A Pipelined Framework for Online Cleaning of Sensor
Data Streams

Shawn R. Jeffery Gustavo Alonso Michael J. Franklin Wei Hong
Jennifer Widom

Report No. UCB/CSD-5-1413

/l September 2005

[

\

\

| | Computer Science Division (EECS)
\ University of California

\ Berkeley, California 94720

\

\

[

A Pipelined Framework for Online Cleaning of Sensor Data Streams

Shawn R. Jeffery!:3

2ETH Zurich

alonso@inf.ethz.ch

luc Berkeley
{jeffery, franklin}@cs.berkeley.edu

Abstract

Data captured from the physical world through re-
ceptor devices such as wireless sensor networks and
RFID readers tend to be unreliable and noisy. The data
cleaning process for such data is not easily handled by
standard data warehouse-oriented techniques, which do
not take into account the strong temporal and spatial
components of receptor data. Here we present Exten-
sible receptor Stream Processing (ESP), an extensible
framework for cleaning the data streams produced by
physical receptor devices. ESP is a declarative query
processing tool with a pipelined design that is easy to
setup and configure for each receptor deployment. We
validate the ESP platform through three real-world de-
ployments using ESP to clean receptor data streams.

1 Introduction

Physical receptor devices such as wireless sensor net-
works and RFID technologies are enabling new classes
of applications that utilize the devices’ data streams
to gain insight into the physical world. Examples in-
clude real-time supply chain management [14] and en-
vironmental monitoring [26, 28]. To support these and
other emerging applications, receptor-based systems are
being built and deployed with a focus on providing a
shared infrastructure to manage and process the data
produced by receptors.

A limitation of current systems is the unreliability
of the data produced by physical devices. This “dirty
data” manifests itself in two general forms:

e Missed readings: Receptors often employ low cost,
low power hardware and wireless communication,
which lead to frequently dropped messages. For
example, RFID readers often capture only 60-70%

* This work was done while the author was at UC Berkeley
as a Stonebraker Fellow.

Gustavo Alonso?!* Michael J. Franklin!

Wei Hong? Jennifer Widom*

3Intel Research Berkeley 4Stanford University

whong@Qintel-research.net widom@cs.stanford.edu

of the tags in their vicinity [16, 25]. Similarly, in a
one month wireless sensor network deployment at
the Intel Research Lab in Berkeley [20] involving
54 motes, each sensor delivered, on average, only
42% of the data it was asked to report.

e Unreliable readings: Often, individual sensor read-
ings are imprecise and/or unreliable. For instance,
physical devices tend to “fail dirty”: the sensor
fails but continues to report faulty values. In
a sensor network deployment in Sonoma County,
CA [28], for example, 8 out of 33 temperature-
sensing motes failed, but continued to report read-
ings that slowly rose to above 100° Celsius.

Furthermore, these error characteristics vary with
the environment in which the receptors are placed. For
instance, RFID readers may drop more readings in an
environment with metal present [15], and sensor mote
readings are affected by the ambient temperature.

Applications attempting to use such raw receptor
data directly will be rendered useless. For example,
we show in Section 4 that in a simple RFID-enabled
shelf scenario, restock alerts (produced when the num-
ber of items on a shelf drops below a threshold) would
be generated 2.3 times per second if the raw receptor
data were used. In reality, no restock alerts should have
been generated. Thus, the data must be appropriately
cleaned to account for these errors before being used by
any application. Of course, existing deployments nec-
essarily deal with these problems to some extent, but
they tend to use tedious post-processing and ad-hoc
means to clean sensor data, leading to brittle receptor
infrastructures and increased deployment costs.

Thus, the challenge is to 1) directly address the
receptor data’s particular error characteristics (i.e.,
missed and unreliable readings) and 2) to provide a
solution that is easy to deploy and configure.

One possible solution would be to centralize the
cleaning in a data warehouse. Such an approach, how-
ever, is ill-suited for receptor data. Data cleaning

in warehouses is usually an offline, centralized, iter-
ative, and sometimes interactive process that focuses
on a small set of well-defined tasks [27]. In contrast,
receptor-based systems and their associated applica-
tions typically are time sensitive, e.g., real-time fore-
casting and inventory control. This demands that the
data be cleaned online before it is streamed to the ap-
plication, precluding offline or interactive approaches.

More fundamentally, the nature of the errors in
receptor data is not easily corrected by traditional
data cleaning. Receptor data demands different tech-
niques that address the nature of its errors (i.e., missed
and unreliable readings). Receptor data tends to be
strongly correlated in both time and space; the read-
ings observed at one time instant are highly indicative
of the readings observed at the next time instant, as
are readings at nearby devices. We introduce the con-
cepts of temporal granule and spatial granule to capture
these correlations. These granules define the smallest
unit of time and space on which an application op-
erates. These fundamental abstractions can be used
to interpolate lost readings or remove outliers through
temporal and spatial aggregation.

In this paper, we propose an extensible framework
for online cleaning of receptor data streams. Our plat-
form, Eaxtensible receptor Stream Processing (or ESP),
consists of a programmable pipeline of stream-based,
windowed processing stages designed to operate on-the-
fly as the data are streamed through the system. These
stages segment the cleaning process into five tasks, each
responsible for a different logical aspect of the data:

e Point: Tuple-level corrections, transformation,

and filters

e Smooth: Aggregation within a temporal granule to

interpolate for missed readings and remove errant
single readings

e Merge: Aggregation within a spatial granule to

interpolate for missed readings and remove data
from outlier devices

o Arbitrate: Conflict resolution between different

readings from different receptors

e Virtualize: Cross-checking using multiple types of

receptors and application-level cleaning

These stages are generally applicable across many
types of receptors and are easy to program indepen-
dently, in many cases through declarative queries.

