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Abstract

We present a simple proof of the fact that in concurrent games with

reachability objectives, for all " > 0, memoryless "-optimal strategies

exist. A memoryless strategy is independent of the history of plays; and

an "-optimal strategy achieves the objective with probability within "

of the value of the game. In contrast to previous proofs of this fact,

which rely on the limit behavior of discounted games using advanced

Puisieux series analysis, our proof is elementary and combinatorial.

1 Introduction

We consider concurrent reachability games played by two players over �nite
state spaces. The con�guration of such a game is called a state. At each
round, the two players choose their moves concurrently and independently;
the two moves and the current state determine a successor state, or in gen-
eral, a probability distribution over the successor states. A play of the game
consists in the in�nite sequence of states visited while playing the game.
The goal of player 1 consists in forcing the game to a speci�ed set of target
states; the goal of player 2 consists in preventing the game from reaching a
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target state. Consequently, we assign value 1 to all plays that reach the tar-
get set, and value 0 to all other plays. The players can adopt strategies that
are both randomized and history-dependent. Player 1 can guarantee a value
v for the game from a state s if player 1 has a strategy that ensures that
the expected value of a play from s is at least v, regardless of the strategy
chosen by player 2. The value at s of the reachability game with target T is
the supremum of the set of values that player 1 can guarantee from s. An
optimal strategy for player 1 is a strategy that guarantees the value of the
game from each state s. For " > 0, an "-optimal strategy for player 1 is a
strategy that guarantees the objective is satis�ed with a probability within
" of the value of the game for each state s.

Concurrent reachability games belong to the family of repeated games
[11, 7], and they have been studied more speci�cally in [5, 4, 6]. It has long
been known that optimal strategies need not exist for concurrent reachability
games [7], so that one must settle for "-optimality. It is also known that, for
" > 0, there always exist "-optimal strategies that are memoryless, i.e., such
that the probability distribution over moves depends only on the current
state, and not on the past history of the game [8].

Unfortunately, the only previous proof is rather complex. The proof
considered discounted versions of reachability games, where a play that
reaches the goal in k steps is assigned a value of �k, for some discount
factor 0 < � � 1, rather than value 1. It is possible to show that, for
0 < � < 1, memoryless optimal strategies always exist. The result for the
undiscounted (� = 1) case follows from an analysis of the limit behavior
of such optimal strategies for � ! 1; the limit behavior is studied with
the help of results on the �eld of real Puisieux series [8]. This proof idea
works not only for reachability games, but also for total-reward games with
non-negative rewards (see [8] again).

We show that the existence of memoryless "-optimal strategies for con-
current reachability games can be established by more elementary means,
which do not require the consideration of discounted versions of the games,
nor results on real Puisieux series. In particular, we present a proof that
relies only on combinatorial techniques, and on simple results on Markov
decision processes [1, 3]. As our proof is easily accessible, we believe that
the proof techniques we use may �nd future applications in game theory.
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2 Concurrent Games with Reachability Objec-

tives

Notation. For a countable set A, a probability distribution on A is a func-
tion Æ : A 7! [0; 1] such that

P
a2A Æ(a) = 1. We denote the set of probability

distributions on A by D(A). Given a distribution Æ 2 D(A), we denote by
Supp(Æ) = fx 2 A j Æ(x) > 0g the support of Æ.

De�nition 1 (Concurrent Games) A (two-player) concurrent game
structure G = hS;Moves ;�1;�2; Æi consists of the following components:

� A �nite state space S and a �nite set Moves of moves.

� Two move assignments �1;�2 : S 7! 2Moves n ;. For i 2 f1; 2g,
assignment �i associates with each state s 2 S, the non-empty set
�i(s) � Moves of moves available to player i at state s.

� A probabilistic transition function Æ : S � Moves � Moves ! D(S),
that gives the probability Æ(s; a1; a2)(t) of a transition from s to t when
player 1 plays move a1 and player 2 plays move a2, for all s; t 2 S and

a1 2 �1(s), a2 2 �2(s).

