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Abstract

We study in�nite stochastic games played by n-players on a �nite
graph with goals speci�ed by sets of in�nite traces. The games are
concurrent (each player simultaneously and independently chooses an
action at each round), stochastic (the next state is determined by a
probability distribution depending on the current state and the cho-
sen actions), in�nite (the game continues for an in�nite number of
rounds), nonzero-sum (the players' goals are not necessarily con
ict-
ing), and undiscounted. We show that if each player has an upward-
closed objective, then there exists an "-Nash equilibrium in memoryless
strategies, for every " > 0; and exact Nash equilibria need not exist.
Upward-closure of an objective means that if a set Z of in�nitely re-
peating states is winning, then all supersets of Z of in�nitely repeating
states are also winning. Memoryless strategies are strategies that are
independent of history of plays and depend only on the current state.
We also study the complexity of �nding values (payo� pro�le) of an
"-Nash equilibrium. We show that the values of an "-Nash equilibrium
in nonzero-sum concurrent games with upward-closed objectives for
all players can be computed by computing "-Nash equilibrium values
of nonzero-sum concurrent games with reachability objectives for all
players and a polynomial procedure. As a consequence we establish
that values of an "-Nash equilibrium can be computed in TFNP (total
functional NP), and hence in EXPTIME.

�This research was supported in part by the ONR grant N00014-02-1-0671, the AFOSR

MURI grant F49620-00-1-0327, and the NSF grant CCR-0225610.

1



1 Introduction

Stochastic games. Non-cooperative games provide a natural framework
to model interactions between agents [16, 18]. The simplest class of non-
cooperative games consists of the \one-step" games | games with single
interaction between the agents after which the game ends and the payo�s
are decided (e.g., matrix games). However, a wide class of games progress
over time and in stateful manner, and the current game depends on the
history of interactions. In�nite stochastic games [20, 9] are a natural model
for such games. A stochastic game is played over a �nite state space and is
played in rounds. In concurrent games, in each round, each player chooses
an action from a �nite set of available actions, simultaneously and indepen-
dently of other players. The game proceeds to a new state according to a
probabilistic transition relation (stochastic transition matrix) based on the
current state and the joint actions of the players. Concurrent games sub-
sume the simpler class of turn-based games, where at every state at most
one player can choose between multiple actions. In veri�cation and control
of �nite state reactive systems such games proceed for in�nite rounds, gen-
erating an in�nite sequence of states, called the outcome of the game. The
players receive a payo� based on a payo� function that maps every outcome
to a real number.

Objectives. Payo�s are generally Borel measurable functions [15]. The
payo� set for each player is a Borel set Bi in the Cantor topology on S!

(where S is the set of states), and player i gets payo� 1 if the outcome of
the game is in Bi, and 0 otherwise. In veri�cation, payo� functions are usu-
ally index sets of !-regular languages. The !-regular languages generalize
the classical regular languages to in�nite strings, they occur in low levels of
the Borel hierarchy (they are in �3 \ �3), and they form a robust and ex-
pressive language for determining payo�s for commonly used speci�cations.
The simplest !-regular objectives correspond to safety (\closed sets") and
reachability (\open sets") objectives.

Zero-sum games. Games may be zero-sum, where two players have di-
rectly con
icting objectives and the payo� of one player is one minus the
payo� of the other, or nonzero-sum, where each player has a prescribed
payo� function based on the outcome of the game. The fundamental ques-
tion for games is the existence of equilibrium values. For zero-sum games,
this involves showing a determinacy theorem that states that the expected
optimum value obtained by player 1 is exactly one minus the expected opti-
mum value obtained by player 2. For one-step zero-sum games, this is von
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Neumann's minmax theorem [25]. For in�nite games, the existence of such
equilibria is not obvious, in fact, by using the axiom of choice, one can con-
struct games for which determinacy does not hold. However, a remarkable
result by Martin [15] shows that all stochastic zero-sum games with Borel
payo�s are determined.

Nonzero-sum games. For nonzero-sum games, the fundamental equilib-
rium concept is a Nash equilibrium [11], that is, a strategy pro�le such that
no player can gain by deviating from the pro�le, assuming the other player
continues playing the strategy in the pro�le. Again, for one-step games, the
existence of such equilibria is guaranteed by Nash's theorem [11]. However,
the existence of Nash equilibria in in�nite games is not immediate: Nash's
theorem holds for �nite bimatrix games, but in case of stochastic games, the
strategy space is not compact. The existence of Nash equilibria is known
only in very special cases of stochastic games. In fact, Nash equilibria may
not exist, and the best one can hope for is an "-Nash equilibrium for all
" > 0, where an "-Nash equilibrium is a strategy pro�le where unilateral
deviation can only increase the payo� of a player by at most ". Exact
Nash equilibria do exist in discounted stochastic games [10]. For concurrent
nonzero-sum games with payo�s de�ned by Borel sets, surprisingly little is
known. Secchi and Sudderth [19] showed that exact Nash equilibria do exist
when all players have payo�s de�ned by closed sets (\safety objectives" or
�1 objectives). In the case of open sets (\reachability objectives" or �1

objectives), the existence of "-Nash equilibrium for every " > 0, has been
established in [4]. For the special case of two-player games, existence of
"-Nash equilibrium, for every " > 0, is known for !-regular objectives [2]
and limit-average objectives [23, 24]. The existence of "-Nash equilibrium in
n-player concurrent games with objectives in higher levels of Borel hierarchy
than �1 and �1 has been an intriguing open problem; existence of "-Nash
equilibrium is not even known even when each player has a B�uchi objective.

Result and proof techniques. In this paper we show that "-Nash equi-
librium exists, for every " > 0, for n-player concurrent games with upward-
closed objectives. However, exact Nash equilibria need not exist. Informally,
an objective 	 is an upward-closed objective, if a play ! that visits a set Z
of states in�nitely often is in 	, then a play !0 that visits Z 0 � Z of states
in�nitely often is also in 	. The class of upward-closed objectives subsumes
B�uchi and generalized B�uchi objectives as special cases. For n-player concur-
rent games our result extends the existence of "-Nash equilibrium from the
lowest level of Borel hierarchy (open and closed sets) to a class of objectives
that lie in the higher levels of Borel hierarchy (upward-closed objectives lie
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in �2) and subsumes several interesting class of objectives. Along with the
existence of "-Nash equilibrium, our result presents a �ner characterization
of "-Nash equilibrium showing existence of "-Nash equilibrium in memory-
less strategies (strategies that are independent of the history of the play and
depend only on the current state). Our result is organized as follows:

1. In Section 3 we develop some results on one player version of concur-
rent games and n-player concurrent games with reachability objectives.

2. In Section 4 we use induction on the number of players, results of
Section 3 and analysis of Markov chains to establish the desired result.

Complexity of "-Nash equilibrium. Computing the values of a Nash
equilibria, when it exists, is another challenging problem [17, 26]. For one-
step zero-sum games, equilibrium values and strategies can be computed in
polynomial time (by reduction to linear programming) [16]. For one-step
nonzero-sum games, no polynomial time algorithm is known to compute an
exact Nash equilibrium, even in two-player games [17]. From the computa-
tional aspects, a desirable property of an existence proof of Nash equilibrium
is its ease of algorithmic analysis. We show that our proof for existence of
"-Nash equilibrium is completely constructive and algorithmic. Our proof
shows that the computation of an "-Nash equilibrium in n-player concur-
rent games with upward-closed objectives can be achieved by computing
"-Nash equilibrium of games with reachability objectives and a polynomial
time procedure. Our result thus shows that computing "-Nash equilibrium
for upward-closed objectives is no harder than solving "-Nash equilibrium
of n-player games with reachability objectives by a polynomial factor. We
then prove that an "-Nash equilibrium can be computed in TFNP (total
functional NP) and hence in EXPTIME.

