

S2D2: A Framework for Scalable and
Secure Optimistic Replication

Brent ByungHoon Kang
University of California, Berkeley

Report No. UCB/CSD-04-1351

October 2004
Computer Science Division
University of California
Berkeley, California 94720

S2D2: A Framework for Scalable and Secure Optimistic Replication

by

Brent ByungHoon Kang

B.S. (Seoul National University) 1993
M.S. (University of Maryland at College Park) 1995

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Robert Wilensky, Chair
Professor John D. Kubiatowicz
Professor Eric A. Brewer
Professor John Chuang

Fall 2004

The dissertation of Brent ByungHoon Kang is approved:

Chair Date

Date

Date

Date

University of California at Berkeley

Fall 2004

S2D2: A Framework for Scalable and Secure Optimistic Replication

Copyright Fall 2004

by

Brent ByungHoon Kang

1

Abstract

S2D2: A Framework for Scalable and Secure Optimistic Replication

by

Brent ByungHoon Kang

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Robert Wilensky, Chair

High data availability and scalability beyond a single shared server require data to

be replicated and exchanged in a decentralized way. Optimistic replication is the primary

technique to achieve these goals; however, current approaches to optimistic replication have

fundamental limitations. Version vector based approaches entail complicated management

in site addition/deletion and have limited scalability in terms of the number of replica

sites. Moreover, version vectors entail significant overhead in maintaining revision histories

that are essentially required to deter various attacks on decentralized ordering correctness.

Because of the cooperative nature of decentralized dependency tracking mechanisms, a

malicious site can easily falsify ordering information, which may cause the shared state to

diverge without being detected.

This thesis presents S2D2, a framework that provides optimistic replication based

on a novel decentralized ordering mechanism, called Summary Hash History (SHH). Being

2

based on a causal history approach with secure summary hashes as version identifiers, SHH

supports simple management of site membership changes, scales regardless of the number

of sites, and guarantees the correctness of decentralized ordering in a scalable way. SHH

uses “two-step reconciliation” to overcome the inherent limitation of the causal history

approach, and thus, consumes orders of magnitude lower bandwidth than reconciliation

based on version vectors. Interestingly, SHH provides faster convergence than version vector

based approaches by recognizing “coincidental equalities,” cases when identical versions are

produced independently at different sites. This is of significant value in that SHH can enable

distributed replica to converge even in the network partitions or disconnections that mobile

computing and wide-area distributed computing have to cope with fundamentally.

S2D2 employs an elegant “hash typing” mechanism to enforce correctness in the

error-prone usage of hashes and uses an “adaptor architecture” to support the application-

specific consistency requirements. Prototype implementations of adaptors, for a peer-to-

peer CVS (a concurrent version control system) and a replicated-shared folder, demonstrate

that the S2D2 framework is highly suitable for supporting secure optimistic replication

among global-scale and pervasive applications.

Professor Robert Wilensky
Dissertation Committee Chair

iii

To my beloved wife Katherine JungYun, my lovely son Joshua HanKyul,

and my parents.

iv

Contents

List of Figures viii

List of Tables xvii

1 Introduction 1
1.1 Optimistic Replication . 1
1.2 Limitations of Previous Approaches to Optimistic Replication 3
1.3 A Proposed Solution: S2D2 based on Summary Hash History 6
1.4 Contributions . 7
1.5 Thesis Map . 8

I Motivation 9

2 Scalable and Secure Optimistic Replication 10
2.1 Applications of Scalable and Secure Optimistic Replication 10

2.1.1 Optimistic Replication for Pervasive/Ubiquitous Data Management 11
2.1.2 Optimistic Replication for Global Scale Data Replication 12
2.1.3 Optimistic Replication for Open/Closed Collaboration 13

2.2 Reconciliation Process of Exchanging Updates in Optimistic Replication . . 15
2.3 Desirable Properties for Optimistic Replication 17
2.4 Methodology for Evaluating Optimistic Replication: Measures of Success . 18

2.4.1 Synthetic Multi-User Trace Data . 19
2.4.2 Trace Driven Simulation . 21
2.4.3 Metrics of Success . 22

2.5 Summary . 22

3 Previous Approaches Limitations: Scalability, Security, and False Con-
flict 23
3.1 Previous Approaches to Optimistic Replication 24

3.1.1 Version History Graph . 24
3.1.2 Causal History . 27

v

3.1.3 Version Vectors . 30
3.2 Scalability Limitations of Version Vectors 33
3.3 Security Limitations of Version Vectors . 34

3.3.1 Vulnerabilities and Modified Version Vector 35
3.4 Cumulative Affects of False Conflict . 40
3.5 Previous Work . 42

3.5.1 Previous work to address scalability limitation of version vectors . . 42
3.5.2 Previous work to address security limitation of version vectors . . . 44

3.6 Summary . 44

II Our Approach 46

4 Hash History Approach 47
4.1 Data-Centric Hash History Design . 47

4.1.1 Using Hashes as Version IDs . 48
4.1.2 Hash History Based Reconciliation 50
4.1.3 Faster Convergence . 50
4.1.4 Truncating the Hash History . 51

4.2 Evaluation of Hash History Efficacy . 52
4.2.1 Simulation Setup . 52
4.2.2 Comparison with Version Vector Result 53
4.2.3 Aging Policy . 55

4.3 Related Work . 57
4.3.1 Using Hash as Identifier . 57

4.4 Summary . 57

5 Summary Hash History Approach 60
5.1 Secure Summary Hash History (SHH) Design 61

5.1.1 Verification of Summary Hash History (SHH) 61
5.1.2 Secure Log Reconstruction for Light-weight History Access 64

5.2 Countermeasures with Summary Hash History 67
5.3 Scalable Reconciliation with SHH . 70
5.4 Deterministic, Commutative, and Associative Merge with SHH 71
5.5 Coincidental Equality and Convergence Across Partitioned Networks with SHH 74
5.6 Evaluation . 77

5.6.1 Event-Driven Simulation Setup . 77
5.6.2 SHH Implementation and Performance 79
5.6.3 SHH Property Study . 81

5.7 Related Work: Securing Causal Relationship 86
5.8 Summary . 88

vi

6 SHH-based Reconciliation over the Network 91
6.1 Basic Pull SHH Reconciliation . 91
6.2 Light Pull SHH Reconciliation . 97
6.3 Two-Step SHH Reconciliation . 101
6.4 Evaluation of SHH Reconciliation . 107

6.4.1 Network Simulator . 107
6.4.2 Network Bandwidth Consumption with SHH Two-Step Reconciliation 108

6.5 Related Work . 111
6.6 Summary . 112

III Deployment 113

7 S2D2 Framework 114
7.1 S2D2 Architecture . 114

7.1.1 Architecture Overview . 115
7.1.2 S2D2 Application Programming Interface 117
7.1.3 S2D2 Service Components . 119
7.1.4 Hash Typing . 122
7.1.5 Upcall for Data Incorporation and Conflict Resolution 127

7.2 Applications Built Based On S2D2 . 130
7.2.1 Universal Folder . 131
7.2.2 Update-Mine-In-Yours . 133
7.2.3 P2P CVS . 135

7.3 Evaluation . 140
7.3.1 Event-Driven Simulator . 140
7.3.2 Data Availability . 141

7.4 Prototype Experience . 144
7.4.1 Implementation . 144
7.4.2 Microbenchmark . 145

7.5 Related Work . 146
7.5.1 Weakly-Consistent Replication Systems 146
7.5.2 Use of Application Specific Knowledge for Conflict Resolution 147

7.6 Summary . 148

8 Toward A Model of Self-administering Data 150
8.1 Limitations of Current Tools for Data Management 150

8.1.1 Co-Authoring across administering domains 151
8.1.2 Desired Properties and Proposed Data Model 152
8.1.3 A Less Desktop-Centric Scenario . 154

8.2 Self-administering Data Model . 155
8.2.1 Network of SD Handlers . 157
8.2.2 Basic Functionality . 157
8.2.3 Self-administering Data Description (SDD) 163

8.3 Related Work . 163

vii

8.3.1 Comparison to “Legacy” Applications 163
8.3.2 Declarative vs. Session-Based Data Management 166
8.3.3 Scripted Email Attachment . 167
8.3.4 P2P (Peer to Peer) Collaborative Systems 167

8.4 Summary . 168

9 Summary and Conclusion 170

Bibliography 174

viii

List of Figures

2.1 Optimistic Replication Masking a Single Point of Server Failure 11
2.2 Secure Optimistic Replication for Pervasive/Ubiquitous Devices 12
2.3 Pseudo Code for Basic Pull Reconciliation 16
2.4 Synthesizing Multi-User Trace from CVS Logs 20
2.5 Trace Driven Simulation . 21

3.1 Version History Graph . 26
3.2 Reconciliation using version vectors . 31
3.3 Securing Version Vectors Against Attacks 36
3.4 The Same Version ID Attack . 37
3.5 Version History Graph with False Conflicts Example 40

4.1 Example of Reconciliation using Hash History 49
4.2 Conflict rate of VV and HH from pcgen shown between 0 to 10000 cycles . 53
4.3 Conflict rate of VV and HH from freenet shown between 30000 to 40000 cycles 54
4.4 Conflict rate of VV and HH from dri shown between 100000 to 110000 cycles 55
4.5 False conflict rate due to aging . 56

5.1 Example of Reconciliation using Summary Hash History 62
5.2 Pseudo Code for Verifying Summary Hash 63
5.3 Pseudo Code for Collecting Deltas . 65
5.4 Comparison of other dependency tracking mechanisms with Summary Hash

History regarding log management . 66
5.5 The Same Version ID Attack is Not Possible with SHH 68
5.6 Comparison of other dependency tracking mechanisms with Summary Hash

History regarding various attacks . 69
5.7 Deterministic, Commutative, and Associative Merge (DCA Merge) Example 72
5.8 SHH assigns different identifier for DCA Merge 72
5.9 SHH assigns the same identifier for DCA Merge 73
5.10 Write after DCA Merge Example . 73
5.11 Convergence across Partitioned Networks 75
5.12 Implementation of Summary Hash History with Hashtable 79

ix

5.13 Reconciliation Time (for determine dominance + for add/combine SHHs)
with SHH implementation using Java’s Hashtable 80

5.14 Correct delivery rate as function of attacker rate plotted over time 82
5.15 Final correct delivery rate as function of attacker rate 83
5.16 Undecided rate as function of sites with no-history rate 84
5.17 Undecided rate as function of sites with no-history rate 84
5.18 Undecided rate as function of sites with no-history rate 86

6.1 Definitions and Acronyms that are used for describing SHH reconciliation
protocols. 92

6.2 Basic Pull SHH Reconciliation . 92
6.3 Pseudo Code for Basic Pull SHH Reconciliation 93
6.4 Pseudo Code for Finding Common Ancestor 94
6.5 An Example of Basic Pull SHH Reconciliation with Dominance Case 95
6.6 An Example of Basic Pull SHH Reconciliation with Conflict Case (Before) . 96
6.7 An Example of Basic Pull SHH Reconciliation with Conflict Case (After) . 96
6.8 Light Pull SHH Reconciliation Variation 1 97
6.9 Pseudo Code for Light Pull SHH Reconciliation (Variation 1) 98
6.10 Light Pull SHH Reconciliation Variation 2 99
6.11 Pseudo Code for Light Pull SHH Reconciliation (Variation 2) 100
6.12 The First Step in Two-Step SHH Reconciliation (Top SHash Exchange) . . 102
6.13 The Second Step in Two-Step SHH Reconciliation (Top SHash Evaluation) 102
6.14 Pseudo Codes for Two Step SHH Reconciliation 103
6.15 An Example of First Step in Two Step SHH Reconciliation (Top SHash

Exchange) . 106
6.16 An Example of Second Step in Two Step SHH Reconciliation (Top SHash

Dominance Evaluation) . 106
6.17 An Example of Second Step in Two Step SHH Reconciliation (Top SHash

Conflict Evaluation) . 107
6.18 Link traffic for data size 1KB and RP 1 minute 109
6.19 Bottleneck link traffic in bytes for data size 1KB, RP 1 minute, and 1025 sites. 110
6.20 Bottleneck link traffic varying data size. Lazy data pull is used and the

number of sites is 1025. 111

7.1 S2D2 Network Example . 115
7.2 S2D2 Architecture . 116
7.3 Secure Object Naming with Summary Hash History 120
7.4 Two Different Local Object Names with The Same Global S2D2-ID 121
7.5 Erroneous Use of Hashes in a Merkle Tree 123
7.6 Use of Data Typed Hash in a Merkle Tree 124
7.7 Set Type Hash for a Set of Objects Example 125
7.8 Summary Hash Type Example . 126
7.9 Composite Object Hash for File Directory Example 126
7.10 Main Trunk and Branch in S2D2 Adaptor 127
7.11 Deterministic Merge of Concurrent Revisions 128

x

7.12 S2D2 Adaptor for Traditional CVS Example 136
7.13 S2D2 Adaptor for a Modified CVS Example 137
7.14 Data availability trace for 100 sites for S2D2 and 100 clients for the central

server. 142
7.15 Average data availability for 100 sites of S2D2 and 100 clients of the central

server based system. 143

8.1 SDH Network with a Shared Service . 156
8.2 SDH Network of Revisions . 156
8.3 SDH functionalities . 158
8.4 SDD Example . 164

9.1 Scalable and Secure Optimistic Replication based on S2D2 173

xi

List of Tables

2.1 Trace data from sourceforge.net . 19

4.1 Average HH size with the aging period . 57

7.1 Results of execution time microbenchmark. The unit of data size is byte,
and the unit of other fields in the table is ms. 146

xii

Acknowledgements

Finally, I want to thank the many people who have provided invaluable help to me during

my Ph.D. program at Berkeley. Appreciating other’s help always gives me a heart-warming

and enjoyable moment.

First, I’d like to thank my advisor and mentor, Professor Wilensky. I highly

appreciate his generous support from the moment I started my Ph.D. program at Berkeley

until this dissertation. He believed in me when I was a mere student who was not known.

He taught me how to think through a problem as a researcher and showed me how to present

ideas effectively. His brilliant intellect always put me back on track when I was stuck with

a problem that seemingly did not have a solution or when I was jumping from one idea

to another without purpose. He had an amazing ability for extracting clear concepts from

my vague descriptions of unformulated ideas. I thank Professor Wilensky for also being a

mentor to me. He gave me lots of encouragement, as well as taught me his optimism in

professional relationship with others. I truly enjoyed our many discussion meetings.

I was fortunate to have Professor Kubiatowicz as my co-advisor. His keen and

visionary insight in system’s design has helped me to focus. When we first designed hash

history to address scalability issue, he strongly suggested that I research security issues

more, because he felt that hash history design might have an interesting security story. He

was very right. After a year of effort, the Summary Hash History came out and became the

central foundation of this dissertation. I also appreciate that he provided me with many

good opportunities to meet other systems researchers.

Professor Brewer generously provided me with his guidance throughout my Ph.D.

xiii

study. His impressive insight in systems research was instrumental in forming Summary

Hash History idea. When I first presented a fledgling Hash History idea at a work-in-

progress session at the 18th SOSP conference, he was there in the audience and later gave

me an insightful feedback and encouragement, which I highly appreciate.

Professor Chuang helped me as an outside department committee member and

shared with me his invaluable insight and time. He was always kind and encouraging with

his big smile, which I’d remember for a long time. I remember that he first suggested that

I use CVS log as a multi-writer trace for simulation.

Jon Traupman, my lunch buddy and office mate, always encouraged me and helped

me by proof-reading various research documents.

Byung-Gon Chun helped me to run SHH based reconciliation simulation, and I

especially enjoyed our discussions regarding various systems research issues.

Alex Sim, who is a researcher at Lawrence Berkeley National Lab, helped me from

the very early years of my Ph.D. program as my mentor. He always gave me an objective

perspective on my various research ideas.

I’d like to thank folks in the Digital Library Project, including Tom, Taku, Jeff,

Phil, Ginger, Joyce, Jon and Loretta. They have been good friends and provided me with

helpful feedbacks on my early research ideas. Especially, Jeff and Phil were eager to help

me in setting up machines for simulation.

Of course, I cannot forget folks in the OceanStore Project, including Patrick,

Dennis, Ben, Hakim, Steve, Emil, Sean, Rachel, Gon and Kris, they all shared their insights

and provided helpful feedbacks during numerous practice talks. They are all good colleagues.

xiv

I’d like to thank the administrative staffs at EECS Dept. at Berkeley. Especially

I’d like to thank Mary Byrnes who helped me with scholarship support and encouraged me

with her cheerful and optimistic attitude. Peggy Lau and La Shana Porlaris were always

available when I needed their help. Winnie Wang, Jane Doyle, and Laneida Lakagawa have

always been helpful with numerous administrative matters. I highly appreciate their kind

willingness to help me.

I’d like to thank our funding agency, the National Science Foundation, which

supported this research through the Berkeley Digital Library project and the Career Award

program for Prof. Kubiatowicz.

Finally, I’d like to thank my parents, my lovely wife and my son, who gave me

unwavering support throughout my Ph.D. program. Joshua, my 4 year old, always enjoyed

playing with the giant abacus on the 4th floor of Soda Hall. Many times, he came by to

deliver my dinner meal and encouraged me by saying “Daddy, write a good paper, Bye !!!”

1

Chapter 1

Introduction

Optimistic replication is a fundamental technique that is used to achieve high data

availability and performance in distributed systems. This chapter provides an overview

of optimistic replication and characterizes its limitations with respect to the scalability

and security requirements of current dynamic, peer-to-peer and global-scale data sharing

applications. It then introduces our proposed solution, the S2D2 framework, based on a

novel summary hash history approach.

1.1 Optimistic Replication

Sharing mutable data and exchanging information updates are fundamental as-

pects of human collaboration, such as document co-authoring, collaborative information

gathering, and team development of source code.

Central data servers have been widely used, for example, to support web-based file

sharing, shared directories on file servers, and version control systems. However, relying on

2

a central shared server has a number of shortcomings.

First, the central server can be a single point of failure. If the central server is not

available, data sharing is not possible. If a network-partition happens between the shared

server and client-sites, the client sites cannot exchange updates, although they are reachable

among themselves.

Second, dependency on a single central server cannot provide the autonomy that

may be required for collaborative tasks across administrative domains. For example, in

collaboration between two organizations, each organization may want to store up-to-date

copies on its own server for ownership and security reasons rather than depend on someone

else’s data server.

Instead of depending on a centralized data server for every read and write access,

data can be replicated at various points in the network to provide high data availability and

good performance to users. Users can then access a locally available replica server. However,

concurrent modifications can potentially happen with replica servers, so the servers need

to ensure a consistent view of data modifications. There are two well-known approaches to

maintaining consistent data modification.

First, a pessimistic approach would require a globally exclusive lock to be obtained

before every update operation, preventing the other users from writing until the lock can

be returned. This approach prevents concurrent modifications from occurring. However,

this strategy entails complicated lock management and severely limits data availability in

the case that the replica site with an exclusive lock is not reachable for an extended period.

An alternative approach is optimistic replication (also known as weakly-consistent

3

replication). Optimistic replication allows the replica sites to be available for users to modify

data without locking control. The optimistic replication approach assumes that concurrent

modifications are rare and that they can be dealt with effectively after the fact.

Under this approach, replica sites need to track dependency orderings among dis-

tributed updates to detect concurrent modifications. In the event of concurrent modifi-

cations, the optimistic replication approach needs to provide reconciliation procedures to

resolve conflicting updates. To guarantee eventual consistency, updates are typically propa-

gated through epidemic disseminations [3] such as anti-entropy 1, with replica sites converg-

ing to a consistent state by reconciling updates with one another. During reconciliation, if

a site’s latest version is a revision of another site’s (i.e., this version dominates the other

version), then this fact must be efficiently recognized so that the more recent version can

be replicated. If neither version is based on the other (i.e., they conflict), then sites need

to reconcile the conflicting updates to restore a consistent view of the data modifications.

Thus, the reconciliation process between replicas needs a mechanism to determine which

version is a revision of another, or if two versions have arisen via separate modifications.

1.2 Limitations of Previous Approaches to Optimistic Repli-

cation

Version vectors [12, 43] have been used in reconciling replicas for detecting conflicts

[12, 39, 38, 34] and for determining the exact set of deltas (incremental updates) to be

exchanged for reconciliation [35, 54]. In version vector based approaches, each replica site
1Anti-entropy is a reconciliation mechanism in which each site periodically reconciles with a randomly

chosen site.

4

maintains a vector of entries to track updates generated by other sites. Dominance relations

between distributed replicas are determined by comparing the vector entries.

Unfortunately, optimistic replication approaches based on version vectors have

fundamental limitations with respect to scalability and security.

First, version vectors entail complicated management in site addition/deletion and

have limited scalability in terms of the number of replica sites. Since version vectors require

one entry for each replica site, the size of version vector grows as the number of replica sites

increases. The management of version vectors becomes complicated as entries for newly

added sites are propagated to other replica sites [4, 35, 39, 37]. This problem is especially

pronounced in pervasive and ubiquitous computing environments where hundreds of diverse

devices and computers need to exchange updates in a pervasive and secure way.

For example, in a global-scale peer-to-peer sharing of mutable data, it is reasonable

to assume a given object has tens of writers (authors) and thousands of readers. However,

with dynamic version vector mechanisms, a writer membership change must be propagated

to not only to the writers but also the readers, because the readers must also be able

to determine the dominance relations among updates from multiple writers. Depending

on when the membership change information arrives, a reader may receive two updates

with vectors of different sizes, which entails complicated examination of orderings among

membership change histories and modification histories.

Second, version vectors entail burdensome overhead in maintaining revision his-

tories that are essentially required to deter various attacks on decentralized ordering cor-

rectness. Because of the cooperative nature of optimistic dependency tracking, it is easy

5

for a malicious node to propagate incorrect information to all replicas by falsifying the

decentralized ordering state [47, 48, 40, 46, 28].

For example, a malicious site can save the signed entries of recent version vectors

and use them as version vectors for phony updates (i.e., a “same version id” attack). This

attack is particularly pernicious because the attacker can partition the shared object into

two divergent versions and prevent some sites from ever receiving the original update. The

victim may never know its original version has been attacked and may not be able to

counteract. If there are no more new updates, the state will stay diverged forever. If there

is a new update, it may innocently be based on the bogus version, and overwrite the original

victim’s update. In this case, the victim’s update is lost forever without being detected at

all.

Thus, it is desirable that a dependency tracking mechanism enforces the correct-

ness of the protocol that a writer should follow in assigning correct ordering among updates.

By ensuring decentralized ordering correctness, the optimistic replication system can guar-

antee that updates are not vulnerable to a decentralized ordering attack. With this guar-

antee, each site can focus on validating the quality of data contents in a cooperative way.

Whether the content of an update is good or bad, the update will be delivered in correctly

formed ordering. The version vector mechanism and its limitations are discussed further in

Chapter 3.

6

1.3 A Proposed Solution: S2D2 based on Summary Hash

History

To address such limitations, we have developed a novel decentralized ordering

mechanism, called Summary Hash History (SHH), which is based on a causal history ap-

proach [43]. Using summary hashes as version identifiers, SHH provides simple management

in site membership changes, scales regardless of the number of sites, and guarantees the

correctness of decentralized ordering in a scalable way.

Per the causal history approach, the size of a SHH that needs to be exchanged

grows in proportion to the number of update instances. To effectively manage this over-

head, “two-step SHH reconciliation” is used. Only the latest summary hashes in SHHs

are exchanged frequently; the data/SHHs can be lazily pulled from any local site, with

the latest summary hash verifying the associated data and SHH. Simulations show that

the two-step SHH reconciliation consumes orders of magnitude lower bandwidth than rec-

onciliation based on version vectors. Interestingly, the simulation also revealed that SHH

provides faster convergence by recognizing “coincidental equalities,” cases when identical

versions are produced independently at different sites. This is of significant value in that

SHH enables distributed replicas to converge even in the partitioned networks that mobile

computing and wide-area distributed computing need to cope with. SHH is described in

detail in Chapter 5.

To make an impact on the practice of computing, SHH needs to be readily avail-

able to various applications that rely on optimistic replication. To this end, S2D2 frame-

work is developed. S2D2 provides global-scale applications with support for optimistic

7

data replications and robust update exchanges. The S2D2 framework employs an “adaptor

architecture” to support the diverse, application-specific consistency requirements. This

architecture can also support legacy applications. S2D2 provides SHH and its two-step

reconciliation protocol for exchanging decentralized updates in a scalable and secure way.

To enforce correctness in the error-prone usage of hashes, the “hash typing” mech-

anism is presented. A hash is annotated with a hash-type as a data is annotated with a

data-type. The framework also uses “hash typing” as a secure way to communicate an

object’s structural information between adaptors and S2D2 sub-components such as the

two-step reconciliation process. To show how one can build an application specific adap-

tor, I built a few example adaptors for useful applications, including a peer-to-peer CVS

and a replicated shared folder. Experience in building these prototypes demonstrated that

S2D2 provides simple interfaces for diverse global-scale applications that rely on secure and

scalable optimistic replication.

1.4 Contributions

A central contribution of this thesis is the design and implementation of Summary

Hash History, a novel decentralized ordering mechanism that enables each participating

site in optimistic replication to verify in a scalable way the correctness of decentralized

ordering. This thesis presents SHH’s two-step reconciliation that practically manages the

inherent overhead of causal-history based approaches. It also details how SHH can be used

to provide convergence even during network partitions and disconnections.