This paper is organized as follows. In Section 2, we
place ESP in the context of related work that has ad-
dressed issues relating to data cleaning and receptor-
based systems. We introduce our pipelined cleaning
framework, ESP, in Section 3. We then show the de-
tails of ESP processing through three detailed deploy-
ments using ESP for data cleaning (Sections 4, 5, and

6), and describe experiments verifying that ESP pro-
vides significant improvements in data quality over raw
receptor data. Finally, we outline our future work and
conclude in Section 7.

2 Related Work

Existing work on cleaning receptor data streams can
be grouped into two categories: 1) traditional data
cleaning, and 2) receptor data management.

2.1 Traditional Data Cleaning

There is extensive prior work on data cleaning in the
context of data warehouses and data integration.

Traditional data cleaning tends to focus on a small
set of well-defined tasks, including transformations,
matchings, and duplicate elimination [27]. ESP pro-
vides a framework to utilize these techniques in an on-
line, streaming manner, extending them to take advan-
tage of the characteristics of physical receptor data.

The AJAX tool [18] proposes an extensible, declar-
ative means of specifying cleaning operations in a data
warehouse. This is similar in spirit to ESP in that
we also define an easily deployable and configurable
architecture that utilizes declarative query processing.
AJAX, however, does not consider streaming data or
windowed processing.

Potter’s wheel [30] is an interactive tool for assist-
ing in data cleaning operations. Its interactive nature
restricts its ability to handle the streaming data pro-
duced by receptors.

Finally, many commercial efforts (e.g., [7, 19]) have
addressed data cleaning issues related to enterprise
data integration. These solutions provide tools for
cleaning and translating data, but do not address tem-
poral or spatial aspects of physical receptor data.

2.2 Receptor Data Management

A wide range of projects are addressing issues re-
lated to receptor data management.

Multiple systems provide mechanisms for interact-
ing with wireless sensor networks ([23, 8]). For exam-
ple, TinyDB provides a declarative means of acquiring
data from a sensor network. The data received from
TinyDB, however, must be first cleaned before it can
be used by any application.

The work in [13, 24] addresses cleaning and error
correction for wireless sensor networks. These ap-
proaches are designed only for sensor network data and
the authors do not consider cleaning for other types of

Merge

| [
— 1
[1 [_1[»
ot ! I

Figure 1: ESP Processing Stages

receptors (e.g., RFID). ESP can incorporate these tech-
niques as part of a general cleaning solution applicable
across all types of receptors.

Another important line of work in sensor network
data processing is model-driven query processing, such
as in the BBQ system [12]. While BBQ is not designed
for continuous streaming data, the architecture we pro-
pose for ESP provides a platform for utilizing models
to assist in data cleaning in a streaming context.

Savant middleware [10] is a configurable set of pro-
cessing modules for RFID data. Savant recognizes the
need for processing stages to convert raw RFID data
into application-level data, but it does not deal with re-
ceptors beyond RFID technology, nor does it consider
unreliable devices.

Finally, ESP is part of the HiFi [17] project. HiFi is
a distributed, hierarchical stream processing system de-
signed to support large-scale receptor-based networks,
termed “high fan-in” systems. ESP is intended clean
receptor streams at the edge of the HiFi network.

3 The Extensible Receptor Stream

Processing Framework

In this section, we introduce ESP (Extensible recep-
tor Stream Processing), our pipelined data processing
framework for online cleaning of receptor data streams.

While building the initial version of HiFi [11], we
confronted many of the issues associated with unreli-
able data produced by receptor devices. Most notably,
we observed that the system was unable to produce
meaningful answers when used directly with raw RFID
data. Our solution was to use a rudimentary pipeline
of ad-hoc queries we termed “CSAVA” [17], designed
to run throughout the HiFi hierarchy to convert the
RFID data to application data.

Eztensible receptor Stream Processing (ESP) gener-
alizes and extends the CSAVA pipeline with a focus
on cleaning physical device data at the edge of the
network. ESP cleans raw physical data by processing
multiple physical receptor streams, exploiting the tem-

poral and spatial aspects of receptor data, to produce
a single, improved output stream.

Before discussing the ESP processing model, we first
define our temporal and spatial abstractions that drive
many of ESP’s cleaning mechanisms.

3.1 Temporal and Spatial Granules

In general, receptor-based applications are not in-
terested in individual readings in time or individual
devices in space, but rather in an application-level con-
cept of temporal granules and spatial granules. These
granules define the lowest-level, atomic unit of both
time and space in which an application is interested.
Furthermore, a granule is a means for an application to
indicate to ESP that the data within the granule should
be highly correlated. Thus, ESP uses the granule con-
cept to aggregate, sample, or detect outliers within the
granule.

3.1.1 Temporal Granules

Although many receptor devices are capable of produc-
ing data continuously (or at a very high sample rate),
applications are usually concerned with data from a
larger time period, or temporal granule. For instance,
a sensor network environmental monitoring application
that builds models of micro-climates in a redwood tree
wants data every 5 minutes as this granule captures the
most dynamic variations in micro-climate [29].

To support this notion of temporal granules, ESP
uses windowed processing to group readings within a
granule. Within a window, readings can be aggregated
or compared with each other to detect obvious outliers.

3.1.2 Spatial Granules

Similarly, receptor-based applications are not inter-
ested in the data from individual devices, but rather
in an application-level notion of a spatial granule, such
as a shelf in a retail scenario or a room in a digital home
application. These spatial granules are the lowest level
spatial unit on which an application operates.

To support this application-level view of spa-
tial granules, ESP organizes receptors into proximity
groups. A proximity group defines a set of receptors
of the same type that are monitoring the same spatial
granule. For instance, a set of motes monitoring the
temperature in the same room may be grouped into
the same proximity group, as may two RFID readers
monitoring the same warehouse shelf. Readings from
devices in the same proximity group can be processed
in a similar manner to readings within a temporal gran-
ule.

Spatial granules and physical devices can have one-
to-many, many-to-one, or many-to-many relationships
and may change dynamically. These details are hidden
from the application through ESP.