2 De�nitions

Notation. For a countable set A, a probability distribution on A is a func-
tion Æ : A! [0; 1] such that

P
a2A Æ(a) = 1. We denote the set of probability

distributions on A by D(A). Given a distribution Æ 2 D(A), we denote by
Supp(Æ) = fx 2 A j Æ(x) > 0g the support of Æ.

De�nition 1 (Concurrent game structures) An n-player concurrent
game structure G = hS;A;�1;�2; : : : ;�n; Æi consists of the following com-
ponents:
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� A �nite state space S and a �nite set A of moves.

� Move assignments �1;�2; : : : ;�n : S ! 2A n ;. For i 2 f 1; 2; : : : ; n g,
move assignment �i associates with each state s 2 S the non-empty
set �i(s) � A of moves available to player i at state s.

� A probabilistic transition function Æ : S � A � A : : : � A ! D(S),
that gives the probability Æ(s; a1; a2; : : : ; an)(t) of a transition from s
to t when player i plays move ai, for all s; t 2 S and ai 2 �i(s), for
i 2 f 1; 2; : : : ; n g.

We de�ne the size of the game structure G to be equal to the size of the
transition function Æ; speci�cally,

jGj =
X
s2S

X
(a1;a2;:::;an)2�1(s)��2(s)�:::��n(s)

X
t2S

jÆ(s; a1; a2; : : : ; an)(t)j;

where jÆ(s; a1; a2; : : : ; an)(t)j denotes the space to specify the probability
distribution. At every state s 2 S, each player i chooses a move ai 2 �i(s),
and simultaneously and independently of the other players, and the game
then proceeds to the successor state t with probability Æ(s; a1; a2; : : : ; an)(t),
for all t 2 S. A state s is called an absorbing state if for all ai 2 �i(s) we
have Æ(s; a1; a2; : : : ; an)(s) = 1. In other words, at s for all choices of moves
of the players the next state is always s. For all states s 2 S and moves
ai 2 �i(s) we indicate by Dest(s; a1; a2; : : : ; an) = Supp(Æ(s; a1; a2; : : : ; an))
the set of possible successors of s when moves a1; a2; : : : ; an are selected.

A path or a play ! of G is an in�nite sequence ! = hs0; s1; s2; : : :i of
states in S such that for all k � 0, there are moves aki 2 �i(sk) and with
Æ(sk; a

k
1 ; a

k
2 ; : : : ; a

k
n)(sk+1) > 0. We denote by 
 the set of all paths and by


s the set of all paths ! = hs0; s1; s2; : : :i such that s0 = s, i.e., the set of
plays starting from state s.

Randomized strategies. A selector �i for player i 2 f 1; 2; : : : ; n g is a
function �i : S ! D(A) such that for all s 2 S and a 2 A, if �i(s)(a) > 0 then
a 2 �i(s). We denote by �i the set of all selectors for player i 2 f1; 2; : : : ; ng.
A strategy �i for player i is a function �i : S

+ ! �i that associates with
every �nite non-empty sequence of states, representing the history of the
play so far, a selector. A memoryless strategy is independent of the history
of the play and depends only on the current state. Memoryless strategies
coincide with selectors, and we often write �i for the selector corresponding
to a memoryless strategy �i. A memoryless strategy �i for player i is uni-
form memoryless if the selector of the memoryless strategy is an uniform
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distribution over its support, i.e., for all states s we have �i(s)(ai) = 0 if
ai 62 Supp(�i(s)) and �i(s)(ai) =

1
jSupp(�i(s))j

if ai 2 Supp(�i(s)). We de-

note by �i, �
M
i and �UMi the set of all strategies, set of all memoryless

strategies and the set of all uniform memoryless strategies for player i, re-
spectively. Given strategies �i for player i, we denote by � the strategy
pro�le h�1; �2; : : : ; �ni. A strategy pro�le � is memoryless (resp. uniform
memoryless) if all the component strategies are memoryless (resp. uniform
memoryless).

Given a strategy pro�le � = (�1; �2; : : : ; �n) and a state s,
we denote by Outcome(s; �) = f ! = hs0; s1; s2 : : :i j s0 =
s and 9aki : �i(hs0; s1; : : : ; ski)(a

k
i ) > 0: and Æ(sk; a

k
1 ; a

k
2 ; : : : ; a

k
n)(sk+1) > 0g

the set of all possible plays from s, given �. Once the starting state s and
the strategies �i for the players have been chosen, the game is reduced to an
ordinary stochastic process. Hence, the probabilities of events are uniquely
de�ned, where an event A � 
s is a measurable set of paths. For an event
A � 
s, we denote by Pr�s (A) the probability that a path belongs to A
when the game starts from s and the players follow the strategies �i, and
� = h�1; �2; : : : ; �ni.

Objectives. Objectives for the players in nonterminating games are speci-
�ed by providing the set of winning plays 	 � 
 for each player. A general
class of objectives are the Borel objectives [13]. A Borel objective � � S!

is a Borel set in the Cantor topology on S!. The class of !-regular objec-
tives [21], lie in the �rst 21=2 levels of the Borel hierarchy (i.e., in the inter-
section of �3 and �3). The !-regular objectives, and subclasses thereof, can
be speci�ed in the following forms. For a play ! = hs0; s1; s2; : : :i 2 
, we
de�ne Inf(!) = f s 2 S j sk = s for in�nitely many k � 0 g to be the set of
states that occur in�nitely often in !.

1. Reachability and safety objectives. Given a game graph G, and a set
T � S of target states, the reachability speci�cation Reach(T ) re-
quires that some state in T be visited. The reachability speci�cation
Reach(T ) de�nes the objective [[Reach(T )]] = f hs0; s1; s2; : : :i 2 
 j
9k � 0: sk 2 T g of winning plays. Given a set F � S of safe
states, the safety speci�cation Safe(F ) requires that only states in
F be visited. The safety speci�cation Safe(F ) de�nes the objective
[[Safe(F )]] = f hs0; s1; : : :i 2 
 j 8k � 0: sk 2 F g of winning of plays.

2. B�uchi and generalized B�uchi objectives. Given a game graph G, and a
set B � S of B�uchi states, the B�uchi speci�cation B�uchi(B) requires
that states in B be visited in�nitely often. The B�uchi speci�cation

6



B�uchi(B) de�nes the objective [[B�uchi(B)]] = f! 2 
 j Inf(!)\B 6= ;g
of winning plays. Let B1; B2; : : : ; Bn be subset of states, i.e., each
Bi � S. The generalized B�uchi speci�cation is the requires that every
B�uchi speci�cation B�uchi(Bi) be satis�ed. Formally, the generalized
B�uchi objective is

T
i2f 1;2;:::;n g [[B�uchi(Bi)]].

3. M�uller and upward-closed objectives. Given a set M � 2S of M�uller
set of states, the M�uller speci�cation M�uller(M) requires that the
set of states visited in�nitely often in a play is exactly one of the
sets in M . The M�uller speci�cation M�uller(M) de�nes the objective
[[M�uller(M)]] = f ! 2 
 j Inf(!) 2M g of winning plays. The upward-
closed objectives form a sub-class of M�uller objectives, with the re-
striction that the set M is upward-closed. Formally a set UC � 2S is
upward-closed if the following condition hold: if U 2 UC and U � Z,
then Z 2 UC . Given a upward-closed set UC � 2S , the upward-closed
objective is de�ned as the set [[UpClo(UC )]] = f! 2 
 j Inf(!) 2 UC g
of winning plays.