A second central contribution is the S2D2 framework. S2D2 is based on SHH to

8

provide a promising basis for building a global-scale federated infrastructure to support

collaborative information management, pervasive computing, and peer-to-peer systems. It

shows that the S2D2 framework can enable traditional applications as well as new non-

traditional applications, such as “self-administering data”, which can change the way people

interact with shared data.

1.5 Thesis Map

The remainder of this dissertation is as follows: Chapter 2 describes the desir-

able properties of an ideal optimistic replication systems and its evaluation method based

on simulation. Chapter 3 introduces background concepts of the causal history and the

version vector as base mechanisms for optimistic replication. Then it characterizes the

challenges and limitations in previous approaches. Chapter 4 describes the Hash History

(HH) approach, a predecessor of the SHH approach, that was designed to overcome the

scalability limitation of the version vector approach, and then Chapter 5 proposes the Sum-

mary Hash History (SHH) approach that provides the ordering correctness guarantee that

both the version vector and HH approaches lack. Chapter 5 describes various SHH based

network protocols such as the two-step SHH reconciliation. Chapter 7 presents the S2D2

framework that provides global-scale applications with support for secure and scalable op-

timistic replications based on SHH, and describes various applications that can be built on

top of the S2D2 framework. Chapter 8 discusses a new data management model, called

“self-administering data”, that can be enabled by the S2D2 framework. Finally, Chapter 9

concludes.

9

Part I

Motivation

10

Chapter 2

Scalable and Secure Optimistic

Replication

This chapter presents a list of desirable properties of an ideal optimistic replica-

tion system in terms of scalability and security. It describes some example applications that

need a scalable reconciliation mechanism for exchanging distributed updates and some ap-

plications that require a secure mechanism to deter various attacks on the ordering among

distributed updates. It then describes how one can evaluate an ideal optimistic replication

system and its reconciliation protocols using a trace driven simulation.

2.1 Applications of Scalable and Secure Optimistic Replica-

tion

Here we describe some example applications with a need for a scalable and secure

optimistic replication.

11

Alice

Bob

Charles

Figure 2.1: Optimistic Replication Masking a Single Point of Server Failure: In this example,
three computers (Alice’s, Bob’s and Charles’s) exchange updates directly without depending
on a central data server. Thus, they can keep exchange updates even when the central data
server is not available or connection to the server is disconnected.

2.1.1 Optimistic Replication for Pervasive/Ubiquitous Data Management

Traditionally, optimistic replication is performed using a few servers that are

mostly available. Membership changes are not common and the number of replica is typi-

cally in the orders of tens. Figure 2.1 shows an example of three participants using optimistic

replication to achieve high data availability by masking the single point of the server failure

with direct peer-to-peer data exchange.

However, in the era of ubiquitous and pervasive computing, an update needs to

be replicated and propagated to many diverse devices and computers. A user may need to

replicate a shared object in her office computer, home machine, PDA device, and colleague’s

computer. For example, an address object (i.e., address book entry) can be replicated in

friends’, co-workers’ and families’s address books.

12

Alice

Bob

Charles

Figure 2.2: Secure Optimistic Replication for Pervasive/Ubiquitous Devices: In the era of
ubiquitous and pervasive computing, the shared object often needs to be replicated in many
diverse devices and computers. Moreover, if one device/machine is compromised or stolen,
the other collaborating replica sites become vulnerable to various security attacks.

2.1.2 Optimistic Replication for Global Scale Data Replication

In practice, optimistic replication has also been used to replicate mutable ob-

jects among globally distributed servers for geographically distributed corporate offices and

branches. Active Directory by Microsoft, for example, currently uses optimistic replication

to exchange updates among thousands of Active Directory sites to support a global scale

company. Such large scale data management may require a scalable reconciliation proto-

col that does not saturate the network to reconcile thousands of replicas. Given that the

network bandwidth is still considered an expensive resource compared with other resource

such as disk and CPU, it is likely that a global scale corporation is concerned about the

volume of network bandwidth that is consumed for exchanging updates among thousands

of corporate servers around the globe.

13

Another example is optimistically replicating Public Key Revocation Lists (PKRL).

A PKRL contains public keys that have been revoked. A PKRL needs to be checked during

every security procedure (e.g., verification and signing) based on the public key mechanism.

Obviously, such a PKRL needs to be replicated into many servers around the globe and

newly revoked keys must be exchanged in a secure and scalable manner. Otherwise, for ex-

ample, an adversary could prevent the PKRL at some sites from receiving an announcement

of the revoked key 1.

2.1.3 Optimistic Replication for Open/Closed Collaboration

The following example is a useful scientific data sharing application that enables

collaboration among scientists. Scientific data such as climate data and protein sequences

are extremely large and read-only data sets. After evaluating or processing the raw data,

scientists can annotate the raw data using a data-specific visualization tool with annotation

support. For example, a protein visualizer provides a data-specific annotation tool with

which users can annotate the rendered protein image. Some approaches to annotation,

such as that of Multivalent Documents [36], permit annotations to be kept separate from

the documents they annotate. However, collaboratively sharing such annotations across

administrative domains is difficult. Unlike the raw data, annotations are read-write in the

sense that annotations can be annotated, thus require coherent ordering among decentral-

ized annotations. Currently, as a commonly available data sharing tool, scientists can use

e-mail attachments, which are cumbersome, error-prone and cannot support bulky data.
1Section 3.3 will identify this attack as a same version ID attack. A bogus update can be associated with

the same ID of an original update, so that the site that receives bogus update will not be able to receive
original update later.

14

Using a central data server is vulnerable to the server failure and cannot readily scale

beyond a single administrative domain.

Here is another example that can benefit from optimistic replication to achieve

high data availability with loose synchronization. Suppose a number of experts maintain

their own FAQ document about a common topic (e.g., Linux administration) at their web

sites. Each expert updates his or her own FAQ. Hence, there are many different versions

of FAQs extant. It would be desirable to have a merged version so that users can access

the most up-to-date and complete FAQ from any web site to which they can connect.

Since a centralized document management server may require administrative commitments

that none of the experts may be able to make, they need to share a mutable FAQ in a

loosely synchronized fashion across multiple administrative domains. Optimistic replication

that provides loose synchronization of FAQ sites using pair-wise reconciliations would be

desirable in this application.

The open nature of this type of peer-to-peer mutable data sharing tends to have

dynamic replica membership – the shared object needs to be replicated dynamically at

various peer sites as needed. It is impossible to have fixed number of replicas; however,

the most common tracking method (e.g., static version vectors) may require a static set

of replica identifiers to track dependencies among updates. Thus, to take an effect of the

membership change, the entire replication system may need to be put on hold to reconfigure

the new membership change into the dependency ordering mechanism.

15

2.2 Reconciliation Process of Exchanging Updates in Opti-

mistic Replication

In order to understand the potential difficulties in designing a scalable and secure

optimistic replication system, here, we describe how a general reconciliation procedure may

exchange independently accrued updates among replica sites. To exchange updates, each

site first needs to exchange version ordering information instead of exchanging entire version

content. (More detailed description can be found in Chapter 3.) Based on this ordering

information, each site can determine which version dominates the other or if they are in

conflict, with neither version dominating the other. We say X dominates Y iff X is a

revision of Y. The dominating version’s update needs to be sent over to the other pulling

site. Figure 2.3 shows a pseudo code for basic pull reconciliation between Site A and Site

B. Site A requests an ordering information from Site B to determine the dominance among

updates and to pull the data from Site B according to the dominance determination.

Thus, a decentralized ordering mechanism that tracks the ordering information

among distributed updates is the central foundation in designing a scalable and secure

optimistic replications technology to support the various applications that we described

above. For example, the ordering mechanism should scale as the number of replica sites

increases; the size of the data structure for maintaining ordering mechanism should not

become unbounded.

Decentralized ordering mechanism typically requires cooperative management among

replicas. Each replica should modify the ordering information among updates according to

the protocol. Unfortunately, because of this cooperative nature of decentralized depen-

16

BasicPullReconciliation (ObjectID objID, Site SiteB) at SiteA {

//From SiteA with orderInfoA as ordering information of the latest version

1. Make connection to SiteB with objID,

2. orderInfoB RequestOrderInfo(SiteB, objID)

3. If (orderInfoA = = orderInfoB) { Case 0: Stop. }

4. Else if (orderInfoA dominates orderInfoB) { Case 1: Stop. //A dominates B}

5. Else if (orderInfoB dominates orderInfoA) { Case 2: // B dominates A

6. d1 RequestDelta(SiteB, objID, orderInfoA , orderInfoB)

7. ApplyDelta(objID, d1) // apply the delta to the shared object

}

Else { Case 3: //Neither dominates the other

8. ca FindCommonAncestor(orderInfoA , orderInfoB)

9. d1 RequestDelta(SiteB, objID, ca, orderInfoB)

10. d2 ComputeDelta(objID, ca, orderInfoA)

11. ApplicationSpecificMergeProc (d1, d2) //Call application specific merge procedure

}

}

RumorAgentBasicPull (Owner owner) at SiteB {

1. while (true) { //wait for requests from other site

2. case �RequestOrderInfo(objID)�: send orderInfoB of objID

3. case �RequestDelta(objID,fromID,toID)�: send ComputeDelta(objID,fromID,toID)

}

}

Figure 2.3: Pseudo Code for Basic Pull Reconciliation: Site A pulls the data from Site B.
BasicPullReconciliation() routine at Site A first requests the ordering information, order-
InfoB, of the latest version at Site B at line 2. Once it receives the ordering information,
it determines the dominance between Site A’s latest version and Site B’s. In the event that
Site A’s latest version dominates Site B’s (line 5-7), it requests delta that brings Site A’s
latest version into Site B’s. In the event of conflict (line 8-10), a common ancestor, ca,
can be found if the ordering information provides such capability. The common ancestor is
used as a fromID in requesting delta. Meanwhile, at Site B, the RumorAgentBasicPull ()
procedure is running as a server to serve requests from the pulling site, Site A.

17

dency tracking mechanisms, a malicious site can easily falsify ordering information, which

can propagate incorrect information to replicas [47, 48, 40, 46, 28]. For example, a ma-

licious site may cause the shared version to diverge without being detected by improperly

attaching the version ID of a original version to another bogus version. This attack can

prevent some sites from receiving the original version because a victimized site (i.e., a site

that has received bogus version with the same version ID) may incorrectly determine that

it has already received the same data that is identified by the same version ID that is also

associated with the bogus version.

Thus, it is desirable that a dependency tracking mechanism be designed to enforce

the correctness of the protocol that the participating replica sites should follow in assigning

the correct ordering among updates.

2.3 Desirable Properties for Optimistic Replication

We now summarize the desirable properties of a reconciliation mechanism for

global scale optimistic replication with a decentralized ordering correctness guarantee.

• Scalable Network Bandwidth Consumption: Network bandwidth is still considered

expensive resource compared with other resource such as disk and CPU. Thus, corpo-

rations need to worry about the sheer volume of network bandwidth that is consumed

for optimistically exchanging updates among thousands of corporate servers around

the globe.

• Support for Dynamic Membership Changes: In an open peer-to-peer data collabora-

tion, sites are being added or deleted frequently. The reconciliation mechanism should

18

not be impeded by these membership changes.

• Secure Enforcement of Decentralized Ordering Correctness: Without decentralized or-

dering correctness enforcement, many optimistic replication systems fails to propagate

correct data. Due to the collaborative nature of optimistic replication mechanism, it

is important to enforce this guarantee.

• Support for Diverse Applications: In the era of pervasive and ubiquitous computing,

the shared data object often needs to be shared among many diverse devices and

applications.

2.4 Methodology for Evaluating Optimistic Replication: Mea-

sures of Success

We use two methods for evaluating an optimistic replication design and its proto-

cols that we will present later in this dissertation: Analysis and Simulation. We use analysis

method to evaluate the security enforcement mechanism and use simulations to understand

the performance, data availability and network bandwidth consumption. For example, we

analyzed our design against the same version ID attack and we also ran simulation how the

data availability is affected with this attack. (See Chapter 5.)

Now we describe the simulation methodology used to evaluate our optimistic repli-

cation design.

19

Dri Freenet Pcgen
events 10137 2281 404
users 21 64 39
Duration 4/27/1994-

5/3/2002
12/28/1999-
4/25/2002

1/17/2002-
4/12/2002

AVG inter-
val

101.3 min 237.8 min 225.4 min

Median 0.016 min 34.6 min 2.16 min

Table 2.1: Trace data from sourceforge.net

2.4.1 Synthetic Multi-User Trace Data

In order to evaluate an optimistic replication system through simulation, we need

traces of realistic multi-writer-at-multi-site behavior. Unfortunately, a good multi-writer-

at-multi-site trace does not exist.

First, the widely available file system traces are known to have extremely low write-

sharing behavior among multi-writers at a single-site. Second, in optimistic replication

systems, small individual writes are aggregated until they are exported to another site.

Therefore, we would prefer trace data that shows the inter-commit time rather than inter-

write time. (Here, committing a write means that the write needs to be propagated to other

replicas.) File system traces are not suitable for this purpose since they do not carry the

information that the write is committed with the user’s intention.

This leaves us with a need to synthesize realistic traces from a multi-writer-at-a-

single-site data. We use CVS logs as a multi-writer-at-a-single-site trace to synthesize a

multi-writer-at-multi-site trace. CVS (Concurrent Versioning System) is a versioning soft-

ware system that enables different users to share mutable data by checking-in and checking-

20

dirA/f1_r1.2

dirA/f1_r1.1

FileData

A

A

Writer

150

0

Time

CVS (RCS) log: dirA/f1,v

Synthesized trace data for the shared object dirA

CVS (RCS) log: dirA/f2,v

dirA/f2_r1.3

dirA/f2_r1.2

dirA/f2_r1.1

FileData

D

C

E

Writer

800

200

30

Time

dirA/f2_r1.3

dirA/f2_r1.2

dirA/f1_r1.2

dirA/f2_r1.1

dirA/f1_r1.1

FileData

D

C

A

E

A

Writer

800

200

150

30

0

Time

Figure 2.4: Synthesizing Multi-User Trace from CVS Logs: Every file/subdirectory in the
shared object dirA is considered as contents of dirA. By combining these individual file
traces, we can create a conflicting (concurrent) update to dirA. The synthetic trace is
created by merging each file’s RCS log (e.g., f1,v and f2,v) into one synthesized trace file
for the shared object dirA.

out at a centralized server (a single site). CVS provides a serialized log (update history)

for each file in a shared project. We treat the project itself as under optimistic replication

control and consider the individual files in the project as items of shared document content.

We treat each writer as one replica site. Figure 2.4 illustrates this trace generation process.

We collected the CVS logs of three active projects from sourceforge.net that

provides a CVS service to open source development communities. We first combined all

the CVS logs of the files in a project and then made the result into one serialized trace of

events by sorting the events.

Table 2.1 shows that the write-events are bursty–the median is far smaller than

the average of the inter-commit time.

21

B

A

C

D

G

F

E

Simulator Main

60: (3) G reconciles A

30: (2) E writes dirA

0: (1) A writes dirA

Shared Object: dirA

120: (4) E reconciles G

Trace data for the shared object: dirA

dirA/f2_r1.3

dirA/f2_r1.2

dirA/f1_r1.2

dirA/f2_r1.1

dirA/f1_r1.1

FileData

D

C

A

E

A

Writer

800

200

150

30

0

Time

(1) f1_r1.1

(2) f2_r1.1

(3) Dominance

f1_r1.1

(4) Conflict

Auto Merged into

f2_r1.1_f1_r1.1

Read events, Decide

when to reconcile

(e.g., every 60 sec)

Figure 2.5: Trace Driven Simulation: Given the trace data for the shared object, dirA, the
simulator reads the event from the trace and calculates when to reconcile based on the given
parameters. In this example, anti-entropy is performed at every 60 sec. The simulator picks
Site G and A at random at time 60. Site G finds that Site G’s latest copy is dominated by
Site A’s. Site G pulls Site A’s latest version, f1 r1.1. When Site E reconciles with Site G
at time 120, Site E finds f1 r1.1. and f2 r1.1. are conflicting (concurrent) updates to dirA,
so Site E merges these using a given merge procedure.

2.4.2 Trace Driven Simulation

The simulator reads events in sorted order from a trace file and simulate write event

at sites. The events are in the form of [time, user, data]. The simulator performs various

reconciliation protocols to be described in Chapter 4, 5 and 6. Based on the experiment

goal, the simulator can be pre-configured with parameters such as how often to reconcile,

whom to reconcile with and how to merge conflicts.

For each reconciliation, the simulator records the elapsed time to manage the

data structure of the reconciliation protocol and the result of the reconciliation. In the

network simulation case, the simulator measures total and bottleneck network bandwidth

22

consumption. In the event of conflict, which is determined by the given protocol method,

the simulator can apply a pre-configured deterministic merge procedure.

Figure 2.5 illustrates how the simulator simulates the events and reconciliations.

2.4.3 Metrics of Success

We will evaluate our design based on analysis and simulation. The analysis will

show the robustness of the design against various types of decentralized ordering attacks and

the simulation will measure the data-availability of the design compared to the centralized

server, as well as the network bandwidth consumed for reconciling updates using our design

compared to the widely-used previous mechanism.

2.5 Summary

In this chapter, we identified the needs for scalable and secure optimistic replication

to effectively support global scale server replication, to enable open collaboration of shared

data, and to manage pervasive data replication in a ubiquitous context. Then, we showed

that the design of a scalable and secure decentralized ordering mechanism is the foundation

for building a system capable of supporting such optimistic replication. Finally, we discussed

why we need a synthesized multi-writer-at-multi-site trace, and how we will evaluate our

design using a security analysis and the simulation based on this trace.

23

Chapter 3

Previous Approaches Limitations:

Scalability, Security, and False

Conflict

This chapter provides an overview of approaches to optimistic replication. First,

it introduces the concept of the version history graph and describes how optimistic replica-

tion utilizes version histories for reconciling updates. Then, it introduces two well-known

implementations of the version history graph: the version vector and the causal history. It

also discusses the relations between the version vector and the causal history approaches

with detailed examples.

Then, this chapter discusses the version vector approach’s fundamental scalability

and security limitations. First, it explains how version vector based approaches entail

complicated management for site addition/deletion and have limited scalability in terms

24

of the number of replica sites. Second, it characterizes the security limitations of version

vectors by listing the various attacks on decentralized ordering correctness, to which version

vectors are vulnerable. Finally, this chapter discusses the cumulative effects of false conflict

among diverged versions. Using version vectors or timestamps as identifiers will create false

conflicts that can cumulatively create further conflicts among descendent versions.

3.1 Previous Approaches to Optimistic Replication

3.1.1 Version History Graph

Each replica site creates and merges versions; both the versions and the relations

among the versions constitute a history of versions. This history of versions can be depicted

in the form of graph, where each node in the graph represents a version and an arrow between

nodes indicates the derivation of a new version from previous ones. We call such an acyclic

graph a version history graph.

We say version X dominates version Y iff version X is derived from version Y iff

there is a directed path from Y to X. In other words, X is a child version of Y and Y is

parent version of X. Such dominance relations are transitive. For example, if X dominates

Y and Y dominates Z, then X dominates Z as well. Likewise, a given version, X, dominates

its parents and, also, transitively its ancestors. Also, descendent versions of X (i.e., all the

versions that are derived from X) dominate X.

We say two versions are in conflict when neither version dominates the other.

We say the two conflicting versions have diverged from a common ancestor version. By

exchanging updates, each site can converge the diverged versions or can bring an old ver-

25

sion up-to-date with a newer version. Such a procedure is called a reconciliation process.

Through a series of reconciliation processes, each site will eventually receive the latest ver-

sion, which dominates all the previous versions (diverged or old) in the system. We call it

a convergence when every site possesses the same latest version (i.e., the same version with

the same version history).

Determining the dominance relation among version is important in this reconcilia-

tion process. With dominance information, each site can determine which version is derived

from which version, and can acquire latter version to make the shared data up-to-date. In

the conflict case (i.e., case with diverged versions), each site needs to exchange the con-

flicting versions to create a new merged version. The newly merged version dominates the

previous conflicting versions.

A derivation such as creating a new version or merging versions can be expressed

as an operation delta, a function that takes previous versions as inputs and produces a new

version as output. Thus, each version at a site can be expressed by a series of operation

deltas applied to the previous versions known to that site. Likewise, the process of recon-

ciling replicas can be expressed as the process of “exchanging operation deltas”. One can

efficiently select a sequence of deltas for bringing another site up-to-date by maintaining

some form of version history along with deltas, since the operation delta can be described

as incremental updates to previous versions. The size of operation delta is typically smaller

than the entire version; hence, it is more efficient to exchange operation deltas rather then

exchanging entire versions.

Figure 3.1 shows an example of a version history graph. This graph shows the

26

Site A Site B Site C

V0,A

V1,A V2,B V3,C

V4,A

V5,C

d3d2
d1

m4

m5

Figure 3.1: Version History Graph: Replica sites collect versions from other sites, modify
these versions, and merge versions together. One version dominates another version if it
is derived from this version (e.g., V4,A dominates V1,A, V2,B, and V0,A). If neither version
derived from the other, they are in conflict relation. (e.g., V1,A and V2,B are in conflict
relation.) d1,m4,d3 and m5 are operation deltas that take previous versions as inputs and
produce a next version as output. For example, operation delta d2 takes V0,A and produce
V2,B as output. Also, operation delta m4 takes V1,A and V2,B as inputs and produce V4,A

as output.

27

dominance relations among versions that are created and merged by three replica sites.

In this graph, each version is labeled with a subscripted pair indicating a globally unique

version name 1 and the site at which the version was created.

Figure 3.1 also illustrates a series of pair-wise reconciliations. Here, site A creates

V0,A and sends it out to site B and C. Then, site B derives V2,B from V0,A by applying

operation delta d2; concurrently site C makes V3,C by applying d3 to V0,A and site A makes

V1,A by applying d1 to V0,A. Later, site A creates V4,A by merging V1,A and V2,B (operation

delta m4) during pair-wise reconciliation with site B. Here reconciliation is required since

neither V1,A nor V2,B dominates the other (i.e., they conflict with each other). Similarly,

site C creates V5,C by merging V4,A and V3,C (operation delta m5). Later, when V2,B at site

B reconciles with V5,C at site C, both sites should conclude that V5,C dominates V2,B, so

that site B can accept V5,C directly as a newer version. More efficiently, site B can receive

operation deltas (d1,m4,d3 and m5) from site C instead of entire version V5,C .

3.1.2 Causal History

One way of utilizing the version history graph for reconciliation is the causal history

approach. The causal history of a version is defined as the set of versions that are dominated

by (i.e., causally precede [43]) the given version. In the language of causal history, we say X

causally precedes Y iff Y dominates X. We also call the elements in the causal history the

causal predecessors. In other words, the causal history of a version Y is the set of causal

predecessors that are dominated by the version Y.

In causal history based approach, each site maintains the causal history of the
1For the illustration purpose, we assigned globally unique version names.

28

latest version that the site has received or created. During reconciliation, each site exchanges

the latest version and its causal history, from which each site can check whether or not one

version appears in the other’s causal history. The dominance relation is determined as

following.

Let C(v) be the causal history of a version v; if v1, v2 are unique and not equal,

then:

(i) v1 dominates v2 iff v2 belongs to C(v1)

(ii) v1 and v2 are in conflict iff v1 does not belong to C(v2) and v2 does not belong to

C(v1)

For example, in Figure 3.1, the versions V0,A, V1,A, and V2,B causally precede

V4,A; hence, the causal history of V4,A at site A is the set of causal predecessors: {V0,A,

V1,A, V2,B, V4,A}. Thus, one can determine that V4,A dominates V1,A, V2,B and V3,C ,

which appear in the causal history of V4,A.

Unique Version Identifier Assignment

Since it would be prohibitively inefficient to use each version’s entire content as an

element in causal history (sites needs to exchange histories), we need a unique identifier for

each version so that causal history can be efficiently represented by the version identifier.

However, assigning a unique version identifier requires careful planning and coordination

among sites. In a simple distributed naming scheme, each site is pre-assigned with a unique

identifier. Each site ensures the uniqueness of the local identifier that it assigns for its

locally created and merged versions. By prefixing the local version identifier with the site’s

29

unique identifier, we can have a globally unique identifier for the version. For example, one

can use the version’s modification time (i.e., timestamp) as a local version identifier. In this

case, the global identifier look like “siteA 9:40:10AM11Mar272004” for the version created

by site A at 9:40:10AM11Mar272004.

Unique version identifier is also useful in figuring out operation deltas. During

reconciliation, each site can exchange version identifiers instead of entire versions’ contents,

from which each site can extract the series of operation deltas that need to be exchanged

later.

Note that causal history based reconciliation does not necessarily require each

site to maintain information regarding parent-child relations among versions. Each site is

required to maintain only the causal history of the latest version, because the dominance

relation can be determined by simply checking whether one version appears in the other’s

causal history. However, the parent-child relations are needed to capture the sequence of

operation deltas. Thus, each site needs to maintain the equivalent form of version history

graph to determine the sequence of operation deltas.

In the causal history approach, the version history graph can be instantiated by

maintaining the information regarding parent-child relations among versions in addition to

the causal history of the latest version. For example, the version history graph at site A

with V4,A as the latest version can be instantiated by the causal history of V4,A and the

list of parent-child relations: {(V0,A, V1,A), (V0,A, V2,B), (V1,A, V4,A), (V2,B, V4,A)}.

