

Size: # of lines of C-code
inp: # of linear relationships among input variables at start of procedures
x=c: # of variables equal to constant values
x=y: # of variable equalities
dep: # of dependent loop induction variables
Timei: Time (in seconds) for r = i runs
∆ k: Difference of # of relationships of kind k found by Random Inter-procedural and given algorithm
Speedupi: Ratio of time with Timei of Random Inter-procedural

Table 2: Comparison of precision and efficiency between the randomized inter-procedural, randomized intra-
procedural, and deterministic inter-procedural analyses on SPEC benchmarks.

ability when using small primes are also pessimistic. With
the largest prime shown in Table 1, we did not find any
errors if we use at least 3 runs.7 In fact, for the problem
of discovering simpler kinds of equalities (variable constants
x = c, variable equalities x = y), we do not observe any er-
rors for t = 2. This is in fact the setup that we used for the
experiments described below that compare the precision and
cost (in terms of time) of the randomized inter-procedural
analysis with that of randomized intra-procedural analysis
and deterministic inter-procedural analysis.

The first set of columns in Table 2 show the results of the
inter-procedural randomized analysis for a few benchmarks
with more than 1000 lines of code each. The column head-
ings are explained in the caption. We ran the algorithm with
both t = 2 and t = 3, since the smaller value is faster and suf-
ficient for discovering equalities between variables and con-
stants. As expected, the running time increases linearly with
t. The noteworthy point here is the number of relationships
found between the input variables of a procedure.

In the second set of columns in Table 2 we show how
many fewer relationships of each kind are found by the intra-
procedural randomized analysis, and how much faster that
analysis is, when compared to the inter-procedural one. The
intra-procedural analysis obviously misses all of the input re-
lationships and consequently misses some internal relation-
ships as well, but it is much faster. The loss of effective-
ness results (when performing an inter-procedural analysis
as compared to an intra-procedural analysis) are similar to
those reported in [20]. Whether the additional information
generated by the inter-procedural analysis is worth the extra
implementation and compile-time cost will depend on how
that information is to be used. For compiler optimization it
is likely that intra-procedural results are good enough, but
perhaps for applications such as program verification the
extra cost might be worth paying.

Finally, we compare our inter-procedural random interpre-

7With only 2 runs, we find a linear relationship between any
pair of variables, as expected.

tation based algorithm with an inter-procedural determin-
istic algorithm. We have implemented and experimented
with the SRH algorithm [20], and the results are shown in
the third set of columns in Table 2. SRH is less precise than
our algorithm, in that it searches only for equalities with
constants (x = c). It does indeed find all such equalities
that we also find. In theory, there are equalities with con-
stants that we can find but SRH cannot, because they are
consequences of more complex linear relationships. How-
ever, the set of benchmarks that we have looked at does not
seem to have any such hard-to-find equalities. For compar-
ison with this algorithm, we used t = 2, which is sufficient
for finding equalities of the form x = c and x = y. However,
we find a few more equalities between the input variables
(∆ inp), and numerous equalities between local variables,
which SRH does not attempt to find. On average, SRH is
1.5 to 2.3 times faster than our algorithm. Again, the cost
may be justified by the expanded set of relationships that
we discover.

A fairer comparison would have been with the MOS algo-
rithm [14], which is as precise as our inter-procedural ran-
domized algorithm. However, implementing this algorithm
seems quite a bit more complicated than either of our algo-
rithm or SRH. We also could not obtain an implementation
from anywhere else. Furthermore, we speculate that due
to the fact that MOS requires data structures whose size is
O(k4

v) at every program point, it will not fare well on the
larger examples that we have tried, which have hundreds of
variables and tens of thousands of program points. Another
source of bottleneck may be the complexity of manipulating
large constants that may arise during its analysis.

11. CONCLUSION
We described a unified framework for random interpre-

tation, along with generic completeness and probabilistic
soundness theorems, both for verifying and for discovering
relationships among variables in a program. These results
can be instantiated directly to the domain of linear relation-

17

ships and, separately, of Herbrand equivalences, to derive ex-
isting algorithms and their properties. This framework also
provides guidance for instantiating the algorithms to other
domains. It is, however, an open problem if a complete al-
gorithm can be obtained for a combination of domains, such
as linear arithmetic and Herbrand equivalences.

