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Abstract

The value of a �nite-state stochastic game with limit-average ob-

jectives can be approximated to within � in time exponential in the

size of the game and logarithmic in 1

�
.

1 Introduction

A stochastic game [12] is a repeated game over a �nite state space, played
by two-players. Each player has a non-empty set of actions available at
every state, and at each round each player chooses an action from the set of
available actions at the current state simultaneously with and independent
from the other player. The transition function is probabilistic, and the next
state is given by a probability distribution depending on the current state
and the actions chosen by the players. At each round, player 1 gets (and
player 2 loses) a reward depending on the current state, and the players are
informed of the history of the play consisting of the sequence of states visited
and the actions of the players played so far in the play. A strategy for a player
is a recipe to extend the play: given a �nite sequence of states representing
the history of the play, a strategy speci�es a probability distribution over the
set of available actions at the last state of the history. The limiting average
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reward of a pair of strategies � and � and a starting state s is de�ned as

v1(s; �; �) = lim inf
n!1

E�;�
s [

1

n

nX

i=0

r(�i)];

where �i is the random state reached at round i of the game under strategies
� and �, and r(s) gives the reward at state s. The form of the objective
explains the term limit average. First, the average is taken with respect to
the expected rewards in the �rst n rounds of the game. Then the objective
is de�ned as the liminf of these averages. A stochastic game with a limit-
average objective is called a limit-average game. The fundamental question
in stochastic games is the existence of a value, that is, whether

sup
�

inf
�
v1(s; �; �) = inf

�
sup
�

v1(s; �; �)

Stochastic games were introduced by Shapley [12], where he showed the
existence of value in discounted games, where the game stops at each round
with probability � for some 0 < � < 1. Limit-average games were introduced
by Gillette [6], who studied the special cases of perfect information (at each
round, at most one player has a choice of moves) and irreducible stochastic
games. Existence of value for the perfect information case was proved in [8].
Gillette's paper also introduced a limit-average game called the Big Match,
which was solved in [3]. Bewley and Kohlberg [2] then showed how Pusieux
series expansions could be used for asymptotic analysis of discounted games.
This, and the winning strategy in the Big Match, was used by Mertens and
Neyman's result [9] to show the existence of value in limit-average games.

While the existence of a value in general limit-average stochastic games
has been extensively studied, the computation of values has received less
attention. In general, it may happen that a game with rational rewards
and rational transition probabilities still has an irrational value. Hence, we
can only hope to get approximation algorithms that compute the value of
a game up to a given approximation ". Even the approximation of values
is not simple, because in general the games only admit �-optimal strategies,
and strategies may require in�nite memory. This precludes, for example,
common techniques that enumerate over all (�nite) strategies and (having
�xed a strategy) solve the resulting Markov decision process using linear
programming techniques. Most research has therefore characterized partic-
ular subclasses of games for which memoryless optimal strategies exist (a
memoryless strategy is independent of the history of the play and depends
only on the current state) [10, 7] (see [5] for a survey), and the main al-
gorithmic tool has been value or policy iteration, which can be shown to
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terminate in exponential number of steps (but much better in practice) for
many of these particular classes.

Our main technique is the characterization of values as semi-algebraic
quantities [2, 9]. We show that the value of stochastic limit-average games
can be expressed as a sentence in the theory of real-closed �elds that is linear
in the size of the game and has a constant number of quanti�er alternations.
The theory of real-closed �elds is decidable in time exponential in the size of
the formula and doubly exponential in the quanti�er alternation depth [1];
this, together with binary search on the range of values gives an exponential
algorithm to approximate the value to any given ". Our techniques are
simple and combine known results to provide the �rst complexity bound on
the general problem of approximating the value of stochastic games with
limit-average objectives. Further, the complexity of this algorithm matches
the complexity of the best known deterministic algorithm for the special
case of perfect information games.

2 De�nitions

Stochastic games. For a �nite set A, a probability distribution on A is
a function Æ : A 7! [0; 1] such that

P
a2A Æ(a) = 1. We denote the set of

probability distributions on A by D(A). Given a distribution Æ 2 D(A), we
denote by Supp(Æ) = fx 2 A j Æ(x) > 0g the support of Æ.

A (two-player) stochastic game G = hS;Moves ;�1;�2; Æ; ri consists of:

� A �nite state space S.

� A �nite set Moves of moves.

� Two move assignments �1;�2 : S 7! 2Moves n ;. For i 2 f1; 2g,
assignment �i associates with each state s 2 S the non-empty set
�i(s) � Moves of moves available to player i at state s.