30

3.1.3 Version Vectors

Causal histories have generally been considered impractical because their size is

of the order of total number of versions in the system. Version vectors were designed to

overcome this drawback [12, 43].

A version vector is a vector of counters, one for each replica site in the system. In

the version vector method, each site maintains a version vector to describe the history of

its own local replicas. When generating a new local version, or merging other versions with

its local version, a replica site increments its own entry in its local version vector. Further,

when two versions are merged, every entry in the merged version vector should have a value

higher than or equal to the corresponding entries in the previous two version vectors.

The dominance relation is determined by comparing all the entries in the version

vector. Let VV(v) be the version vector of a version v; then,

(i) v1 equals v2 iff all the entries VV(v1) are the same as all the corresponding entries in

VV(v2).

(ii) v1 dominates v2 iff all entries in VV(v2) are not greater than corresponding entries in

VV(v1).

(iii) Otherwise, v1 and v2 are in conflict.

Figure 3.2 illustrates this process. The version vector for V1,A is [A:1,B:0,C:0],

after site A generates V1,A by modifying V0,A, whose vector is [A:0,B:0,C:0]. When site

A reconciles with site B, the version vector for the merged result (i.e., V4,A) might be

[A:1,B:1,C:0]; however, since one must conservatively assume that each site may apply

writes in different orders, we increment the entry of A’s merged version from [A:1,B:1,C:0]

31

Site A Site B Site C

000

CBAV0,A

V1,A V2,B V3,C

V4,A

V5,C

001

CBA

012

CBA

counter

site_id
212

CBA

100

CBA

010

CBA

d3

d2

d1

m4

m5

Figure 3.2: Reconciliation using version vectors

to [A:2,B:1,C:0], since A created the merged version.

Similar to the causal history case, the version vector itself cannot constitute the

version history graph, although using version vectors one can determine dominance rela-

tions. Both the version vector and the causal history need to maintain the parent-child

relations among versions to figure out the series of operation deltas to exchange during

reconciliation process.

Unique Version Identifier Assignment

Note that some systems such as Bayou use version vectors as summarizations of

updates that the site has received or created. The version vector is not used as a unique

version identifier. In other words, if one site has the same version vector entries with other

site, it only means the sites have seen the same set of operation deltas. The latest version

content may be different if the operation deltas have been applied in different order. Order-

32

ing information needs to be exchanged in addition to version vectors. For example, Bayou

exchanges version vectors and the ordering information using CSN (committed sequence

number) that is assigned by a primary server. In contrast, with causal history (the one

maintains parent-child relations), the parent-child relations (a sub-graph of version history

graph) can convey ordering information among operation deltas.

As shown in the Bayou system, with a version vector mechanism, one can extract

the deltas by scanning the complete log history where the log entry is identified with a

version vector. It may need a complete scan if the log history is implemented in a linear list

rather than a graph. In contrast, with a causal history maintaining parent-child relations,

one needs to traverse each node in the version history graph because the log history is in

fact implemented as a graph not as a linear list. It may depend on the implementation

details if traversing the graph is more efficient and faster than complete scanning of linear

list implementation of log history.

33

3.2 Scalability Limitations of Version Vectors

Version vectors requires one entry for each replica site, which entails the following

scalability limitations, which have been recognized in the literature [35, 39, 12, 4, 5].

(1) Complicated management of site membership changes: Replica site addition and dele-

tion require changes in version vector entries of all replica sites.

(2) Limited scalability in terms of number of replica sites: The size of version vectors

grows linearly with the number of replica sites.

(3) Labeling each entry in the logs: A unique version ID is required for labeling each

entry in the logs to extract deltas during reconciliation.

To label deltas, one could use version vectors; however, each delta can be labeled more

economically with a [siteid,timestamp] pair, as is done in Bayou. Since each entry of

the version vector tracks the most recent updates generated by the corresponding

site, the version vector of the latest write compactly represents all the preceding

writes. Thus, given a version vector from another site, we can collect all the deltas

whose [siteid,timestamp] is not dominated (i.e., covered [35]) by that version[35]. The

storage consumption for labeling log entries using the version vector based method is

in the order of (size of version id × number of log entries), which is approximately

the same as the storage requirement for causal histories.

In addition, we found that version vectors can incur vast amount of false conflicts.

(4) False conflict: The version vector scheme cannot accommodate coincidental equality,

i.e., cannot readily exploit instances in which different sites produce the same result

independently.

34

In the case of coincidental equality, the content of the versions is the same, but

the version vectors would be interpreted as requiring reconciliation. Using version

vectors (or a causal history approach based on timestamps—see section 4.1.1), one

could reduce the false conflict rate by retroactively assigning the same id when two

versions are found to have the same content during reconciliation. However, until

equal versions (say V1 and V2) meet each other for reconciliation, one cannot discern

that descendants of V1 and V2 are in fact from the same root. More discussion can be

found in section 3.4.

In sum, version vectors have some important limitations. The dynamic member-

ship change, capturing coincidental equality and the delta labeling requirement are prob-

lematic even with a small number of replica sites. Moreover their space advantage over

causal histories is not realized when support for incremental updates is taken into account.

3.3 Security Limitations of Version Vectors

If every node in the system is functioning correctly, then the basic version vector

scheme is sufficient as a foundation for optimistic replication systems. By “function cor-

rectly”, we mean that nodes that are not participating in the protocol for a given object

do not interfere with the process and nodes that are participating in the protocol adhere to

the rules.

However, because of the cooperative nature of decentralized dependency tracking

mechanisms, we cannot assume that all nodes are always operating correctly. A malicious

site can easily falsify ordering information, which can propagate incorrect information to

35

replicas [47, 48, 40, 46, 28].

Note that a malicious node may cause the shared state to diverge without being

detected by improperly attaching the version ID of one version to another version. Thus, it

is desirable that a dependency tracking mechanism enforces the correctness of the protocol

that the writer has to follow in assigning correct ordering among updates. With such an

ordering correctness guarantee, each site can focus on the data contents without worrying

about false ordering of updates.

Enforcing ordering correctness with VVs entails having each site have access to a

complete log history [47, 48, 40, 46, 28, 44]. To maintain such capability in a decentralized

setting or network-partitioned environment, each site has to keep the complete log history,

which can be quite a burden, especially for devices with limited storage.

3.3.1 Vulnerabilities and Modified Version Vector

Unfortunately, the correctness of version vector mechanisms depends on trusting

each site to maintain its own ordering state correctly. For example, when a site creates a

new update, its new version vector should minimally dominate those of all previous updates

that the site has seen so far. A malicious site can create a phony update with a grossly

inflated version number if each vector entry is not signed by each entry owner. This phony

update may improperly suppress future updates whose version vector entries are smaller

than the inflated one [47, 48, 40, 46]. To address this “inflating version id” attack, signed

version vector (SVV) methods [40, 46] have been proposed. Each entry is signed by the

corresponding owner (writer) of the entry so that a malicious writer cannot inflate the

entries of other writers.

36

h(V4,A) 012

CBA

σA

012

σ
C

0
σ

B
1

σ
A

2

CBA

σA

h(V1,A) h(V2,B)001

σ
C

0
σ

B
0

σ
A

1

CBA

010

σ
C

0
σ

B
1

σ
A

0

CBA

σA σB

012

σ
C

0
σ

B
1

σ
A

2

CBA

(a) Unsigned-entry Version Vector (UVV)

(b) Signed-entry Version Vector (SVV)

(c) Linked-history Version Vector (LVV)

σA

h(V4,A)

h(V4,A)

Figure 3.3: Securing Version Vectors Against Attacks: Unsigned-entry Version Vectors
prevents substitution attacks. Signed-entry Version Vectors additionally prevent malicious
writers from altering counters of other writers. Finally, Linked-history Version Vectors
contain enough information to fix a unique history tree. (Note that the example uses the
same versions (e.g., V4,A) in the previous version history graph)

However, simply signing the entries still leaves one vulnerable to the following

“same version id” attack: The malicious site can save the signed entries of recent version

vectors and use them as version vectors for phony updates. Moreover, the pre-established

version history graph can be changed if the histories are not tamper-evidently linked [47,

48, 40, 46, 28].

Here, we list a number of decentralized ordering attacks and counter mechanisms.

Substitution Attack

One way to sidetrack the optimistic replication process is to alter data without

changing the version vectors at all. This is a simple way for an outside attacker to corrupt

37

Site A:
112

CBA
V1,A

Site B:
(Attacker)

112

CBA
V2,B

Site C:
2

C

12

BA
V3,C

Site D:

112

CBAV1,A

212

CBAV3,C

Site D cannot accept V1,A unless Site D

has kept all the previous history of

version id and hash of version content.

Site C creates V3,C based on V2,B not

V1,A , but declares that V3,C is also

based on V1,A without knowing the

presence of V1,A at all.

Site B maliciously creates V2,B

with the same version id of V1,A .

Figure 3.4: The Same Version ID Attack: A malicious site creates a new version of a shared
object with the same version vector as another site’s update. This can partition the shared
object into two divergent states and prevent some nodes from ever receiving the victimized
update. The victim may never receive the bogus version (i.e., V2,B) from the attacker; hence
the victim (i.e., Site A) may never know its original version (i.e., V1,A) has been attacked
and may not be able to counter-act. If there will be no more new updates, the state will
stay diverged forever. Even if there is new update, an innocent update (i.e., V3,C) based on
the bogus version can overwrite the original update in the other partition without knowing
the existence of the update. In this case, the victim’s update is lost forever without being
detected at all.

the data utilized by participants in the protocol.

This attack is trivially addressed by signing the version vector and the data to-

gether as shown in Figure 3.3a.

Inflating Version ID Attack

A malicious site can create a phony update with largely inflated version vector, so

that the phony update can improperly suppress all the future updates whose version ID is

smaller than (i.e., is dominated by) the inflated one.

38

This attack is not possible if each entry of the version vector is authenticated by

its entry owner as shown in Figure 3.3b.

Same Version ID Attack

A malicious site can create an update with the same version ID as another site’s

update, so that the phony update can be mistaken for the genuine one at some sites. If the

phony update reaches a site before the genuine one, the site would not accept the genuine

one because it already accepted the phony update as the same version.

This attack is particularly pernicious because the attacker can partition the shared

object into two divergent states and prevent some nodes from ever receiving the victimized

update. The victim may never receive the bogus version from the attacker; hence the victim

may never know the victim’s original version has been attacked and may not be able to

counter-act by creating a newer version. If there are no newer updates, the state will stay

diverged forever. If there is a new update out of bogus update, it will falsely overwrite

the updates in the other partition. In this case, the attacker is successful in tricking other

innocent writer into overwriting the original update with the same version ID without

actually looking at the contents of the original update. An example is shown in Figure 3.4.

One might wonder why an attacker would bother with a same version id attack

since the attacker’s legitimate update can overwrite the victim’s update. However, if the

attacker’s update overwrites the victim’s with correctly increased ordering, then the victim

will receive the attacker’s update and be able to overwrite the attacker’s update again. In

contrast, if the attacker’s update has the same version id, the victim’s site thinks that the

updates are the same and will not try to overwrite victim’s update.

39

To address this attack, each participant must have access to a complete revision

history. This is what the decentralized ordering correctness guarantee is based on. Any

update including malicious ones will eventually appear to everyone including the victim.

So, the last line of defense in optimistic replication is an “undo” capability, since

one cannot restrain the writer from producing “bad” contents. If we don’t enforce ordering

correctness, the system would not be able to counter-act when “bad” contents is introduced

or the shared state is diverged.

Log Corruption Attack

A site may be able to interfere with the pre-established orderings in a complete

revision history. This attack is problematic because, as just stated, the last line of defense

in optimistic replication systems is to be able to undo modifications that have been later

determined to be incorrect or otherwise generated by malicious nodes. If the historical or-

dering of versions is altered, then attempts to undo corrupted updates may “restore” version

based on corrupted data or cause an excessive number of valid updates to be discarded.

In the version vector scheme, an attacker may decrease counters rather than in-

crease them or perhaps alter the version vector of a piece of data after it has been generated.

Both of these attacks can alter the apparent causal ordering history.

To address this attack, the signed previous history needs to be included in the

next history as shown in Figure 3.3c. Thus, changing established revision history involves

changing others’ signatures. We assume that nodes propagate history to one another so that

they will detect attempts to change history. Such attempts effectively become instances of

the Same Version ID attack and can be dealt with accordingly.

40

Site A Site B Site C

V0,A

V1,A V2,B V3,C

V4,A

V5,C

d3
d2d1

m4

m5

Site E

V2,B

Site D

V1,A

V6,E

m6

V0,A V0,A

Figure 3.5: Version History Graph with False Conflicts Example: Suppose V4,A has the same
content as V6,E (,which is common due to deterministic merge procedure), all descendant
versions of V4,A should dominates V6,E . However, if this dominance is not properly recog-
nized, all descendant versions of V4,A is in false conflict with V6,E and V6,E ’s descendant ver-
sions. Thus, the false conflict can create vast number of false conflicts among descendants.
Arrows (top-down) indicate derivation of new versions from previous ones (ancestors). Ar-
rows (left-right) indicate copying versions from neighbor sites during reconciliations.

Such a “Linked-history Version Vector” (LVV) is considerably more complex than

the original version vector scheme. Further, the final dominance checking mechanism no

longer operates exclusively by comparing version vectors — it requires tracing through the

version history. In fact, given the secure history, we no longer need the version vectors in

LVV. The resulting scheme is the topic of the next section.

3.4 Cumulative Affects of False Conflict

Occasionally, two independent chains of operations produce identical version data.

We call such events coincidental equalities. As we will show in Chapter 4, recognizing

coincidental equalities can greatly reduce the degree of conflict in the system by introduc-

ing aliasing into the version graph. When properly handled, such aliasing will increase

41

the equality and dominance rate during anti-entropy reconciliation because the equality

information is conveyed to the descendants. In general, if V1 and V2 are considered equal,

then all the versions that are based on V2 will dominate V1. If V1 and V2 are considered in

conflict, then all the versions that are based on V2, will be in conflict with V1.

It is important to note, however, that the version history graph itself does not

recognize coincidental equality. In Figure 3.5, for instance, site E creates V6,E by merging

V1,A and V2,B (operation m6). Since site E and site A cannot determine whether V6,E and

V4,A are the same or different until they meet each other during anti-entropy reconciliation,

their IDs have to be assigned differently. (Indeed, if unique version identifier is assigned

by prefixing each site’s unique name, which is a common practice, the IDs will always be

different.) Then, all the descendants of V4,A, (e.g., V5,C) are in conflict with V6,E , although,

in fact, all the descendants of V4,A could dominate V6,E . This inability to exploit coincidental

equality is a consequence of tracking ancestry independent of content. Thus, it is desirable

to assign the version identifier not just to be globally unique but also to be able to capture

coincidental equality to avoid creating vast amount of false conflicts among descendant

versions. Given that most optimistic replication mechanism utilizes deterministic merge

procedure, the chance of having coincidental equality in the system is quite high.

42

3.5 Previous Work

3.5.1 Previous work to address scalability limitation of version vectors

Causal History Log Based Approaches

In the context of mobile communication and reliable message delivery [9], it is well

known that the dependency among events can be determined by keeping a history of all the

causally preceding events. For example, Prakash et al. [37] proposed the use of dependency

sequences that contain all the causal predecessors of an event as an alternative to the

version vectors in the context of mobile communications. A causal history based approach

has also been proposed to address the scalability problem of version vectors. However, in

using causal histories, a method for providing unique ids for replicas is required. Almeida et

al. [4, 5] presented a unique id assignment technique for replicated versions, in which the bit

vector names are expanded minimally enough to be distinguishable from other concurrent

replica versions. When the diverged versions are merged later, the names are compacted

into the name of their recent common ancestor.

In Coda [25, 27], the latest store id (LSID) is used to determine version dominance

by checking whether an LSID appears in another replica’s history, as per causal history

approaches. (It was not clear whether the Coda’s approach is particularly motivated by the

limitation of version vector.) Since it is impractical to maintain the entire update history

of a replica, a truncated version is maintained along with the length of the log history.

43

Dynamic Version Vectors

Parker et al.[12] presented static version vectors as an efficient mechanism for

detecting mutual inconsistency among mutable replicas during network partition. They

also mentioned that extraneous conflicts may be signaled when two replicas are equal, but

did not clearly note that the false conflict result can have a cumulative affect in creating

further false conflicts among the descendant versions. Static version vectors have been used

to implement optimistic file replication in Locus and Ficus [38, 34]. Using static version

vectors requires site membership to be previously determined.

Ratner et al.[39] noted the scalability problem of static version vectors and pro-

posed a dynamic version vector mechanism. In this approach, entries of a version vector can

be dynamically added/deleted rather than statically pre-assigned. The method dynamically

adds an active writer into a version vector and expunges an entry from a version vector

when the corresponding writer becomes passive. This method can alleviate the scalability

problem to a degree (i.e., scale to the number of active writers), at the cost of adding the

complexity that is entailed in tracking the site’s active/passive status.

Methods for dynamic replica creation and retirement using version vector were

presented in Bayou [35]. An existing site can introduce a new site by prefixing the name of

the new site with the name of the introducing site. If all sites are introduced through linear

chaining (e.g., A introduces B, B introduces C, C introduces D, and so on), the total size

of all site names could grow quadratically in terms of the number of replica sites, although

such a case would be rare in practice. With this approach, creation and retirement events

are treated as writes, so that such events can have a causal accept order with other writes

44

in the log. However, this method may require one to look through the write logs during

dominance determination using the version vector.

3.5.2 Previous work to address security limitation of version vectors

Spreitzer et al. [47, 48] proposed the countermeasures based on version vectors to

deal with server corruption in weakly consistent replication. The mechanism requires the

systems to build a tamper-evident audit trail that is composed of linked write-requests and

write-replies along with digital signatures. They detailed how the proposed mechanism can

deter the possible attacks against both data and meta-data (i.e., ordering state).

Section 5.7(Related Work: Securing Causal Relationship) presents other funda-

mental work such as secure time-stamping and Merkle Tree based authentication.

3.6 Summary

The version vector approach has fundamental limitations related to scalability and

security. These problems are especially pronounced in pervasive and ubiquitous computing

environments where hundreds of diverse devices and computers need to exchange updates

in a pervasive and secure way.

First, version vectors are well known to require complicated management for site

addition/deletion and not scale well as the number of replica sites increases. The manage-

ment of version vectors becomes complicated since entries for newly added sites have to be

propagated to other replica sites [4, 35, 39, 37]. Depending on when the membership change

information arrives, a reader may receive two updates with vectors of different sizes.

45

Second, version vectors are vulnerable to various attacks and faults on decentral-

ized ordering, because each entry of version vector summarizes the causal relations in a lossy

way, not preserving enough information for others to prove the correctness of the causal

ordering histories. Thus, it is easy for a malicious node to propagate incorrect information

to all replicas by falsifying the decentralized ordering state [47, 48, 40, 46, 28].

By ensuring decentralized ordering correctness, the optimistic replication system

can guarantee that all updates are not vulnerable to a decentralized ordering attack. With

this guarantee, each site can focus on validating the quality of data contents in a cooperative

way. Whether the content of an update is good or bad, the update will be delivered in

correctly formed ordering.

Finally, it is important to assign the version identifier not just to be globally unique

but also to be able to capture coincidental equality to avoid creating vast amount of false

conflicts among descendant versions. Given that most optimistic replication mechanism

utilizes deterministic merge procedure, the chance of having coincidental equality in the

system is quite high. We will discuss how we achieve this in the next two chapters.

46

Part II

Our Approach

47

Chapter 4

Hash History Approach

This chapter now describes a scheme that overcomes scalability limitations of

version vectors in Chapter 3. Basically, the idea is to take a causal history approach, which

readily addresses problems of the dynamic membership change and the growth of vector

size, and use a hash of a version as a unique ID, thus addressing the unique site naming, the

coincidental equality capturing, and delta labeling requirement. Also, since delta labeling

requirement shows that version vectors have a storage requirement of the same order as

causal histories do, this scheme does not impose an additional cost penalty.

We use HH as an abbreviation for Hash History and VV for Version Vector.

4.1 Data-Centric Hash History Design

Recall that causal history approach needs to identify version uniquely so that it

can determine the version dominance.

48

4.1.1 Using Hashes as Version IDs

First, we consider three choices for a unique version id: (i) version vectors, (ii)

unique site id + local timestamp pairs, and (iii) hash of version + epoch number (e.g., a

count of the previous same versions) pairs. A timestamp that is locally assigned within a

site is probably unique in practice since it is extremely rare that different users (or sites)

make an update at the same time. However, such rare events do happen in practice, and

their consequence is prohibitive: An update may be completely lost by different versions

having the same id. Indeed, such an occurrence is present in the CVS logs of sourceforge.net,

whose granularity is in seconds. Hence, we reject simple timestamps as too risky.

If a local timestamp is prefixed by a unique site name, then the version ID that

is composed of [unique site ID, local timestamp] is guaranteed to be unique. However

producing a unique site name in a network-partitioned environment requires a recursive

naming method. For example, in Bayou[35], a new site name is prefixed by the unique id of

the introducing site. If the sites are introduced through linear chaining (e.g., A introduces

B, B introduces C, C introduces D, and so on), the total size of all site names could grow

quadratically in terms of number of sites.

Instead, we can name versions by applying a cryptographic hash function (e.g.,

SHA-1 or MD5) over serialized bytes of data content. By using the hash of a version as a

unique ID, we automatically recognize coincidental equalities since the hash would be the

same if the same results were produced from two different schedules of semi-commutative

operations. However, by itself, the hash of a version is not necessarily unique, since a version

with the same content may appear previously in a version’s history, and hence the latest

49

Site A Site B Site C

V0,A

V1,A V2,B V3,C

V4,A

V5,C

d3d2
d1

m4

m5

H0,A:0

H0,A:0

H1,A:0

H0,A :0

H2,B :0

H0,A :0

H3,C :0

H0,A:0

H1,A:0 H2,B:0

H4,A:0 H3,C:0

H5,C:0Hi,site :# = hash (Vi ,site) :epoch #

H0,A:0

H1,A:0 H2,B:0

H4,A:0

Figure 4.1: Example of Reconciliation using Hash History: During reconciliation between
site B and C, each site exchanges only the latest hashes, H2,B and H5,C . Given H2,B, Site
C can determine that the V5 is a revision of V2 of site B, because H2,B belongs to site
C’s history. Given H5,C , however, since H5,C cannot be found in Site B’s history, Site B
assumes H5,C is a revision of H2,B, and pulls the H5,C ’s histories from Site B.

version can be mistaken for an old one during reconciliation with other sites. Therefore, we

add an epoch number to distinguish the hash of the latest version from that of old versions

with the same content.

When a new version is created, each site checks whether the same hash can be

found in the history; if so the epoch number of the current version hash is assigned by

increasing the largest epoch number of the versions with the same hash. It is possible,

of course, that two sites generate the same content independently with the same epoch-

number. We simply stipulate that these are the same versions, even though they are not

truly causally related.

50

4.1.2 Hash History Based Reconciliation

We use the term “hash history”(HH) to refer to schemes in which version histories

comprising hash-epoch pairs are used to encode causal dependencies among versions in a

distributed system. Note that the hash history also contains the set of (parent, child) pairs

of the hash-epoch pairs. Figure 4.1 shows an example of causal history graph of hash-epoch

pairs. If H4,A is the same with H0,A, then the epoch number for H4,A will be increased by

1, although the example shows epoch number 0 for H4,A since H4,A is not the same with

H0,A.

4.1.3 Faster Convergence

Hash history based reconciliation is able to capture coincidental equality automat-

ically. Using version vectors or causal history based on a unique id (e.g., timestamp), one

could reduce the false conflict rate by assigning the same id when V1 and V2 are found to

have equal content during reconciliation. This remedy may work to a degree; however, until

V1 and V2 meet each other for reconciliation, all the descendants of V1 and V2 would be

unable to tell they are from the same root.

Each hash of a version in the hash history can be used as a label for the corre-

sponding operation delta. Given a hash of a version from site A, site B can locate the

matching hash in the site B’s history, and then traverse the history graph toward the most

recent copy while collecting all the deltas and all the siblings of the matched hash along the

way.

Since one single hash can replace the unique version-id (e.g., [siteid,timestamp]),

51

the storage consumption for tagging the log entries is in the order of (size of hash × number

of log entries). The actual size of hash is fixed (e.g., 160 bits for SHA1) while the site-id

could grow depending on the site creation pattern.

4.1.4 Truncating the Hash History

Classical techniques for truncating logs can be applied toward pruning hash histo-

ries. The global-cutoff timestamp (e.g.,[42]) and the acknowledgment-timestamp (e.g., [19])

can efficiently determine the committed versions; however, these methods fundamentally re-

quire one to track the committed state per each site, and hence would not scale to thousands

of sites.

Instead, we use a simple aging method based on roughly synchronized timestamps.

Unlike version vectors, the hash history for the shared data can be readily shared and

referenced among many sites since it does not contain site-specific information, but rather

the history of the shared object. Thus, one can maintain the truncated histories locally,

archiving portions of the history at primary sites to handle the case in which a version that

belongs to the pruned hash history would otherwise be mistakenly considered a new version.

Note that the dominance check with pruned hash history is conservative in a sense that

it would mistakenly consider dominance as a conflict, thereby triggering a merge process;

hence, no updates would be lost.