At every state s 2 S, player 1 chooses a move a1 2 �1(s), and simultaneously
and independently player 2 chooses a move a2 2 �2(s). The game then
proceeds to the successor state t with probability Æ(s; a1; a2)(t), for all t 2 S.
A state s is called an absorbing state if for all a1 2 �1(s) and a2 2 �2(s) we
have Æ(s; a1; a2)(s) = 1. In other words, at s for all choice of moves of the
players, the next state is always s. For all states s 2 S and moves a1 2 �1(s)
and a2 2 �2(s), we indicate by Dest(s; a1; a2) = Supp(Æ(s; a1; a2)) the set of
possible successors of s when moves a1, a2 are selected.

A path or a play ! of G is an in�nite sequence ! = hs0; s1; s2; : : :i of states
in S such that for all k � 0, there are moves ak1 2 �1(sk) and ak2 2 �2(sk)
with Æ(sk; a

k
1 ; a

k
2)(sk+1) > 0. We denote by 
 the set of all paths and by 
s

the set of all paths ! = hs0; s1; s2; : : :i such that s0 = s, i.e., the set of plays
starting from state s.

Strategies. A selector � for player i 2 f 1; 2 g is a function � : S 7!
D(Moves) such that for all s 2 S and a 2 Moves, if �(s)(a) > 0, then
a 2 �i(s). We denote by �i the set of all selectors for player i 2 f 1; 2 g. A
strategy for player 1 is a function � : S+ ! �1 that associates with every
�nite non-empty sequence of states, representing the history of the play so
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far, a selector; we de�ne strategies for player 2 similarly. A memoryless

strategy is independent of the history of the play and depends only on the
current state. Memoryless strategies correspond to selectors; we write �1 for
the memoryless strategy consisting in playing forever the selector �1. We
denote by �1 and �2 the sets of all strategies for player 1 and player 2,
respectively. We denote by �M

1 and �M
2 the family of memoryless strategies

for player 1 and player 2, respectively.
Once the starting state s and the strategies �1 and �2 for the two players

have been chosen, the game is reduced to an ordinary stochastic process.
Hence, the probabilities of events are uniquely de�ned, where an event A �

s is a measurable set of paths. For an event A � 
s, we denote by
Pr�1;�2s (A) the probability that a path belongs to A when the game starts
from s and the players follows the strategies �1 and �2. Similarly, for a
measurable function f : 
s ! IR, we denote by E�1;�2

s (f) the expected value
of f when the game starts from s and the players follows the strategies �1
and �2. For i � 0, we denote by �i : 
 ! S the random variable denoting
the i-th state along a path.

Valuations. A valuation is a mapping v : S ! [0; 1] associating a real
number v(s) 2 [0; 1] with each state s. Given two valuations v; w : S ! IR,
we write v � w when v(s) � w(s) for all s 2 S. For an event A, we
denote by Pr�1;�2(A) the valuation S ! [0; 1] de�ned for all s 2 S by�
Pr�1;�2(A)

�
(s) = Pr�1;�2s (A); similarly, for a measurable function f : 
s !

[0; 1], we denote by E�1;�2(f) the valuation S ! [0; 1] de�ned for all s 2 S
by
�
E�1;�2(f)

�
(s) = E�1;�2

s (f).
Given a valuation v, and two selectors �1 2 �1 and �2 2 �2, we de�ne

the valuations Pre�1;�2(v), Pre1:�1(v), and Pre1(v) as follows, for all s 2 S:

Pre�1;�2(v)(s) =
X

a;b2Moves

X

t2S

v(t) Æ(s; a; b)(t) �1(a) �2(b)

Pre1:�1(v)(s) = inf
�22�2

Pre�1;�2(v)(s)

Pre1(v)(s) = sup
�12�1

inf
�22�2

Pre�1;�2(v)(s):

Note that all of these valuations are monotonic: for two valuations v; w, if
v � w, then for all selectors �1 2 �1 and �2 2 �2 we have Pre�1;�2(v) �
Pre�1;�2(w), Pre1:�1(v) � Pre1:�1(w), and Pre1(v) � Pre1(w).