The most important result of this paper is to show that
random interpreters can be extended in a fairly natural way
to an inter-procedural analysis. This extension is based on
the observation that a summary of a procedure can be stored
concisely as the results of a number of intra-procedural ran-
dom interpretations with symbolic values for input variables.
Using this observation, we have obtained inter-procedural
randomized algorithms for linear relationships (with better
complexity than similar deterministic algorithms) and for
Herbrand equivalences (for which there is no deterministic
algorithm).

Previously published random interpretation algorithms re-
semble random testing procedures, from which they inherit
trivial data structures and low complexity. The algorithms
described in this paper start to mix randomization with sym-
bolic analysis. The data structures become somewhat more
involved, essentially consisting of random instances of oth-
erwise symbolic data structures. Even the implementation
of the algorithms starts to resemble that of symbolic deter-
ministic algorithms. This change of style reflects our belief
that the true future of randomization in program analysis is
not in the form of a world parallel to traditional symbolic
analysis algorithms, but in an organic mixture that exploits
the benefits of both worlds.

12. REFERENCES
[1] P. Briggs, K. D. Cooper, and L. T. Simpson. Value

numbering. Software Practice and Experience,
27(6):701–724, June 1997.

[2] M. C. Cary. Lattice basis reduction algorithms and
applications. Unpublished survey paper. Feb. 2002.

[3] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Proceedings of the 4th ACM Symposium on Principles
of Programming Languages, pages 234–252, 1977.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, Oct. 1990.

[5] C. F. Gauss. Disquisitiones Arithmeticae. Article 171,
English Edition (Translated by A. Clarke).
Springer-Verlag, New York, 1986.

[6] J. Y. Gil and A. Itai. The complexity of type analysis
of object oriented programs. Lecture Notes in
Computer Science, 1445:601–634, 1998.

[7] S. Gulwani. Program analysis using random
interpretation. Ph.d. dissertation, Computer Science
Department, University of California at Berkeley,
2005.

[8] S. Gulwani and G. C. Necula. Discovering affine
equalities using random interpretation. In 30th ACM
Symposium on Principles of Programming Languages,
pages 74–84. ACM, Jan. 2003.

[9] S. Gulwani and G. C. Necula. Global value numbering

using random interpretation. In 31st ACM Symposium
on Principles of Programming Languages, pages
342–352, Jan. 2004.

[10] S. Gulwani and G. C. Necula. A polynomial-time
algorithm for global value numbering. In 11th Static
Analysis Symposium, volume 3148 of Lecture Notes in
Computer Science. Springer, 2004.

[11] M. Karr. Affine relationships among variables of a
program. In Acta Informatica, pages 133–151.
Springer, 1976.

[12] G. A. Kildall. A unified approach to global program
optimization. In 1st ACM Symposium on Principles of
Programming Language, pages 194–206. ACM, Oct.
1973.

[13] W. Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems,
1(4):323–337, Dec. 1992.

[14] M. Müller-Olm and H. Seidl. Precise interprocedural
analysis through linear algebra. In 31st Annual ACM
Symposium on Principles of Programming Languages,
pages 330–341. ACM, Jan. 2004.

[15] M. Müller-Olm, H. Seidl, and B. Steffen.
Interprocedural herbrand equalities. In Proceedings of
the European Symposium on Programming, LNCS.
Springer-Verlag, 2005.

[16] T. Reps. On the sequential nature of interprocedural
program-analysis problems. Acta Informatica,
33(8):739–757, Nov. 1996.

[17] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In 22nd ACM Symposium on POPL,
pages 49–61. ACM, 1995.

[18] B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computations.
In 15th ACM Symposium on Principles of
Programming Languages, pages 12–27, 1988.

[19] O. Rüthing, J. Knoop, and B. Steffen. Detecting
equalities of variables: Combining efficiency with
precision. In Static Analysis Symposium, volume 1694
of Lecture Notes in Computer Science, pages 232–247.
Springer, 1999.

[20] M. Sagiv, T. Reps, and S. Horwitz. Precise
interprocedural dataflow analysis with applications to
constant propagation. Theoretical Computer Science,
167(1–2):131–170, 30 Oct. 1996.

[21] J. T. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. JACM,
27(4):701–717, Oct. 1980.

[22] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In S.S. Muchnick
and N.D. Jones, editors,. Program Flow Analysis:
Theory and Applications, pages 189–234, 1981.