Observe that the upward-closed objectives speci�es that if a play ! that
visits a subset U of states visited in�nitely often is winning, then a play !0

that visits a superset of U of states in�nitely often is also winning. The
upward-closed objectives subsumes B�uchi and generalized B�uchi (i.e., con-
junction of B�uchi) objectives. The upward-closed objectives also subsumes
disjunction of B�uchi objectives. Since the B�uchi objectives lie in the second
level of the Borel hierarchy (in �2), it follows that upward-closed objectives
can express objectives that lie in �2. M�uller objectives are canonical forms
to express !-regular objectives, and the class of upward-closed objectives
form a strict subset of M�uller objectives and cannot express all !-regular
properties.

We write 	 for an arbitrary objective. We write the objective of player i
as 	i. Given a M�uller objective 	, the set of paths 	 is measurable for any
choice of strategies for the players [22]. Hence, the probability that a path
satis�es a M�uller objective 	 starting from state s 2 S under a strategy
pro�le � is Pr�s (	).

Notations. Given a strategy pro�le � = (�1; �2; : : : ; �n), we denote by
��i = (�1; �2; : : : ; �i�1; �i+1; : : : ; �n) the strategy pro�le with the strategy
for player i removed. Given a strategy �0i 2 �i, and a strategy pro�le ��i,
we denote by ��i [�

0
i the strategy pro�le (�1; �2; : : : ; �i�1; �

0
i; �i+1; : : : ; �n).

We also use the following notations: � = �1 � �2 � : : : � �n; �
M

= �M
1 �

�M
2 � : : : � �M

n ; �
UM

= �UM1 � �UM2 � : : : � �UMn ; and ��i = �1 � �2 �
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: : :�i�1 � �i+1 � : : :�n. The notations for �
M
�i and �

UM

�i are similar. For
n 2 N, we denote by [n] the set f 1; 2; : : : ; n g.

Concurrent nonzero-sum games. A concurrent nonzero-sum game con-
sists of a concurrent game structure G with objective 	i for player i. The
zero-sum values for the players in concurrent games with objective 	i for
player i are de�ned as follows.

De�nition 2 (Zero-sum values) Let G be a concurrent game structure
with objective 	i for player i. Given a state s 2 S we call the maximal prob-
ability with which player i can ensure that 	i holds from s against all strate-
gies of the other players is the zero-sum value of player i at s. Formally,
the zero-sum value for player i is given by the function valGi (	i) : S ! [0; 1]
de�ned for all s 2 S by

valGi (	i)(s) = sup
�0i2�i

inf
��i2��i

Pr
��i[�

0

i
s (	i):

A two-player concurrent game structure G with objectives 	1 and 	2 for
player 1 and player 2, respectively, is zero-sum if the objectives of the players
are complementary, i.e., 	1 = 
 n 	2. Concurrent zero-sum games satisfy
a quantitative version of determinacy [15], stating that for all two-player
concurrent games with M�uller objectives 	1 and 	2, such that 	1 = 
n	2,
and all s 2 S, we have

valG1 (	1)(s) + valG2 (	2)(s) = 1:

The determinacy also establishes existence of "-Nash equilibrium, for all
" > 0, in concurrent zero-sum games.

De�nition 3 ("-Nash equilibrium) Let G be a concurrent game struc-
ture with objective 	i for player i. For " � 0, a strategy pro�le �� =
(��1 ; : : : ; �

�
n) 2 � is an "-Nash equilibrium for a state s 2 S i� the following

condition hold for all i 2 [n]:

sup
�i2�i

Pr
��
�i[�i

s (	i) � Pr�
�

s (	i) + ":

A Nash equilibrium is an "-Nash equilibrium with " = 0.

Example 1 ("-Nash equilibrium) Consider the two-player game struc-
ture shown in Fig. 1.(a). The state s1 and s2 are absorbing states and the
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set of available moves for player 1 and player 2 at s0 is f a; b g and f c; d g,
respectively. The transition function is de�ned as follows:

Æ(s0; a; c)(s0) = 1; Æ(s0; b; d)(s2) = 1; Æ(s0; a; d)(s1) = Æ(s0; b; c)(s1) = 1:

The objective of player 1 is an upward-closed objective [[UpClo(UC 1)]]
with UC 1 = f f s1 g; f s1; s2 g; f s0; s1 g; f s0; s1; s2 g g, i.e., the ob-
jective of player 1 is to visit s1 in�nitely often (i.e.,[[B�uchi(f s1 g)]]).
Since s1 is an absorbing state in the game shown, the objec-
tive of player 1 is equivalent to [[Reach(f s1 g)]]. The objective of
player 2 is an upward-closed objective [[UpClo(UC 2)]] with UC 2 =
f f s2 g; f s1; s2 g; f s0; s2 g; f s0; s1; s2 g; f s0 g; f s0; s1 g g. Observe that
any play ! such that Inf(!) 6= f s1 g is winning for player 2. Hence the
objective of player 1 and player 2 are complementary. For " > 0, consider
the memoryless strategy �"1 2 �M that plays move a with probability 1 � ",
and move b with probability ". The game starts at s0, and in each round if
player 2 plays move c, then the play reaches s1 with probability " and stays
in s0 with probability 1� "; whereas if player 2 plays move d, then the game
reaches state s1 with probability 1� " and state s2 with probability ". Hence
it is easy to argue against all strategies �2 for player 2, given the strategy �"1
of player 1, the game reaches s1 with probability at least 1� ". Hence for all
" > 0, there exists a strategy �"1 for player 1, such that against all strategies

�2, we have Pr
�"
1
;�2

s0 ([[Reach(f s1 g)]]) � 1 � "; hence (1 � "; ") is an "-Nash
equilibrium value pro�le at s0. However, we argue that (1; 0) is not an Nash
equilibrium at s0. To prove the claim, given a strategy �1 for player 1 con-
sider the counter strategy �2 for player 2 as follows: for k � 0, at round
k, if player 1 plays move a with probability 1, then player 2 chooses the
move c and ensures that the state s1 is reached with probability 0; otherwise
if player 1 plays move b with positive probability at round k, then player 2
chooses move d, and the play reaches s2 with positive probability. That is
either s2 is reached with positive probability or s0 is visited in�nitely often.
Hence player 1 cannot satisfy [[UpClo(UC 1)]] with probability 1. This shows
that in game structures with upward-closed objectives, Nash equilibrium need
not exist and "-Nash equilibrium, for all " > 0, is the best one can achieve.

Consider the game shown in Fig. 1.(b). The transition function at state
s0 is same as in Fig 1.(a). The state s2 is an absorbing state and from state
s1 the next state is always s0. The objective for player 1 is same as in the
previous example, i.e., [[B�uchi(f s1 g)]]. Consider any upward-closed objec-
tive [[UpClo(UC 2)]] for player 2. We claim that the following strategy pro�le
(�1; �2) is a Nash equilibrium at s0: �1 is memoryless strategy that plays a
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ac

bd

ac

bd

s0

ad,bc

s2 s1

ac

s0

s2s1

ad,bc

(b)(a)

Figure 1: Examples of Nash equilibrium in two-player concurrent game
structures

with probability 1, and �2 is a memoryless strategy that plays c and d with
probability 1=2. Given �1 and �2 we have that the states s0 and s1 are visited
in�nitely often with probability 1. If f s0; s1 g 2 UC 2, then the objectives of
both players are satis�ed with probability 1. If f s0; s1 g 62 UC 2, then no sub-
set of fs0; s2 g is in UC 2. Given strategy �1, for all strategies �

0
2 of player 2,

the plays under �1 and �02 visits subsets of f s0; s1 g in�nitely often. Hence,
if f s0; s1 g 62 UC 2, then given �1, for all strategies of player 2, the objective
[[UpClo(UC 2)]] is satis�ed with probability 0, hence player 2 has no incentive
to deviate from �2. The claim follows. Note that the present example can be
contrasted to the zero-sum game on the same game structure with objective
[[B�uchi(f s1 g)]] for player 1 and the complementary objective for player 2
(which is not upward-closed). In the zero-sum case, "-optimal strategies re-
quire in�nite-memory (see [7]) for player 1. In the case of nonzero-sum
game with upward-closed objectives (which do not generalize the zero-sum
case) we exhibited existence of memoryless Nash equilibrium.