52

4.2 Evaluation of Hash History Efficacy

To evaluate the efficacy of the hash history approach, we implemented an event-

driven simulator. Our goal was to explore whether or not hash history schemes would

converge faster and with a lower conflict rate than version vector schemes. We also sought

to explore the sensitivity of hash histories to the rate at which we truncated them.

4.2.1 Simulation Setup

The simulator performs anti-entropy reconciliation of information across a set of

replica sites. It reads events in sorted order from a trace file, described in section 2.4.1, and

generates write events. The events are in the form of [time,user, filename]. If the user is

new, we create a new site for the user. Each site has logs, hash histories and static version

vectors. Periodically, the simulator performs anti-entropy by picking two sites at random.

The first site initiates the reconciliation with the second site by getting a hash history and

a version vector. The first site determines the equality, conflict and dominance. In case of

conflict, the first site merges the conflicts, and then sends the merged version back to the

second site along with the updated version vector and hash history.

The simulator repeats the anti-entropy process at every 60 seconds. For example,

if the interval between events is 1200 seconds, 20 anti-entropy cycles is performed. The

conflict moving rate is defined as the number of conflict determination results over moving

window of 100 anti-entropy cycles.

53

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
at

e
(#

_o
f_

re
su

lt
s

pe
r

cy
cl

e)

of anti-entropy cycles (1 cycle = 1 min)

VV-conflict_moving_rate
HH-conflict_moving_rate

Figure 4.2: Conflict rate of VV and HH from pcgen shown between 0 to 10000 cycles

4.2.2 Comparison with Version Vector Result

To check the correctness of our implementation, we ran the simulation forcing

the hashes of merged writes to always be unique. In this case, the results of the domi-

nance checks in the version vector scheme should be the same as those of the hash history

implementation, and, indeed, they were.

The hash history scheme converges faster, and with a lower conflict rate, than the

version vector scheme. Figure 4.2 shows that HH converged faster for the writes that was

generated around at 9000 cycles in pcgen trace data. Interestingly, HH converged twice

during the period between 9000 and 9500 cycles, while VV converged once around at 9500

cycle. This effect is also shown between 30000 and 34000 cycles with freenet trace data in

Figure 4.3. HH converged around at 31000 cycles for the writes generated around at 30000

cycles; however, the VV could not converged completely and yet had more conflicts when

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

30000 32000 34000 36000 38000 40000

R
at

e
(#

_o
f_

re
su

lt
s

pe
r

cy
cl

e)

of anti-entropy cycles (1 cycle = 1 min)

VV-conflict_moving_rate
HH-conflict_moving_rate

Figure 4.3: Conflict rate of VV and HH from freenet shown between 30000 to 40000 cycles

the next writes were introduced. VV could not converge until the long non-bursty period

between 34000 and 39000 cycles. Dri trace data in Figure 4.4 shows similar effect from

101000 to 105000 cycles.

One might wonder why there is so much difference between VV and HH. This is

due to the fact that HH was able to capture the coincidental equalities and thereby treat two

different sets of deltas that lead to the same content as the same delta. This has cumulative

effects to the dominance relations among all the descendant versions. For example, let V1

and V2 are independently created with the same content but different version histories. If

V1 and V2 are considered equal as in HH, then all the versions that are based on V2 will

dominate V1. However, using VV, all the descendants of V1 and V2 would not be able to

tell they are from the same root. In VV, each descendant of V2 is in conflict with V1. It is

important to note that the simulation assumed the merged results of each descendant of V2

and V1 will be a new version with a different id but with the same content of the descendant

55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100000 102000 104000 106000 108000 110000

R
at

e
(#

_o
f_

re
su

lt
s

pe
r

cy
cl

e)

of anti-entropy cycles (1 cycle = 1 min)

VV-conflict_moving_rate
HH-conflict_moving_rate

Figure 4.4: Conflict rate of VV and HH from dri shown between 100000 to 110000 cycles

of V2 itself. In contrast, the merged version in HH will have the same id as the descendant

of V2. This is because the strict VV implementation in general conservatively assigns a new

id for all the merged operations without looking at the content and its parents. And we

simply assumed that the content of the merged result between a version v and its ancestors

(including coincidentally equivalent ones) will be the same as that of the version v. That

is the reason that the Figure 4.2 - 4.4 show more drastic difference as anti-entropy cycles

increases.

4.2.3 Aging Policy

The results show that aging method is effective by holding the size of hash histories

to an acceptable level—about 122 entries—with a 32 days aging policy and have no false

conflicts due to aging. A false conflict could occur when the pruned part of the hash history

56

0

0.02

0.04

0.06

0.08

0.1

0.12

10 100

F
al

se
 c

on
fl

ic
t

ra
te

 d
ue

 t
o

ag
in

g

Aging period in days

dri
freenet
pcgen

Figure 4.5: False conflict rate due to aging

is required for determining the version dominance. For example, V1 from site A belongs

to the hash history of the site B. After the site B pruned out the V1 from its hash history

because V1 became too old according to the aging parameter (say 30 days), then the site B

no longer be able to determine the dominance when V1 is presented as a latest copy from A.

Figure 4.5 shows that, using a pruning method based on aging, the false conflict rate due

to pruning the hash history converges to 0 after 32 days. The average number of entries

in a hash history with an aging policy of 32 days is measured as 122.3 (in # of entries) as

shown in Table 4.1.

57

Aging period (days) HH size (number of entries)
Dri Pcgen Freenet Average

32 146.3 159.1 61.5 122.3
64 413.9 443.9 147.5 335.1
128 551.5 591.7 612.8 585.3

Table 4.1: Average HH size with the aging period

4.3 Related Work

4.3.1 Using Hash as Identifier

A number of recent peer-to-peer systems have used hashes based on SHA-1 or

MD5 to identify documents or blocks of data. For instance, CFS[13], Past[17], Publius[52],

FreeHaven[16], and FreeNet[10] identify read-only objects using a hash over the contents of

those objects. OceanStore[26] goes further and uses hashes to identify read-only data blocks,

then builds a tree of versions from these blocks. The resulting data structure contains both

a tree of version hashes as well as pointers to all of the data from these versions.

4.4 Summary

To address the scalability limitation of version vectors, this chapter proposes a hash

history scheme for reconciling replicas. In our scheme, each site keeps a record of the hash

of each version that the site has created or received from other sites. During reconciliation,

sites exchange their lists of hashes, from which each can determine the relationship between

their latest versions. If neither version dominates the other, the most recent common

ancestral version can be found and used as a useful hint to extract a set of deltas to be

58

exchanged in a subsequent diffing/merging process.

Unlike version vectors, the size of a hash history is not proportional to the number

of replica sites. Instead, the history grows in proportion to number of update instances.

However, the size of history can be bounded by flushing out obsolete hashes. A version hash

becomes obsolete if every site has committed that version. The simplistic aging method

based on loosely synchronized clocks can be used to determine if a given hash history is

old enough to be flushed. In addition, a single complete hash history can be shared among

replica sites, whereas, using version vectors each replica sites would have to maintain its

own record.

The hash history approach is also economical in the storage overhead required for

labeling log entries to extract sets of deltas that need to be exchanged during reconciliation.

A unique version id is required for labeling every delta in the logs. Version ids in version

vector based systems typically incorporate a local site name, whose size is not bounded,

whereas using hash histories, it is possible to assign unique identifiers of fixed size without

global coordination.

We simulated anti-entropy reconciliation using a hash history based approach with

the trace data that was collected from CVS logs from sourceforge.net. The results show

that the size of hash histories can be held to acceptable level—about 122 entries—with

a 32 days aging policy and have no false conflicts due to aging. More importantly, the

results highlight the fact that hash histories are able to detect the equality of versions

that the version vector reports as a conflict—reducing the number of detected conflicts.

Our simulations demonstrate that these coincidental equalities are remarkably prevalent, as

59

shown by the vast difference in convergence rate between version vectors and hash histories.

60

Chapter 5

Summary Hash History Approach

The Hash History (HH) approach described in Chapter 4 provides scalability in

terms of the number of participants and dynamic membership changes. However, HH

does not provide a decentralized ordering correctness guarantee. This chapter describes

a secure decentralized ordering mechanism, called Summary Hash History (SHH), which

is an extension of HH. Instead of using the content hash as the version identifier, SHH

uses a summary hash to provide the decentralized ordering correctness guarantee. This

chapter describes SHH, and also shows that SHH has the following useful property: secure

reconstruction of log history and convergence across partitioned networks. By using a

summary hash as a version ID, aggressive log pruning is possible even with the requirement

of maintaining a complete history to defend against various ordering attacks described in

Chapter 3.

61

5.1 Secure Summary Hash History (SHH) Design

In the causal history approach, as described in Chapter 3.1, ordering dependencies

among revisions is determined by checking whether a given version appears in another

version’s causal history [40, 43, 25]. A summary hash history (SHH) is a causal history,

where the version identifier is the summary hash. The summary hash (Si) of a version (Vi)

is defined as the cryptographic collision-resistant hash over predecessors’ summary hashes

and the hash of the version content, i.e., Si = hash (Si1 ‖ ... ‖ Sin ‖ Hi), where Sij is the

summary hash of the j-th predecessor (in lexicographically sorted order) for the version Vi,

Hi = hash(Vi) and ‖ is concatenation. For example, if the predecessors for the version Vi are

Sl and Sr, then Si is hash (Sl‖Sr‖Hi). (Assume that Sl comes before Sr in lexicographically

sorted order.)

The inclusion of predecessor hashes in the summary hash is similar to that of the

Merkle’s tamper-evident hash tree [30] or hash chaining [6, 21]. Likewise, the summary

hash is collision resistant. A proof of this property can be found in Appendix A. Thus, by

using this summary hash as a version id, one can readily address various ordering attacks

as described in Chapter 3, including the “same version id” attack and the “log corruption”

attack.

5.1.1 Verification of Summary Hash History (SHH)

Since the summary hash is collision resistant, it is computationally infeasible to find

two different summary hash histories for a given summary hash. Roughly speaking, there

is a unique summary hash history associated with a given summary hash. The summary

62

Site A Site B Site C

V0

V1 V2
V3

V4

V5

S0

S0

S1

S0

S2

S0

S3

S0

S1 S2

S4

S0

S1 S2

S4

S3

S5

h : hash, || : concatenation

Hi = h(Vi), Si = h(Si’s parents || Hi) S5= h(S3 || S4 || H5)

S4=h(S1 || S2 || H4)

S2= h(S0 || H2)
S3= h(S0 || H3)

S1= h(S0 || H1)

S0= h(H0)

Figure 5.1: Example of Reconciliation using Summary Hash History: The summary hash
(Si) of a version (Vi) is the hash over the predecessor’s summary hash(es) and the hash of
the version, i.e., Si = h(Sp‖Hi), where p is i’s predecessors, Hi = h(Vi), h is a collision
resistant hash function and ‖ means concatenation. During reconciliation between site B
and C, each site exchanges only the latest summary hashes, S2 and S5. Given S2, Site C
can determine that the V5 is a revision of V2 of site B, because S2 belongs to site C’s history.
Given S5, however, since S5 cannot be found in Site B’s history, Site B assumes S5 is a
revision of S2 or in possible conflict, and later pulls the S5’s histories and data from Site B
or other local sites that have already received S5.

63

Boolean shhA.verifySHashDFS (SHash sh, Set verified) {

1. if (verified.hasItem (sh)) { return true }

2. String concat //to contain the concatenation of the parents� SHashes

3. String contenthash shhA.getContentHash(sh)

4. SHashArray parents LexicographicalSort (shhA.getParents(sh))

5. if (parents null)

6. for i 0 to parents.length-1 {

7. if (!shhA.verifySHashDFS (parents[i], verified)) return false

8. concat.add (parents[i]) //add every verified parent

}

9. concat.add (contenthash)

10. if ((sh.str = = getSHA1(concat)) and (verifySign(sh.str, sh.sig))) return true

11. else return false

}

12. return false //sh is not found in verified and has no parent

}

Boolean shhA.verifySHash (ObjectID objID, SHash sh) { //sh.str is summary hash string

1. if (!verifySign(sh.str, sh.sig)) return false //sh.sig is signature of sh

2. Set verified owner.getVerified(objID) //owner keeps previously verified cache

3. return shhA.verifySHashDFS (sh, verified) //verified has an initial root-hash by default

}

Figure 5.2: Pseudo Code for Verifying Summary Hash: The verifySHashDFS() routine
recursively verifies the summary hash and data content until a previously verified summary
hash or the initial root hash is reached.

hash is in fact a compact and secure summarization of all the causally preceding writes.

By simply signing the latest summary hash, one can authenticate the associated previous

history.

Thus, given a signed summary hash, first, we can check the authenticity of the

signature of the summary hash, and then verify the summary hash’s associated previous

history. The verification can be done by traversing the directed acyclic version history

64

graph with summary hash as version identifier. One can recursively verify the summary

hash and data content until a previously verified summary hash or the initial root hash

is reached. For example, to verify the summary hash S5 for V5 (i.e., H5) in Figure 5.1,

one needs to locate summary hashes for both S3 for V3 and S4 for V4, and check if the

hash over (S3‖S4‖H5) matches S5; if it matches, then one recursively verifies S3 and S4

until one reaches a previously verified summary hash or S0 (the initial root hash). Figure

5.2 describes a pseudo code for verifying summary hash given initial root hash and SHH.

Likewise, a set of deltas can be collected by traversing the directed acyclic graph [45, 25].

Figure 5.3 shows a pseudo code for collecting delta.

5.1.2 Secure Log Reconstruction for Light-weight History Access

Ensuring decentralized ordering correctness entails significant overhead, such as

requiring each site to maintain a complete history. For example, to address same version id

attacks, each site should have access to the complete history. In a decentralized setting, each

site might maintain the complete history at a trusted location (e.g., secure local storage).

This direct approach might impose a substantial burden, especially in supporting optimistic

replication among sites with limited storage (e.g., mobile devices).

However, with summary hash, a site can aggressively prune its log history. Since a

self-verifying summary hash can compactly represent its associated ancestral versions, one

can prune out the old history aggressively and keep only the latest summary hash. Given

a summary hash, one can locate a self-verifiable history of the pruned parts from neighbor

sites. Since we can verify the validity of the given history, the history need not come from

trusted sites. With this property, each site can then incrementally reconstruct the previous

65

Delta shhA.collectDeltaDFS(SHash curID, Delta delta, Set visited) { //Depth First Search

1. If (visited.contains(curID) OR delta.contains(curID))) {return delta }

2. Put curID into visited.

3. Put shhA.getLog(curID) into delta

//Now recursively traverse into parents

4. ObjectArray parents shhA.getParents(curID)

5. if (parents null) {

6. for i 0 to parents.length-1

7. delta shhA.collectDeltaDFS(parents[i], delta, visited)

}

8. return delta

}

Delta owner.ComputeDelta (ObjectID objID, SHash fromID, SHash toID) {

1. shhA owner.getSHH(objID)

2. visited new Set() visited.add(toID)

3. Delta delta shhA.collectDeltaDFS(fromID, new Delta(), visited)

4. return delta

}

SHH owner.ComputeSHHDelta (ObjectID objID, SHash fromID, SHash toID) {

1. Delta delta owner.ComputeDelta (objID, fromID, toID)

2. return delta.extractSHH() //extracting SHH from the delta by simply removing logs

}

Figure 5.3: Pseudo Code for Collecting Deltas: The deltas are collected by traversing the
summary hash history graph using depth first recursive traversal. For each parent, it keeps
traversing the shhB (line 6-7) until it finds a toID.

66

O(hashsize)O(epoch_num_size +

hashsize)

O(#nodes +

hashsize)

O(#nodes)Version ID

Space

O(#revs)O(#revs)O(#nodes*#

revs)

O(#nodes*#

revs)

Log Space

O(IDspace *

#revs)

Version ID can

rebuild the pruned

(lost) log securely

Version ID cannot rebuild the pruned (lost) log

securely.

Secure log

reconstruction

Checking if IDs belong to other’s log

history

Comparing VV entriesDominance

check

Securely rebuilt

log history can

determine version

dominance and

allow incremental

delivery

IDs cannot determine

the dominance

relation except

equality.

(epoch# can

complicate pruning)

Possible at the cost of full

content transfer since IDs

can determine the

dominance relation.

(Dynamic membership

change maintenance can

complicate log pruning)

Aggressive log

pruning by

keeping the

version ID only

Epoch# + Hash Summary HashVV + HashVV

Figure 5.4: Comparison of other dependency tracking mechanisms with Summary Hash
History regarding log management

67

history enough to determine whether the summary hash appears in the other site’s history.

We call this SHH ability the secure log reconstruction property. This is quite beneficial

property given that weakly consistent replication systems in general require each site to

maintain the logs of data (or alternatively operations on the data) to exchange updates in

a decentralized way. It is possible that modified VVs can also prune aggressively with the

provision that it can retrieve the pruned parts of its history from neighbors on demand.

However, as the reconstruction of history is not secure, a site with insufficient- or no-history

needs to trust its neighbor to return a correct history. One might have to ask a number of

sites to determine the correct history based on consensus, which would be quite expensive.

Figure 5.4 compares the log management mechanism of SHH with other various

approaches.

5.2 Countermeasures with Summary Hash History

Unlike a version vector approach, a causal history approach in general is not in-

trinsically vulnerable to an “inflating version id” attack. The attacker would have to include

the victim’s future update into the causal history of the attacker’s own update. Because it

is generally difficult to predict a victim’s future update, the causal history approach has a

fundamental resiliency to this attack. Accordingly, so does the SHH.

Also, by using summary hash as version identifier, SHH is not vulnerable to the

same version ID attack or the log-corruption attack. One cannot assign the same summary

hashes to different versions, because the mapping between the version identifier and the

content is determined by a hashing function, not by the declaration of a participating site.

68

Site A:

001

CBAV1,A

Site B:
(Attacker)

Site C:

Site C will discard V1,A , because

it has already received V2,B with

the same version vector entries.

Site B can still attach bogus

version V2,B , with the same

version vector entries.

V1,A
001

CBA

001

CBA
V2,B

V1,A
001

CBA V2,B 011

CBA
V2,B 001

CBA

V3,C
101

CBA

V3,C at Site C unknowingly

overwrites V1,A when it

overwrites V2,B

S1

S2

S1

S2

S1

In SHH, Site B cannot

assign a false version

ID to V2,B .

S1

V3,C at Site C correctly

overwrites V2,B .

S3

S2

S1

Site C will discard V1,A , because

it has already received V2,B

which is based on V1,A .

Figure 5.5: The Same Version ID Attack is Not Possible with SHH: A malicious site can
create a new version of a shared object with the same version vector as another site’s update.
However, with SHH, this is not possible because summary hash includes the content hash
of the version. The attacking bogus version will be detected as divergent version. Also,
SHH can clearly verify that an update (i.e., V3,C) is based on the bogus version (i.e., V2,B)
not on the original version (i.e., V1,A).

69

Not vulnerable because each site

maintain causal history or has

access to complete causal history

Vulnerable if each site maintains only

the latest version vector and content

hash. Not vulnerable if each site keeps

complete <VV, content-hash> history.

Writer declares

parent version

but cannot easily

change later

because of

linked history.

Same version

ID attack

(Summary

Hash) ID

(Hash +

Epoch#) ID

Version Vector (VV) + Content Hash

Vulnerable: Writer declares parent version/version ID

and can change later

Log corruption

attack

(Changing

version history

later)

Not vulnerable since you cannot

overwrite future version before it

exists. You have to know the

future version a priori

Not vulnerable

since you can’t

modify other’s entry

in SVV

Vulnerable since

any writer can

increase other’s

entry in UVV

Inflating

version ID

attack

Causal History

Signed Entry

(SVV)

Unsigned entry

(UVV)

Figure 5.6: Comparison of other dependency tracking mechanisms with Summary Hash
History regarding various attacks

70

If the mapping is based on site’s declaration, a site can easily change such information

later, which basically makes the log-corruption attack possible. Obviously, with SHH, it

is difficult to change past log history without being noticed, because changing history will

result in different summary hash identifiers.

Figure 5.5 shows an example that SHH is not vulnerable to the same version ID

attack. With SHH, a malicious site cannot create a new version of a shared object with the

same identifier as another site’s update. Because summary hash includes the content hash of

the version, the summary hash will be different if the content hashes are different. SHH also

preserves the history in tamper-evident way. It can verify which version overwrote which

version. As in this example, SHH can show that an innocent version overwrites the bogus

version not the original version. (Recall that, in version vectors, an innocent update (i.e.,

V3,C) based on the bogus version can overwrite the original update in the other partition

without knowing the existence of the update. In this case, the victim’s update is lost forever

without being detected at all.)

Figure 5.6 summarizes SHH’s resistance to various attacks and faults, in compar-

ison with other approaches.

5.3 Scalable Reconciliation with SHH

As a causal history approach, dominance relations (i.e., ordering dependency

among revisions) can be determined by checking whether a given latest summary hash

appears in another site’s summary hash history [40, 43, 25].

To exchange updates through a reconciliation process, each site needs to determine

71

the dominance relation among the latest versions. To do so, a complete SHH needs to be

sent over to the other site so that one site can determine the dominance relation. Thus,

one site site might receive the entire SHH from another site and determine the version

dominance by checking if its latest version appears in the other.

More efficiently, the SHH can be sent over the network only when it is necessary.

For example, during reconciliation, a signed summary hash, s2, (for a version v2,) is sent

from the other site. Then, the receiving site can check whether the summary hash, s2,

appears in the receiving site’s summary hash history. If so, the receiving site’s latest version,

say v1 dominates v2. Otherwise, the receiving site assumes v2 to be a previously unseen

version (i.e., either v2 dominates v1 or they are in conflict), and later downloads the SHH

associated with s2.

Chapter 6 discusses the SHH reconciliation protocols in detail.

5.4 Deterministic, Commutative, and Associative Merge with

SHH

In some applications with optimistic replication, the merge procedures are deter-

ministic, commutative and associative (DCA). A merge operation is deterministic iff a merge

operation, m(x, y), deterministically produce the same result from the same input input x

and y. For example, if human user merges diverged versions, the merge operation by hu-

man may not be deterministic, since the merged result may be different even with the same

input. An automated merge operation that is deterministic will produce the same result

if the input is the same. We call a merge operation, m(x, y), is commutative iff m(v1, v2)

72

SHHB :SHHA :

S0

S1
S2

S7

S3

S6

V
1
= {}

Add z

V
3
= {z}

V
23

= {y,z}

V
2
= {y}

Add yAdd x

V
123

=

{x,y,z}

V
1
= {x}

S0

S1
S2

S5

S3

S4

V
1
= {}

Add z

V
3
= {z}

V
12

= {x,y}

V
2
= {y}

Add yAdd x

V
123

=

{x,y,z}

V
1
= {x}

Figure 5.7: Deterministic, Commutative, and Associative Merge (DCA Merge) Example:
Site A produces S7 by merging S1 with S6. S6 was previously produced at another site,
Site C, by merging S2 and S3. Meanwhile, Site B produces S5 by merging S3 with S4. S4

was previously produced at another site, Site A, by merging S1 and S2. Since the merge
(adding items to a set) is DCA, the content of S7 and S5 should be the same.

Site A Site B

S0

S1 S2

S4

S3

S5

SHHB :
SHHA :

S0

S1 S2

S7

S3

S6

S6=h(S2 || S3 || H6)

S7=h(S1 || S6 || H7) S5=h(S3 || S4 || H5)

S4=h(S1 || S2 || H4)

Figure 5.8: SHH assigns different identifier for DCA Merge: Even though, the content of
S7 and S5 are the same due to DCA merge(i.e., H7 = H5), SHH assigns different identifiers
for S7 and S5. S6 was previously produced at another site, Site C, by merging S2 and S3.
S4 was previously produced at another site, Site A, by merging S1 and S2.

73

Site A Site B

S0

S1 S2

S4

S3

S5

SHHB :
SHHA :

S0

S1 S2

S7

S3

S6

S6= (S2 || S3)

S7=(S1 || S6) =(S1 || S2 || S3) S5= (S4 || S3) =(S1 || S2 || S3)

S4=(S1 || S2)

Figure 5.9: SHH assigns the same identifier for DCA Merge: If all the merge procedures
are Deterministic, Commutative, and Associative, then, the summary hash for the merged
version is the concatenation of parents summary hashes in lexicographically sorted order.
Now, S5 = (S1‖S2‖S3) and S7 = (S1‖S2‖S3) have the same identifier with the same data
content(i.e., H7 = H5).Write after DCA Merge

Site A Site B

V1 V2

V4

S0

S1

S0

S2

S0

S1 S2

S
3

h : hash, || : concatenation

H
i
= h(V

i
),

IF V
i
is the result of a deterministic merge

S
i
= (S

i 0
|| …|| S

i n
) where S

ij
= S

i
’s j_th parent

ELSE

S
i
= h(S

i’s parent
|| H

i
)

S
4
= h(S

3
|| H

4
)

= h(S
1
|| S

2
|| H

4
)

S
2
= h(S

0
|| H

2
)S

1
= h(S

0
|| H

1
)

S
3
= S

1
|| S

2

V3

S0

S1 S2

S
3

S4

Deterministically

merged result.