[23] R. Zippel. Probabilistic algorithms for sparse
polynominals. In Proceedings of the International
Symposium on Symbolic and Algebraic Manipulation
(EUROSAM), volume 72 of LNCS, pages 216–226.
Springer, June 1979.

APPENDIX

A. DEFINITION AND PROPERTIES OF FULLY
SYMBOLIC STATE

18

Phase 1
We hypothetically extend the random interpreter to also
compute a symbolic state ρ̃, paths A, and an integer d (also
referred to as dS) at each program point besides a sample S.
Paths A represent the set of all paths analyzed by the ran-
dom interpreter inside the corresponding procedure. A path
is simply a sequence of assignments. The symbolic state ρ̃
gives for each variable x that polynomial whose different ran-
dom instantiations are the values of x in different states in
the sample S. The integer d represents the maximum degree
of the weight variables (introduced at join nodes and proce-
dure call nodes) in any polynomial in the symbolic state ρ̃.
d also represents the maximum number of join points and
procedure calls analyzed by the random interpreter along
any path immediately after computation of sample S. The
values of ρ̃, A and d are updated for each flowchart node as
shown below.

Initialization. Following initialization is done at procedure
entry points.

ρ̃(x) = SEval(x)

A = {ε}
d = 0

ε denotes the empty sequence of assignment nodes. At all
other program points, the following initialization is done:
ρ̃ = ⊥, A = ∅, and d = −1.

Assignment Node.See Figure 1 (a).
If ρ̃′ = ⊥, then ρ̃ = ⊥, A = ∅ and d = −1. Else,

ρ̃ = ρ̃′[x← (SEval(e))[ρ̃′]]

A = {a; x := e | a ∈ A′}
d = d′

(SEval(e))[ρ̃′] refers to the polynomial obtained from SEval(e)
by replacing all variables y by ρ̃′(y).

Non-deterministic Assignment Node.See Figure 1 (b).
If ρ̃′ = ⊥, then ρ̃ = ⊥, A = ∅ and d = −1. Else,

ρ̃ = ρ̃′[x← x′], where x′ is a fresh variable

A = {a; x :=? | a ∈ A′}
d = d′

Non-deterministic Conditional Node.See Figure 1 (c).

ρ̃1 = ρ̃2 = ρ̃

A1 = A2 = A

d1 = d2 = d

Join Node.See Figure 1 (d).
If ρ̃1 = ⊥, then ρ̃ = ρ̃2, A = A2 and d = d2. Else if ρ̃2 = ⊥,
then ρ̃ = ρ̃1, A = A1 and d = d1. Else,

ρ̃(x) = αρ̃1(x) + (1− α)ρ̃2(x), for all variables x

A = A1 ∪ A2

d = max(d1, d2) + 1

α is a fresh variable that does not occur in ρ̃1 and ρ̃2.

Procedure Call.See Figure 1 (e).
If ρ̃′ = ⊥ or YP ′ = ⊥, then ρ̃ = ⊥, A = ∅ and d = −1. Else,

ρ̃(x) =

(
ỸP ′(x)[ρ̃′(y1)/y1, . . , ρ̃

′(yk)/yk] if x ∈ OP ′

ρ̃′(x) otherwise

A = {a1; a2 | a1 ∈ A′, a2 ∈ Paths(YP ′)}
d = d′ + 1

where,

ỸP ′ =
t−1X
j=1

αjYP ′,j + (1−
t−1X
j=1

αj)YP ′,t

αj ’s are fresh variables that do not occur in ρ̃′ and YP ′,j . OP ′
is the set of output variables of procedure P ′ and y1, . . . , yk

are the input variables of procedure P ′. Paths(YP) refers
to be the set of paths A after the exit node of procedure P
during computation of the set of runs YP for procedure P .
Initially, YP is defined to be ⊥ and Paths(YP) is defined to
be the empty set for all procedures P .

We say that a summary YP is sound and complete for
a context C when YP |=C e1 = e2 ⇐⇒ Holds(e1 =
e2, Paths(YP), C).