3 Markov Decision Processes and Nash Equilib-

rium for Reachability Objectives

The section is divided in two parts: subsection 3.1 develops facts about one
player concurrent game structures and subsection 3.2 develops facts about
n-player concurrent game structures with reachability objectives. The facts
developed in this section will play a key role in the analysis of the later
sections.
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3.1 Markov decision processes

In this section we develop some facts about one player versions of concurrent
game structures, known as Markov decision processes (MDPs) [1]. For i 2
[n], a player i-MDP is a concurrent game structure where for all s 2 S, for all
j 2 [n]nf ig we have j�j(s)j = 1, i.e., at every state only player i can choose
between multiple moves and the choice for the other players are singleton.
If for all states s 2 S, for all i 2 [n], j�i(s)j = 1, then we have a Markov
chain. Given a concurrent game structure G, if we �x a memoryless strategy
pro�le ��i = (�1; : : : ; �i�1; �i+1; : : : ; �n) for players in [n] n f i g, the game
structure is equivalent to a player i-MDP G��i

with transition function

Æ��i(s; ai)(t) =
X

(a1;a2;:::;ai�1;ai+1;:::;an)

Æ(s; a1; a2; : : : ; an)(t)�
Y

j2([n]nf i g)

�j(s)(aj);

for all s 2 S and ai 2 �i(s). Similarly, if we �x a memoryless strategy

pro�le � 2 �
M

for a concurrent game structure G, we obtain a Markov
chain, which we denote by G�. In an MDP, the sets of states that play an
equivalent role to the closed recurrent set of states in Markov chains [14]
are called end components [5, 6]. Without loss of generality, we consider
player 1-MDPs and since the set ��1 is singleton for player 1-MDPs we
only consider strategies for player 1.

De�nition 4 (End components and maximal end components)
Given a player 1-MDP G, an end component (EC) in G is a subset C � S
such that there is a memoryless strategy �1 2 �M

1 for player 1 under which
C forms a closed recurrent set in the resulting Markov chain, i.e., in the
Markov chain G�1 . Given a player 1-MDP G, an end component C is a
maximal end component, if the following condition hold: if C � Z and Z
is an end component, then C = Z, i.e., there is no end component that
encloses C.

Graph of a MDP. Given a player 1-MDP G, the graph of G is a directed
graph (S;E) with the set E of edges de�ned as follows: E = f (s; t) j s; t 2
S: 9a1 2 �1(s): t 2 Dest(s; a1) g, i.e., E(s) = f t j (s; t) 2 E g denotes the
set of possible successors of the state s in the MDP G.

Equivalent characterization. An equivalent characterization of an end
component C is as follows: for each s 2 C, there is a subset of moves
M1(s) � �1(s) such that:

11



1. when a move inM1(s) is chosen at s, all the states that can be reached
with non-zero probability are in C, i.e., for all s 2 C, for all a 2M1(s),
Dest(s; a) � C;

2. the graph (C;E) is strongly connected, where E consists of the tran-
sitions that occur with non-zero probability when moves in M1(�) are
taken, i.e., E = f (s; t) j s; t 2 S: 9a 2M1(s): t 2 Dest(s; a) g.

Given a set F � 2S of subset of states we denote by InfSt(F) the event
f ! j InfSt(!) 2 F g. The following lemma states that in a player 1-MDP,
for all strategies of player 1, the set of states visited in�nitely often is an
end component with probability 1. Lemma 2 follows easily from Lemma 1.

Lemma 1 ([6, 5]) Let C be the set of end components of a player 1-MDP G.
For all strategies �1 2 �1 and all states s 2 S, we have Pr�1s (InfSt(C)) = 1.

Lemma 2 Let C be the set of end components and Z be the set of maximal
end components of a player 1-MDP G. Then the following assertions hold:

� L =
S
C2C C =

S
Z2Z Z; and

� for all strategies �1 2 �1 and all states s 2 S, we have
Pr�1s ([[Reach(L)]]) = 1.

Lemma 3 Given a player 1-MDP G and an end component C, there is a
uniform memoryless strategy �1 2 �UM1 , such that for all states s 2 C, we
have Pr�1s (f ! j Inf(!) = C g) = 1.

Proof. For a state s 2 C, let M1(s) � �1(s), be the subset of moves such
that the conditions of the equivalent characterization of end components
hold. Consider the uniform memoryless strategy �1 de�ned as follows: for
all states s 2 C,

�1(s)(a) =

(
1

jM1(s)j
; if a 2M1(s)

0 otherwise:

Given the strategy �1, in the Markov chain G�1 , the set C is a closed recur-
rent set of states. Hence the result follows.
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3.2 Nash equilibrium for reachability objectives

Memoryless Nash equilibrium in discounted games. We �rst prove
the existence of Nash equilibrium in memoryless strategies in n-player dis-
counted games with reachability objective [[Reach(Ri)]] for player i, for
Ri � S. We then characterize "-Nash equilibrium in memoryless strategies
with some special property in n-player discounted games with reachability
objectives.

De�nition 5 (�-discounted games) Given an n-player game structure G
we write G� to denote a �-discounted version of the game structure G. The
game G� at each step halts with probability � (goes to a special absorbing
state halt such that halt is not in Ri for all i), and continues as the game
G with probability 1� �. We refer to � as the discount-factor.

In this paper we write G� to denote a �-discounted game.

De�nition 6 (Stopping time of history in �-discounted games)
Consider the stopping time � de�ned on histories h = hs0; s1; : : :i by

�(h) = inffk � 0 j sk = haltg

where the in�mum of the empty set is +1.

Lemma 4 Let G� be an n-player �-discounted game structure, with � > 0.
Then, for all states s 2 S and all strategy pro�les � we have

Pr�s [� > m] � (1� �)m:

Proof. At each step of the game G� the game reaches the halt state
with probability �. Hence the probability of not reaching the halt state in
m steps is at most (1� �)m.

The proof of the following lemma is similar to the proof of Lemma 2.2
of [19].

Lemma 5 For every n-player �-discounted game structure G�, with � > 0,
with reachability objective [[Reach(Ri)]] for player i, there exist memory-
less strategies �i for i 2 [n], such that the memoryless strategy pro�le
� = (�1; �2; : : : ; �n) is a Nash equilibrium in G� for every s 2 S.
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Proof. Regard each n-tuple � = (�1; �2; : : : ; �n) of memoryless strate-
gies as a vector in a compact, convex subset K of the appropriate Eucledian
space. Then de�ne a correspondence � that maps each element � of K to
the set �(�) of all elements g = (g1; g2; : : : ; gn) of K such that, for all i 2 [n]
and all s 2 S, gi is an optimal response for player i in G� against ��i.