3.2 ESP Cleaning Stages

Having described the fundamental abstractions un-

derlying ESP, we now describe at a high level ESP’s
processing stages. ESP segments receptor stream pro-
cessing into a cascade of five programmable stages
(shown in Figure 1): Point - Smooth - Merge - Arbitrate
- Virtualize. These stages operate on different logical
aspects of the data as they are streamed through the
pipeline.
Stage 1, Point: The Point stage operates over a
single value in a receptor stream. The primary pur-
pose of this stage is to filter individual values (e.g., er-
rant RFID tags or obvious outliers) or to convert fields
within an individual tuple. In this sense, Point is simi-
lar to the traditional data cleaning task of transforma-
tion [27]. Note the Point may also be used to improve
performance through early elimination of data.

Stage 2, Smooth: In Smooth, ESP uses the temporal
granule defined by the application to correct for missed
readings and detect outliers in a single receptor stream.
It does this by processing readings in a sliding window
corresponding the size of the temporal granule.

Stage 3, Merge: Analogous to the temporal process-
ing in the Smooth stage, Merge uses the application’s
spatial granule to correct for missed readings and re-
move outliers spatially. Merge uses aggregation over
receptor streams within a proximity group, filling in
missed readings and eliminating non-correlated errors
in individual devices.

Stage 4, Arbitrate: Spatial granules may not map di-
rectly to receptor’s detection fields, leading to possible
conflicts between the readings from different proximity
groups that are physically close to one another. The
Arbitrate stage deals with conflicts, such as duplicate
readings, between data streams from different spatial
granules. While this is conceptually similar to tradi-
tional duplicate elimination, the criteria used to re-
solve conflicts in this case are different; Arbitrate takes
into account properties of the receptor devices and the
physical world (e.g., tags closer to a reader will be read
more often) to de-duplicate readings.

Stage 5, Virtualize: Finally, some types of data
cleaning utilize application-level logic or readings from
across different types of receptors to increase the con-
fidence in the data the system reports. To provide a
platform for such techniques, ESP defines a Virtualize

stage, that combines readings from different types of
devices and different proximity groups. For example, a
BBQ [12]-type system used for receptor data cleaning
may exploit correlations between different sensors (e.g.,
voltage and temperature) to provide outlier detection.

3.3 ESP Deployment

Deploying a cleaning pipeline using ESP involves im-
plementing one or more of these stages. Stages may be
implemented in a variety of ways:

e Declarative continuous queries
e User-defined functions or aggregates
e Arbitrary code

These approaches have increasing levels of function-
ality, but decreasing levels of flexibility. Not all stages
need be implemented and multiple operations may be
implemented for one stage. Additionally, the applica-
tion must define the temporal and spatial granules it
is interested in.

An ESP Processor initiates data flow from the ap-
propriate receptors and applies each stage in a Fjord-
style [22] manner as the sensor readings stream through
the pipeline.

Having described ESP processing at a high level, we
present in the next three sections detailed processing
for each stage and demonstrate the overall effective-
ness and ease of configuration of ESP through three
deployments of receptor based systems.

4 RFID Data Processing

The first deployment we address using ESP is a retail
scenario using RFID technology. Such technology is
notoriously error-prone. Tags that exist are frequently
missed while tags that are not in a reader’s normal view
are sometimes read. In a retail scenario, an application
continuously monitors the count of items on each shelf
using Query 1. In this query, the window clause indi-
cates the temporal granule (5 seconds) and the GROUP
BY clause denotes the spatial granule (a shelf).

Query 1 Shelf monitoring query to determine the num-
ber of items on each shelf. The temporal granule is 5
seconds and the spatial granule is a shelf.

SELECT shelf, count(distinct tag_id)
FROM rfid_data [Range By ’5 sec’]
GROUP BY shelf

To study ESP used for cleaning RFID data, we ran
an experiment emulating a retail scenario. Our experi-
mental setup is depicted in Figure 2. We used two 915
MHz RFID readers from Alien Technology [5], each

Shelf 0 Shelf t

t
- et T
- =

/N /N

N
Jdoooxqt

/ \/\ /
oooo0d [qoooogl”

N
N b >
tet AN 7 Ve
- > |- -

~ —
—

N
JF 0’00 0q|
1

e *
[

Figure 2: Shelf scenario setup with 2 shelves, each with an RFID

reader and 10 tags statically placed within 6 feet of the antenna

(5 tags at 3 feet, 5 tags at 6 feet). Additionally, 5 tags were
relocated every 40 seconds.

T e T |
ft 1

responsible for one shelf and thus each forming a prox-
imity group. The readers’ sample period was set at
5Hz (i.e., 5 polls per second). Each shelf was stocked
with 10 tagged items using Alien “I2” tags [4], EPC
Class 1 RFID tags designed for long-range detection
in a controlled environment. Tags were suspended in
the same plane as the reader, spaced 1.5 feet apart
from each other, and at two distances from the reader,
3 feet and 6 feet. Tags were oriented such that their
antennae were directly facing the reader. Note that
this setup is overly favorable to RFID technology as
it attempts to alleviate many of the known causes of
degraded readings [15]. Additionally, to introduce a
dynamic component into the experiment, we relocated
5 items placed 9 feet from the reader between the two
shelves every 40 seconds.

The metric we use to evaluate our techniques is the
average relative error of the results of Query 1, which
is defined as follows:

N |Ri—Ti|

T;
P)
=0

Where:
N = total number of time steps
i = time step at the granularity of the reader (5Hz)
R; = reported count of items on a shelf at time 4
T; = true count of items on a shelf at 4

This metric denotes how far off, on average, the re-
ported count of items is from reality. We ran this exper-
iment multiple times; all runs produced similar results.