Lemma 9. Suppose that the summaries of all procedures
plugged into analyzing a procedure P are sound and complete
for all contexts. Let ρ̃ be the fully-symbolic state and A be
the set of paths computed by the random interpreter at any
program point inside procedure P (in phase 1). Let C be any
context for procedure P and e1 = e2 be some equivalence.
Then,

ρ̃ |=C e1 = e2 ⇐⇒ Holds(e1 = e2, A, C)

Proof. The proof of the lemma is by induction on the
number of flowchart nodes analyzed by the random inter-
preter. The base case follows easily from the soundness and
completeness properties (properties B1 and B2) of the SEval
function. For the inductive case, the proof is trivial if one of
the inputs of a node is ⊥; hence we consider the scenarios
when all inputs to a node are non-⊥.

Assignment Node.See Figure 1 (a).
Let e′1 = e1[

e�x] and e′2 = e2[
e�x]. Note that e′1 = e′2 is

the weakest precondition of e1 = e2 immediately before the
assignment node along paths in A. Hence,

Holds(e1 = e2, A, C) ⇐⇒ Holds(e′1 = e′2, A
′, C)

It follows from the induction hypothesis on ρ̃′ that

Holds(e′1 = e′2, A
′, C) ⇐⇒ ρ̃′ |=C e′1 = e′2

It now follows from property B3 of the SEval function that

ρ̃′ |=C e′1 = e′2 ⇐⇒ ρ̃ |=C e1 = e2

Non-deterministic Assignment Node.See Figure 1 (b).
Let x′ be the fresh variable assigned to x by the symbolic
random interpreter in obtaining state ρ̃ from ρ̃′. Let e′1 =

e1[
x′�x] and e′2 = e2[

x′�x]. Note that e′1 = e′2 is the weakest
precondition of e1 = e2 along paths in A immediately before
the assignment node. The rest of the proof is now similar
to the case of assignment node above.

19

Non-deterministic Conditional Node.See Figure 1(c).
This case is trivial since ρ̃1 = ρ̃ and ρ̃2 = ρ̃.

Join Node.See Figure 1(d).
Note that

Holds(e1 = e2, A,C) ⇐⇒ Holds(e1 = e2, A
1, C)

and Holds(e1 = e2, A
2, C)

It follows from the induction hypothesis on ρ̃1 and on ρ̃2

that

Holds(e1 = e2, A
1, C) ⇐⇒ ρ̃1 |=C e1 = e2

Holds(e1 = e2, A
2, C) ⇐⇒ ρ̃2 |=C e1 = e2

Since ρ̃′ = αρ̃1 + (1− α)ρ̃2, the following holds:

ρ̃′ |=C e1 = e2 ⇐⇒ ρ̃1 |=C e1 = e2 and ρ̃2 |=C e1 = e2

Procedure Call.See Figure 1 (e).
Let ρ̃j be the following symbolic state:

ρ̃j(x) =

(
YP ′,j(x)[ρ̃′(y1)/y1, . . , ρ̃

′(yk)/yk] if x ∈ OP ′

ρ̃′(x) otherwise

where OP ′ is the set of output variables of procedure P ′ and
y1, . . . , yk are the input variables of procedure P ′. It follows
from the induction hypothesis on ρ̃′ and the soundness and
completeness of the summary for procedure P ′ that

Holds(e1 = e2, A,C) ⇐⇒ ∀j ∈ {1, . . , t}, ρ̃j |=C e1 = e2

Since ρ̃′ =
t−1P
j=1

αj ρ̃j + (1−
t−1P
j=1

αj)ρ̃t, the following holds:

ρ̃ |=C e1 = e2 ⇐⇒ ∀j ∈ {1, . . , t}, ρ̃j |=C e1 = e2

Phase 2
We hypothetically extend the random interpreter to also
compute a symbolic state ρ̃, paths A, and an integer d (also
referred to as dS) at each program point besides a sample S,
as is done in proving the correctness of phase 1. These are
updated for different flowchart nodes as in phase 1, except
for the initialization of any procedure other than Main.

The entry point of any procedure P other than Main is
initialized as follows. Let there be m call sites for procedure
P that have a non-⊥ sample. Let Ai, di, ρ̃i be the values
computed by the random interpreter at the ith such call
site. Then, the random interpreter performs the following
initialization for the entry point of procedure P .