Clearly, it suÆces to show that there is a � 2 K such that �(�) = �. To
show this, we will verify the Kakutani's Fixed Point Theorem [12]:

1. For every � 2 K, �(�) is closed, convex and nonempty;

2. If, for g1; g2; : : : ; g(k) 2 �(�(k)); limk!1 g(k) = g and limk!1 �(k) = �,
then g 2 �(�).

To verify condition 1, �x � = (�1; �2; : : : ; �n) 2 K and i 2 f1; 2; : : : ; ng.

For each s 2 S, let v�i (s) be the maximal payo� that player i can achieve

in G� against ��i, i.e., v
�
i (s) = val i

G��
�i ([[Reach(Ri)]])(s). Since �xing the

strategies for all the other players the game structure becomes a MDP, we
know that gi is an optimal response to ��i if and only if, for each s 2 S,
gi(s) puts positive probability only on actions ai 2 Ai that maximize the

expectation of v�i (s), namely,X
s0

v�i (s
0)Æ��i

(s; ai)(s
0):

The fact that any convex combination of optimal responses is again an op-
timal response in MDPs with reachability objectives follows from the fact
that MDPs with reachability objectives can be solved by a linear program
and the convex combination of optimal responses satisfy the constraints of
the linear program with optimal values. Hence condition 1 follows.

Condition 2 is an easy consequence of the continuity mapping

� ! Pr�s ([[Reach(Ri)]])

from K to the real line. It follows from Lemma 4 that the mapping is
continuous. The desired result follows.

De�nition 7 (Di�erence of two MDP's) Let G1 and G2 be two player i-
MDPs de�ned on the same state space S with the same set A of moves. The
di�erence of the two MDPs, denoted di� (G1;G2), is de�ned as:

di� (G1;G2) =
X
s02S

X
s2S

X
a2A

jÆ1(s; a)(s
0)� Æ2(s; a)(s

0)j:

That is, di� (G1;G2) is the sum of the di�erence of the probabilities of all the
edges of the MDPs.
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Observe that in context of player i-MDPs G, for all objectives 	i, we
have valGi (	i)(s) = sup�i2�i

Pr�is (	i). The following lemma follows from
Theorem 4.3.7 (page 185) of Filar-Vrieze [9].

Lemma 6 (Lipschitz continuity for reachability objectives) Let G�1
and G�2 be two �-discounted player i-MDPs, for � > 0, on the same state

space and with the same set of moves. For j 2 f 1; 2 g, let v�j (s) =

val i
G�j ([[Reach(Ri)]])(s), for Ri � S, i.e., v�j (s) denotes the value for player i

for the reachability objective [[Reach(Ri)]] in the �-discounted MDP G�j . Then
the following assertion hold:

jv�1 (s)� v�2 (s)j � di� (G�1 ;G
�
2 ):

Lemma 7 (Nash equilibrium with full support) Let G� be an n-
player �-discounted game structure, with � > 0, and reachability objective
[[Reach(Ri)]] for player i. For every " > 0, there exist memoryless strategies
�i for i 2 [n], such that for all i 2 [n], for all s 2 S, Supp(�i(s)) = �i(s)
(i.e., all the moves of player i is played with positive probability), and the
memoryless strategy pro�le � = (�1; �2; : : : ; �n) is an "-Nash equilibrium in
G� for every s 2 S.

Proof. Fix an Nash equilibrium �0 = (�01; �
0
2; : : : ; �

0
n) as obtained from

Lemma 5. For all i 2 [n], de�ne

�i(s)(a) =
"

jAjn � j�i(s)j � n � jSj2
+
�
1�

"

jAjn � j�1(s)j � n � jSj2
�
� �0i(s)(a);

for all s 2 S and for all a 2 �i(s). Let � = (�1; �2; : : : ; �n). Note that for
all s 2 S, we have Supp(�i(s)) = �i(s). For all i 2 [n], consider the two

player i-MDPs G���i
and G�

�0
�i
: for all s; s0 2 S, and ai 2 �i(s) we have from

the construction that: jÆ��i(s; ai)(s
0)�Æ�0

�i
(s; ai)(s

0)j � "
jSj2�j�i(s)j

. It follows

that di� (G���i
;G�

�0
�i
) � ". Since �0 is a Nash equilibrium, and for all i 2 [n],

G���i
and G�

�0
�i

are �-discounted player i-MDPs with di� bounded by ", the

result follows from Lemma 6.

Lemma 8 ("-Nash equilibrium for reachability games [4]) For ev-
ery n-player game structure G, with reachability objective [[Reach(Ri)]] for
player i, for every " > 0, there exists � > 0, such that a memoryless "-Nash
equilibrium in G�, is an 2"-Nash equilibrium in G.
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Lemma 8 follows from the results in [4]. Lemma 7 and Lemma 8 yield
Theorem 1.

Theorem 1 ("-Nash equilibrium of full support) For every n-player
game structure G, with reachability objective [[Reach(Ri)]] for player i,
for every " > 0, there exists a memoryless "-Nash equilibrium �� =
(��1 ; �

�
2 ; : : : ; �

�
n) such that for all s 2 S, for all i 2 [n], we have Supp(��i (s)) =

�i(s).

4 Nash Equilibrium for Upward-closed Objectives

In this section we prove existence of memoryless "-Nash equilibrium, for
all " > 0, for all n-player concurrent game structures, with upward-closed
objectives for all players. The key arguments use induction on the num-
ber of players, the results of Section 3 and analysis of Markov chains and
MDPs. We present some de�nitions required for the analysis of the rest of
the section.

MDP and graph of a game structure. Given an n-player concurrent
game structure G, we de�ne an associated MDP G of G and an associated
graph of G. The MDP G = (S;A;�; Æ) is de�ned as follows:

� S = S; A = A�A� : : :�A = An; and �(s) = f (a1; a2; : : : ; an) j ai 2
�i(s) g.

� Æ(s; (a1; a2; : : : ; an)) = Æ(s; a1; a2; : : : ; an).

The graph of the game structure G is de�ned as the graph of the MDP G.

Games with absorbing states. Given a game structure G we partition
the state space of G as follows:

1. The set of absorbing states in S are denoted as T , i.e., T = f s 2 C j
s is an absorbing state g.

2. A set U of states that consists of states s such that j�i(s)j = 1 for
i 2 [n] and (U � S)\E � U � T . In other words, at states in U there
is no non-trivial choice of moves for the players and thus for any state
s in U the game proceeds to the set T according to the probability
distribution of the transition function Æ at s.

3. C = S n (U [ T ).
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Reachable sets. Given a game structure G and a state s 2 S, we de�ne
Reachable(s;G) = f t 2 S j there is a path from s to t in the graph of G g
as the set of states that are reachable from s in the graph of the game
structure. For a set Z � S, we denote by Reachable(Z;G) the set of states
reachable from a state in Z, i.e., Reachable(Z;G) =

S
s2Z Reachable(s;G).

Given a set Z, let ZR = Reachable(Z;G). We denote by G � ZR, the sub-
game induced by the set ZR of states. Similarly, given a set F � 2S , we
denote by F � ZR the set f U j 9F 2 F : U = F \ ZR g.

Terminal non-absorbing maximal end components (Tnec). Given
a game structure G, let Z be the set of maximal end components of G.
Let L = Z n T be the set of maximal non-absorbing end components and
let H =

S
L2L L. A maximal end component Z � C, is a terminal non-

absorbing maximal end component (Tnec), if Reachable(Z;G)\(HnZ) = ;,
i.e., no other non-absorbing maximal end component is reachable from Z.

We consider in this section game structures G with upward-closed objec-
tive [[UpClo(UC i)]] for player i. We also denote byRi = ffsg 2 T j s 2 UC ig
the set of the absorbing states in T that are in UC i. We now prove the fol-
lowing key result.