� A probabilistic transition function Æ : S �Moves �Moves ! D(S),
that gives the probability Æ(s; a1; a2)(t) of a transition from s to t
when player 1 plays a1 and player 2 plays move a2, for all s; t 2 S and
a1 2 �1(s), a2 2 �2(s).

� A reward function r : S ! R that maps every state to a real valued
reward.
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The size of a stochastic game G is equal to the sum of the size of the
transition function Æ and reward function r, that is,

jGj =
X

s2S

�
(
X

t2S

X

a2�1(s)

X

b2�2(s)

jÆ(s; a; b)(t)j) + jr(s)j
�
;

where jÆ(s; a; b)(t)j and jr(s)j denotes the space to specify the probability
distribution and the reward, respectively.

At every state s 2 S, player 1 chooses a move a1 2 �1(s), and simulta-
neously and independently player 2 chooses a move a2 2 �2(s). The game
then proceeds to the successor state t with probability Æ(s; a1; a2)(t), for all
t 2 S. At the state t, player 1 wins and player 2 loses a reward of value r(t).
A state s is called an absorbing state if for all a1 2 �1(s) and a2 2 �2(s)
we have Æ(s; a1; a2)(s) = 1. In other words, at s for all choice of moves
of the players the next state is always s. We assume that the players act
non-cooperatively, i.e., each player chooses her strategy independently and
secretly from the other player, and is only interested in maximizing her own
reward. For all states s 2 S and moves a1 2 �1(s) and a2 2 �2(s), we
indicate by Dest(s; a1; a2) = Supp(Æ(s; a1; a2)) the set of possible successors
of s when moves a1, a2 are selected.

A path or a play ! of G is an in�nite sequence ! = hs0; s1; s2; : : :i of states
and such that there exists (ai; bi) 2 �1(si)��2(si) and si+1 2 Dest(si; ai; bi),
for all i � 0. We denote by 
 the set of all paths and by 
s the set of all
paths ! = hs0; s1; s2; : : :i such that s0 = s, i.e., the set of plays starting from
state s.

Randomized strategies. A selector � for player i 2 f 1; 2 g is a function
� : S 7! D(Moves) such that for all s 2 S and a 2 Moves, if �(s)(a) > 0
then a 2 �i(s). We denote by �i the set of all selectors for player i 2 f1; 2g.
A strategy for player 1 is a function � : S+ ! �1 associates a selector with
every �nite non-empty sequence of states representing the history of the play
so far. Similarly we de�ne strategies � for player 2. We denote by � and �
the set of all strategies for player 1 and player 2, respectively.

Once the starting state s and the strategies � and � for the two players
have been chosen, the game is reduced to an ordinary stochastic process.
Hence, the probabilities of events are uniquely de�ned, where an event A �

s is a measurable set of paths. For an event A � 
s, we denote by Pr

�;�
s (A)

the probability that a path belongs to A when the game starts from s and
the players follows the strategies � and �. For i � 0, we also denote by
�i : 
s ! S the random variable denoting the i-th state along a path.
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A valuation is a mapping v : S ! R, associating a real number
v(s) with each state s. Given a valuation v and two selectors �1 2
�1 and �2 2 �2, we de�ne the expectation Pre�1;�2(v) : S ! R by
Pre�1;�2(v)(s) =

P
a;b2Moves

P
t2S v(t) Æ(s; a; b)(t) �1(a) �2(b): intuitively,

Pre�1;�2(v)(s) is the expected value of v when player 1 chooses a move
according to �1 and player 2 chooses a move according to �2. We denote
by Pre1(v) : S ! R the maximal valuation player 1 can achieve, de�ned
by Pre1(v)(s) = sup�12�1 inf�22�2 Pre

�1;�2(v)(s) for all s 2 S; and we write

Pre1(v) = sup�12�1 inf�22�2 Pre
�1;�2(v), where inf and sup are interpreted

pointwise. We de�ne Pre2 : (S ! R) ! (S ! R) symmetrically.

Limit-average objective. Let � and � be strategies of player 1 and
player 2 respectively. The limit-average payo� v1(s; �; �) for player 1 at
a state s, for the strategies � and � is de�ned as

v1(s; �; �) = lim inf
n!1

E�;�
s [

1

n

nX

i=0

r(�i)];

Similarly, for player 2, the payo� v2(s; �; �) is de�ned as

v2(s; �; �) = lim sup
n!1

E�;�
s [

1

n

nX

i=0

�r(�i)]:

In other words, player 1 wins and player 2 looses the \long-run" average of
the rewards of the play. A stochastic game G with limit average payo� is
called a limit-average game.