A = A1 ∪ . . ∪Am

ρ̃ =

m−1X
i=1

αiρ̃
i + (1−

m−1X
i=1

αi)ρ̃
m

d = max(d1, . . , dm) + 1

Here α1, . . . , αm−1 are fresh variables.
We use the notation Holds2(e1 = e2, A) to denote that

the equivalence e1 = e2 holds at the end of all paths in
A. We also use the notation ρ |= e1 = e2 to denote that
Eval(e1, ρ) = Eval(e2, ρ) for any state ρ.

Lemma 10. Suppose that the summaries of all procedures
plugged into analyzing a procedure P are sound and complete
for all contexts. Let ρ̃ be the fully-symbolic state and A be
the set of paths computed by the random interpreter at any
program point inside procedure P (in phase 2). Let e1 = e2

be any equivalence. Then,

ρ̃ |= e1 = e2 ⇐⇒ Holds2(e1 = e2, A)

Proof. The proof is by induction on the number of flow-
chart nodes analyzed by the random interpreter. The base
case follows easily from the soundness and completeness of
the SEval function. For the inductive case, the proofs for as-
signment node (both deterministic and non-deterministic),
non-deterministic conditional node, join node, and proce-
dure call are similar to the ones for phase 1. We now prove
the inductive case for the entry point of a procedure P .
Let π1, . . , πm be the program points immediately before
the calls to procedure P that have a non-⊥ sample. Let
ρ̃i, Ai, di be the values computed by the random interpreter
at those points. The following holds:

Holds2(e1 = e2, A) ⇐⇒ ∀i ∈ {1, . . , m},Holds2(e1 = e2, A
i)

It follows from the induction hypothesis on ρ̃i that

Holds2(e1 = e2, A
i) ⇐⇒ ρ̃i |= e1 = e2

Since ρ̃ =
m−1P
i=1

αiρ̃
i + (1−

m−1P
j=1

)αmρ̃m, the following holds:

ρ̃ |= e1 = e2 ⇐⇒ ∀i ∈ {1, . . , m} ρ̃i |= e1 = e2

B. EQUIVALENT PROGRAM WITHOUT
ANY PROCEDURE CALLS

In this section, we show how to convert each procedure in
a program (in our program model) into an equivalent pro-
cedure (in the sense that both procedures satisfy the same
set of equivalences at corresponding program points) that
does not use any procedure calls. It follows from Theorem 4
and Theorem 5 that any program node is processed at most
H1 times in phase 1 and H2 times in phase 2 during fixed-
point computation. We use this observation to transform
the given program (with procedure calls) in the following
manner:

1. In the original program, unroll all loops inside proce-
dures and in the call graph along the paths taken by
any standard summary based inter-procedural analyzer
in phase 1. It follows from Theorem 4 that this un-
rolling leads to an H1 times increase in the size of the
procedures.

2. In the acyclic call graph with acyclic procedures ob-
tained in step 1, replace all procedure calls by recursive
procedure inlining in a bottom-up manner.

The procedures thus obtained have at most mm nodes, where
m is the size of the program obtained in step 1 (measured
in terms of the number of nodes). Thus, the size of each
procedure is bounded above by (nH1)

nH1 nodes.
Next, observe that there exists a generalized context (which

is an acyclic program fragment) for each procedure P in the
sense that whatever equivalences hold among the input vari-
ables of P in all calls to P , the same set of equivalences hold

20

among those variables at the end of the generalized context.
The generalized context can be obtained as follows:

3. In the original program, unroll all loops in the call
graph and inside procedures along the paths taken by
any standard summary based inter-procedural analyzer
in phase 2. It follows from Theorem 5 that this un-
rolling increases the size of the procedures by a factor
of at most H2.

4. In the acyclic call graph with acyclic procedures thus
obtained in step 3, build a context (in a bottom-up
manner) for a procedure P , which has q call sites in-
side procedures P1, . . . , Pq , as follows. Construct a
non-deterministic conditional with q branches, whose
ith branch is the context of procedure Pi followed by
the code of Pi that leads up to the corresponding call
to procedure P .

The contexts thus obtained have a worst-case size of mm,
where m is the size of the program obtained in step 3. This
leads to a total size of (nH2)

nH2 for each context.
We can now obtain the desired program without any pro-

cedure calls as follows:

5. In the original program, prepend all procedures by their
generalized contexts obtained in step 4. This leads to
a total size of at most 2(nH2)

nH2 nodes for each pro-
cedure.