Site A creates an update based on

the previous merged result. (E.g., to

modify or to resolve conflicts of the

merged result)

Figure 5.10: Write after DCA Merge Example: This example shows that the new rule of
assigning concatenated parent hashes as the summary hash identifier for the DCA merged
version works well with previous summary hash construction mechanism. A new write after
DCA merge is considered the same as the merged result when the merge operation is not
guaranteed to be DCA.

74

produce the same merged output as m(v2, v1). A merge operation is called associative iff

m(v1, m(v2, v3)) produces the same merged result as m(m(v1, v2), v3). A DCA example is

shown in Figure 5.7.

The strict summary hash construction should assign different id when the merge

history is different even though the merged results are the same. An example is shown in

Figure 5.8. In some application, it may be desirable to assign the same id if the merge is

DCA and the output is guaranteed to be the same if the input is the same. Figure 5.9

shows how SHH solves this problem by assigning the summary hash of the merged version

as the concatenation of parents summary hashes in lexicographically sorted order when all

the merge procedures are DCA. Finally, this new rule of assigning the concatenated parent

hashes as the summary hash identifier for the DCA merge does conform well with previous

rule of summary hash as shown in Figure 5.10.

5.5 Coincidental Equality and Convergence Across Partitioned

Networks with SHH

As we discussed in section 3.4, it is typical that identical versions with the same

content are produced at different sites. Indeed, in optimistic replication systems such as

Bayou and Coda’s disconnected operation system, such an occurrence can commonly happen

when the same deterministic merge procedure is used to resolve the same set of conflicting

updates. We defined such an occurrence a coincidental equality.

Coincidental equality may be divided into two classes. One is the case when the

identical content is independently produced from the identical histories, which we call total

75

71

Site A Site B Site C

(x1) (x2) (x2)

Site D

(x1)

write x

(x5)
All descendants of x3 at Site A

dominate x3 at Site D.

(x3) (x4)
0

C

011

DBA

0

C

011

DBA

0

C

013

DBA

0

C

012

DBA

0

C

111

DBA

S1

S3

S2S1

S2

S5

S3

S2S1

S4

S2S1

0

C

001

DBA

0

C

010

DBA

S3

S2S1

S1 S2

(x3)

Figure 5.11: Convergence across Partitioned Networks: Site A creates X3 by merging X1

and X2, while independently, site D creates X3 based on the same predecessors. Suppose
Site A’s X3’s content is coincidentally equal to Site D’s X3, then all the descendant versions
of Site A’s X3 will dominate Site D’s X3. Version vector cannot capture this total-equality
(it declares conflict), which can cumulatively incur false-conflicts among descendant ver-
sions. However, summary hash includes content hash in order to capture the total-equality
instantly even in the network partitioned environment.

76

equality. The other is the case when the identical content is independently produced from

either identical or non-identical (i.e., different) histories, which we call content equality. By

definition, the set of total equality cases is a subset of the set of content equality cases.

As shown in Chapter 4 (HH approach), the use of a content hash (i.e., the hash

generated over data content) as a version identifier can capture the content equality. By

capturing coincidental content equality, optimistic replication can converge faster producing

no-false conflict. This has a vast cumulative effect in the false-conflict rate among descen-

dant versions [24]. However, the hash of a version is not necessarily unique, since a version

with the same content may appear previously in a version’s history, and hence an epoch

number was needed to distinguish the different versions with the same content.

Unlike Hash History scheme which uses [content hash, epoch number] pairs as

version identifiers, summary hash history (SHH) does not need an epoch number, since the

summary hashes of versions with the same content will be different if their histories are

different from each other. Thus, with SHH, sites will declare equality only when both the

version content hash and its predecessors’ histories are identical (i.e., the total equality case).

In comparison, with Hash History , sites determine equality, regardless of the predecessors’

histories, when both the content hash and the epoch number are identical (i.e., the total

equality case and some content equality cases with the same epoch number). Note that

hash-epoch pair scheme does not declare equality when the epoch numbers are different.

Of course, capturing the total equality using summary hash depends on the pre-

decessors’ summary hashes being deterministically included in the creation of the successor

summary hash. We sort the predecessors’ summary hashes based on the hex hash value.

77

Otherwise, we may have two different summary hashes with the same history. For example,

Si = h(Sl‖Sr‖Hi) 6= h(Sr‖Sl‖Hi). Sorting the predecessors ensures that we are able to

capture the total equality case where sites (in partitioned networks) independently applied

the accrued non-commutative updates in the same order.

Interestingly, SHH’s ability of capturing total equality can also allow distributed

replica to converge even across partitioned networks, because with SHH each site can assign

the same identifier to the versions with total equality without communicating at all. An

example is shown in Figure 5.11.

5.6 Evaluation

In this section, we present and evaluate the SHH implementation in Java and

study the SHH properties through an event-driven simulations. We modify the simulator

that was used for studying the properties of HH in Chapter 4, instead of hash-epoch pairs,

using summary hashes as version identifiers.

5.6.1 Event-Driven Simulation Setup

In our event-driven simulation, CVS traces from an open source project (source-

forge.net) are used for generating update events. Each writer represent a node(site). Each

site has logs, hash histories(HHs), static version vectors(VVs), and summary hash histo-

ries(SHHs). The update event is considered to be independently created by the writer. If

the user is new, we create a new site for the user. The simulator reads events in sorted

order from a trace file and generates write events. The events are in the form of [time, user,

78

filename].

Periodically, per given interval parameter, the simulator performs anti-entropy by

picking two sites at random. By default, the simulator repeats the anti-entropy process

at every 60 seconds. For example, if the interval between events is 1200 seconds, 20 anti-

entropy cycles are performed. The first site initiates the reconciliation with the second

site by exchanging the VVs, HHs, and SHHs. The first site determines equality, conflict,

and dominance. In the case of conflict, the first site merges the conflicts, and then sends

the merged version back to the second site along with the updated VV, HH, and SHH.

The ordering determination (i.e., equality, dominance and conflict) during reconciliation is

calculated as a moving average over 100 cycles.

A conflict determination occurs when neither dominates the other and they find

a common ancestral version. By default, both history should have the first version as a

common ancestor. If they can’t find a common ancestor, it means they belong to different

history or their summary hash histories may have been pruned too aggressively.

In the case of conflict (i.e., neither update event is based on the other), each site

merges the conflict. To simulate the independently merged result, the simulator choose

one of the two deterministic merge procedures with 50% probability, and uses the chosen

procedure to merge the conflict. This way, we can expect a total-equality would occur half

of time when the sites independently merge the same conflict versions.

An “undecided” determination occurs when two sites cannot determine the dom-

inance relation with the given histories of both sites. This typically happens when the

history is pruned too aggressively.

79

Summary Hash History Corresponding Hashtable Format

S5

S4

S3

S2

S1

S0

Summ

Hash

S4:S3

S1:S2

S0

S0

S0

ObjectID

Parents

SHash

m5

m4

d3

d2

d1

d0

Data

delta

Content

Hash

H5

H2

H4

H3

H1

H0

Latest : S5 , H5

H0

H1 H2

H4

H3

H5

d3d2d1

m5

m4

S0

h : hash, || : concatenation, Hi = h(Vi), Si = h(Si’s predessors||Hi)

S5

S1

S4

S2 S3

Figure 5.12: Implementation of Summary Hash History with Hashtable

5.6.2 SHH Implementation and Performance

We have implemented SHH using Java’s Hashtable data structure to enable ef-

ficient dominance checking. For example, Figure 5.12 shows the Hashtable format for a

given SHH. The predecessor-successor relations are maintained as a pair in the table. The

summary hashes are used as a key so that dominance checking is handled by lookup in the

Hashtable. This Hashtable also serves as a verification cache so that a previously verified

summary hash is not repeatedly verified.

During reconciliation, when a sender’s version dominates the receiver’s latest ver-

sion, the dominating version and its associated summary hash histories are sent over so

that the receiving site can incorporate these into its own SHH. SHH can be exchanged

incrementally by sending the list of tuples in the Hashtable.

To collect a set of deltas needed for reconciliation, we maintained each delta next

80

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

T
im

e
(m

s)

Size of both sender and receiver SHH (number of hashtable entries)

Figure 5.13: Reconciliation Time (for determine dominance + for add/combine SHHs) with
SHH implementation using Java’s Hashtable

to the corresponding summary hash. The deltas can be collected by traversing the trees

until a common ancestor is reached, and then by visiting all the concurrent sibling deltas.

Since our purpose here is to understand the implementation of SHH data structure

and implementation in Java’s Hashtable, we measured the reconciliation time as the time to

determine the version dominance and the time to manage the data structures for summary

hash history such as adding the SHH of new version to the SHH of the old version.

We measured the elapsed reconciliation time to determine the version dominance,

and the time needed to manage the data structures for summary hash history. The measure-

ment was conducted on a x86 machine with 699MHz CPU, Linux os release 2.4.710smp,

and 1.4G main memory. We verified that the reconciliation time for hash history grows

linearly as a function of the number of revisions; and for the version vector as a function of

the number of sites.

Figure 5.13 shows that the reconciliation time grows linearly as the number of

summary hash history entries increases. We plotted the pair of (SHH size, reconciliation

81

time). Interestingly, the plotted pairs form into three distinctive groups. The bottom

group (close to X-axis) shows the case in which the summary hash history look-up takes

constant time (i.e., equality cases). The middle group indicates the case in which one

dominates the other (i.e., one of the SHH has to be combined with the SHH of the other

dominating version). The top group indicates the case in which both SHHs incorporate

the other’s. Note that with SVV, one still has to compare all the entries in the version

vectors to determine equality, while doing so takes constant time with SHH implementation

with Java’s Hashtable. This performance evaluation shows that the major overhead in

maintaining SHH data structure is in combining the summary hashes during reconciliation.

5.6.3 SHH Property Study

We studied the properties of SHH using an event-driven simulator to investigate

the following issues.

1. Same Version ID attack: We sought to find the relation between the number of sites

with correct data delivery and the number of attackers. We simulated a same version

id attack by injecting a phony version and measuring the number of sites that received

the original version through anti-entropy reconciliation.

2. Aggressive Pruning (Some sites keep only the latest summary hash):

To understand how the light-weight SHH can efficiently support small devices with

limited storage, we ran a stress test simulation. We measured how often the sites with

no-log-history (i.e., with only the latest summary hash) had to reconstruct their own

history to determine version dominance as we increased the percentage of no-history

82

0

0.2

0.4

0.6

0.8

1

10 100 1000#
of

 s
ite

s
w

ith
 c

or
re

ct
 d

at
a

de
liv

er
y

/ t
ot

al
 #

 o
f

si
te

s

time(# of anti-entropy cycle)

SHH-any-attacker
VV-4%-attacker
VV-8%-attacker

VV-16%-attacker
VV-32%-attacker

Figure 5.14: Correct delivery rate as function of attacker rate plotted over time: Random
anti-entropies are used for propagating updates.

sites in the system. We varied parameters such as the number of anti-entropy cycles

between updates.

Same Version ID Attack

We simulate the same version ID attack by injecting an original copy and a phony

copy with the same version vector. Since SHH is based on content, the original copy and the

phony copy will have different summary hash as identifier. We recorded which site receives

which copy as the updates are propagated through the random pair-wise reconciliations

(i.e., anti-entropy).

As depicted in Figure 5.14, the number of sites with correct data using SHH

increases faster than any VV mechanism after around 100 cycles. SHH eventually delivers

correct data regardless of the number of “same version id” attackers in the system. This

83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100#
of

 s
ite

s
w

ith
 c

or
re

ct
 d

at
a

de
liv

er
y

/ t
ot

al
 #

 o
f

si
te

s

% of attacker

Figure 5.15: Final correct delivery rate as function of attacker rate: Random anti-entropies
are used for propagating updates. It shows that the number of sites receiving bogus data
grows exponentially as the number of attackers increases.

is due to the fact that the SHH is able to keep propagating both the correct and phony

data, treating both as concurrent. In contrast, the VV mechanism cannot detect these

two as concurrent. A modified VV, in which equality is determined by comparing the

version hashes in addition to the VVs, can detect these two as concurrent. Without such

modification, however, sites with the correct data cannot propagate their data to the sites

that already received either correct or phony data.

We also found that the number of sites with correct data decreases exponentially

as the number of attackers increases as shown in Figure 5.15.

Aggressive Pruning: A Stress Test

An “undecided” determination is made when two sites cannot determine the domi-

nance relation with the given histories of both sites. In this case, the sites with no log-history

84

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 10 100 1000 10000

un
de

ci
de

d
ra

te

time(# of anti-entropy cycle)

SHH-10%-no-history
SHH-30%-no-history
SHH-50%-no-history
SHH-70%-no-history
SHH-90%-no-history

Figure 5.16: Undecided rate as function of sites with no-history rate: quadratic anti-entropy
between update events.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 100

un
de

ci
de

d
ra

te

time(# of anti-entropy cycle)

SHH-10%-no-history
SHH-30%-no-history
SHH-50%-no-history
SHH-70%-no-history
SHH-90%-no-history

Figure 5.17: Undecided rate as function of sites with no-history rate: linear anti-entropy
between update events.

85

have to reconstruct its own history to determine version dominance.

Figure 5.16 shows that the number of occasions requiring secure log reconstruction

can be kept low if there is enough anti-entropy cycles between events. In Figure 5.16, the

simulator performed nC2 (i.e., n(n − 1)/2) number of anti-entropy between events (i.e., n

is the total number of sites), and the undecided rate was kept quite low- below 0.016. The

undecided rate is defined as the number of undecided determination results over a moving

window of 10 anti-entropy cycles.

Interestingly, the undecided determination happens only when both sites are in

the no-history category during reconciliation, because when a no-history site reconciles

with a full-history site, the dominance relation is guaranteed to be determined. Even when

a no-history site reconciles with a no-history site, they are able to determine equality. If

there have been enough anti-entropy cycles between events, it is likely that there are many

equality determinations among no-history sites. That is why the undecided rates were kept

low in Figure 5.16.

In contrast, in Figure 5.17, when we manually forced the number of anti-entropy

cycles between events to be linear to the total number of sites, there was exponential growth

in undecided determination.

Finally, we measured the undecided rate using CVS logs. CVS (Concurrent Ver-

sioning System) is a versioning software system that enables different users to share mutable

data by check-in and check-out at a centralized server. CVS provides serialized logs (update

history) for each file in a shared project. We treated the project itself as under optimistic

replication control and considered the individual files in the project as items of shared

86

0

0.05

0.1

0.15

0.2

0.25

1 10 100 1000 10000 100000

un
de

ci
de

d
ra

te

time(# of anti-entropy cycle)

SHH-10%-no-history
SHH-30%-no-history
SHH-50%-no-history
SHH-70%-no-history
SHH-90%-no-history

Figure 5.18: Undecided rate as function of sites with no-history rate: a CVS data (source-
forge.net/freenet) with anti-entropy every 1 minute.

document content. We treated each user as one replica site. Figure 5.18 shows that the

undecided rates were kept well below 0.05 with 30% no-history sites when the anti-entropy

period was 1 minute. Even with 90% no-history sites, the undecided rates were kept below

0.25.

5.7 Related Work: Securing Causal Relationship

Securing the causal relationship among historical events has been proposed in

many places. For example, Merkle’s tree [30] is used for authenticating large number of

data blocks efficiently through tree hierarchy. Time stamping services(TSS) [6, 21] provide

tamper-evident data structures that are similar to Merkle’s trees to address the following

denial and forgery attacks [40, 46]:

(i) Denying causal ordering: A malicious site can deny pre-existing partial orderings

87

among updates by post-dating (i.e., forward-dating) or deleting an old version.

(ii) Forging causal ordering: A malicious site can forge a pre-existing causal relationship

by pre-dating (i.e., back-dating) a new version or inserting it between pre-existing

orderings.

Interestingly, Spreitzer et al. detailed the possible attacks against both data and

meta-data (i.e., ordering state) and proposed countermeasures to deal with server corruption

in weakly consistent replication. [47, 48]. The proposed mechanism essentially builds a

tamper-evident audit trail that is composed of linked write-requests and write-replies along

with digital signatures. In comparison, the SHH approach in Chapter 5 does not use version

vector.

Also, time line entanglement [28] allows one to build trustworthy time stamping

services through entangling disparate time lines that are maintained at independent systems.

Time stamping services in general are interested in archiving the tamper-evident

timeline history of who made which changes and when. Thus, the writer’s signature and

the signed acknowledgment from the TSS are typically included in generating the recursive

hash generation.

In contrast, our summary hash construction is mainly concerned with the what

and the when, and not the who. Thus, the summary hash construction does not include

signatures. Note that the sender signs the latest summary hash so that receiver can verify

the authenticity; however, the received signature will not be included in generating the

summary hash for the next to-be-modified versions.

88

If the summary hash construction for the current version includes a predecessor’s

signature in addition to the predecessor’s summary hash, we cannot capture the case when

different sites have independently merged predecessors into a coincidentally identical con-

tent. Because the signature is included, the summary hashes will be different depending on

who has constructed in the past, even if the merged versions are coincidentally identical.

OpenCM [44], a configuration management system based on using cryptographic

hashes for naming, includes predecessors’ ids in the current version’s meta-data, essentially

providing a tamper-evident audit trail. However, the resulting hash is too distinctive to

be useful as a decentralized dependency tracking mechanism for optimistic replication. In

particular, it does not capture coincidental equality. OpenCM is designed for client-server

(repository server) configuration management, so the meta-data includes other information

such as server-assigned serial revision number that the decentralized dependency tracking

mechanism may not need. Similarly, in OceanStore [26], the meta-data of a data object in-

cludes server assigned serial version number, and timestamp in addition to the predecessor’s

id.

5.8 Summary

Summary Hash History (SHH) is a causal history with summary hash as version

identifier. By using summary hash as version identifier, SHH can efficiently maintain revi-

sion histories that are essentially required to deter various attacks on decentralized ordering

correctness.

This chapter showed how SHH prevents the attacks while remaining scalable and

89

light-weight.

First, SHH does not use version vectors; hence, SHH is free from version vector

inherent overheads such as management complexity in site addition/deletion.

Second, the secure log reconstruction property allows each site to securely recon-

struct the previous history from a given summary hash, providing an audit trail to deter

various attacks decentralized ordering correctness. Thus, SHH allows aggressive pruning

of SHH. Also, SHH can efficiently support sites with limited storage. The secure log re-

construction property allows sites with limited storage to hold a limited number of recent

summary hashes while more substantive sites can be configured to hold the complete history.

Third, the recursive construction of SHH includes only the predecessor’s summary

hash, not a signature, or other meta-information such as modification time. Thus, SHH can

capture the coincidental equality precisely, which is particularly useful feature in supporting

weakly consistent replication for network-partitioned collaborations. This chapter showed

that the replica can even converge across partitioned networks using SHH.

We implemented SHH and simulated the attacks and faults to better understand

SHH properties. The performance evaluation demonstrated that the ordering determination

is fast with the time to merge two diverged histories increasing linearly with the size of

histories. The simulation results show that the number of sites receiving incorrect data

increases exponentially as the number of “same version id” attackers increases. Also, we

ran a stress test where some nodes were configured to have only the latest summary hash

as in small mobile device. This simulation show that the number of occasions requiring the

secure log reconstruction can be kept quite low – below 1.6 per 100 anti-entropy cycle, if

90

there are enough anti-entropy cycles between updates.

91

Chapter 6

SHH-based Reconciliation over the

Network

During reconciliation, each site needs to exchange the SHHs over the network.

Being based on causal history, the size of SHH is unbounded, which can seriously limit

the scalability in terms of network bandwidth consumption. This chapter describes how

SHH solves this problem using “two-step reconciliation”, taking advantage of SHH’s secure

construction property.

6.1 Basic Pull SHH Reconciliation

In the following sections, we describe SHH-based reconciliation protocols. Figure

6.1 lists the definitions and acronyms that we use to describe various protocols.

Figure 6.3 shows a pseudo code for basic pull SHH reconciliation between Site A

and Site B.

92

§ SHash (SH) : Summary Hash

§ SHH : Summary Hash History: A Directed Acyclic Graph

§ SHHA: Summary Hash History of Site A.

§ SX : Summary Hash of a version X.

§ Latest Version: A version that is created or merged most recently

§ TopHash: Summary Hash of the latest version

§ delta(SX, SY) : A sequence of incremental updates that takes the

version identified by SX into the version identified by SY

§ SHH_ delta(SX, SY) : An incremental portion of SHH that is used

to bring SHH of SX into SHH of SY .

§ ToPullList
A

: List of Summary Hashes to be evaluated at Site A

§ HostServerList of SX : List of servers that host the version SX

Figure 6.1: Definitions and Acronyms that are used for describing SHH reconciliation
protocols.

Site A
Site B SHHB : SHH

of B

Send SY, SHHB

Request SHH

Dominance Check at Site A:

Case 0: SX equals SY => Stop

Case 1: SY appears in SHHA => Stop

Case 2: SX appears in SHHB => Request delta(SX, SY)

Case 3: Neither 0, 1, 2. => Find a common ancestor (say SZ) of

SHHA and SHHB. Then, Request delta(SZ, SY).

Then, Site A may(or should) merge delta(SZ, SX) and delta(SZ, SY).

SY : SH of the

latest version Y

SHHA :

SHH of A

SX: SH of the

latest version X

Figure 6.2: Basic Pull SHH Reconciliation: A basic protocol where SHH is first sent over
to Site A to check the dominance relations between the latest versions of the two sites.

93

BasicPullReconciliationSHH (ObjectID objID, Site SiteB) at SiteA {

//From SiteA with shhA as summary hash history

1. Make connection to SiteB with objID,

2. shhB RequestSHH(SiteB, objID)

3. If (shhB.TopHash = = shhA.TopHash) { Case 0: Stop. }

4. Else if (AppearIn (shhB.TopHash, shhA)) { Case 1: Stop. //A dominates B}

5. Else if (AppearIn (shhA.TopHash, shhB)) { Case 2: // B dominates A

6. d1 RequestDelta(SiteB, objID, shhA.TopHash, shhB.TopHash)

7. ApplyDelta(objID, d1)

}

Else { Case 3: //Neither dominates the other

8. ca FindCommonAncestor(shhA, shhB)

9. d1 RequestDelta(SiteB, objID, ca, shhB.TopHash)

10. d2 ComputeDelta(objID, ca, shhA.TopHash)

11. ApplicationSpecificMergeProc (d1, d2)

}

}

RumorAgentBasicPullSHH (Owner owner) at SiteB {

1. while (true) { //wait for requests from other site

2. case �RequestSHH(objID)�: send objID.SHH

3. case �RequestSHHDelta(objID,fromID,toID)�: send ComputeSHHDelta(objID,fromID,toID)

4. case �RequestDelta(objID,fromID,toID)�: send ComputeDelta(objID,fromID,toID)

}

}

Figure 6.3: Pseudo Code for Basic Pull SHH Reconciliation: Site A pulls the data from
Site B. BasicPullReconciliationSHH() routine at Site A first requests summary hash history
from Site B at line 2. Once it receives the shhB, it determines the dominance between shhA
and shhB. In the event of shhB dominates shhA (line 5-7), it requests delta that brings
shhA’s TopHash into shhB’s. In the event of conflict (line 8-10), a common ancestor,
ca, can be found and used as a fromID in requesting delta. Meanwhile, at Site B, the
RumorAgentBasicPullSHH() procedure is running as a server to reply to the request of
delta and SHH from the pulling site, Site A.

94

SHash shhA.findCommonAncestorBFS(SHash curID, SHH shhB, Set visited) {

1. If (visited.contains(curID)) { return 0 }

2. If (AppearsIn (curID, shhB)) { return curID }

3. Put curID into visited

//Now recursively traverse into parents

4. ObjectArray parents shhA.getParents(curID)

5. if (parents null) {

6. for i 0 to parents.length-1 {

7. SHash found shhA.findCommonAncestorBFS(parents[i], shhB, visited)

8. if (found 0) return found //else keep looking.

}

}

9. return found

}

SHash shhA.findCommonAncestor (SHH shhA, SHH shhB) {

1. return shhA.findCommonAncestorDFS(shhA.TopHash, shhB, new Set())

}

}

Boolean AppearsIn (SHash curID, SHH shh) {

1. return shh.hasKey (curID)

}

Figure 6.4: Pseudo Code for Finding Common Ancestor: The findCommonAncestorBFS()
routine visits every item in shhA using breadth first traversal. It checks whether or not the
item appears in the shhB. If so, it returns the item as a common ancestor. Otherwise, it
keeps traversing the shhA until it finds a match. It is guaranteed to find a match since the
initial root hash (i.e., objID) is a default common ancestor.

95

Site A Site B

Send S5 , SHHB

Request SHH

Case 1: SA appears in SHHB

=> Request delta(S4, S5)

S0

S1 S2

S4

S3

S5

SHHB :SHHA :

S0

S1 S2

S4

Send delta(S4, S5)
Apply

delta(S4, S5)

Calculate delta(S4, S5)

TopHash: S5

TopHash: S4

Figure 6.5: An Example of Basic Pull SHH Reconciliation with Dominance Case

Figure 6.4 shows a pseudo code for finding a common ancestor using breadth first

traversal.

The basic pull protocol is described in Figure 6.2. To exchange updates, each site

needs to determine the dominance relation among the latest versions. To do so, an SHH

needs to be sent over to the other site so that one site can determine the dominance relation.

In the basic pull method, first, the pulling site (Site A) receives the SHH from the other

site and determines the version dominance by checking if Site A’s latest version appears in

the other’s SHH or not. Figure 6.2 describes how the version dominance is determined per

causal history approach.