Figure 3(a) depicts the trace of the actual count of
items on each shelf over the course of the experiment.
If the application were to use the output of the RFID
readers directly, the results would be near-meaningless
(shown in Figure 3(b)): the average relative error of
the output of Query 1 compared to reality for the du-

15
10

Count of Tags
o
T T T T T T T

Shelf 07
N VaAWAWAWAW AW WAl
10 A
5 Shelf 1]
0 1 1 1 1 1 1
0 100 200 300 400 500 600 700
Time (s)
(a) Reality

Count of Tags

0 100 200 300 400 500 600 700
Time (s)

(b) Query 1 results using raw RFID data

3

Count of Tags
o

- Shelf 0]
ol g . ﬁ]
wf] Sl i

Sr Shelf 1]
0 1 1 1 1 1 1
0 100 200 300 400 500 600 700

Time (s)
(c) Query 1 results after Smooth processing

WL

Count of Tags
o
T T T T T T T

Shelf 0]
oL]
0] —
5 Shelf 1]
o ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700

Time (s)
(d) Query 1 results after Arbitrate processing

Figure 3: Query 1 results after different stages of processing

ration of the experiment was 0.41 (i.e., the count of the
number of items on each shelf was off by almost half, on
average). If an application wants to be notified when
the number of items on a shelf drops below 5, then the
query using the raw data would report that a shelf is
in need of restocking 2.3 times per second, on average.

We can use an ESP pipeline to clean this data. Note
that the RFID reader already provides Point func-
tionality out of the box by removing tags that fail a
checksum [1]. We implement the Smooth and Arbitrate
stages! for ESP (as shown in Figure 4). As there is
only one receptor per proximity group, Merge is not
needed. We describe each processing stage with the

1We demonstrate the other processing stages in the deploy-
ments in the following two sections.

|~~ a3

smooth_input

I ffffff On reader

s
s

s
, N
N S P P
~ - -
-
~ =] =

Figure 4: ESP pipeline for cleaning RFID data

declarative query (expressed in CQL [6]) with which it
is implemented.

4.1 Stage 2:Smooth

At the Smooth stage (shown in Query 2), ESP in-
terpolates for lost readings within a temporal granule.
This query aggregates readings from a single reader’s
stream within a sliding window corresponding to the
size of the temporal granule. The ESP processor ap-
plies this query to each receptor stream (as illustrated
in Figure 4).

Query 2 Interpolating for lost readings in the Smooth
stage. The input stream, smooth_input, is provided by
the ESP processor

SELECT tag_id, count(*)
FROM smooth_input [Range By ’5 sec’]
GROUP BY tag_id

The results of Query 1 over the data produced by
this stage are shown in Figure 3(c). The Smooth stage
is able to eliminate the constant restocking alerts gen-
erated by the query using the raw data.

The count of items per shelf, however, is still inac-
curate (an average relative error of 0.24) due to dis-
crepancies in the performance of the readers. As seen
in Figure 3(c), the antenna for shelf 0 read more tags
than that of shelf 1, despite being of the same model;
the counts reported for shelf 0 were consistently 4 to 5
items higher than reality. We tried different configura-
tions of antennae and determined that this difference
is likely due to known issues with the antenna ports on
RFID readers [2]. Processing in the Smooth stage has
alleviated the issues with dropped readings, but any

application using this data will be misled into thinking
that shelf 0 is overstocked.

4.2 Stage 4:Arbitrate

The Arbitrate stage (shown in Query 3) corrects for
the discrepancies between antennae left unresolved by
the Smooth stage. It does this by comparing, at each
time step, the number of times read for tags that were
read by multiple spatial granules. It then attributes
the tag to the spatial granule that read the item’s tag
the most.

ESP runs Arbitrate over the union of the streams
produced by Query 22.

Query 3 Correcting for duplicate readings in the Ar-
bitrate stage
SELECT spatial_granule, tag_id
FROM arbitrate_input ail [Range By ’NOW’]
GROUP BY spatial_granule, tag_id
HAVING count(*) >= ALL(SELECT count (*)
FROM arbitrate_input ai2
[Range By ’NOW’]
WHERE ail.tag_id = ai2.tag_id
GROUP BY spatial_granule)

The results of running Query 1 over the arbitrated
data is shown in Figure 3(d). Observe that ESP is
able to correct for the differing performance of the two
antennae and to provide a substantially more accurate
count of the items on each shelf to the application.
After Arbitrate processing, the average relative error of
Query 1 is 0.04. This equates to an error of being off
by less than one item, on average. Thus, ESP provides
significant reduction in error over the raw RFID data:
compare this with the item counts using the raw data
that were off by almost half.

4.2.1 Analysis of the ESP Pipeline

Much of ESP’s cleaning capabilities are derived from
using all applicable stages in the pipeline. To verify this
claim, we analyzed the effectiveness of each stage and
the particular ordering. We ran Query 1 over different
configurations of the pipeline (Smooth only, Arbitrate
only, Arbitrate followed by Smooth, and Smooth fol-
lowed by Arbitrate) and measured the average relative
error of the result. The outcome is shown in Figure 5.

Individually, Smooth reduces error compared to the
raw data as it interpolates for many of the missing read-
ings in RFID data. As mentioned above, Smooth does
not, however, correct for the inconsistencies between
the two antennae. Arbitrate individually, on the other

2Note that although the Merge stage is unused in this case,
ESP automatically adds a spatial_granule attribute to each
stream, corresponding to each proximity group (i.e., each shelf).

0.5 T T T T T

04 F 7

02 F]

Average Relative Error

o1 f ;
0: R Y

Raw Smooth Arbitrate Arbitrate+ Smooth+
Only Only Smooth Arbitrate

Figure 5: Average relative error for Query 1 using data produced
by different configurations of the ESP pipeline

hand, provides little benefit beyond the raw data. This
is due to the fact that Arbitrate cannot properly func-
tion without the missing readings filled in by Smooth.
For the same reason, Arbitrate followed by Smooth pro-
vides little benefit beyond Smooth alone. Only when
both Smooth and Arbitrate are used in the correct order
does ESP provide significant cleaning benefit.

4.3 Discussion

Further analysis of this deployment reveals a number
of interesting insights.