Reachability objectives. Given a subset T � S of target states, the
goal of a reachability game consists in reaching T . Therefore, we de�ne the
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set winning plays as the set Reach(T ) = f ! = hs0; s1; s2; : : :i 2 
 j sk 2
T for some k � 0 g of plays that reach T . For any T � S, the set Reach(T )
is measurable for any choice of strategies for the two-players [12]; we denote
the probability that a path is in Reach(T ) starting from state s 2 S, given
strategies �1 and �2 for players 1 and 2, respectively, by Pr�1;�2s (Reach(T )).
Given a state s 2 S and a reachability objective, Reach(T ), we de�ne the
value of the game at s for player 1 as

hh1iival (Reach(T ))(s) = sup
�12�1

inf
�22�2

Pr�1;�2s (Reach(T )):

The quantitative determinacy result of [10] ensures that

sup
�12�1

inf
�22�2

Pr�1;�2s (Reach(T )) + sup
�22�2

inf
�12�1

Pr�1;�2s (
 nReach(T )) = 1:

A strategy �1 for player 1 is optimal if for all s 2 S we have

inf
�22�2

Pr�1;�2s (Reach(T )) = hh1iival (Reach(T ))(s):

For " > 0, a strategy �1 for player 1 is "-optimal if for all s 2 S we have

inf
�22�2

Pr�1;�2s (Reach(T )) � hh1iival (Reach(T ))(s) � ":

3 Existence of Memoryless "-Optimal Strategies

3.1 Markov decision processes

In our proof, we need some facts about one-player versions of concurrent
stochastic games, known as Markov decision processes (MDPs) [1]. For
i 2 f 1; 2 g, an i-MDP is a concurrent game where, for all s 2 S, we have
j�3�i(s)j = 1. Given a concurrent game G, if we �x a memoryless strategy
corresponding to selector � for player 1, the game is equivalent to a 2-MDP
G� with transition function

Æ�(s; b)(t) =
X

a2�1(s)

Æ(s; a; b)(t) � �(s)(a);

for all s 2 S and b 2 �2(s). Similarly, if we �x selectors �1; �2 for both
players in a concurrent game G, we obtain a Markov chain, which we denote
by G�1;�2 . In an MDP, the sets of states that play an equivalent role to
the closed recurrent classes of Markov chains [9] are called end-components

[2, 3].
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De�nition 2 (End components) An end-component (EC) of a 2-MDP

is a subset C � S such that there is a selector � for player 2 under which C
forms a closed recurrent class of the resulting Markov chain.

It is not diÆcult to see that an equivalent characterization of an end-
component C is the following. For each s 2 C, there is a subset of moves
M(s) � �2(s) such that:

1. when a move in M(s) is chosen at s, all the states that can be reached
with non-zero probability are in C;

2. the graph (C;E), where E consists of the transitions that occur with
non-zero probability when moves in M(�) are taken, is strongly con-
nected.

Given a path !, denote by In�(!) the set of states that occurs in�nitely
often along !. Given a set F � 2S of subset of states we denote by In�(F)
the event f! j In�(!) 2 F g. The following theorem states that in a 2-MDP,
for any strategy of player 2, the set of states visited in�nitely often is an EC
with probability 1. Corollary 1 follows easily from Theorem 1.

Theorem 1 ([3]) Let C be the set of end-components of a 2-MDP G�1 . For

all strategies �2 2 �2 and all states s 2 S, we have Pr
�1;�2
s (In�(C)) = 1.

Corollary 1 Let C be the set of end-components of a 2-MDP G�1 and let

Z =
S
C2C C be the set of states of all end-components. For all strategies

�2 2 �2 and all states s 2 S, we have Pr
�1;�2
s (Reach(Z)) = 1.