Given a state s 2 S and we are interested in �nding the maximal payo�
that player 1 can ensure against all strategy for player 2, and the maximal
payo� that player 2 can ensure against all strategies for player 1. We call
such payo� the value G at s for player i 2 f 1; 2 g. The value for player 1
and player 2 are given by the function v1 : S 7! [0; 1] and v2 : S 7! [0; 1],
de�ned for all s 2 S by

v1(s) = sup�2� inf�2� v1(s; �; �) and v2(s) = sup�2� inf�2� v2(s; �; �):

Mertens and Neyman [9] establish the determinacy of stochastic limit-
average games.

Theorem 1 ([9]) For all stochastic limit-average games, for all state s, we
have v1(s) + v2(s) = 0.
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3 Theory of Real-closed Fields

Our main technique is to represent the value of a game as a formula in the
theory of real-closed �elds. An ordered �eld H is real-closed if no proper
algebraic extension of H is ordered. We denote by R the real-closed �eld
(R;+; �; 0; 1;�) of the reals with addition and multiplication. An atomic

formula is an expression of the form p > 0 or p = 0 where p is a (possibly)
multi-variate polynomial with integer coeÆcients. An elementary formula

is constructed from atomic formulas by the grammar

' ::= a j :' j ' ^ ' j ' _ ' j 9x:' j 8x:';

where a is an atomic formula, ^ denotes conjunction, _ denotes disjunction,
: denotes complementation, and 9 and 8 denote existential and universal
quanti�cation respectively. From this basic syntax, we derive additional
de�ned expressions p � 0 (for p > 0_p = 0), p < 0 (for :(p > 0)_:(p = 0)),
p � 0 (for :(p > 0)), and p � q (for p � q � 0) for polynomials p and q,
and �2 f=; >g in the usual way. The semantics of elementary formulas are
given in a standard way [4]. A variable x is free in the formula ' if it is not
in the scope of a quanti�er 9x or 8x. An elementary sentence is a formula
with no free variables. A famous theorem of Tarski states that the theory
of real-closed �elds is decidable.

Theorem 2 ([14]) The theory of real-closed �elds in the language of or-

dered �elds is decidable.

The operator Pre1 can be interpreted as an operator to obtain the op-
timal (or minmax) value of a matrix game. We start with the following
classical observation [15] that this minmax value can be written as an ele-
mentary formula in the theory of ordered �elds.

Lemma 1 For a valuation v : S ! R, Pre1(v) can be written as an exis-

tential elementary formula in the language of real-closed �elds.

4 Complexity of Approximating the Value

The values in stochastic limit-average games can be irrational even if the
reward at every state and the transition probability function only take ra-
tional values [11]. Hence, we can algorithmically only approximate the
value to within an ". To approximate the values of stochastic games with
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limit-average objectives we restrict our attention to stochastic positive limit-
average games. Since there is a simple reduction from all stochastic limit-
average games to stochastic positive limit-average games, this is suÆcient.

Normalized positive limit-average games. A stochastic limit-average
game G is a normalized positive limit-average game if the reward function
r maps every state to a non-negative reward between 0 and 1, i.e., r : S !
[0; 1]. Given a stochastic limit-average game G, let cmin = mins2S r(s) and
cmax = maxs2S jr(s)j. Consider the reward function r+ such that r+(s) =
r(s)+jcminj+�

cmax+jcminj+�
, with � > 0. Consider the normalized positive limit-average

game G+ derived from G where the reward function r is replaced by r+.
Let v1 and v+1 be the value functions in the game G and G+, respectively.

It follows easily that v+1 (s) =
v1(s)+jcminj+�

cmax+jcmin j+�
, for all state s. Hence without

loss of generality we consider only normalized positive limit-average games
to compute the values. Observe that the value function v+1 only takes values
in the interval [0; 1] for normalized positive limit-average games.

Discounted version of a game. Let G be a normalized positive limit-
average game with reward function r. Let 0 < � < 1. A �-discounted
version of the game G, denoted G� , is a game that halts with probability �
at each round, and proceeds as game G with probability 1��. The process
of halting can be interpreted as going to an absorbing state halt, such that
r(halt) = 0. We denote by v�1 (�) the value function of a �-discounted game.
It may be noted that for normalized positive limit-average games G, the
value function of the corresponding �-discounted game v�1 is monotonic with

respect to �, i.e., if �1 � �2, then v�11 � v�21 .
We assume without loss of generality that the state space of the stochas-

tic game structure is enumerated as natural numbers, S = f1; 2; : : : ; ng, i.e.,
the states are numbered from 1 to n. We write x; y; z to denote variables
and ~x; ~y; ~z to denote vector of variables of length n. We denote by ~x(i) the
i-th component of the vector ~x.