4.3.1 Calibration Issues

Although ESP corrected for many of the errors in the
raw RFID data, it was not able to provide perfect re-
sults. These errors, seen in the uneven portions of the
trace in Figure 3(d), arise because during these por-
tions of the experiment, the reader for shelf 0 read the
tags on shelf 1 more than shelf 1’s reader did. We
alleviated the effects of the disparities between the an-
tennae to a certain extent through crude calibration: in
Arbitrate processing, ESP attributed a reading to the
weaker antenna if the counts of the readings were equal.
In general, with such poor raw data, ESP cannot cor-
rect for these errors without either calibrating the an-
tennae or using outside information, such as an inven-
tory list. ESP’s extensibility allows calibration func-
tions or static table joins (e.g., for inventory lookups)
to be defined and inserted in a pipeline.

4.3.2 Size of the Temporal Granule

The size of the temporal granule affects the degree at
which ESP can effectively clean the data. In order
to effectively smooth, the size of the temporal granule
(i.e., the window size) must be large enough to straddle
any gaps in the input (i.e., it must be larger than the
longest period of dropped readings in the input). The
window size may not be made too large, however, as

05 T T T T T
0.45 - —
0.4 |
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0 I 1 1 1 1
0 5 10 15 20 25 30

Temporal Granule Size (S)

Average Relative Error

Figure 6: Average relative error for Query 1 over data produced
by ESP using different size temporal granules

its size must be balanced with the rate of change of the
data values. This tension can be observed in Figure
3(c), where the periods when tags are being relocated
are not as accurately captured as the stable periods.

To investigate this issue, we compared the relative
errors of the output of ESP using different temporal
granule sizes for the Smooth stage. The results are show
in Figure 6. At very small and very large granules, the
error is larger than for granules around 5 seconds. Es-
sentially, an effective temporal granule size is bounded
at the low end by the reliability of the devices and at
the high end by the rate of change of the data.

4.3.3 RFID Summary

Through its pipelined design that utilizes temporal and
spatial granules, ESP alleviates the effects of missed
and unreliable readings in RFID data and provides
an accurate stream of data describing the items on a
shelf. This stream can be used by a receptor-based sys-
tem that uses traditional query processing techniques,
oblivious to the unreliable behavior beneath it.

5 Environmental Monitoring

In the previous section, we demonstrated the ability
of ESP to clean RFID data streams. Here we present a
use case where ESP hides unreliabilities with a different
technology: wireless sensor networks.

Wireless sensor networks are transforming the man-
ner in which scientists monitor the physical environ-
ment [26, 28]. In order to alleviate the effects of im-
precise readings, calibration errors, outliers, and unre-
liable network communication, previous deployments
involving sensor networks have had to post-process the
readings, primarily by hand, to produce specialized,
application data that can be used for analysis [9, 12].
In a receptor-based system used for real-time environ-
mental monitoring, this type of conversion, calibration,
and correction must be done online.

5.1 Outlier Detection

Sensor motes are known to “fail dirty,” that is, sen-
sors fail but continue to report faulty readings. To
provide an accurate picture of the real world, ESP can
perform online outlier detection to alleviate the effects
of these fail dirty motes.

To analyze the effectiveness of outlier detection us-
ing ESP, we use a 30 day trace from a sensor network
deployed in the Intel Research Lab in Berkeley. We
focus on three motes in the same room, assigned to
the same proximity group. In this trace, one of the
motes fails by reporting increasing temperatures, ris-
ing to over 100°C. To correct for this behavior, we use
the Point and Merge stages of ESP. Smooth is not used
because it cannot correct for extended errors within
one sensor®. Arbitrate is not necessary as there is only
one spatial granule.

5.1.1 Stage 1: Point

Initially, the Point stage (Query 4) filters any read-
ings beyond its expected range; in this case, ESP filters
readings where the temperature is higher than 50°C.

Query 4 Simple filtering at the Point stage
SELECT *

FROM point_input

WHERE temp < 50

Note that this functionality could be pushed to the
motes themselves, effectively eliminating network traf-
fic from a failed sensor.

5.1.2 Stage 3: Merge

The Merge stage does outlier detection within a spa-
tial granule by determining the average of the readings
from different motes in the same proximity group and
then throwing out individual readings that are outside
of one standard deviation from the mean (shown in

Query 5).

Query 5 Outlier detection in the Merge stage

SELECT spatial_granule, AVG(temp)
FROM merge_input s [Range By ’5 min’]
(SELECT spatial_granule, avg(temp) as avg,
stdev(temp) as stdev)
FROM merge_input [Range By ’5 min’]) as a
WHERE a.spatial_granule = s.spatial_granule AND
a.avg + a.stdev < s.temp AND
a.avg - a.stdev > s.temp

These techniques are not intended to be statistically
complex, but rather demonstrate the simplicity of ESP

3Tt could, however, be used to correct for single outlier read-
ings in one mote using the same mechanism presented here.

140 T T T

o 120 y‘g"’ -
2 s
< Outlier mote e
8 100 F I
g) N
o J verage
5 80 !
8 i
=) i y
o 60 L
5 i 4 e
% ESP begins to ,’} /.,w"“ =" Functioning
@ 40 - eliminate outlier 4 ¥ motes, ESP
£ 2
g 20 |

O 1 1 1 1

0 5 1 1.5 2
Time (days)
Motel Mote3 ----- ESP ------ -
Mote2 -------- Average -

Figure 7: Outlier Detection using ESP. The “ESP” line tracks
the two functional motes’ lines

programming. As mentioned in Section 3.3, ESP en-
ables a user to program more complex functionality
involving UDFs, UDAs, or arbitrary code.

Figure 7 shows a trace of the three motes’ individ-
ual readings, the average value over them without ESP
processing, and the output of ESP with outlier detec-
tion processing. Observe that ESP is able to detect
when the outlier mote begins to deviate from the other
motes and then omit its reading from the average cal-
culation. It is interesting to note that although Point
is the first stage in the pipeline, Merge is the first stage
to eliminate the outlier (at the time indicated in Fig-
ure 7). Although Point only begins filtering after the
temperature rises above 50°C, it is still useful for elim-
inating excess radio communication.