3.2 From value iteration to selectors

Consider a reachability game with target T � S. Let W2 = f s 2 S j
hh1iival (Reach(T ))(s) = 0 g be the set of states from which player 1 cannot
reach the goal with positive probability; from [4, 6] we know that player 2
has a strategy that con�nes the game in W2. An arbitrary strategy for
player 1 is "-optimal for a state s 2W2[T ; hence, without loss of generality
we assume that every state s 2W2 [ T is an absorbing state.

Our �rst step towards the proof of memoryless "-optimal strategies for
reachability games consists in considering a value-iteration scheme for the
computation of hh1iival (Reach(T )). Let [T ] : S ! [0; 1] be the indicator
function of T , de�ned by [T ](s) = 1 for s 2 T , and [T ](s) = 0 for s 62 T . We
then de�ne:

u0 = [T ] 8k � 0 : uk+1 = Pre1(uk) (1)
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Note that the classical equation assigns uk+1 = [T ] _ Pre1(uk), where _
is interpreted as the maximum in pointwise fashion. Since we assume that
states in T are absorbing, the classical equation reduces to the simpler equa-
tion given by (1). From the monotonicity of Pre1 it follows that uk � uk+1,
that is, Pre1(uk) � uk, for all k � 0. The result of [6] establishes by a com-
binatorial argument that hh1iival (Reach(T )) = limk!1 uk, where the limit
is interpreted in pointwise fashion. A witness for an "-optimal strategy is
constructed by letting �k be a selector such that Pre1(uk) = Pre1:�k(uk), for
all k � 0, and by considering the strategy �k for player 1 consisting in the
sequence of selectors �k; �k�1; : : : ; �1; �0; �0; �0; : : :, where the last selector, �0,
is repeated forever. It is then possible to prove by induction on k that

inf
�22�2

Pr�k;�2(9j 2 [0::k]:�j 2 T ) � uk:

As the strategies �k, for k � 0, are not necessarily memoryless, this proof
does not suÆce for showing the existence of memoryless "-optimal strategies.
On the other hand, the following example shows that a memoryless strategy
�k does not necessarily guarantee the value uk.

Example 1 Consider the 1-MDP shown in Fig 1. At all states except state

s3, the set of available moves for player 1 is singleton, and at s3 the available
moves for player 1 is a and b. The transition at various states is shown in

the Fig 1. The objective of player 1 is to reach the state s0, i.e., Reach(fs0g).
Given the MDP we consider the value-iteration procedure and denote by uk
the valuation after k-iterations. We have u0 = (1; 0; 0; 0; 0) and hence we

have u1 = Pre1(1; 0; 0; 0; 0) = (1; 0; 1=2; 0; 0). Similarly iterating the Pre1
operator we get u2 = (1; 0; 1=2; 1=2; 0) and u3 = (1; 0; 1=2; 1=2; 1=2). This is a

�x-point and we have u4 = u3. Now consider the selector �k for player 1

that chooses at state s3 the action a with probability 1. The selector �k is

optimal w.r.t. to the valuation u3. However if player 1 plays the memoryless

strategy �k, then the game visits s3 and s4 alternately and reaches s0 with

probability 0. Any memoryless strategy �
0

k for player 1 that plays action b
at state s3 with positive probability ensures that the set f s0; s1 g of states is

reached with probability 1, and s0 is reached with probability 1=2; and hence

is an optimal strategy.

In the example, the problem is that the strategy �k may cause player 1 to
stay forever in S n (T [W2) with positive probability. The following lemma
shows that, in the cases where the strategy �k guarantees reaching T [W2

with probability 1, then �k also guarantees the value uk.
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a b
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Figure 1: A MDP with reachability objective.