For 0 < � < 1, the value function of a �-discounted game G� can be
characterized as the least �xed-point of the following optimality equation
[12]:

v�1 (i) = [� � r(i) + (1� �)Pre1(~x)(i)]; (1)

where ~x is a vector of variables, with variable ~x(i) for state i. The least
�xed-point can be interpreted as follows:

~x0(j) = 0; 8j:1 � j � n;
~xi+1(j) = � � r(j) + (1� �)Pre1(~x)(j); 8j:1 � j � n;

v�1 (j) = limi!1 ~xi(j); 8j:1 � j � n:
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The existence of the limit follows from monotonicity of the operator Pre1.

Lemma 2 ([12]) The value of the �-discounted stochastic game G� is ob-

tained as the least �xed-point of the optimality equation 1.

We describe a procedure to express the �xed-point equation for v�1 as
a formula over the theory of reals over addition and multiplication. For
�2 f �;= g we write �vec to denote the corresponding operator for vector
comparison, i.e., ~x �vec ~y if and only if ~x(i) � ~y(i), 8 i: 1 � i � n. Let
us denote by ~c the vector h1; 2; : : : ; ni. We describe a formula f�(~x) for the
equation f�(~x)(j) = �~x:[�r(j) + (1� �)Pre1(~x)(j)] as follows

f�(~x) = 8~y:
� �

(� � r(~c) + (1� �)Pre1(~y)) =vec ~y
�
) (~x �vec ~y)

�

^
�
(� � r(~c) + (1� �)Pre1(~x)) =vec ~x

�
:

Intuitively, the formula describes for all vectors ~y such that ~y is a �xed-point
of the optimality equation, we must have ~x �vec ~y, and ~x is also a �xed-point
of the optimality equation. It follows that ~x is the least-�xed point of the
optimality equation. Moreover, it follows from Lemma 1 that f�(~x) can be
expressed as a formula over H.

Value of a game as limit of discounted games. The result of Mertens-
Neyman [9] establishes the equivalence of the value of a stochastic limit-
average game as the limit of the �-discounted games as � goes to 0. Formally,
we have

v1(s) = lim
�!0;0<�<1

v�1 (s):

We describe the procedure to express the limit of a function as formula over
real-closed �elds. Let f� be a function that can be expressed as a formula
over real-closed �elds. Then the expression ~z =vec lim�!0;0<�<1 f�(~x) can
be expressed as

	(~x; ~z) = 8" > 0: 9�1: 8�2:
�
(0 < �1 < 1)^(0 < �2 � �1)) (f�2(~x)�~z) �vec ~"

�
;

where ~" is the constant vector with value " for all components. Given a
stochastic normalized positive limit-average game, the formula 	(~x; ~z) ex-
presses the value function v1(�) of the game as the limit of the value of the

discounted game v�1 (�) as � ! 0, and the vector ~z gives the values function.
It follows from above the formula 	(~x; ~z) can be expressed over H. More-
over, the number of quanti�er alternations is constant in 	, and the length
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Algorithm 1 Approximating the value

Input: Normalized positive limit-average game G,
and a rational value " as tolerance, a state i in G.

Output: An interval [l; u] such that u� l � 2" and v1(i) 2 [l; u].
1. l := 0; u := 1;m := 1=2.
2. repeat for dlog(1

"
)e steps

2.1 if (9~z; ~x; y: (y = 	(~x; ~z)(i) ^ y � m))

then l := m;u := u;m := l+u
2 ;

2.2 else l := l; u := m;m := l+u
2 .

3. return [l; u].

of the formula is linear in the size of the game. An algorithm that approx-
imates the value within a tolerance of " is obtained by a binary search, see
Algorithm 1.

The result of [1] shows that quanti�er elimination in the theory of reals
over addition and multiplication can be achieved in time exponential in
the size of the formula and double exponential in the number of quanti�er
alternations. Since 	(~x; ~z) has constant number of quanti�er alternations,
and is linear in the size of the game graph, we get the following bound on
Algorithm 1.

Theorem 3 Given a normalized positive limit-average game G, a state i
of G, and a rational ", Algorithm 1 computes an interval [l; u] such that

v1(i) 2 [l; u] and u� l � 2", in time exponential in the size of the game and

logarithmic in 1
"
.

By our reduction to normalized positive limit-average games, this also gives
an algorithm for general limit-average games.

Corollary 1 The value of a stochastic limit-average game G at a state i
can be approximated to within " in time exponential in the size of the game

and logarithmic in 1
"
.

Unfortunately, the only lower bound on the complexity is P-hardness (from
a simple reduction from alternating reachability). Even for the simpler case
of perfect information deterministic games no polynomial time algorithm is
known [16], and the best known algorithm for perfect information games is
exponential in the size of the game [8]. Thus our complexity bound matches
the best known result for the simpler case of perfect information games.
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