5.2 Sensor Network Data Cleaning using ESP

Wireless sensor networks have additional problems
beyond fail dirty motes, such as frequently dropped
messages. These problems are especially prevalent
when sensor networks are deployed in the real world.

An ESP pipeline for a wireless sensor network can
mask the unreliability of a sensor network by both tem-
porally and spatially aggregating to correct for dropped
readings. We demonstrate this cleaning through an
environmental monitoring application, responsible for
monitoring the temperature of a redwood tree at each
altitude range in the tree. Sensors placed in the tree are
grouped into proximity groups based on similar height
in the tree (corresponding to the application’s spatial
granule).

We validated ESP processing on data collected dur-
ing a month and a half period on a redwood tree in
Sonoma County, CA as part of a large-scale sensor net-
work deployment to study micro-climates of redwood
trees [28]. 33 motes were placed along the trunk of the

tree at varying heights. Data (e.g., temperature and
humidity) were sensed at 5 minute intervals and logged
to a local storage buffer (collected at the end of the ex-
periment) and also sent over the multi-hop network.
We use a roughly three and a half day trace where all
motes were functioning (a software bug caused a num-
ber of motes to die partway through data collection).
We grouped the motes at nearby heights into 2-node,
non-overlapping proximity groups, where the distance
between motes in a proximity group was less than one
foot.

Note that the log data is incorrect with respect to
the ground truth due to fail dirty sensors: 8 out of the
33 motes failed dirty. The readings from these motes
were removed by hand shortly after data collection, but
before we received the data?.

As ESP is addressing communication errors in this
case, our metric of success is the epoch yield. Epoch
yield describes the number of the readings reported to
the application as a fraction of the total number of
readings the application requested. For the raw data,
the epoch yield in this trace was 40% (ideally, the epoch
yield should be 100%). In other words, the applica-
tion only received 40% of the data it requested. Addi-
tionally, we measure the percent error in the readings.
Based on experience collaborating with biologists, an
error of less than 1°C is acceptable for trend analysis.
Therefore, the goal of ESP in this application should
be to increase the epoch yield while minimizing the
percent of readings with an error greater than 1°C.

Here, we implement the Smooth and Merge stages
in ESP to temporally and spatially aggregate sensor
readings to increase the epoch yield of a sensor deploy-
ment.

5.2.1 Stage 2: Smooth

In the Smooth stage, ESP temporally aggregates read-
ings from a single sensor. By running a sliding window
average on each sensor stream, lost readings from a sin-
gle mote are masked during the course of the window.
After the Smooth stage, the epoch yield is increased
to 77%. 99% of these readings were within 1°C of the
logged data.

Note that the collection parameters of this experi-
ment were fixed to be the same as the temporal granule
(recall that this data was collected by another group
for the purpose of another experiment). In order to ac-
cumulate enough readings to smooth effectively, ESP
had to expand its aggregation window to 30 minutes.
Nevertheless, ESP still produced data at the tempo-

4ESP could employ the techniques shown in Section 5.1 to
remove these outliers automatically.

ral granule desired by the application. We discuss the
implications of this type of window expansion below.

5.2.2 Stage 3: Merge

In the Merge stage, ESP performs spatial aggregation
for each spatial granule (again, in the form of a win-
dowed average) to further alleviate the effects of lost
readings. The Merge stage increases the epoch yield
to0 92%. This improvement of reporting is at the slight
cost of decreasing the percent of readings within 1°C
of the logged data to 94%. Thus, with ESP processing,
biologists can get nearly complete data with a slight
decrease in the accuracy.

5.3 Discussion

5.3.1 Receptor Actuation

As noted above, the Smooth stage had to expand its
window in order to effectively clean the data. In this
case, ESP’s effectiveness was limited by the collec-
tion parameters of the data. Samples were collected
sparsely, at five minute intervals, limiting ESP’s abil-
ity to temporally aggregate. Ideally, ESP should be
able to actuate the sensors to increase the number of
readings within a temporal granule such that it can ef-
fectively smooth with a window the same size as the
temporal granule.

5.3.2 Size of the Spatial Granule

Just as the size of the temporal granule affects ESP’s
ability to clean, so does the size of the spatial granule.
The primary source of error in ESP’s output stream
in the redwood monitoring application occurred when
there was a large change in the data values during a
time when a sensor failed to report for a period, while
at the same time the other sensors in the same proxim-
ity group were removed as outliers. In order to alleviate
these errors, the spatial granule could be expanded in
space to incorporate more devices®. This comes at the
expense of possibly increased error. Similar to tem-
poral granules, the size of a spatial granule must be
balanced between the unreliability of the devices and
the application’s tolerance to error.

5.4 Environmental Monitoring Summary

Through the use of online techniques to temporally
and spatially aggregate sensor network readings as well

5 Alternatively, additional physical devices could be installed
to increase the granule’s spatial density. As this involves a phys-
ical, offline action, we do not consider it here.

@® Sensor mote (sound)
0 amoten detetor
EER atenna

—————

Figure 8: Digital Office Setup

as simple outlier detection, ESP is able to increase the
ability of applications to make sense of the data they
are getting from their receptors. Rather than have to
spend time tediously post-processing the data, appli-
cations can focus on the high-level logic rather than
conversion, calibration, and error correction.

6 Digital Home

In Sections 4 and 5, we demonstrated how ESP pro-
vides a processing infrastructure to correct for a wide
variety of problems associated with different physical
devices. Here, we demonstrate the ease of configuration
of ESP and highlight some of the advanced features of
ESP through a digital home application scenario.