6. In the program obtained in step 5, replace all procedure
calls by their summaries obtained in step 2. This leads
to a total size of at most nmax = 2(nH1)

nH1(nH2)
nH2

nodes for each procedure.

C. PROOF OF LEMMA 1
Let S be any sample and ρ̃ be the corresponding fully-

symbolic state of k variables computed by the random in-
terpreter at some program point.

For any state ρ of k variables, let J(ρ) denote the vec-
tor (ρ(x1), . . . , ρ(xk), 1). Let A be the set of elements of
the vectors in the set {J(ρ̃′)[vi/wi] | vi ∈ Fp}, where
J(ρ̃′)[vi/wi] denotes the vector obtained from J(ρ̃′) by re-
placing all weight variables wi by some choices of elements
vi from Fp. Let F′p be the smallest field generated by the el-
ements in set A. Let U(ρ̃′) be the vector space generated by
the vectors {J(ρ̃′)[vi/wi] | vi ∈ Fp} over the field F′p. Let m
be the rank of this vector space. Note that m ≤ 1+k (since
there can be at most 1+k linearly independent vectors over
F′p, where each vector consists of 1 + k elements from F′p).

Let E be the event that the vectors J(S′
1), . . . , J(S′

t) have
less than m linearly independent vectors over the field F′p.
We partition the event E into disjoint cases depending on
which of the vectors J(S′

1), . . . , J(S′
t) are linearly indepen-

dent. Let I be any subset of {1, . . , t}. Let Fi be the event
that J(S′

i) is linearly independent of J(S′
1), . . . , J(S′

i−1). Let
EI be the event

V
i∈I

Fi ∧ V
i∈{1,...,t}−I

¬Fi. The set of events

{EI | I ⊆ {1, . . , t}, 1 ∈ I, |I | < m} is a disjoint partition of
the probability space for event E. Thus,

Pr(E) =
X

I⊆{1,..,t},1∈I,|I|<m

Pr(EI)

Pr(EI)

= Pr(
^
i∈I

Fi ∧
^

i∈{1,..,t}−I

¬Fi)

=
Y
i∈I

Pr(Fi |
^

j∈I,j<i

Fj ∧
^

j∈{1,..,t}−I,j<i

¬Fj]

×
Y

i∈{1,..,t}−I

Pr(¬Fi |
^

j∈I,j<i

Fj ∧
^

j∈{1,..,t}−I,j<i

¬Fj)

≤
Y

i∈{1,..,t}−I

Pr(¬Fi |
^

j∈I,j<i

Fj ∧
^

j∈{1,..,t}−I,j<i

¬Fj)

We now bound Pr(¬Fi | V
j∈I,j<i

Fj ∧ V
j∈{1,..,t}−I,j<i

¬Fj)

for any i ∈ {1, . . , t}−I . Let Ii be the set {j ∈ I | j < i} and
let ni = |Ii|. Let Mi be the matrix with ni + 1 rows from

the set {J(S′
j) | j ∈ Ii ∪ {i}}. Let M̃i be the matrix with

ni + 1 rows obtained from Mi by replacing the row J(S′
i)

with J(ρ̃′). Since the events {Fj}j∈Ii occur, the vectors
{J(S′

j)}j∈Ii are linearly independent. Note that J(ρ̃′) is lin-
early independent of the vectors {J(S′

j)}j∈Ii (because other-
wise Rank(U(ρ̃′)) would be ni, which is less than m). Hence,

Rank(M̃i) = ni + 1. Thus, there exists a submatrix M̃s
i of

M̃i of size (ni + 1)× (ni + 1) such that Rank(M̃s
i) = ni + 1,

or equivalently, Det(M̃s
1) 6≡ 0. Let Ms

i be the submatrix
of Mi consisting of those columns of Mi that are used in
obtaining M̃s

i from M̃i. Note that S′
i is a random instan-

tiation of ρ̃′, and hence Det(Ms
i) is a random instantiation

8 of Det(M̃s
i), which is identically not equal to 0. Hence,

it follows from the classic theorem on checking polynomial
identities [21, 23] that Pr(Det(Ms

i) = 0) ≤ D
p

, where D is

the degree of polynomial Det(M̃s
i) (in the variables whose

random instantiation is used to obtain S′
i from ρ̃′). Note that

D ≤ dS. Since J(S′
i) is linearly dependent on {J(S′

j)}j∈Ii

only if Det(Ms
1) = 0, we have:

Pr(¬Fi |
^

j∈I,j<i

Fj ∧
^

j∈{1,..,t}−I,j<i

¬Fj) ≤ dS

p

Thus, Pr(EI)

≤
Y

i∈{1,..,t}−I

Pr(¬Fi |
^

j∈I,j<i

Fj ∧
^

j∈{1,..,t}−I,j<i

¬Fj)

≤
Y

i∈{1,..,t}−I

dS

p

=

„
dS

p

«t−|I|

8This makes use of the assumption that SEval function
does not involve any random variables because otherwise
the choice of the random variables in S′

i is already decided
by the choices that occur in other states S′

j and hence in

Det(M̃s
i).

21

Pr(E) =
X

I⊆{1,..,t},1∈I,|I|<m

Pr(EI)

≤
X

I⊆{1,..,t},1∈I,|I|<m

„
dS

p

«t−|I|

≤
m−1X
i=1

t− 1

i− 1

!„
dS

p

«t−i

≤
m−1X
i=1

„
3(t− 1)

t− i

«t−i

×
„

dS

p

«t−i

≤
m−1X
i=1

„
3t

t− (m− 1)
× dS

p

«t−i

≤ αt−kv

1− α
, where α =

3dSt

p(t− kv)

We now show that γ′1(S) ≤ Pr(E). Suppose that event
E does not occur. Consider some equivalence e1 = e2 that
is not entailed by ρ̃ in some context C. We show that S
also does not entail the equivalence e1 = e2 in context C.
Let e = SEval(e1) − SEval(e2). Since ρ̃ does not entail
e1 = e2 in context C, there exists some concrete state ρ
belonging to the vector space U(ρ̃) such that ρ does not
entail e1 = e2 in context C, or equivalently, e[ρ][C] 6= 0.
Since event E does not occur, there exist α1, . . . , αt ∈ F′p

such that J(ρ) =
tP

i=1

αiJ(Si). Since
tP

i=1

αi = 1, we have

e[ρ][C] =
tP

i=1

(αie[Si])[C] =
tP

i=1

αi[C](e[Si][C]). This implies

that there exists 1 ≤ i ≤ t such that e[Si][C] 6= 0. Thus,
Si (and hence S) does not entail the equivalence e1 = e2 in
context C. This completes the proof.

D. PROOF OF LEMMA 2
We first define the notion of a basic set of contexts.

Definition 11. [Basic Set of Contexts] A set of contexts
B for a procedure P is said to be basic when for all contexts
C and all equivalences e1 = e2 (such that the variables that
occur in e1 and e2 have mappings in C), if Eval(e1, C) 6=
Eval(e2, C) then there exists a context C′ ∈ B such that
Eval(e1, C

′) 6= Eval(e2, C
′) and C′ ⇒ C. We denote such a

context C′ by BasicB(C, e1 = e2).

A basic set of contexts has the following property.

Property 12. Let B be a basic set of contexts for a pro-
cedure P . Suppose that a summary YP for a procedure P
is sound for all contexts in B. Then YP is sound for all
contexts for procedure P .

Proof. Let C be any context and e1 = e2 be any equiv-
alence such that

¬(Holds(e1 = e2,Paths(YP), C))

This implies that there exists a path a ∈ Paths(YP) such
that

Eval(ea
1 , C) 6= Eval(ea

2 , C)

where ea
i = ei[gm/xm]..[g1/x1], and a is the sequence of as-

signments x1 = g1; . . . ; xm = gm. Let Ca be BasicB(C, ea
1 =

ea
2). By definition of Ca, we have

Eval(ea
1 , Ca) 6= Eval(ea

2 , Ca)

and hence

¬(Holds(e1 = e2,Paths(YP), Ca))

It now follows from the soundness of YP for context Ca that

¬(YP |=Ca e1 = e2)

Since Ca ⇒ C, we conclude that

¬(YP |=C e1 = e2)

Observe that the following set is a basic set of contexts
for any procedure P .

B = {{y1 = v1, . . , yk = vk} | yi ∈ IP , ci ∈ Fp}
where vi ≡ SEval(yi)[ci/yi] and IP denotes the set of input
variables of procedure P . Note that |B| = pki . Hence,
N ≤ pki .

22