Lemma 1 Let v be a valuation such that Pre1(v) � v and v(s) = 0 for

all s 2 W2. Let �1 be a selector for player 1 such that Pre1:�1(v) =

Pre1(v). For all player 2 strategies �2, if Pr�1;�2(Reach(T [ W2)) = 1,

then Pr�1;�2(Reach(T )) � v.

Proof. Consider an arbitrary �2 2 �2, and for k � 0 let

vk = E�1;�2
�
v(�k)

�

be the expected value of v after k steps under �1 and �2. By induction on
k, we can prove vk � v for all k � 0: in fact, v0 = v, and for k � 0 we have
vk+1 � Pre1:�1(vk) � Pre1:�1(v) = Pre1(v) � v. For all k � 0 and s 2 S,
we can write vk as:

vk(s) = E
�1;�2
s

�
v(�k) j �k 2 T

�
� Pr

�1;�2
s

�
�k 2 T

�

+ E
�1;�2
s

�
v(�k) j �k 2 S n (T [W2)

�
� Pr

�1;�2
s

�
�k 2 S n (T [W2)

�

+ E
�1;�2
s

�
v(�k) j �k 2W2

�
� Pr

�1;�2
s

�
�k 2W2

�
:

Since v(s) � 1 when s 2 T , the �rst term on the right hand side is at

most Pr
�1;�2
s

�
�k 2 T

�
. For the second term, we have limk!1Pr�1;�2

�
�k 2

S n(T [W2)
�
= 0 by hypothesis, since Pr�1;�2(Reach(T [W2)) = 1 and every

state s 2 T [W2 is absorbing. Finally, the third term on the right hand side
is 0, as v(s) = 0 for all s 2 W2. Hence, taking the limit with k ! 1, we
obtain

Pr�1;�2
�
Reach(T )

�
= lim

k!1
Pr�1;�2

�
�k 2 T

�
� lim

k!1
vk � v;

where the last inequality follows from vk � v for all k � 0.

3.3 From value iteration to optimal selectors

Since hh1iival (Reach(T )) = limk!1 uk, for every " > 0, there exists k, such
that for all states s, we have uk(s) � uk�1(s) � hh1iival (Reach(T ))(s) �

8



". Lemma 1 indicates that, in order to construct a memoryless "-optimal
strategy, we need to construct from uk�1 a selector �1 with the following
properties:

1. Pre1:�1(uk�1) = Pre1(uk�1) = uk;

2. For all �2 2 �2, we have Pr
�1;�2(Reach(T [W2)) = 1.

The �rst of the above conditions is easily met: it states simply that �1 is
an optimal selector for Pre1(uk�1). To meet the second condition, however,
not every optimal selector suÆces, as shown by Example 1.

To construct a suitable selector, we need some de�nitions. For r > 0,
the value class Uk

r = f s 2 S j uk(s) = r g, consists of the states with value r
under the valuation uk. Similarly we de�ne U

k
./r = f s 2 S j uk(s) ./ r g, for

./2 f<;�;�; >g. For a state s 2 S, let `k(s) = minf j � k j uj(s) = uk(s)g
be the entry time of s in Uk

uk(s)
, i.e., the least iteration j in which the state

s has the same value as in iteration k. For k � 0, we de�ne the selector �k
as follows:

�k(s) = �`k(s) = arg sup
�12�1

�
inf

�22�2

Pre�1;�2(u`k(s)�1)
�
:

In words, the selector �k(s) is an optimal selector for s at the iteration `k(s).
It follows easily that uk = Pre1:�k(uk�1). We denote by �!k the memoryless
player-1 strategy that always follows �k. Once we �x the selector �k, the
game is equivalent to a 2-MDP G�k , and we can analyze its behavior with
the help of Corollary 1; the goal is to prove the second condition, i.e., that
for all �2 2 �2 we have Pr

�k;�2(Reach(T [W2)) = 1. To reason about the
end-components of G�k , for a state s 2 S, and a player-2 action b 2 �2(s),
we denote by

Destk(s; b) = f Dest(s; a; b) j a 2 �1(s) ^ �k(a) � 0 g

the set of possible successors of state s when player 1 plays according to �k,
and player 2 plays according to b.