Multiple projects are developing sensors and infras-
tructures to instrument the home to provide both a
better living experience for inhabitants as well as a
more efficient use of house resources [3, 21]. Such ap-
plications use a wide variety of receptor devices pro-
viding low-level data (e.g., RFID, sensor motes, pres-
sure sensors). ESP can provide a platform to clean
the low-level device data (through pipelines similar to
those defined in the previous two sections) as well as a
means of supporting application-level cleaning to pro-
vide virtual “person detector” sensors. The output of
ESP is a stream of events describing the presence of a
person in the room.

We demonstrate ESP in a digital home scenario by
outfitting an office in the Computer Science building
of UC Berkeley with two RFID readers, a small sensor
network of three motes, and three X10 motion detec-
tors [31] tasked to determine when someone is in the
office (Figure 8). The office corresponds to one spatial
granule for the application; thus, the two RFID read-
ers make up one proximity group, the motes constitute
another, and the X10 detectors form a third. During
the experiment, one person, outfitted with an RFID
tag, moved in and out of the office, while talking, at
one minute intervals (Figure 9(a)).

We present the ESP processing to clean the indi-
vidual receptor streams and then describe how ESP
utilizes these streams for application-level cleaning.

Person in room

0 100

(a) Reality: one

Count of Tags
OoORNWhOI ORNWAO

200

300
Time (s)

400

500 600

person moved in and out of a room
every minute

T T T T T
r Antenna 04
- -+ - HH- HHIHHH -
F Antenna H
= +H+ ++ + o+t ++ H
HoH# H
1 1 1 1 1
0 100 200 300 400 500 600
Time (s)

(b) Raw RFID readings from two antennas

1000
750

500
1000

750

500
1000

750
500

Sound

0

T
Mote 3

T

T

T

T

Mote 2

D——" w,wyw,\w_;,‘,,.uwmWm.,,4,,“,¢,w,»q‘«w.1‘,..A.mmmwM,,AM,.._J,L.L.'M@

Mote 1

I

i

1

100

200

300

400

Time (s)

500 600

(¢) Raw sensor network sound readings from three motes

Sensor

T

- ++

b

1

T

+

HHHH

1

+

T

++

1

T

+

L A o e e s

o+

1

T

+ o+

o o

0 100

200

300

400

Time (s)

500 600

(d) Raw X10 motion detectors. A mark indicates that
the device reported movement

Person in room

0 100

200

300

400

Time (s)

500 600

(e) Data after ESP processing

Figure 9: A “Person Detector”

6.1 Low-Level Receptor Cleaning

RFID Readers

An advantage of ESP’s pipelined approach is that
changes necessary to tailor processing to each new de-

10

ployment are isolated to small logical units. In this
deployment, the programming for the ESP pipeline to
process the RFID data is very similar to the pipeline
presented in Section 4. Instead of implementing the
Arbitrate stage to separate readings from different read-
ers, we implement the Merge stage to union the streams
from both of the readers (the readers are in the same
proximity group). Smooth remains the same as the
RFID scenario.

The raw readings from the RFID readers are shown
in Figure 9(b). Note that antenna 1 occasionally reads
an errant tag that is not part of the experiment. The
Point stage of ESP is implemented to filter such read-
ings through a join with a static relation containing
expected tag IDs.

We omit the traces of the processed RFID data (as
well as the processed data from the other receptors)
due to space considerations.

Wireless Sensor Motes

The processing for the wireless sensor motes is al-
most identical to that of the ESP pipeline for redwood
monitoring (Section 5), except in this case ESP pro-
cesses sound readings rather than temperature. Note
that because ESP utilizes declarative processing, this
alteration involves only a small change in each query
in the pipeline. The raw sound readings from the three
motes are shown in Figure 9(c).

X10 Motion Detectors

X10 motion detectors provide a stream of “ON”
events. These devices, however, have limited sensing
capabilities and frequently fail to report or report when
there is no motion in the room, as can be seen in the
raw X10 traces in Figure 9(d).

To eliminate these errors, the Smooth stage for X10
processing interpolates “ON” events from a single de-
tector in a similar manner as the RFID and sensor ex-
amples. The Merge stage combines the readings from
all detectors in the room and reports motion if the
number of readings exceed a threshold (e.g., if 2 out of
3 devices report motion). Once again, ESP’s pipelined
design assists in configuration as stages from other de-
ployments can be reused.

6.2 Stage 5:Virtualize

The main new feature of this use case (as compared
to the previous ones) is the use of the Virtualize stage.
Virtualize allows a deployment to specify application-
level cleaning to convert from the cleaned low-level de-
vice readings into application-level clean data; in this
case, Virtualize turns the heterogeneous sensors into a
“person detector.” ESP uses a voting query (Query 6)
that normalizes all receptor input streams to a single

11

vote of whether it has determined that a person is in
the room or not. The query then adds up the votes
and registers that a person is in the room if the sum is
higher than a threshold.

Query 6 “Person Detector” logic at the Virtualize
stage
SELECT ’Person-in-room’
FROM (SELECT 1 as cnt
FROM sensors_input [Range By ’NOW’]
WHERE sensors.noise > 525) as sensor_count,
(SELECT 1 as cnt
FROM rfid_input [Range By ’NOW’]
HAVING count(distinct tag_id) > 1)
as rfid_count,
(SELECT 1 as cnt
FROM motion_input [Range By ’NOW’]
WHERE value = ’0ON’) as motion_count,
WHERE sensor_count.cnt +
rfid_count.cnt +
motion_count.cnt >= threshold

The output of the ESP pipeline is shown in Fig-
ure 9(e). As can be seen, simple, easy to deploy logic
is capable of generally approximating reality. Here,
ESP is able to correctly indicate that a person is in the
room 92% of the time.

6.3 Discussion

6.3.1 A Platform for Advanced Processing

Although the use cases presented here all involved ESP
stages defined through declarative queries, it is impor-
tant to note that any stage in ESP can be implemented
using user-defined code. Thus, stages can be extended
to arbitrary levels of complexity. For instance, the Vir-
tualize stage may be implemented with a function that
incorporates machine-learning techniques to infer ac-
tions of the occupants of the digital home. Similarly,
the Virtualize stage could also be implemented with
a BBQ-like system [12]. Such a function would build
models of the receptor streams to assist in cleaning the
data.