Theorem 2 For all n-player concurrent game structures G, with upward-
closed objective [[UpClo(UC i)]] for player i, one of the following conditions
(condition C1 or C2) hold:

1. (Condition C1) There exists a memoryless strategy pro�le � 2 �
M

such that in the Markov chain G� there is closed recurrent set Z � C,
such that � is a Nash equilibrium for all states s 2 Z.

2. (Condition C2) There exists a state s 2 C, such that for all " > 0,

there exists a memoryless "-Nash equilibrium � 2 �
M

for state s, such
that Pr�s ([[Reach(T )]]) = 1, and for all s 2 S, and for all i 2 [n], we
have Supp(�i(s)) = �i(s).

The proof of Theorem 2 is by induction on the number of players. We
�rst analyze the base case.

Base Case. (One player game structures or MDPs) We consider player 1-
MDPs and analyze the following cases:

� (Case 1.) If there in no Tnec in C, then it follows from
Lemma 2 that for all states s 2 C, for all strategies �1 2
�1, we have Pr�1s ([[Reach(T )]]) = 1, and Pr�1s ([[Reach(R1)]]) =
Pr�1s ([[UpClo(UC 1)]]) (recall R1 = f f s g 2 T j s 2 UC 1 g). The result
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of Theorem 1 yields an "-Nash equilibrium �1 that satis�es condition
C2 of Theorem 2, for all states s 2 C.

� (Case 2.) Else let Z � C be a Tnec.

1. If Z 2 UC 1, �x a uniform memoryless strategy �1 2 �UM1
such that for all s 2 Z, Pr�1s (f ! j Inf(!) = Z g) = 1 and
Pr�1s ([[UpClo(UC 1)]]) = 1 (such a strategy exists by Lemma 3,
since C is an end component). In other words, Z is a closed re-
current set in the Markov chain G�1 and the objective of player 1
is satis�ed with probability 1. Hence condition C1 of Theorem 2
is satis�ed.

2. If Z 62 UC 1, then since UC 1 is upward-closed, for all set Z1 � Z,
Z1 62 UC 1. Hence for any play !, such that ! 2 [[Safe(Z)]], we
have Inf(!) � Z, and hence ! 62 [[UpClo(UC 1)]]. Hence we have
for all states s 2 Z,

sup
�12�1

Pr�1s ([[UpClo(UC 1)]]) = sup
�12�1

Pr�1s ([[Reach(R1)]]):

If the set of edges from Z to U [ T is empty, then for all strate-
gies �1 we have Pr�1s ([[UpClo(UC 1)]]) = 0, and hence any uni-
form memoryless strategy can be �xed and condition C1 of The-
orem 2 can be satis�ed. Otherwise, the set of edges from Z to
U [ T is non-empty, and then for " > 0, consider an "-Nash
equilibrium for reachability objective [[Reach(R1)]] satisfying the
conditions of Theorem 1. Since Z is an end component, for all
states s 2 Z, Supp(�1(s)) = �1(s), and the set of edges to Z
to U [ T is non-empty it follows that for all states s 2 Z, we
have Pr�1s ([[Reach(T )]]) = 1. Thus condition C2 of Theorem 2 is
satis�ed.

We prove the following lemma, that will be useful for the analysis of the
inductive case.

Lemma 9 Consider a player i-MDP G with an upward-closed objective
[[UpClo(UC i)]] for player i. Let �i 2 �M

i be a memoryless strategy such
that for all s 2 S, we have Supp(�i(s)) = �i(s). Let Z � S be a closed
recurrent set in the Markov chain G�i . Then �i is a Nash equilibrium for all
states s 2 Z.

Proof. The proof follows from the analysis of two cases.
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1. If Z 2 UC i, then since Z is a closed recurrent set in G�i , for all
states s 2 S we have Pr�is (f ! j Inf(!) = Z g) = 1. Hence we have

Pr�is ([[UpClo(UC i)]]) = 1 � sup�0i2�i
Pr

�0i
s ([[UpClo(UC i)]]). The result

follows.

2. We now consider the case such that Z 62 UC i. Since for all s 2 Z, we
have Supp(�i(s)) = �i(s), it follows that for all strategies �

0
i 2 �i and

for all s 2 Z, we have Outcome(s; �0i) � Outcome(s; �i) � [[Safe(Z)]]
(since Z is a closed recurrent set in G�i). It follows that for all strategies

�0i we have Pr
�0i
s ([[Safe(Z)]]) = 1. Hence for all strategies �0i, for all

states s 2 Z we have Pr
�0i
s (f! j Inf(!) � Z g) = 1. Since Z 62 UC i, and

UC i is upward-closed, it follows that for all strategies �
0
i, for all states

s 2 Z we have Pr
�0i
s ([[UpClo(UC i)]]) = 0. Hence for all states s 2 Z, we

have sup�0i2�i
Pr

�0i
s ([[UpClo(UC i)]]) = 0 = Pr�is ([[UpClo(UC i)]]). Thus

the result follows.

Inductive case. Given a game structure G, consider the MDP G: if there
are no Tnec in C, then the result follows from analysis similar to Case 1 of
the base case. Otherwise consider a Tnec Z � C in G. If for every player i

we have Z 2 UC i, then �x a uniform memoryless strategy � 2 �
UM

such
that for all s 2 Z, Pr�s (f ! j Inf(!) = Z g) = 1 (such a strategy exists by
Lemma 3, since C is an end component in G). Hence, for all i 2 [n] we have
Pr�s ([[UpClo(UC i)]]) = 1. That is Z is a closed recurrent set in the Markov
chain G� and the objective of each player is satis�ed with probability 1 from
all states s 2 Z. Hence condition C1 of Theorem 2 is satis�ed. Otherwise,
there exists i 2 [n], such that Z 62 UC i, and without loss of generality we
assume that this holds for player 1, i.e., Z 62 UC 1. If Z 62 UC 1, then we
prove Lemma 10 to prove Theorem 2.

Lemma 10 Consider an n-player concurrent game structure G, with
upward-closed objective [[UpClo(UC i)]] for player i. Let Z be a Tnec in
G such that Z 62 UC 1 and let ZR = Reachable(Z;G). The following asser-
tions hold:

1. If there exists �1 2 �M
1 , such that for all s 2 Z, Supp(�1(s)) = �1(s),

and condition C1 of Theorem 2 holds in G�1 � ZR, then condition C1
Theorem 2 holds in G.

2. Otherwise, condition C2 of Theorem 2 holds in G.
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Proof. Given a memoryless strategy �1, �xing the strategy �1 for player 1,
we get an n � 1-player game structure and by inductive hypothesis either
condition C1 or C2 of Theorem 2 holds.

� Case 1. If there is a memoryless strategy �1 2 �M
1 , such that for all

s 2 Z, Supp(�1(s)) = �1(s), and condition C1 of Theorem 2 holds
in G�1 , then let ��1 = (�2; �3; : : : ; �n) be the memoryless Nash equi-
librium and Z1 � Z be the closed recurrent set in G��1[�1 satisfying
the condition C1 of Theorem 2 in G�1 . Observe that (�1; Z1) satisfy
the conditions of Lemma 9 in the MDP G��i

. Hence, an application
of Lemma 9 yields that �1 is a Nash equilibrium for all states s 2 Z1,
in the MDP G��1 . Since ��1 is a Nash equilibrium for all states in
Z1 in G�1 , it follows that � = ��1 [ �1 and Z1 satisfy condition C1 of
Theorem 2.