Lemma 2 For all k � 0, consider a state s 2 S n (T [W2), and let s 2 Uk
r ,

for 0 < r < 1. For all moves b 2 �2(s), we have:

1. either Destk(s; b) \ Uk
>r 6= ;,

2. or Destk(s; b) � Uk
r , and there is t 2 Destk(s; b) with `k(t) < `k(s).

9



Proof. For convenience, let m = `k(s), and consider any b 2 �2(s).

� Consider �rst the case in which Destk(s; b) 6� Uk
r . Then, it cannot be

Destk(s; b) � Uk
�r: otherwise, for all states t 2 Destk(s; b) we would

have uk(t) � r, and there would be at least one t 2 Destk(s; b) such
that uk(t) < r, contradicting uk(s) = r and Pre1:�k(uk�1) = uk. So,
it must be Destk(s; b) \ Uk

>r 6= ;.

� Consider now the case in which Destk(s; b) � Uk
r . Since um � uk,

due to the monotonicity of the Pre1 operator and (1), we have that
um�1(t) � r for all t 2 Destk(s; b). From r = uk(s) = um(s) =
Pre1:�k(um�1), we have that um�1(t) = r for all t 2 Destk(s; b), im-
plying that `k(t) < m for all t 2 Destk(s; b).

The above lemma states that under �k, from each state i 2 Uk
r we are

guaranteed a probability bounded away from 0 of either moving to a higher-
value class Uk

>r, or of moving to states within the value class that have a
strictly lower entry time. This implies that every state in S n W2 has a
probability bounded above zero of reaching T in at most n = jSj steps, so
that the probability of staying forever in S n (T [W2) is 0. To prove this
fact formally, we analyze the end components of G�k in light of Lemma 2.

Lemma 3 For k � 0, if for all s 2 S nW2 we have uk�1(s) > 0, then for

all �2 2 �2, we have Pr�k;�2
�
Reach(T [W2)) = 1.

Proof. Since every state s 2 T [W2 is absorbing, to prove this result,
in view of Corollary 1, it suÆces to show that there is no end component of
G�k entirely contained in S n (T [W2). Towards the contradiction, assume
there is such an end component C � (S nT [W2); then, we have C � Uk

[r1;r2]

with C \ Ur2 6= ;, for some 0 < r1 � r2 � 1, where Uk
[r1;r2]

= Uk
�r1

\ Uk
�r2

is the union of the value classes for values in the interval [r1; r2]. Consider
a state s 2 Uk

r2
with minimal `k, i.e., such that `k(s) � `k(t) for all other

t 2 Uk
r2
. From Lemma 2, we are guaranteed that for any b 2 �2(s), there is

t 2 Destk(s; b) such that (i) either t 2 Uk
r2
and `k(t) < `k(s), (ii) or t 2 Uk

>r2
.

In both cases, we reach a contradiction.
The above lemma shows that �k satis�es both the requirements for optimal
selectors spelt out at the beginning of Section 3.3: hence, �k guarantees
value uk. This proves the existence of memoryless "-optimal strategies for
concurrent reachability games.

Theorem 2 (Existence of memoryless "-optimal strategies) For ev-
ery " > 0, memoryless "-optimal strategies exist for all concurrent games

with reachability objectives.
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Proof. Consider a reachability game with target T � S. Since
limk!1 uk = hh1iival (Reach(T )), for every " > 0 we can �nd k 2 N

such that maxs2S
�
hh1iival (Reach(T ))(s) � uk�1(s)

�
< ". By construction,

Pre1:�k(uk�1) = Pre1(uk�1) = uk. Hence, from Lemmas 1 and 3, for all
�2 2 �2 we have Pr

�k;�2(Reach(T )) � uk�1, leading to the result.
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