6.4 Digital Home Summary

Here, we have shown that ESP is easily reconfig-
urable for each new application because ESP separates
logically different data cleaning tasks into stages and
because these stages can be programmed to a large ex-
tent with declarative queries. As observed in this de-
ployment, we utilized already implemented stages and
pipelines, dramatically speeding up deployment time.

7 Conclusions and Future Work

Data produced by physical receptor devices is noto-
riously dirty: readings are frequently either missed or
dropped and individual readings are unreliable. Fur-
thermore, these error characteristics vary from deploy-
ment to deployment. This leads to high costs for both
data cleaning and configuration. To directly address
these issues, we propose the ESP framework for online
cleaning of receptor data streams. We introduce the
concepts of temporal and spatial granule, which cap-
ture application-level notions of time and space. ESP
utilizes these fundamental abstractions in a pipeline of
programmable processing stages designed to clean re-
ceptor data as it streams through the system.

We validated the ESP platform through three real-
world deployments demonstrating that ESP can suc-
cessfully alleviate both missed and unreliable read-
ings in receptor data. As a result, applications using
receptor-based data were able to use data provided by
ESP as they would any physical device data, but with-
out many of the associated errors.

Through an analysis of these example deployments,
we can distill general some principles for online cleaning
of receptor data. First, there are many common oper-
ations across deployments. For instance, the Smooth
stage was almost exactly the same for both RFID and
sensor deployments. Second, when composing many
applications, entire pipelines for processing low-level
data can be reused as input to application-level clean-
ing. Finally, most of the changes necessary for each
new deployment can be limited to a small number of
stages and can be easily adjusted through declarative
queries.

Therefore, we anticipate a suite of ESP Operators,
implementing different ESP stages or entire pipelines,
that can be used to configure and deploy cleaning
pipelines. These operators, built using both declarative
queries as shown here as well as user-defined functions,
would make up a toolkit for ESP data cleaning. These
operators can be extended or additional operators can
be added to suit the needs of each deployment.

The ESP data cleaning framework augmented with
a toolkit of ESP operators would enable rapid de-
ployment of online data cleaning for receptor-based
streams. Such a solution is necessary if we are to realize
the potential of receptor-based systems to revolutionize
how we view the physical world.

References

[1] Alien Technology. Nanoscanner Reader User Guide.
[2] Alien Technology. Personal correspondence.

12

[3] Mit house_n. Http://architecture.mit.edu/house_n/.
[4] Alien ALL-9250 12 RFID tag.
http://www.alientechnology.com/products/rfid-tags.

[5] Alien ALR-9780 915 MHz RFID Reader.

http://www.alientechnology.com/products/rfid-
readers/alr9780.php.

A. Arasu, et al.. The CQL continuous query language:
Semantic foundations and query execution. VLDB
Journal, (To appear).

Ascential. http://www.ascential.com/.

P. Bonnet, et al.. Towards sensor database systems.
In Proc. Mobile Data Management, volume 1987 of
Lecture Notes in Computer Science. Springer, Hong
Kong, January 2001.

P. Buonadonna, et al.. Task: Sensor network in a box.
In EWSN. 2005.

0] S. Clark, et al.. Auto-id savant specification 1.0. sept
2003.

O. Cooper, et al.. HiFi: A Unified Architecture for

High Fan-in Systems.

A. Deshpande, et al.. Model-Driven Data Acquisition
in Sensor Networks. In VLDB Conference. 2004.

E. Elnahrawy et al.. Cleaning and querying noisy sen-
sors. In WSNA ’03: Proceedings of the 2nd ACM inter-
national conference on Wireless sensor networks and
applications. 2003.

EPCGlobal, Inc. http://www.epcglobalinc.org/.

K. Fishkin, et al.. 1 Sense a Disturbance in the

Force: Unobtrusive Detection of Interactions with
RFID-tagged Objects. Technical Report IRS-TR-04-

013, Intel Research, June 2004.

C. Floerkemeier et al.. Issues with RFID usage in ubig-
uitous computing applications. In A. Ferscha et al.,
eds., Pervasive Computing: Second International Con-
ference, PERVASIVE 2004 . 2004.

M. J. Franklin, et al.. Design Considerations for High
Fan-In Systems: The HiFi Approach. In CIDR. 2005.
H. Galhardas, et al.. Declarative data cleaning: Lan-
%gg%e, model, and algorithms. In VLDB, pp. 371-380.
Informatica. http://www.informatica.com/.

Intel Lab Data. http://berkeley.intel-
research.net /labdata/.

C. D. Kidd, et al.. The Aware Home: A Living Labo-
ratory for Ubiquitous Computing Research. In Coop-
erative Buildings, pp. 191-198. 1999.

S. Madden et al.. Fjording the stream: An architecture
for queries over streaming sensor data. In ICDE. 2002.
S. Madden, et al.. The Design of an Acquisitional
Query Processor For Sensor Networks. In SIGMOD.

(16]

(17]
(18]

20]

(21]

2003.
S. Mukhopadhyay, et al.. Data aware, low cost error
5861"4ection for wireless sensor networks. In WCNC.

M. Philipose, et al.. Mapping and Localization with
RFID Technology. Technical Report IRS-TR-03-014,
Intel Research, December 2003.

J. Polastre, et al.. Analysis of wireless sensor networks
for habitat monitoring. 2004.

E. Rahm et al.. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3-13, 2000.
Sonoma Redwood Sensor Network Deployment.
http://www.cs.berkeley.edu/ get/sonoma/.

G. Tolle, et al.. A macrosope in the redwoods.

submission. 2005.
Vijayshankar Raman and Joseph M. Hellerstein. Pot-

ter’s Wheel: An Interactive Data Cleaning System. In
The VLDB Journal, pp. 381-390. 2001.
[31] X10. http://www.x10.com.

In