� For " > 0, consider a memoryless "-Nash equilibrium � =
(�1; �2; : : : ; �n) in G with objective [[Reach(Ri)]] for player i, such that
for all s 2 S, for all i 2 [n], we have Supp(�i(s)) = �i(s) (such an
"-Nash equilibrium exists from Theorem 1). We now prove the desired
result analyzing two sub-cases:

1. Suppose there exits j 2 [n], and Zj � Z, such that Zj 2 UC j ,
and Zj is an end component in G��j

, then let �0j be a memo-
ryless strategy for player j, such that Zj is a closed recurrent
set of states in the Markov chain G��j[�0j

. Let �0 = ��j [ �0j .

Since Zj 2 UC j , it follows that for all states s 2 Zj, we have

Pr�
0

s ([[UpClo(UC j)]]) = 1, and hence player j has no incentive to
deviate from �0. Since for all �i, for i 6= j, and for all states
s 2 S, we have Supp(�i)(s) = �i(s), and Zj is a closed recurrent
set in G�0 , it follows from Lemma 9 that for all j 6= i, �i is a Nash
equilibrium in G�0

�i
. Hence we have �0 is a Nash equilibrium for

all states s 2 Zj in G and condition C1 of Theorem 2 is satis�ed.

2. Hence it follows that if Case 1 fails, for all i 2 [n], all end com-
ponents Zi � Z, in G��i

, we have Zi 62 UC i. Hence for all

i 2 [n], for all s 2 Z, for all �0i 2 �i, Pr
��i[�0i
s ([[UpClo(UC i)]]) =

Pr
��i[�

0

i
s ([[Reach(Ri)]]). Since � is an "-Nash equilibrium with

objectives [[Reach(Ri)]] for player i in G, it follows that � is
an "-Nash equilibrium in G with objectives [[UpClo(UC i)]] for
player i. Moreover, if there is an closed recurrent set Z 0 � Z in
the Markov chain G�, then case 1 would have been true (follows
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from Lemma 9). Hence if case 1 fails, then it follows that there
is no closed recurrent set Z 0 � Z in G�, and hence for all states
s 2 Z, we have Pr�s ([[Reach(T )]]) = 1. Hence condition C2 of
Theorem 2 holds, and the desired result is established.

Inductive application of Theorem 2. Given a game structure G, with
upward-closed objective [[UpClo(UC i)]] for player i, to prove existence of
"-Nash equilibrium for all states s 2 S, for " > 0, we apply Theorem 2
recursively. We convert the game structure G to a game structure G0 as
follows:

1. Transformation 1. If condition C1 of Theorem 2 holds, then let Z
be the closed recurrent set that satisfy the condition C1 of Theorem 2.

� In G0 convert every state s 2 Z to an absorbing state;

� if Z 62 UC i, for player i, then the objective for player i in G0 is
UC i;

� if Z 2 UC i for player i, the objective for player i in G is modi�ed
to include every state s 2 Z, i.e., for all Q � S, if s 2 Q, for some
s 2 Z, then Q is included in UC i.

Observe that the states in Z are converted to absorbing states and will
be interpreted as states in T in G0.

2. Transformation 2. If condition C2 of Theorem 2 holds, then let �� be
an "

jSj-Nash equilibrium from state s, such that Pr�
�

s ([[Reach(T )]]) = 1.

The state is converted as follows: for all i 2 [n], the available moves
for player i at s is reduced to 1, i.e., for all i 2 [n], �i(s) = f ai g, and
the transition function Æ0 in G0 at s is de�ned as:

Æ(s; a1; a2; : : : ; an)(t) =

(
Pr�

�

s ([[Reach(t)]]) if t 2 T

0 otherwise:

Note that the state s can be interpreted as a state in U in G0.

To obtain a "-Nash equilibrium for all states s 2 S in G, it suÆces to obtain
an "-Nash equilibrium for all states in G0. Also observe that for all states in
U [ T , Nash equilibrium exists by de�nition. Applying the transformations
recursively on G0, we proceed to convert every state to a state in U [T , and
the desired result follows. This yields Theorem 3.
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Theorem 3 For all n-player concurrent game structures G, with upward-
closed objective [[UpClo(UC i)]] for player i, for all " > 0, for all states
s 2 S, there exists a memoryless strategy pro�le ��, such that �� is an
"-Nash equilibrium for state s.

Remark 1 It may be noted that upward-closed objectives are not closed un-
der complementation, and hence Theorem 3 is not a generalization of deter-
minacy result for concurrent zero-sum games with upward-closed objective
for one player. For example in concurrent zero-sum games with B�uchi ob-
jective for a player, "-optimal strategies require in�nite-memory in general,
but the complementary objective of a B�uchi objective is not upward-closed
(recall Example 1). In contrast, we show the existence of memoryless "-
Nash equilibrium for n-player concurrent games where each player has an
upward-closed objective. For the special case of zero-sum turn-based games,
with upward-closed objective for a player, existence of memoryless optimal
strategies was proved in [3]; however note that the memoryless strategies re-
quire randomization as pure or deterministic strategies require memory even
for turn-based games with generalized B�uchi objectives.

5 Computational Complexity

In this section we present an algorithm to compute an "-Nash equilibrium
for n-player game structures with upward-closed objectives, for " > 0. A
key result for the algorithmic analysis is Lemma 11.

Lemma 11 Consider an n-player concurrent game structure G, with
upward-closed objective [[UpClo(UC i)]] for player i. Let Z be a Tnec in
G such that Z 62 UC n and let ZR = Reachable(Z;G). The following asser-
tion hold:

1. Suppose there exists �n 2 �M
n , such that for all s 2 Z, Supp(�n(s)) =

�n(s), and condition C1 of Theorem 2 holds in G�n � ZR. Let ��n 2
�UMn such that for all s 2 Z we have Supp(��n(s)) = �n(s) (i.e., �

�
n

is a uniform memoryless strategy that plays all available moves at all
states in Z). Then condition C1 holds in G��n � ZR.

Proof. The result follows from the observation that for any strategy pro�le

��n 2 �
M
�n, the closed recurrent set of states in G��n[�n and G��n[��n are

the same.
Lemma 11 presents the basic principle to identify if condition C1 of

Theorem 2 holds in a game structure G with upward-closed objective
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Algorithm 1 UpCloCondC1

Input : An n-player game structure G, with upward-closed objective
[[UpClo(UC i)]] for player i, for all i 2 [n].

Output: Either (Z; �) satisfying condition C1 of Theorem 2 or else (;; ;).

1. if n = 0,
1.1 if there is a non-absorbing closed recurrent set Z in the Markov chain G,

return (Z; ;).
1.2 else return (;; ;).

2. Z =ComputeMaximalEC(G)
(i.e., Z is the set of maximal end components in the MDP of G).

3. if there is no Tnec in G, return (;; ;).
4. if there exists Z 2 Z such that for all i 2 [n], Z 2 UC i,

4.1. return (Z; �) such that � 2 �
UM

and Z is closed recurrent set in G�.
5. Let Z be a Tnec in G, and let ZR = Reachable(Z;G).
6. else without loss of generality let Z 62 UC n.

6.1. Let �n 2 �UMn such that for all states s 2 ZR, �n(s) = �n(s).
6.2. (Z1; �) = UpCloCondC1 (G�n � ZR; n� 1; [[UpClo(UC i � ZR)]] for i 2 [n� 1])
6.3. if (Z1 = ;) return (;; ;);
6.4. else return (Z1; ��n [ �n).