Figure 6.5 shows an example of basic pull reconciliation where Site A pulls updates

from Site B since Site B’s latest version S5 dominates Site A’s latest version S4.

Figure 6.6 shows another example where Site A determines that Site A and Site

96

Site A Site B

Send SHHB , S5

Request SHH

Case 3: Neither 0, 1, 2. => Find a

common ancestor (i.e., S4) of SHHA and

SHHB. Then, Request delta(S4, S5)

S0

S1 S2

S4

S3

S5

SHHB :
SHHA :

S0

S1 S2

S4

S7

Send delta(S4, S5)Merge/Apply

delta(S4, S5) and

delta(S4, S7)

Calculate delta(S4, S5)

TopHash: S5

TopHash: S7

Figure 6.6: An Example of Basic Pull SHH Reconciliation with Conflict Case (Before)

Site A Site B

Send delta(S4, S5).

Request delta(S4, S5).
S0

S1 S2

S4

S3

S5

SHHB :
SHHA :

S0

S1 S2

S4

S7

TopHash: S5

TopHash: S7

S0

S1 S2

S4

S7

S3

S5

Apply

delta(S4, S5).

Need to Merge

delta(S4, S5) and

delta(S4, S7).

Figure 6.7: An Example of Basic Pull SHH Reconciliation with Conflict Case (After)

97

Site A Site B

SHHB : SHH

of B

Send SY

Request SHash

Case 2: SX appears in SHHB => Request delta(SX, SY)

Case 3: Neither 0, 1, 2. => Find a common ancestor (say SZ) of

SHHA and SHHB. Then, Request delta(SZ, SY).

Then, Site A may (or should) merge delta(SZ, SX) and delta(SZ, SY).

SY: SHash of the

latest version Y

SHHA :

SHH of A

SX: SHash of the

latest version X

Case 0: SX equals SY => Stop

Case 1: SY appears in SHHA => Stop

Neither 0, 1 => Request SHH of SY.

Send SHHB

Figure 6.8: Light Pull SHH Reconciliation Variation 1: A protocol improved upon the basic
protocol. Instead of requesting SHH for every dominance determination, in this protocol,
Site A requests the latest summary hash (SHash) of Site B. Site A requests SHH of Site B
only when the Site A’s latest SHash is not equal to Site B’s latest SHash and Site B’s latest
SHash does not appear in SHH of Site A.

B are in conflict, and finds a common ancestor between SHH of Site A and SHH of Site B,

and pulls updates from Site B based on the common ancestor. Once the delta from Site B

is received, Site A applies the delta and merge it with Site A’s latest version. Figure 6.7

illustrates how the conflicts can be merged at Site A.

6.2 Light Pull SHH Reconciliation

As the reader may have noticed, the SHH can be requested more sparingly. In

particular, the pulling site would not require the complete SHH from the other site to check

if the pulling site’s latest version is the same as the one at the other site or if the pulling

site’s latest version dominates the latest version of the other site. Fortunately, a pulling

98

LightPullReconciliationSHHv1 (ObjectID objID, Site SiteB) at SiteA {

//From SiteA with shhA as summary hash history

1. Make connection to SiteB with objID, send RequestTopHash(objID)

2. If (shhB.TopHash = = shhA.TopHash) { Case 0: Stop. }

3. Else if (AppearIn (shhB.TopHash, shhA)) { Case 1: Stop. //A dominates B }

4. Else { shhB RequestSHH(SiteB, objID) //Now request sshB from Site B

5. if (AppearIn (shhA.TopHash, shhB)) { Case 2: // B dominates A

6. d1 RequestDelta(SiteB, objID, shhA.TopHash, shhB.TopHash)

7. ApplyDelta(objID, d1)

}

Else { Case 3: //Neither dominates the other

8. ca FindCommonAncestor(shhA, shhB)

9. d1 RequestDelta(SiteB, objID, ca, shhB.TopHash)

10. d2 ComputeDelta(objID, ca, shhA.TopHash)

11. ApplicationSpecificMergeProc (d1, d2) }}

}

RumorAgentBasicPullSHHv1 (Owner owner) at SiteB {

1. while (true) { //wait for requests from other site

2. case �RequestSHH(objID)�: send objID.SHH

3. case �RequestSHHDelta(objID,fromID,toID)�: send ComputeSHHDelta(objID,fromID,toID)

4. case �RequestDelta(objID,fromID,toID)�: send ComputeDelta(objID,fromID,toID)

5. case �RequestTopHash(objID)�: send objID.TopHash //return 20 byte top hash. }

}

Figure 6.9: Pseudo Code for Light Pull SHH Reconciliation (Variation 1): Site A pulls
the data from Site B. LightPullReconciliationSHHv1() routine at Site A first requests the
TopHash (shhB.TopHash) from Site B at line 1 - 2. Once it receives the shhB.TopHash,
it checks if shhB.TopHash appears in shhA. If not, then, it requests shhB of Site B (line
4) to figure out the dominance further. In the event that shhB dominates shhA(line 5-7),
it requests delta that brings shhA’s TopHash into shhB’s. In the event of conflict (line
8-11), a common ancestor, ca, can be found and used as a fromID in requesting delta.
Meanwhile, at Site B, the RumorAgentBasicPullSHHv1() procedure is running as a server
to reply to the request of delta and SHH from the pulling site, Site A.

99

Site A Site B SHHB : SHH

of B

Send SY

Request SHash

IF delta(SX, SY) is received, apply it.

ELSE Find a common ancestor (say SZ) of

SHHA and SHHB. Then, Request delta(SZ, SY).

Merge delta(SZ, SX) and delta(SZ, SY).

SY: SHash of the

latest version Y

SHHA :

SHH of A

SX: SHash of the

latest version X

Case 0: SX equals SY => Stop

Case 1: SY appears in SHHA => Stop

Neither 0, 1 => Request delta(SX, SY) IF: SX appears in SHHB

=> Send delta(SX, SY)

ELSE: => Send SHHB

Send delta(SX, SY)

Figure 6.10: Light Pull SHH Reconciliation Variation 2: A protocol improved upon the
light protocol variation 1. Site A requests the latest summary hash (SHash) of Site B as
light pull variation 1 does. However, unlike variation 1, Site A does not request SHH of
Site B when the Site A’s latest SHash is not equal to Site B’s latest SHash and Site B’s
latest SHash does not appear in SHH of Site A. Instead, Site A requests delta from Site A’s
latest hash to Site B’s latest hash. And Site B determines if Site A’s latest hash appears in
Site B’s SHH. If so, Site B returns the requested delta. If not, Site B sends Site B’s SHH
assuming Site A and Site B are in conflict. In this protocol variation 2, SHH is sent over
the network only when neither site’s latest SHash dominates the other’s latest SHash.

100

LightPullReconciliationSHHv2 (ObjectID objID, Site SiteB) at SiteA {

//From SiteA with shhA as summary hash history

1. Make connection to SiteB with objID, send RequestTopHash(objID)

2. If (shhB.TopHash = = shhA.TopHash) { Case 0: Stop. }

3. Else if (AppearIn (shhB.TopHash, shhA)) { Case 1: Stop. //A dominates B}

4. Else { result RequestDeltaOrSHH(SiteB, objID, shhA.TopHash, shhB.TopHash)

5. if (result is Delta) { d1 result Case 2: // B dominates A

6. ApplyDelta(objID, d1) }

7. if (result is SHH) { shhB result Case 3: //Neither dominates the other

8. ca FindCommonAncestor(shhA, shhB)

9. d1 RequestDelta(SiteB, objID, ca, shhB.TopHash)

10. d2 ComputeDelta(objID, ca, shhA.TopHash)

11. ApplicationSpecificMergeProc (d1, d2) }

}}

RumorAgentBasicPullSHHv2 (Owner owner) at SiteB {

1. while (true) { //wait for requests from other site

2. case �RequestSHH(objID)�: send objID.SHH

3. case �RequestSHHDelta(objID,fromID,toID)�: send ComputeSHHDelta(objID,fromID,toID)

4. case �RequestDeltaOrSHH(objID,fromID,toID)�:

5. if (AppearIn (fromID, shhB)) { send ComputeDelta(objID, fromID, toID) }

6. else {send shhB }

7. case �RequestDelta(objID,fromID,toID)�: send ComputeDelta(objID,fromID,toID)

8. case �RequestTopHash(objID)�: send objID.TopHash //return 20 byte top hash.

}}

Figure 6.11: Pseudo Code for Light Pull SHH Reconciliation (Variation 2): Site A pulls
the data from Site B. LightPullReconciliationSHHv2() routine at Site A first requests the
TopHash (shhB.TopHash) from Site B at line 1 - 2. Once it receives the shhB.TopHash,
it checks if shhB.TopHash appears in shhA. If not, then, it send DeltaOrSHH re-
quest, unlike variation 1 that requests shhB of Site B (line 4). Upon this request, Site
B’s RumorAgentBasicPullSHHv2 routine returns delta that brings shhA.TopHash into
shhB.TopHash), if Site A’s TopHash appears in Site B. Otherwise, it returns shhB,
which signifies the event of conflict (line 7-11). Site A, then, finds a common ancestor, ca,
and uses it as a fromID in requesting delta. Meanwhile, at Site B, the RumorAgentBa-
sicPullSHHv2() procedure is running as a server to reply to the request of delta and SHH
from the pulling site, Site A.

101

site can determine both of these cases by just checking whether the latest summary hash

from other site appears in the pulling site’s SHH. Hence, we introduce a more advanced

protocol called light pull SHH reconciliation. Variation 1 of this protocol is shown in Figure

6.8. In variation 1, instead of exchanging all the SHH in every reconciliation, only the

latest summary hash is exchanged first. The SHH from other site is requested only when

the pulling site’s latest version does not dominate the other site’s latest version. In other

words, the SHH is requested only when either the initiating site’s latest version is dominated

by the other site’s or both sites are in conflict. Figure 6.9 shows a pseudo code for light

pull SHH reconciliation (variation 1) between Site A and Site B.

Figure 6.10 describes another light pull variation, which is an improvement pro-

tocol upon variation 1. In variation 2, SHH is sent over to the pulling site only when both

sites are in conflict. If the pulling site’s latest version is dominated by the other site’s, SHH

is not sent over since such a determination can be performed at the other site (i.e., the

being-pulled site). The SHH is sent over to the pulling site only when neither latest version

dominates the other. Thus, with variation 2, the chance of sending SHH over the network

is less than that of the variation 1.

Figure 6.11 shows a pseudo code for light pull SHH reconciliation (variation 2)

between Site A and Site B.

6.3 Two-Step SHH Reconciliation

Now we describe the two-step SHH reconciliation, which is an improved protocol

based upon the light pull reconciliation variation 2. In the two-step SHH reconciliation

102

Site A Site B
SHHB : SHH

of B

Send SY

Request SH/Send SX

SY: SHash of the

latest version Y

ToPullListB

SHHA :

SHH of A

SX: SHash of the

latest version X

ToPullListA

Case 0: SX equals SY =>Add Site B into

HostServerList of SX => Send “SX equal SY”

Case 1: SY appears in SHHA

=> Send “SX dominate SY” SHH_ delta(SY, SX)

Case Neither 0, 1 => Add SX into ToPullListA and Add

Site B into HostServerList of SX.

=> Send “SX not dominate SY”

Figure 6.12: The First Step in Two-Step SHH Reconciliation (Top SHash Exchange)

After T period, For each S
i
in ToPullList

A
;

Pick a site (say Site B) in S
i
’s HostServerList.

Request delta(S
X
, S

i
)

IF: S
X

appears in SHH
B

=> Send delta(S
X
, S

i
)

(Optional: S
i
is not the latest SHash and S

i

appears in SHH
B

=> Send delta(S
X
, S

i
) +

delta(S
i
, S

Y
))

ELSE: Send SHHB and “S
X

not appear SHH
B
”

IF: delta(S
X
, S

i
) is received, apply it.

ELSE: Find a common ancestor

(say S
Z
) of SHH

A
and SHH

B
.

Then, Request delta(S
Z
, S

Y
).

Site A may (or should) merge

delta(S
Z
, S

X
) and delta(S

Z
, S

Y
).

IF: S
Z

and S
Y

appears in SHH
B

=> Send delta(S
Z
, S

Y
)

ELSE: Send “S
Z

or S
Y

not appear SHH
B
”

Figure 6.13: The Second Step in Two-Step SHH Reconciliation (Top SHash Evaluation)

103

TopHashExchangeSHH (ObjectID objID, Site SiteB) at SiteA {// SiteA has shhA as SHH, ToPullListA

1. Make connection to SiteB with objID, send RequestTopHash(objID), shhA.TopHash //send SiteA�s TopHash too.

2. If (shhB.TopHash = = shhA.TopHash) { ToPullListA.add(shhB.TopHash) //Case 0:

3. HostServerList(shhB.TopHash).add(SiteB)}

4. Else if (AppearIn (shhB.TopHash, shhA)) {Stop. } //Case 1: A dominates B

}

TopHashEvaluationSHH (ObjectID objID) at SiteA {// SiteA has shhA as SHH

1. hashToPull PickHashToPull(ToPullListA)

2. hostServerList getHostServerList(hashToPull) //get the HostServerList of hashToPull

3. site PickSiteToPullFrom(hostServerList) //for example, SiteB can be picked

4. result RequestDeltaOrSHH(site, objID, shhA.TopHash, hashToPull)

5. if (result is Delta) { d1 result //Case 2: B dominates A

6. ApplyDelta(objID, d1) }

7. if (result is SHH) { shhB result //Case 3: Neither dominates the other

8. ca FindCommonAncestor(shhA, shhB)

9. d1 RequestDelta(site, objID, ca, hashToPull)

10. d2 ComputeDelta(objID, ca, shhA.TopHash)

11. ApplicationSpecificMergeProc (d1, d2) }

}

RumorAgentTwoStepSHHv2 (Owner owner) at SiteB { // SiteB has shhB as SHH, ToPullListB

1. while (true) { //wait for requests from other site

2. case �RequestSHH(objID)�: send objID.SHH

3. case �RequestSHHDelta(objID,fromID,toID)�: send ComputeSHHDelta(objID,fromID,toID)

4. case �RequestDeltaOrSHH(objID,fromID,toID)�:

5. if (AppearIn (fromID, shhB)) { send ComputeDelta(objID, fromID, toID) }

6. else {send shhB }

6. case �RequestDelta(objID,fromID,toID)�: send ComputeDelta(objID,fromID,toID)

7. case �RequestTopHash(objID), shhA.TopHash�: send objID.TopHash //i.e., shhB.TopHash

ToPullListB.add(shhA.TopHash) HostServerList(shhA.TopHash).add(SiteA) }}

Figure 6.14: Pseudo Codes for Two Step SHH Reconciliation: Site A pulls the data from
site that is picked at Step 2 TopHashEvaluationSHH() (line 1-3). TopHashExchangeSHH()
routine at Site A first requests the TopHash (shhB.TopHash) from Site B at line 1 - 2. Once
it receives the shhB.TopHash, it stores shhB.TopHash into ToPullListA and it also
stores SiteB into HostServerList of shhB.TopHash. Later, TopHashEvaluationSHH()
picks a TopHash to evaluate from ToPullListA, and it also pick a site to pull the data
from (line 1-3). Then, it send DeltaOrSHH request at line 4. Upon this request, Site
B’s RumorAgentTwoStepSHHv2() routine returns delta that brings shhA.TopHash into
shhB.TopHash), if Site A’s TopHash (shhA.TopHash) appears in Site B’s SHH (shhB).
Otherwise, it returns shhB, which signifies the event of conflict (line 4-6). Site A, then,
finds a common ancestor, ca, and uses it as a fromID in requesting delta (line 7-11).
Meanwhile, at Site B, the RumorAgentTwoStepSHHv2() procedure is running as a server
to reply to the request of delta and SHH from the pulling site, Site A.

104

protocol, to achieve more efficient bandwidth consumption and to have more optimization

possibilities, we separate the reconciliation process into two steps: (i) frequent exchange of

top summary hash and (ii) lazy selective pull of data, logs, and summary hash history.

The exchange of the top summary hash is performed frequently and periodically.

Since the size of summary hash is only 20 byte (for SHA-1), much smaller than the data,

random selection would not saturate the bottleneck bandwidth, but propagates the news

of new data fast. This first step is illustrated in Figure 6.12. Note that, in practice, it

may be more advantageous to send more summary hashes (i.e., some recent SHH) in the

first step, since the single top hash takes up only 20 byte and the default packet size for

a physical network protocol may be 512 byte. In such case, we can piggy back around 25

more summary hashes into the same packet with no additional cost.

The data pull is lazily performed. Since we collect the information of who has data,

we can selectively contact a site. For example, if the site is a computationally weak device

that has low bandwidth connection, we could avoid such a site in the data pull process.

This second step is illustrated in Figure 6.13.

We now describe the two step reconciliation procedure in detail.

Frequent Top Hash Exchange (Step 1): Periodically, given an object ID, two

sites exchange the top summary hash (the latest in SHH). For each shared object, each site

maintains a ToPullList that keeps list of summary hashes that are not yet pulled and the

corresponding HostServerList, that is, the list of data sources from which the site can pull

the data.

Given the other’s top hash, each site can decide whether the other’s top hash

105

appears in its own summary hash history that is maintained locally.

• If the other’s top hash is not in the SHH, each site assumes that the other has (or has

received a hash of) a concurrent or recent revision that each site needs to pull later.

Each site adds the other’s top hash into its own ToPullList and records the other’s IP

address into the HostServerList of the other’s top hash.

• If the other’s top hash appears in the SHH, do nothing.

Lazy Selective Data Pull (Step 2): At a pre-determined interval, each site

picks the latest summary hash from its ToPullList. By picking the latest summary hash,

each site may not have to pull data and SHH for other hashes. For example, if there are

three concurrent revisions and one of them merges the other two, then each site does not

need to pull other concurrent hashes by pulling the revision that merged the other two

first. Each site may not know the relations among concurrent revisions until it pulls their

associated summary hash histories. Each site simply picks the best candidate revision based

on arrival order as a hint.

After picking the summary hash, each site picks the best IP address from the

HostServerList of the summary hash. The selection policy can be a random selection, a

local IP address sub-matching, or based on previous delay or available bandwidth.

Figure 6.14 shows pseudo codes for TopHashExchange (Step 1) and TopHashEval-

uation (Step 2) that we just described above.

Figure 6.15 shows an example of the first step: Frequent Top SHash (TopHash)

Exchanges. Figure 6.16 shows an example of the second step where the dominance relation

was determined and the data is being pulled into the pulling site. Figure 6.17 shows an

106

Site A Site B

Send S5

Send S4

S0

S1 S2

S4

S3

S5

SHHB :
SHHA :

S0

S1 S2

S4

Site C
S0

S1 S2

S4

S3

S5

SHHC :

Send S5

Send S4

ToPullListA =

(S5)

HostServerList of S5 =

(Site B, Site C)

ToPullListC =

()

ToPullListB =

()

Figure 6.15: An Example of First Step in Two Step SHH Reconciliation (Top SHash
Exchange)

Site A Site B

E.g., SHashDominance Evaluation

S0

S1 S2

S4

S3

S5

SHHB :
SHHA :

S0

S1 S2

S4

Site C
S0

S1 S2

S4

S3

S5

SHHC :

4. Send

delta

2. Request S5’s

SHH, delta (S4, S5)

ToPullList =

(S5)

HostServerList of S5 =

(Site B, Site C)

3. Calculate SHH,

delta (S4, S5)

1. Pick a site in
HostServerList of

S5

Figure 6.16: An Example of Second Step in Two Step SHH Reconciliation (Top SHash
Dominance Evaluation)

107

Site A
SHHA :

S0

S1 S2

S4

Site C
S0

S1 S2

S4

S3

S5

SHHC :

4. Send SHHC

2. Request S5’s

SHH, delta (S7, S5)

ToPullListA =

(S5)

HostServerList of S5

= (Site B, Site C)

3. Notice S7 does not

appear in SHHC

1. Pick a site in

HostServerList of S5

S7

6. Request delta (S4, S5)
5. Find a common

ancestor S4

8. Send delta (S4, S5)9. Merge delta (S4, S5)

and delta (S4, S7)

7. Calculate delta (S4, S5)

Figure 6.17: An Example of Second Step in Two Step SHH Reconciliation (Top SHash
Conflict Evaluation)

example of the second step where the conflict relation was determined and the data is being

pulled into the pulling site and further needed to be merged by the pulling site, Site A.

6.4 Evaluation of SHH Reconciliation

Here we show a simulation result for comparing anti-entropy with version-vector

and the two-step protocol with SHH.

6.4.1 Network Simulator

We implemented an event-driven simulator that performs anti-entropy reconcil-

iation using version-vector and two-step SHH reconciliation among sites. The simulator

is written in Java and the code base contains approximately 2200 statements. The main

components of our simulator are scheduler and event. Event has name, time, and handler

108

members. The scheduler dequeues the event from the head of the queue and invokes the

appropriate handler attached to the event. The events are sorted by the time field in the

queue. The handler implements the handle method so that it performs the requested task.

This simulator supports several physical topologies including the Transit-Stub

model [55], which is generally known to reflect real internet topologies. The simulator

imports the physical topology and creates a graph data structure in memory. The simu-

lator has three layers. The bottom layer models the physical topology, the middle layer

models the overlay node, and the top layer models applications. In our simulation exper-

iments, we have only one application, so the relationship between the application and the

overlay node is one-to-one. The binding between a physical node and an overlay node de-

pends on the assignment. For example, in the Transit-Stub model, we can choose physical

nodes uniformly in the network, choose them uniformly in stub domains, or choose them

heavily biased in some particular domains.

6.4.2 Network Bandwidth Consumption with SHH Two-Step Reconcili-

ation

We compare lazy selective data pull (LSData) with anti-entropy reconciliation of

data (AEData) based on version vector. In AEData, a data sender first receives a version

vector from a data receiver, and then sends the difference to the receiver. In LSData, sites

exchange top summary hash and a list of data sources that hold the latest data; the data are

pulled later, when needed, from a data source with a certain policy. The allowed policies are

random, maximum-bandwidth, and minimum-delay policies. The random policy chooses a

site randomly from the candidate source list. The maximum-bandwidth policy chooses a site

109

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000

Li
nk

 tr
af

fic
 (

B
/s

)

Number of sites

Total traffic,AEData
Total traffic,LSData,Random

Bottleneck traffic,AEData
Bottleneck traffic,LSData,Random

Figure 6.18: Link traffic for data size 1KB and RP 1 minute. We choose a pull period of
1 minute for LSData. AEData consumes two orders of magnitude more bandwidth than
LSData.

that has the highest bottleneck link bandwidth. The minimum-delay policy chooses a site

that has the smallest delay. The metric we use is the total and bottleneck link bandwidth

consumption to compare the scalability of two schemes and to evaluate the different policies.

Figure 6.18 shows the total and bottleneck link traffic for data size of 1KB and

reconciliation period (RP) of 1 minute. We varied the number of sites from 3 to 1025. In

two schemes, one of the writers writes one update, and we ran our simulations until all

sites receive the update. LSData used the random policy, and the data pull period was one

minute. AEData consumed two orders of magnitude more bandwidth than LSData when the

number of mergers was large. Even with 64 sites, AEData consumed about 5 times more

bandwidth than LSData. In AEData, sending the version vector information consumed

much bandwidth when the number of mergers is large, even though we used the smallest

possible version vector size. Since we use a pull period of one minute, which is the same

110

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30

B
ot

tle
ne

ck
 li

nk
 tr

af
fic

 in
 b

yt
es

 (
K

B
)

Pull period (min)

Random
BW

Delay

Figure 6.19: Bottleneck link traffic in bytes for data size 1KB, RP 1 minute, and 1025 sites.
The bandwidth and delay-based optimizations transfer smaller total traffic in bytes than
the random data pull.

as the reconciliation period, the benefit was made possible by the compact representation

of metadata as the top summary hash, which is only 20 bytes for any number of writers

and mergers. Since AEData performed worse than our base case of the lazy pull, we then

focused on the performance of our LSData afterwards.

Figure 6.19 shows the benefit of bandwidth and delay-based data source selection

in the lazy pull. We varied the pull period to be 1, 5, 10, and 30 minutes. Note that the

y-axis shows the bottleneck link traffic sent in bytes until all sites receive the new data.

The metric-based selection showed 32% lower traffic than the randomized selection when

the pull period was 30 minute, even though the sites were randomly located in the physical

network. Both optimization schemes showed similar performance.

We examined the benefit of the lazy pull as the data size increases. Figure 6.20

shows the bandwidth consumption of the minimum-delay pull policy with a data size of

111

1000

10000

100000

1e+06

1000 10000 100000

B
ot

tle
ne

ck
 li

nk
 tr

af
fic

 (
B

/s
)

Data size (B)

PP=1min
PP=10min
PP=30min

Figure 6.20: Bottleneck link traffic varying data size. Lazy data pull is used and the number
of sites is 1025. Pull policy is delay-based. As the data size increases, the benefit of lazy
data pull (high pull period) increases.

1KB, 10KB, and 100KB. Note that the y-axis is in log scale. When both the pull period

and the data size increase, the benefit of lazy selective pull becomes large. The lazy selective

pull allows the retrieval of data when it is needed. Therefore, it can exchange the data over

a longer period of time incrementally, and it can choose data source sites positioned nearby,

as it collects data source candidates over a longer period of time.