[[UpClo(UC i)]] for player i. An informal description of the algorithm (Al-
gorithm 1) is as follows: the algorithm takes as input a game structure
G of n-players, objectives [[UpClo(UC i)]] for player i, and it either returns

(Z; �) 2 S ��
M

satisfying the condition C1 of Theorem 2 or returns (;; ;).
Let G be the MDP of G, and let Z be the set of maximal end compo-
nents in G (computed in Step 2 of Algorithm 1). If there is no Tnec in
G, then condition C1 of Theorem 2 fails and (;; ;) is returned (Step 3 of
Algorithm 1). If there is a maximal end component Z 2 Z such that for

all i 2 [n], Z 2 UC i, then �x a uniform memoryless strategy � 2 �
UM

such that Z is a closed recurrent set in G� and return (Z; �) (Step 4 of
Algorithm 1). Else let Z be a Tnec and without of loss of generality let
Z 62 UC n. Let ZR = Reachable(Z;G), and �x a strategy �n 2 �UMn , such
that for all s 2 ZR, Supp(�n(s)) = �n(s). The n � 1-player game struc-
ture G�n � ZR is solved by an recursive call (Step 6.3) and the result of the
recursive call is returned. It follows from Lemma 11 that if Algorithm 1
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Algorithm 2 NashEqmCompute

Input : An n-player game structure G, with upward-closed objective
[[UpClo(UC i)]] for player i, for all i 2 [n].

Output: Either (Z; �) satisfying condition C1 of Theorem 2 or
else (s; �) satisfying condition C2 of Theorem 2.

1. Z =ComputeMaximalEC(G)
(i.e., Z is the set of maximal end components in the MDP of G).

2. if there is no Tnec in G,
return (s;ReachEqmFull(G; n; ")) for some s 2 C.

3. Let Z be a Tnec in G, and let ZR = Reachable(Z;G).
4. Let (Z1; �) = UpCloCondC1 (G�n � ZR; n� 1; [[UpClo(UC i � ZR)]] for i 2 [n� 1])
5. if (Z1 6= ;) return (Z1; �);
6. Let � = ReachEqmFull(G; n; ").
7. For s 2 C, if � is an "-Nash equilibrium for s, with objective [[UpClo(UC i)]] for player i,

return (s; �).

returns (;; ;), then condition C2 of Theorem 2 holds for some state s 2 C.
Let T (jGj; n) denote the running time of Algorithm 1 on a game structure
G with n-players. Step 2 of the algorithm can be computed in O(jGj2) time
(see [8] for a O(jGj2) time algorithm to compute maximal end components
of a MDP). Step 4 can be achieved in time linear in the size of the game
structure. Thus we obtain the following recurrence

T (jGj; n) = O(jGj2) + T (jGj; n� 1):

Hence we have T (jGj; n) = O(n � jGj2).

Basic principle of Algorithm 2. Consider a game structure G with
objective [[UpClo(UC i)]] for player i. Let � be a memoryless strategy pro�le
such for all states s 2 S, for all i 2 [n], we have Supp(�i(s)) = �i(s),
and (s; �) satisfy condition C2 of Theorem 2 for some state s 2 C. Let
Zs = Reachable(s;G). It follows from the base case analysis of Theorem 2
and Lemma 10, that for all i 2 [n], in the MDP G��i � Zs, for all end
components Z � Zs, Z 62 UC i, and hence in G��i � Zs, the objective
[[UpClo(UC i)]] is equivalent to [[Reach(Ri)]]. It follows that if condition C2
of Theorem 2 holds at a state s, then for every " > 0, any memoryless "-Nash
equilibrium � in G with objective [[Reach(Ri)]] for player i, such that for all
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s 2 S, for all i 2 [n], Supp(�i(s)) = �i(s), is also an "-Nash equilibrium in
G with objective [[UpClo(UC i)]] for player i. This observation is formalized
in Lemma 12. Lemma 12 and Algorithm 1 is the basic principle to obtain a
memoryless "-Nash equilibrium at a non-empty set of states in C.

Lemma 12 Consider a game structure G with objective [[UpClo(UC i)]] for
player i. Let � be a memoryless strategy pro�le such for all states s 2 S,
for all i 2 [n], we have Supp(�i(s)) = �i(s), and (s; �) satisfy condition C2
of Theorem 2 for some state s 2 C. For " > 0, any memoryless "-Nash
equilibrium �0 in G for state s with objective [[Reach(Ri)]] for player i, such
that for all s 2 S, for all i 2 [n], Supp(�0i(s)) = �i(s), is also an "-Nash
equilibrium in G for state s with objective [[UpClo(UC i)]] for player i.

Description of Algorithm 2. We now describe Algorithm 2 that compute
an "-Nash equilibrium at some state s of a game structure G, with upward-
closed objective [[UpClo(UC i)]] for player i, for " > 0. In the algorithm
the procedure ReachEqmFull returns a strategy � = (�1; �2; : : : ; �n) such
that for all s, Supp(�i(s)) = �i(s), and � is an "-Nash equilibrium in G with
reachability objective [[Reach(Ri)]] for player i, from all states in S. The
algorithm �rst computes the set of maximal end components in G. If there
is noTnec in G, then it invokesReachEqmFull. Otherwise, for someTnec
Z and ZR = Reachable(Z;G), it invokes Algorithm 1 on the sub-game G �

ZR. If Algorithm 1 returns a non-empty set (i.e., condition C1 of Theorem 2
holds), then the returned value of Algorithm 1 is returned. Otherwise, the
algorithm invokes ReachEqmFull and returns (s; �) satisfying condition
C2 of Theorem 2. Observe that the procedure ReachEqmFull is invoked
when: either there is no Tnec in G, or condition C2 holds in G � ZR. It
suÆces to compute a memoryless "

2 -Nash equilibrium �0 = (�01; �
0
2; : : : ; �

0
n) in

G � ZR with reachability objective [[Reach(Ri)]] for player i, and then apply
the construction of Lemma 7 replacing " by "

2 to obtain (s; �) as desired.
Hence it follows that the complexity of ReachEqmFull can be bounded by
the complexity of a procedure to compute memoryless "-Nash equilibrium
in game structures with reachability objectives. Thus we obtain that the
running time of Algorithm 2 is bounded byO(n�jGj2)+ReachEqm(jGj; n; "),
where ReachEqm is the complexity of a procedure to compute memoryless
"-Nash equilibrium in games with reachability objectives.

The inductive application of Theorem 2 to obtain Theorem 3 using trans-
formation 1 and transformation 2 shows that Algorithm 2 can be applied
jSj-times to compute a memoryless "-Nash equilibrium for all states s 2 S.
For all constants " > 0, existence of polynomial witness and polynomial time
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veri�cation procedure for ReachEqm(G; n; ") has been proved in [4]. It fol-
lows that for all constants " > 0, ReachEqm(G; n; ") is in the complexity
class TFNP. The above analysis yields Theorem 4.

Theorem 4 Given an n-player game structure G with upward-closed ob-
jective [[UpClo(UC i)]] for player i, a memoryless "-Nash equilibrium for all
s 2 S can be computed

� in TFNP for all constants " > 0; and

� in time O(jSj � n � jGj2) + jSj �ReachEqm(G; n; ").

6 Conclusion

In this paper we establish existence of memoryless "-Nash equilibrium, for
all " > 0, for all n-player concurrent game structures, with upward-closed
objectives for all players. We also showed that computation of a memoryless
"-Nash equilibrium can be achieved by a polynomial procedure and solving
memoryless "-Nash equilibrium of n-player concurrent game structures with
reachability objectives. The existence of "-Nash equilibrium, for all " > 0,
in n-player concurrent game structures with !-regular objectives, and other
class of objectives in the higher levels of Borel hierarchy are interesting open
problems.
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