6.5 Related Work

The two-step SHH reconciliation protocol is similar to the general technique of

servers’ sending invalidation to the cached replica for them to fetch an updated version from

the server. Interestingly, Pangaea disseminates updates in two steps; it sends harbinger (a

meta data of an update) first to build an efficient spanning tree of fat-links with which

112

data are pushed later. Bi-Modal multicast [8] demonstrated a reliable and scalable update

dissemination using two steps: multicast for pushing updates and anti-entropy for exchang-

ing missing update packets. SHH’s two-step reconciliation protocol is different from these

schemes. It pulls data lazily after pair-wise periodic exchange of hashes, and it does not

rely on the multicast tree.

6.6 Summary

The size of the summary hash history that needs to be exchanged grows in propor-

tion to number of update instances, which can limit the scalability of SHH based reconcili-

ation. To overcome this scalability limitation, we introduced various reconciliation protocol

from the basic-pull to the light-pull variation 2, incrementally optimizing the protocols to

exchange SHH sparingly (only when it is necessarily required). Finally, we presented the

two-step SHH reconciliation. Only the top summary hash needs to be exchanged frequently;

the data/logs can be lazily and selectively pulled later from a local site, saving expensive

bottleneck bandwidth.

The simulation results shows that the lazy selective data pulling of two-step SHH

reconciliation consumes the network bandwidth (both total and bottleneck) in orders of

magnitude lower than the traditional version-vector based anti-entropy data exchanges.

113

Part III

Deployment

114

Chapter 7

S2D2 Framework

To make SHH readily available for various applications, we developed S2D2, a

framework based on SHH that provides scalable and secure optimistic replication. S2D2

serves as a substrate upon which diverse distributed applications can be readily built. This

chapter describes S2D2 and its architecture, interface (API), the application specific conflict

resolution, and service components such as the secure object naming and the access control.

It also discusses hash typing, a technique to facilitate the use of hashed data structures and

describes several application prototypes built on top of S2D2 framework.

7.1 S2D2 Architecture

This section presents the architecture of S2D2, the S2D2 application program-

ming interface (API), hash typing, conflict resolution upcall, and each component of S2D2:

secure object naming, access control, the secure log management, and the two-step SHH

reconciliation.

115

File Folder

Adaptor

User A

Personal DB

Adaptor

CVS Adaptor

S2D2 User C

User B

S2D2

S2D2

Personal DataBase

CVS Repository

Files and Directories

Figure 7.1: S2D2 Network Example: Through the application specific adaptors, different
but compatible applications can exchange updates using S2D2. In this example, User C uses
a database interface to publish and incorporate the update to the shared object, while User
A uses a file system interface and User B uses a CVS (a version control system) interface
to manage the shared object.

7.1.1 Architecture Overview

The S2D2 framework is designed to readily support diverse distributed applications

with support for optimistic replication. It employs an adaptor architecture so that diverse

applications can be readily built on top of S2D2 layer. By simply building an application

specific adaptor that connects application to S2D2 functionality, various applications can

exchange updates through the S2D2 framework as shown in Figure 7.1.

The S2D2’s adaptor architecture is shown in Figure 7.2. It exports an API for

application adaptors. Major API components are methods to publish updates and call-

backs to notify changes of data. Adaptors interface applications with S2D2 and utilizes

S2D2 features to implement application-specific policies, such as when to publish, when to

116

S2D2 Adaptor

Application

S2D2:

Upcall for Data Incorporation

Object Naming & Access Control

Secure Versioning

Periodic Data Exchange

Exchange Hash,

Lazy Pull of Data

S2D2 Commands

Application Commands

Figure 7.2: S2D2 Architecture: S2D2 is a common generic data sharing mechanism that
provides global object naming, secure versioning, and scalable data exchanges. The appli-
cation specific adaptor bridges the S2D2 commands to various application semantics.

incorporate, and how to merge updates. With this adaptor architecture different but com-

patible applications can exchange updates through S2D2. We present example adaptors in

Section 7.2.

Generic handling of updates is the task of S2D2. S2D2 names objects securely

using the public key of the name space owner and the object name. Object revision is

securely tracked using summary hash history. The updates are exchanged by the two-step

SHH reconciliation process (by default). In this process, the top summary hash is exchanged

frequently to notify sites of the latest updates, the summary hash history, logs, and data

are lazily pulled from sites that are selected by metrics such as delay and bandwidth. The

S2D2 API also provides other basic SHH reconciliation protocols such as basic pulling and

light pulling variations described in Chapter 6. Since S2D2 is based on SHH, the application

adaptors can implement an aggressive log pruning management policy by utilizing the secure

117

log management property of SHH .

S2D2 uses hash typing to be discussed below, to avoid error prone uses of various

hashes and represent a structural information for a composite object.

We now describe the S2D2 API and how the adaptors can use this S2D2 API.

7.1.2 S2D2 Application Programming Interface

The most important application programming interfaces of S2D2 interface are the

following. More complete API can be found in the Appendix.

Class Owner:

• owner = new Owner(keypair, keystorepasswd); // creates an owner

• owner.addNewObjectID(objectID); //add new objectID into owner’s replication con-

trol

• owner.setTwoStepPullPeriod (objectID, rumorperiod); //configure the frequency of

two-step reconciliation protocol for the given objectID by setting the pulling period.

• owner.publish(objectID, local-revision-file); // creates a new revision and its sum-

mary hash under the objectID, publishes the latest summary hash and pulls the data

according to the policy specified by an adaptor.

• owner.registerCallBack(adaptor); // registers its call back for incorporation. S2D2

will call the registered adaptor for data incorporation, for automatic merging, and

for resolving conflicts. For example, S2D2 will call the adaptor.incorporate() for data

incorporation.

• owner.addRevToHistory(objectID, file); //add new update to the objectID’s revision

118

history that is implemented in SHH data structure. This function can be used typically

after receiving a dominating update or after merging diverged versions. For example,

this function is likely called from the adaptor.incorporate() routine.

• owner.getRevHistory(objectID); //get the the ObjectRevHistory of the objectID. An

adaptor need to use this function to look at the previous version history of the objec-

tID.

• owner.addWriter(objectID, writer-publickey); // adds writer to the authorized writers

of the objectID. Each objectID has a default writerSet called objectID-WriterSet. The

writer is specified with the writer’s public key.

• owner.removeWriter(objectID, writer-publickey); // removes writer from the autho-

rized writers of the objectID.

Class ObjectID:

• ObjectID (pubkey-of-the-common-name-creator, common-name); // creates Objec-

tID that is used as, a globally unique object identifier.

Class Rumor:

• Rumor (owner); // creates Rumor object with the owner.

• startRumorAgent(exchange-hash-period, pull-data-peridod); //start the Rumor Agent

that exchanges summary hash at every exchange-hash-period, and pulls the data at

every pull-data-period.

• setRumorPeriod(exchange-hash-period, pull-data-peridod); //set the new exchange-

hash-period and the new pull-data-period for the Rumor Agent to use for perform the

two-step SHH reconciliation.

119

An S2D2 adaptor first needs to instantiate an owner using the Owner class. The

owner is instantiated by a public key, which is presumably owned by a principal or an

entity. The public key is used as an unique identifier of the owner. The owner class

defines the domain of security policy, and are required to access various S2D2 components

such as managing access control, adding shared object into S2D2, and configuring two-

step SHH reconciliation. For example, an adaptor can specify its rumoring policy by using

“setRumorPeriod” functions provided by the Rumor class. And the Rumor class requires

an instantiated Owner class at initialization. The “Rumor” object manages the periodic

reconciliations based on the rumoring policy specified by the adaptor.

The owner class maintains the list of S2D2 objects. Each S2D2Object is instanti-

ated with an ObjectID class. The objectID is composed of the concatenation of the public

key of the name creator and the object name itself. For each objectID, by default, S2D2

creates the “ObjectRevHistory” class to manage the logs of revisions, summary hash his-

tory, access control list (using writerSet class), concurrent revisions, and the list of data

host servers for lazy-selective pulling in the two-step SHH reconciliation. An adaptor needs

to call owner.getRevHistory(objectID) to access the revision history of objectID.

7.1.3 S2D2 Service Components

Secure Global Naming for the Shared Object

An S2D2-ID is a globally unique identifier for a shared object whose updates are

exchanged using S2D2 Framework. The S2D2-ID comprises of two parts: the public key of

the name space owner and the object name created by this name space owner. We assume

120

V2

V1

V3

SHH Based Naming in S2D2

S2 = h(S1 ||h(V2))

S1= h(S0 || h(V1))

S3 = h(S2 || h(V3))

h() is a collision resistant hash function.(e.g., SHA-1)

Vi = Content of Revision

Application SHH

Global Naming:

PubKey + Name

h(PubKey)::foo.txtS0:

Local Naming:

Application specific

A

D

A

P

T

O

R

dirA/foo.txt

Figure 7.3: Secure Object Naming with Summary Hash History: The S2D2-ID on the right
is composed of the name space owner’s public key and the string “foo.txt”that is given by
the name space owner. The S2D2-ID serves as the initial parent summary hash (i.e., S0),
which is included in creating the summary hash (i.e., S1) of the first revision, so that the
S2D2-ID securely refers a series of revisions. The S2D2 adaptor maintains the mappings
between S2D2-IDs and the local object names, and the mappings between summary hashes
and the local revisions.

the public key is unique through a Public Key Infrastructure (PKI) and the owner assigns

an object name that is unique within the owner’s name space. Thus, S2D2-ID is globally

unique by ensuring those two assumptions hold.

The summary hash of the initial revision includes the S2D2-ID as a parent hash,

so that S2D2-ID can securely refer to a series of revisions of the shared object. The adaptor

maintains the mapping between each local object name and the corresponding S2D2-ID.

Likewise, the adaptor can also map each local revision into a corresponding summary hash

that is used as a global version identifier. An example is shown in Figure 7.3. Thus, it is

readily possible for different users’ applications to exchange updates by using the S2D2-ID

and the SHH as a common mechanism. An example is shown in Figure 7.4.

121

V2

V1

V3

W2

W1

W3

A

D

A

P

T

O

R

dirA/foo.txt myfoo.txt

h(PubKey3)::foo.txt

User A: PubKey1 User B: PubKey2

S2D2-ID:

S2 = h(S1||h(V2))

S1= h(S0||h(V1))

S3 = h(S2||h(V3))

S0:

A

D

A

P

T

O

R

S2 = h(S1||h(W2))

S1= h(S0||h(W1))

S4 = h(S2||h(W3))

h() is a collision resistant hash function.(e.g., SHA-1)

Content V1 = Content W1 , Content V2 = Content W2 , but

Content V3 != Content W3.

Figure 7.4: Two Different Local Object Names with The Same Global S2D2-ID: User A
uses a local name “dirA/foo.txt” and User B uses a local name myfoo.txt to refer to the
shared object that is globally identified as the string “h(PubKey3)::foo.txt”. Each user’s
adaptor maintains the mapping between the global names and the local names.

Access Control to the Shared Object

S2D2 provides access control for a shared object. The name space owner’s public

key authenticates the Writer-Set that contains a list of authorized writers’ public keys. Each

revision should be signed by one of the public keys in the writer set. We can achieve such

authentication by simply signing the summary hash. Each site can check the validity of the

signed summary hash of the version and discard unauthorized updates. In the event a site

negligently includes an unauthorized update, other sites can readily detect such event later

since SHH provides an audit trail.

Our current implementation allows only the owner of the object name to authorize

the Writer-Set; however, it is easy to extend the implementation to allow the owner to

authorize an ACL-Manager-Set that has a list of public keys authorized to modify the

122

Writer-Set. In the same way, collaborators can define Reader-Set among themselves and

enforce the readership at their S2D2 adaptors.

7.1.4 Hash Typing

In this section, we introduce hash typing, a technique to guard against error-prone

use of hashes and to identify the shared structure of the hash construction method.

In hash typing, we annotate hashes with the hashtype information as we annotate

data with the date type information. For example, if the data, say D0, is a “set” type, then

we use (“!set!” ‖ D0) to annotate the data D0. Likewise, if the hash, say H0, is a “set-hash”

type, then we use (“!set-hash!” ‖ H0) to annotate the hash H0.

A hash type is a name to refer to the structure or the hash construction method.

For example, if a hash, H0, is annotated with “set-hash”, this means the hash, H0, is

constructed using “set-hash” construction method. The “set-hash” can be constructed

by concatenating all the set members’ data by lexicographically sorted order. Or, more

efficiently, the “set-hash” can be constructed by concatenating the set member’s unique

identifiers.

Guarding against Error-Prone Inclusion of Hashes

Hash typing eliminates the ambiguity that results from the same hash being gen-

erated from different hash construction methods. For example, it is possible that the hash

from “set-hash” construction is the same as the hash from the “list-hash” construction.

However, with hash typing, one can readily disambiguate (“!set-hash!” ‖ H0) from (“!list-

hash!” ‖ H0).

123

:Tree RootH0

H1 H2

H4H3 H5

B4B3 B5

Bi = Data_Contents

Hi = h(Hleft || Hright)

Hi = h(Bi)

H6

B6

H0

H1 H2

B7 B8

If B7 = (H3||H4) and B8 = (H5||H6)

, then H1 = h(B7) and H2 = h(B8).

The construction is not collision

resistant because the left tree root, H0 ,

represent B3 B4 B5 B6 , while, the right

tree root, H0, represent B7 B8.

:Tree Root

Figure 7.5: Erroneous Use of Hashes in a Merkle Tree: Since B7 and B8 are data block,
B7’s content can be (H3 ‖ H4) and B8’s content can be (H5 ‖ H6). Then, H0 on the
left represents B3,B4,B5,B6, while H0 on the right represents B7,B8. The block hash is
mistakenly interpreted as tree hash.

Figure 7.5 illustrates an example of the erroneous use of hashes in a Merkle Tree

construction that many systems employ to authenticate the list of data blocks in a scalable

manner. With Merkle tree constructed blocks, one does not have to reapply the hashing

over a complete list of blocks when a change to a block happens; instead, only the affected

nodes from the changed block to the root need to be hashed again [26, 18]. (The idea of

including the hashes of predecessors appears in Merkle’s tamper-evident hash tree [30] and

hash chaining [6, 21].) However, a naive inclusion of predecessors in a hierarchical tree or

in iterative hash chaining is prone to having a collision even though the hash function is

collision resistant.

There have been many fixes to address this weakness [14, 51, 29, 22], for exam-

ple, an additional inclusion of length of each input, adding a depth counter in recursive

124

:Tree RootH0

H1 H2

H4H3 H5

B4B3 B5

!tree! Hi = h(!tree! (!tree! Hleft || !tree! Hright))

!tree! Hi = h(!tree! (!tree! Hleft || !blk! Hright))

!tree! Hi = h(!tree! (!blk! Hleft || !blk! Hright))

!blk! Hi = h(!blk! Bi)

Bi = Data_ Block_Contents

H6

B6

H0’

H1’ H2’

B7 B8

Even if B7 = (H3||H4) and B8 =

(H5||H6), H0 is different from H0’.

H0’ = h(!tree! (!blk! H1’ || !blk! H2’))

H1’ = h(!blk! B7),

H2’ = h(!blk! B8); while,

H0 = h(!tree! (!tree! H1 || !tree! H2)),

H1 = h(!tree! (!blk! H3 || !blk! H4)),

H2 = h(!tree! (!blk! H5 || !blk! H6)) ,

:Tree Root

Figure 7.6: Use of Data Typed Hash in a Merkle Tree: Even if B7’s content can be (H3 ‖
H4) and B8’s content can be (H5 ‖ H6), the block hash is interpreted as block hash not
intermediate tree hash. Hash typing guides correct usage of hashes in various recursive
construction.

construction of hash tree, or adding 0 to the block and 1 to the intermediate tree hash

generation.

We found the hash typing is more general solution to avoid this problem. Figure

7.6 illustrates how the erroneous use of hashes can be avoided using the hash typing in a

Merkle Tree implementation.

Representing Composite Object Hash

Hash typing is also useful to represent composite objects. A composite object is

an object that is composed of related objects each of which can be referenced and used

individually. For example, a directory object can be a composite object that contains

file objects and directory objects. A directory object hash can be represented using a

125

!set! H0 = h(!set! “my_addrs” (!vcf! H1 || !vcf! H2 || !set! H3))

!set! H3 = h(!set! “family_addrs” (!vcf! H4 || !vcf! H5))

!vcf! Hi = h(!vcf! Oi)

Oi = Address_Contents

H1 H2

O1 O2

:my_addrs

H3

H0

H4 H5

O4 O5

:family_addrs

!set! Hi = h(!set! “set-name” (!type! Hj)*)

Figure 7.7: Set Type Hash for a Set of Objects Example: A set named my addrs contains
two vcf (a standard format for name card) object and another set named family addrs that
contains two vcf objects O4 and O5.

composite object hash over concatenated hashes of the files and subdirectories that the

directory contains.

We present three hash typing examples, which are important hash types of our

system. Figure 7.7 shows a hash type example. Set type is used for collection of address

objects. Figure 7.8 shows a summary hash type example. Figure 7.9 shows a composite hash

for a file-directory example. Interestingly, the composite object’s structure can be used at

the S2D2 layer, so that S2D2 can exchange each element of the composite object separately.

For example, foo1.txt can be fetched locally as an S2D2 object while foo2.txt needs to be

fetched remotely as an S2D2 object. Otherwise, a directory needs to be zipped into a single

object that has to be exchanged as a whole, as is common in email attachments. In a peer to

peer distributed file system, the directory structure is a given structure that every layer in

the system knows how to deal with. For handling replicated composite objects, hash typing

126

V2

V1

V3

A

D

A

P

T

O

R

dirA/foo.txt

h(PubKey3)::foo.txt

S2D2-ID:

S2 = h(S1||h(V2))

S1= h(S0||h(V1))

S3 = h(S2||h(V3))

S0:

h() is a collision resistant hash function.(e.g., SHA-1)

!sh! means !summary-hash! ,!obj! means !object!

!sh! Si = h(!sh! (!sh! Si’s parent)
+ !type! Hk)

!sh! S1 = h(!sh! (!sh!S0) !obj! H1)

!sh! S2 = h(!sh! (!sh!S1) !obj! H2)

!sh! S3 = h(!sh! (!sh!S2) !obj! H3)

!obj! Hi = h(!obj! Vi)

Vi = Content of Revision

Figure 7.8: Summary Hash Type Example: The summary hash contains predecessor’s
summary hash recursively. The S2D2 ID is used as an initial predecessor. By using hash
typing, the object Vi cannot be mistakenly interpreted as a summary hash.

V2

V1

V3

U2

U1

dirA/foo1.txt

h(PK3)::foo1.txt

User A: PubKey1

S2D2-ID:

{V1, W1}

{V1}

h(PK3)::dirA

S2D2-ID:

U3

=h(U1|| h(!set!S1|| T1))

=h(U0|| h(!set!S1))

=h(U2|| h(!set!S1||T2))

S2

S1

S3

W2

W1

W3

dirA/foo2.txt

h(PK3)::foo2.txt

S2D2-ID:

T2

T1

T3

{V1, W2}

{V2, W3}

dirA/

U4 =h(U3|| h(!set!S2||T3))

U0:T0:S0:

Figure 7.9: Composite Object Hash for File Directory Example: Si is summary hash of
Vi(local revisions of foo1.txt) and Ti is summary hash of Wi(local revisions of foo2.txt).
Because these two files are in a directory called “dirA”, a composite object hash that
comprises of Si and Ti can be built to represent the directory state. Interestingly, this
directory hash can also represent the relations between foo1.txt and foo2.txt that they are
in the same directory. S2D2 can use these structure and relational information for efficient
data exchanges.

127

V2

V1

V3

W2

W1

W3

S2

S1

S3

S2

S1

S4

S4 S3V2.1 W2.1

A’s Local

Revisions

B’s Local

Revisions

S2D2

Revisions

S2D2

Revisions

Branch

S1 S2 S4

Branch

S1 S2 S3

Main Trunk at

each local site.

Figure 7.10: Main Trunk and Branch in S2D2 Adaptor: In S2D2 adaptor, the concurrent
revisions can be stored as local branches; Site A stores S4 as a branch while Site B stores
S3 as a branch. Site A thinks S3 as the latest version in the main trunk since Site A has
received S3 before S4. In contrast, Site B consider S4 as the latest version in the main trunk
since Site B has received S4 before S3.

provides a general framework. Thus, a directory object in one’s file system can exchange

data securely and scalably with a composite object in another’s data base. For example,

one user may keep a list of addresses in a file directory while another keeps the shared

addresses in a PDA database; yet, they can exchange objects via this common abstraction

provided by S2D2.

7.1.5 Upcall for Data Incorporation and Conflict Resolution

In mutable data sharing, users need to be notified about concurrent versions; then

users have to merge concurrent versions with the help of application specific resolvers. In

some systems such as Bayou and Coda’s disconnected files system, such application-specific

merges are automatically applied upon detection and users are only notified of the conflicts

128

V2

V1

V3 W3

S2

S1

S3

S2

S4

S4 S3V2.1 W2.1

S5S5 W2.2
V2.2

S1 : (V1 = W1) . S2 : (V2 = W2). Because V3 ,W3 , V2.2 , W2.2 are concurrent and have

the same ancestor S2. S3 : (V3 = W2.1). S4 : (W3 = V2.1) . S5 : (V2.2 = W2.2).

Later, site B received a S6:(W1.1) that is concurrent with S2:(W2) .

S2D2 Revisions S2D2 Revisions B’s Local RevisionsA’s Local Revisions

W1.1

W1

W2

S1

S6

Figure 7.11: Deterministic Merge of Concurrent Revisions: This example shows many con-
current revisions that need to be merged at each site. Site A created S3 while site B created
S4 concurrently and a third site produced another concurrent revision, S5. Site A stored S4

and S5 as branches, while Site B stored S3 S5 as branches. Later, Site B receives another
concurrent revision, S6, to an ancestor version in the main trunk, S2. To produce the same
merged result at each site, the merge procedure needs to be applied in deterministic order.
In this example, the concurrent revisions need to be applied according to the lexicograph-
ically sorted order of summary hash value. S2D2 adaptors at both Site A and B need to
merge most recent concurrent revisions first. Thus, Site B will merges S6 into the trunk
after it merges S3,S4 and S5 in lexicographically sorted order.

that cannot be automatically resolved.

In S2D2, the application specific merge is provided by the adaptor, which de-

termines when to merge, how to merge and whom to notify of any conflict that cannot

be resolved automatically at the adaptor. An S2D2 adaptor has to register the callback

incorporation() routine so that S2D2 can call the adaptor-provided application-specific in-

corporation routine for every incoming updates.

In some applications the concurrent update is not merged immediately and further

distributed as an isolated revision thread, we call such revision thread as branch while we

129

call the main revision threads trunk. Figure 7.10 shows an example of a trunk and a branch.

As shown in this example, trunk and branch are site specific definition – a version can be

considered as a branch at one site, while the same version can be regarded as a version

in the main trunk. Later when users want to combine the branch into the main trunk,

the applications can merge the branch into the main trunk. We call this merge operation

branch-join.

Here, we provide a guideline how the incorporation routine should apply deter-

ministic merge procedure to concurrent revisions. In merging concurrent revisions, S2D2

adaptor should apply a deterministic merge tool in a deterministic order so that the re-

sult can be the same regardless of which site performs the merge. Instead of merging the

branch into a main trunk (e.g., branch-join), S2D2 adaptor should apply the merging in a

deterministic order. Figure 7.10 shows an example, in which both sites merge S3 into S4.

Without deterministic order, one site may merge S3 (branch) into S4 (main trunk) while

the other site merges S4 (branch) into S3 (main trunk). Then, the merged result could be

different.

This deterministic merge order becomes even more crucial when the site needs

to merge three or more concurrent revisions as shown in Figure 7.11. Moreover, it is also

possible that there are other concurrent revisions (branches) to another ancestor as well.

In this case, S2D2 adaptor needs to merge the concurrent revisions (branches) of the latest

ancestor first and to the oldest as shown in Figure 7.11.

Now, we describe when the adaptor should merge the concurrent revisions. The

adaptor can ask the user to merge the concurrent updates at the time the user (i) publishes

130

her new update to others, or (ii) incorporates others’ updates into her own local copy.

Once the divergence is detected (typically through frequent summary hash exchanges in

the two-step SHH reconciliation), the adaptor can immediately notify the application user

of the concurrent revision without waiting for publish or incorporate requests from the

application user. Some applications may require such immediate notification while this

immediate notification may be unnecessary to other applications. They may prefer to wait

since other sites can merge the divergence and the merged revision can be delivered to S2D2

repository even before the user notices the divergence.

In some application, concurrent versions need to be merged immediately with

application-specific merge process without user’s involvement. Because the merge was ap-

plied immediately upon detection, the S2D2 adaptor may undo this previous merge when

it tries to merge another concurrent revision into the previous merge.

7.2 Applications Built Based On S2D2

We present three example applications that are based on S2D2. Universal-Folder

and P2P-CVS are examples demonstrating the S2D2 provided benefit – the highly available

mutable data sharing. Update-Mine-In-Yours (e.g., Address Book) is an example showing

that the owner of a replicated object can actually update the replica in other domains at

different application in a secure and scalable way. For each application, we discuss the

semantics of S2D2 adaptors. Each adaptor implements a different policy concerning when

to publish, how to incorporate the incoming updates and how to record the concurrent

revisions (e.g., as branch or as special file) and how to merge them.

131

7.2.1 Universal Folder

Files and directories are well-known ways of managing data. Hence, many col-

laborative tasks can be performed through simply sharing a directory or a set of files.

Traditionally, a central server provides a directory (also called “file folder”) that can be

accessed by many collaborating writers and readers.

To avoid a single point of failure, and the dependency on a central server, we

build a peer-to-peer version of file directory sharing using the S2D2. Each site publishes or

subscribes to a set of S2D2 objects; concurrent updates are recorded as a special file; a user

is asked to resolve the conflicting updates.

In Unix file semantics, a read should return the most recent write, and concurrent

writes should not be visible to the user. In the event of concurrent updates, the system

does not ask the user to merge; instead, the system always overwrites the write with earlier

time-stamp with the write with the latest time-stamp. For example, in a Network File

System, the writes are propagated “immediately” to the server upon user’s save. However,

concurrent writes do happen because of write-cache optimization such as NFS 30sec window

– each write is locally cached for 30 seconds before it is saved onto the NFS server. In such

event, the user may experience a lost update since the write with the latest time-stamp

overwrites the other concurrent writes with older time-stamp.

In our Universal Folder, a weakly consistent folder replication, a read returns the

most recent write that the site has received so far. Upon user’s save, the fresh write is

published out by propagating writes to neighbor’s S2D2. Hence, the S2D2 adaptor needs to

externally monitor the user’s save operation to determine the publishing points on behalf

132

of the user. Upon receiving a new write, the receiving site incorporates the write into

the folder objects immediately. Unlike Unix file semantics, in Universal Folder, concurrent

writes need to be notified to users, who have to review the automated merge and resolve

conflicts with the help of application specific resolvers. This is similar to the semantics of

Bayou and Coda’s disconnected operation.

Universal Folder was built by implementing a S2D2 adaptor. The adaptor main-

tains the mapping between the local file and the S2D2 object. In the following, we present

partial pseudo code for the important parts of the S2D2 adaptor for Universal Folder.

Class UnivFolderAdaptor {

Prepare(LocalFileName) { // initialization

create an owner object;

create an objectID ownerpubkey:LocalFileName;

create a mapping between LocalFileName and objectID;

}

Publish(LocalFileName) { //publish revision

locate objectID for LocalFileName;

call owner.publish(objectID, LocalFileName);

}

Incorporate(objectID) { //callback

locate LocalFileName for objectID;

load ORH = ObjectRevisionHistory for objectID;

133

locate the ORH.branch;

if (ORH.branches != null){//need to merge concurrent updates

save all branches into LocalFileName#branch’s summary hash#

apply a merge tool in deterministic order;

ask user to resolve conflicts if there is one;

}

//case: no concurrent updates or the merged update

save ORH.latest-version into LocalFileName;

}

}

7.2.2 Update-Mine-In-Yours

In mutable data sharing and replication, once one’s object becomes replicated at

another site, the update to the replica has to go through the application that manages the

replica. Oftentimes, human users are involved in updating this replica for security or due to

the lack of common update framework. S2D2 can provide a common substrate for scalable

update delivery with access control based on a public key infrastructure, and it also provides

secure versioning with undo capability.

For an address book application, the adaptor maintains the mapping between

S2D2 object and the user.vcf file. The user.vcf file is exchanged as a S2D2 object. The

adaptor also knows how to put the user.vcf file into the corresponding data item in the

user’s local addressbook database (e.g., PDA address book).

134

In the following, we present partial pseudo code for the important parts of the

S2D2 adaptor for the Address Book Adaptor.

Class AddressBookAdaptor {

Prepare(user.vcf) { // initialization

create an owner object;

create an objectID ownerpubkey:User.vcf;

create a mapping between User.vcf and objectID;

}

Publish(User.vcf) { //publish revision

locate objectID for User.vcf;

call owner.publish(objectID, User.vcf);

}

Incorporate(objectID) { //callback

locate User.vcf for objectID;

load ORH = ObjectRevisionHistory for objectID;

locate ORH.branch;

if (ORH.branches != null){//need to merge concurrent updates

save all branches into User.vcf#branch’s summary hash#

apply a merge tool in deterministic order;

135

ask user to resolve conflicts if there is one;

}

//no concurrent updates or updates have been merged above

save ORH.latest-version into User.vcf;

import User.vcf into MyAddressBook;

}

}

7.2.3 P2P CVS

In traditional CVS, writes are published and incorporated upon users’ explicit

commands. By maintaining a complete revision history, concurrent writes are always de-

tected at a central repository server and need to be resolved by the user at the time of

committing updates to the server. Instead of the central repository server, in P2P-CVS,

each user has her own local repository that is being shared under S2D2 control.

We describe two ways of implementing P2P-CVS. In one way, the adaptor supports

the traditional CVS interface. Users use the traditional CVS interface to manage (e.g.,

check-in, check-out) their own local repositories using CVS revision number(e.g., r1.1, r1.2).

Figure 7.12 shows an example. However, since the revision number is assigned locally, the

number cannot be used as an global identifier. Hence, the local CVS repository cannot

be directly replicated as it is. The revision number in the local CVS repository needs to

be replaced with the globally unique summary hash to produce a globally sharable CVS

repository. The adaptor also needs to maintain the mapping between the revision number

136

V2

V1

V3

h(PubKey3)::foo.txt

S2D2-ID:

S2D2 Adaptor for Traditional CVS

S2 = h(S1||h(V2))

S1= h(S0||h(V1))

S3 = h(S2||h(V3))

S0:

h() is a collision resistant hash function.(e.g., SHA-1)

Vi = Content of Revision

W2

W1

W3

dirA/foo.txt

CVS

Command

using

local CVS

revision

number

R2

R1

R3

Local CVS_root/

foo.txt,v

With local CVS

revision number

Map

local CVS

revision

number

to

summary

hash

foo.txt,v

With summary hash as

revision number

Local

checked-out

sandbox

Figure 7.12: S2D2 Adaptor for Traditional CVS Example: Each site maintains its own
local CVS repository. To produce a sharable repository, the adaptor replaces the local
specific revision number in the local repository with the corresponding summary hash that
is globally unique. The sharble repository contains summary hashes and are replicated at
other collaborating CVS users’ sites using S2D2. The adaptor at each site needs to maintain
the mapping between the local revision number in local CVS repository and the summary
hash in S2D2. The mapping is implemented by tagging the CVS local revision number in
the local CVS repository with the corresponding summary hash.

137

V2

V1

V3

h(PubKey3)::foo.txt

S2D2-ID:

S2 = h(S1||h(V2))

S1= h(S0||h(V1))

S3 = h(S2||h(V3))

S0:

h() is a collision resistant hash function.(e.g., SHA-1)

Vi = Content of Revision

W2

W1

W3

dirA/foo.txt

CVS_with_SH Command

using summary hash

as revision identifier

A Modified CVS Repository using

summary hash

as revision identifier.

CVS_with_SH_root/foo.txt,v

Local

checked-out

sandbox

Figure 7.13: S2D2 Adaptor for a Modified CVS Example: Each site maintains its own local
CVS repository. Since this modified CVS repository uses globally unique summary hashes
as revision identifiers, sites can share with this CVS repository as it is.

and corresponding the summary hash. If the update to a globally sharable CVS repository

is received, the adaptor needs to modify local CVS repository accordingly by assigning local

revision number.

This method may work if there is few concurrent updates; however, it may intro-

duce confusion among users in identifying the concurrent revisions. Some user may regard

a version as a main trunk revision; while, some users may regard the same version as a

branch.

To avoid this confusion, the traditional CVS interface needs to be modified. Instead

of local revision number, an modified CVS can use summary hash as revision identifer. An

example for this approach is shown in Figure 7.13. Users are expected to use summary hash

as revision identifier in working with CVS commands. For example, in modified CVS, “cvs

update -rLocal 1.2” should be the same as “cvs update -rSUMMARYHASH of Local 1.2”.

138

In the following, we present partial pseudo code for the important parts of the

S2D2 adaptor for Modified CVS.

Class P2P-Modified-CVSAdaptor {

Prepare(RepositoryFileName) { // initialization

create an owner object;

create an objectID ownerpubkey:RepositorylFileName;

create a mapping between RepositoryFileName and objectID;

}

Check-in(RepositoryFileName, revision) { //publish revision

locate objectID for RepositoryFileName;

if (ORH.branches != null) ask if user can merge now;

do cvs commit revision into RepositoryFileName;

call owner.publish(objectID, RepositoryFileName);

}

Check-out(RepositorylFileName) { //contacting the local CVS repository to retrieve re-

vision

locate objectID for RepositorylFileName;

if (ORH.branches != null) ask if user can merge now;

if (ORH.branches != null) ask user which branch to check out;

do cvs checkout RepositoryFileName;

}

139

Update(RepositorylFileName) { //contacting the local CVS repository to update local

file with latest version in the CVS repository. If local file has been modified, CVS merge

applies.

locate objectID for RepositorylFileName;

if (ORH.branches != null) ask if user can merge now;

if (ORH.branches != null) ask user which branch to check out;

do cvs update RepositoryFileName;

}

BranchMerge(){ //called to merge concurrent updates

pick branch in deterministic order;

save branch into a CVS branch named with summary hash;

apply cvs -join in deterministic order;

ask user to resolve conflicts if there is one;

}

Incorporate(objectID) { //callback

locate RepositoryFileName for objectID;

load ORH = ObjectRevisionHistory for objectID;

locate ORH.branch;

if (ORH.branches != null){// we have concurrent versions

ask if user can merge now

If yes, call BranchMerge(); else, do nothing;

}

140

else {//no concurrent updates

save ORH.latest-version into RepositoryFileName;

by using cvs commit ORH.latest-version;

}

}

}

As we shown in pseudo code above, the check-out gives an option for a user to

choose which branch to check out if there are concurrent revisions. With CVS, users can

tag the branch with a mnemonic symbol such as “final-draft”. Similarly, in a P2P-Modified-

CVS adaptor, users can tag each published object with a composite hash that was created

to express the dependency among objects (i.e., files). The “composite hash” can be created

by hashing the concatenated summary hashes of all objects that are related to each other.

This composite hash can guide P2P-CVS to select which revision of each object needs to

be checked out together.

7.3 Evaluation

We evaluate the benefits of our S2D2 mechanism in terms of data availability.

7.3.1 Event-Driven Simulator

The event-driven simulator uses S2D2’s two-step SHH reconciliation on a simu-

lated network topology. As the underlying topology we use 1954 node transit-stub physical

141

network topologies generated using the GT-ITM library [55]. The links in the network

are categorized into 1.5Mbps transit-stub links, 45Mbps transit-transit links, and 100Mbps

stub-stub links. The bottleneck links are the transit-stub links in the topology. Given the

physical topology, we choose nodes from the underlying topology in which to place sites

randomly. In figures excluding a trace, each data point is the average of 10 simulations.

7.3.2 Data Availability

We simulated the updates of multiple writes to examine the data availability for a

centralized server-based system and our S2D2-based system. The data availability (DA(t))

is defined as the percentage of on sites that know the latest update at time t. The average

data availability (<DA>) is the average of DA(t) over the entire simulation period. More

specifically:

< DA >=
1
T

∫ T

0
DA(t)dt (7.1)

We first explain experimental settings. The centralized server-based system has

a central server and all clients contact the central server every one minute to retrieve new

updates. The central server and clients are periodically on and off given the percentage of

on time. If the server is off, the server cannot respond to the requests of the clients. For

the S2D2 case, we use the data exchange mechanism of S2D2. Sites are periodically on and

off given the percentage of on time. A site can reconcile with any site that is currently on.

In both systems, the interval between writes is exponentially distributed with mean of 20

minutes. The duration of on and off time is two hours. One simulation runs for 168 hours

142

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

D
at

a
A

va
ila

bi
lit

y

Time (min)

S2D2
Central Server

Figure 7.14: Data availability trace for 100 sites for S2D2 and 100 clients for the central
server. The updates occur at 14.6 minute and 34.6 minute. The central server cannot be
reached between 15 minute and 30 minute. At 15 minute, 36% of sites received the update
from the central server. Until the central server can be reached, the other sites cannot
exchange updates. On the contrary, with S2D2, sites can continuously reconciles with each
other.

(7 days) simulated time.

Figure 7.14 shows a part of the trace of data availability for 100 sites of S2D2 and

100 clients for the central server. In this trace, the updates occur at 14.6 minute and 34.6

minute. After the update, the data availability increases from 0 to 1. The slope of the

increase is different for the central server and S2D2. In the central server, every client can

contact the server within one minute after the update if the server is on. However, S2D2

data exchange needs a few rounds of reconciliation to reach the data availability of one.

In the trace, the central server is not reachable between 15 minute and 30 minute. Until

the central server can be reached, the other sites cannot progress. On the contrary, S2D2

continuously reconciles the update among sites, which is not possible for the centralized

143

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

<
D

A
>

On Percentage

Central server
S2D2

S2D2 with central relay

Figure 7.15: Average data availability for 100 sites of S2D2 and 100 clients of the central
server based system. The percentage of on time of the central server and all sites of S2D2
is varied from 0.6 to 1.0. The graph shows S2D2 with central relay provides best data
availability by taking advantage of central relay when central relay is available. When
central relay is not accessible, S2D2 exchanges updates through pair-wise reconciliations,
while the clients that depend only on the central server cannot exchange updates.

server-based system.

Figure 7.15 shows the average data availability varying the percentage of on time.

S2D2 with central relay is the case where there is a central point to check updates first in

S2D2. In our experiments, the central server and clients are on and off, all sites in S2D2

are on and off, and the central relay is on and off periodically. The central server has a

higher average data availability than S2D2 when the server is highly available, since S2D2

anti-entropy exchange of hash takes longer to converge. However, as the percentage of on

time decreases, S2D2 shows higher average data availability. By adding a central relay in

S2D2, we can get the benefits of the central server when the relay is highly available and

the benefits of S2D2 when the percentage of off time increases (i.e., the time that the relay

144

is not available increases).

S2D2 can automatically select highly available sites as the reconciliation points

more often. These sites play the role of relaying the updates to other sites, thus mimicking

the central server. Maintaining such relay sites will help other sites converge faster, thus

getting higher data availability.

7.4 Prototype Experience

7.4.1 Implementation

We implemented S2D2 prototype in Java language (6638 lines). The major classes

are following. Owner class is instantiated with the owner’s key pair and provides interfaces

to adaptors. ObjectRevHistory class manages SHH, Branches, and ToPullList. Rumor

class provides two-step reconciliations. In addition, it provides push data code so that sites

behind firewall can push the published data out to a site from which other sites can pull the

data. As we learned from Bayou, S2D2 does not need to worry about the deadlock since

we use asynchronous pulling of data. SecurityUtil class provides DSA signing/verification

and hash typing for composite object. KeyManagement class manages certificates with

X.509DN using KeyStore class from SUN.

Once we implemented the Universal Folder adaptor, it was quite easy to implement

other applications adaptors by simply changing policy code. We found the adaptors can

use the frequent exchanges of hashes as quick invalidation, guiding a good work-flow that

does not introduce unnecessary divergence.

145

7.4.2 Microbenchmark

We performed the microbenchmark of the execution time of our S2D2 prototype.

Receivers pull data from our machine A. Our focus of these measurements was execution

time at these end hosts.

The sender side machine A is the 1GHz SPARCstation running Solaris OS con-

nected with 100Mbps located in west coast of US (at MIT). We experimented with three dif-

ferent receiver configurations – Receiver R1: 1.2GHz Pentium IV, Linux OS, with 100Mbps

LAN located in east coast of US (at Berkeley), Receiver R2: 667MHz powerbook G4 with

DSL connection, and Receiver R3: Pentium III Dell 4100, Win2000 OS, 100Mbps LAN

with which machine A is connected.

Table 7.1 shows the execution time microbenchmark results varying data size for

the receivers. The major tasks of the sender side are base64 encoding into a file.base64

(Encode), computing the SHA-1 hash of data (Hash), signing the hash (Sign), and sending

the data to the network while reading a file (Send). The major tasks of the receiver side

are receiving the data from the network and writing to a file (Receive), base64 decoding

(Decode), and the signature verification of the 20B hash (Verify).

As shown in the Table, the most significant overhead is the base64 encoding/decoding

of data (we used sun.misc.Base64Encoder/Decoder), because we encoded/decoded into a

file. When the data size is 1MB, the encoding time is almost 38s. When we encode into

10MB memory buffer instead of file, the encoding takes 1782ms for 1MB, 677ms for 100KB,

and 329ms for 10KB. Since the hash is generated over the base64 encoded data, we can

further optimize by streaming the encoded data into SHA generation and over to the socket

146

Receiver Data size Encode Hash Sign Send Receive Decode Verify
R1 10K 461 8 227 456 326 3 95

100K 4252 73 210 876 844 32 88
1000K 42214 515 241 4633 4514 536 90

R2 10K 833 9 238 369 364 26 119
100K 4802 54 278 1085 1205 400 121
1000K 38800 527 256 11175 11230 3343 97

R3 10K 451 9 226 344 140 12 40
100K 4019 52 254 400 260 45 70
1000K 39328 516 230 892 761 330 50

Table 7.1: Results of execution time microbenchmark. The unit of data size is byte, and
the unit of other fields in the table is ms.

as well. Note that the sender is the same machine in all three cases. Encoding time takes

orders of 100 longer than decoding, although decoding time differs by the resources on

the receiver machine. Signing and signature verification are fast regardless of data size,

since only 20B hash is signed and the signature size is 46B. These measurements show that

our prototype implementation shows reasonable performance for different computation and

network environments.

7.5 Related Work

7.5.1 Weakly-Consistent Replication Systems

S2D2 is similar to Bayou [49, 50, 15] in that it is a substrate mechanism that

provides flexible update exchange to shared objects such as files, data items, and sets of

files, not as a distributed file system. However, S2D2 is based on SHH; while, Bayou is

based on dynamic version vectors. Being based on SHH, S2D2 can overcome version vector

inherent limitations in terms of security and scalability.

S2D2’s divergence control is similar to the use of application specific resolvers in

147

Bayou and Coda. However, S2D2 uses SHH to detect and guide deterministic merges based

on data contents; while, Bayou uses version vectors to extract deltas (incremental updates)

that need to be exchanged during the reconciliation process.

Recently, a number of peer-to-peer wide-area file systems such as Pangaea [41],

FarSite [2], and Ivy [31] have been built. In Pangaea, the concurrent updates are merged

according to version vectors and conflicts are resolved with last-writer-wins rule based on

a loosely synchronized clock. FarSite provides a single logical file system view, harnessing

the distributed untrusted computers in a scalable and secure way. However, unlike S2D2,

FarSite is not designed for scalable write sharing; hence, FarSite uses ping-ponging leases

or a central redirecting server [33] for serializing concurrent updates.

In Ivy, each site maintains the logs of each record, which has a pointer to the

previous log record. Although version vectors are used to put a total order when reading

from multiple logs, Ivy can detect some of the same version id attacks as concurrent, since

they treat identical version vector entries as concurrent. However, Ivy can be still vulnerable

to a lost update problem. For example, R1 from site A and R2 from site B have the same

version vectors. Site C creates a new revision R3 based on only R1. When site C reads R1

to create R3, it might have read R2 as well if site B was reachable at that time. However,

if not, R3 from site C is solely based on R1 not both R1 and R2. But, R3 falsely overwrites

R2 of site B as well. This can lead into a lost update of R2 in the system.

7.5.2 Use of Application Specific Knowledge for Conflict Resolution

Bayou[35] and Coda [25, 27] provides tools so that the reconciliation of conflicts can

be resolved based on application specific knowledge without user’s repeated and unnecessary

148

involvement in merging conflicts. With these systems, the application specific knowledge

was proven to be useful to determine the policy in merging conflicts. Interestingly, an

application-neutral approach [1] has been proposed. Also, the application specific knowledge

is useful in optimizing the size of incremental updates that need to be exchanged during

reconciliation. For example, many optimistic replication systems presented a method of

compacting self-canceling deltas using application specific knowledge [11, 23, 32, 54].

7.6 Summary

S2D2, a framework based on SHH, provides various service components that are

required for global-scale optimistic replication. It provides the SHH based reconciliations,

a global naming for shared object and an access control mechanism based on a PKI (Public

Key Infrastructure). S2D2 uses hash typing, which is used to enforce the correctness in

the error-prone usage of various hashes and to communicate composite object’s structural

information for scalable data exchanges.

Applications built on top of S2D2 prototype show that the adaptor architecture

flexibly supports various application specific consistency and usage semantics. Our sim-

ulations show that, unlike central server-based systems, S2D2 can continuously exchange

up-to-date data efficiently under network partition or server failure.

S2D2 employs a useful principle, hash typing to avoid error-prone usage of various

hashes. Hash typing is also used to communicate the application specific composite object

structure information to the S2D2 layer so that both S2D2 and application adaptor can

utilize the structure information for scalable, incremental, and optimal data exchanges.

149

We built the S2D2 prototype and three diverse applications based on S2D2: Uni-

versal Folder, P2P CVS, and Update-Mine-In-Yours. Our prototype implementations show

that the adaptor architecture is quite useful in separating the various applications’ differ-

ent usage semantics from S2D2’s scalable and secure mutable data sharing features. For

example, the S2D2-adaptor for universal folder were built with about 100 lines of Java code

implementing the callback routine for upcall and mapping information between local file

path and the S2D2 object ID.

We performed the latency micro-benchmark of our prototype. The benchmark

shows that the hash generation, signing, and verification takes tens of ms. The major

execution time is the base64 encoding of data. We also evaluated our S2D2’s high data

availability and scalable data exchange through simulations. In the event of network par-

tition or server failure, S2D2 can continuously exchange up-to-date data efficiently, unlike

central server-based systems. In addition, the lazy-selective data pulling of S2D2 consumes

orders of magnitude lower bandwidth than the traditional version-vector based anti-entropy

data exchanges.

We evaluated the S2D2 in terms of the data availability through simulations and

performed latency micro-benchmark of our prototype. The benchmark shows that the hash

generation, signing, and verification takes tens of ms. The major execution time is the

base64 encoding of data. In the event of network partition or server failure, S2D2 can

continuously exchange up-to-date data efficiently unlike the central server-based system.

150

Chapter 8

Toward A Model of

Self-administering Data

In this chapter, we describe a model of self-administering data as a novel collab-

orative application model. After we discuss the problem with current collaboration tools

available for simple document sharing, we describe our proposed data management model,

where a declarative description of how a data object should behave is attached to the object,

either by a user or by a data input device. This self-administering data model requires a

widespread infrastructure of self-administering data handlers, which can be realized using

the S2D2 framework.

8.1 Limitations of Current Tools for Data Management

In this section, we consider a number of scenarios that motivate our design. Mostly,

we express our frustration with current tools available for simple processes, and suggest

151

what, to us, seem like more attractive scenarios. Below we present the data processing

model we designed to enable these scenarios.

8.1.1 Co-Authoring across administering domains

Example Problem: Suppose a web-page designer is commissioned to create some

web pages from a customer. The customer somehow communicates what is desired to the

designer, who then creates an initial version of these pages. Perhaps the designer sends

these page drafts to the customer by email as attachments, or has the customer download

the web-pages from the designer’s web site, or uses some other protocol, like ftp, to move

copies about. Later, the customer makes some modifications and returns the pages to the

designer, and the process iterates.

As a result, both users’ email boxes, or file spaces, etc, get filled with email at-

tachments of versions. These versions are often hard to manage because there is no built-in

version management support for email attachments, HTTP, or FTP. Our collaborators

could instead try to use some collaboration tool designed for this purpose. Heavy weight

document management system like Lotus Notes or even Xerox’s Docushare are probably

overkill for this purpose; moreover, they may require administrative commitments neither

user can make.

Web-based file sharing system such as www.desktop.com, www.hotoffice.com, WebE-

dit, I-drive and BSCW, and synchronization services, such as FusionOne, provide an inter-

esting alternative. However, such services don’t provide control over important aspects of

data management, such as back-up, conversion, and merging. Moreover, the users are at

the mercy of a potentially overloaded server, perhaps at a precariously financed dot com.

152

Also, adding a third party to the interaction introduces increased vulnerability:

Users are not able to perform their sharing operation when the central server is down even

though their local machines and services are functioning, and have introduced a new security

concern. In addition, they are subject to various, and, we think, avoidable, human errors,

such as forgetting to transmit the shared copy to the web repository after every change.

8.1.2 Desired Properties and Proposed Data Model

The above scenario suggests to us the following properties of an ideal system for

this task:

P1: No repeat user involvement in routine data management

P2: No unnecessary dependence on shared resources, such as shared data repositories or

file servers

P3: No prior administrative set up costs

P4: Ability to exploit minimal use of central server as only required

P5: Undo/Redo capability within user’s domain

P6: Secure and safe incorporation of updates at user’s domain

P7: Lightweight enough to be widely deployed

A Proposed Solution: We propose a way of accessing and managing data to

achieve the above desiderata. We introduce an infrastructure of Self-administering Data

Handlers, which are deployed wherever users wish to take advantage of their services. These

Self-administering Data Handlers (SD Handlers) administer data according to an attached

Self-administering Data Description. The Self-administering Data Description (SDD) is

153

meta-data describing how, where, and to whom the data are to be copied, updated and

otherwise administered. In other words, the SD Handlers are daemon processes that ad-

minister data by honoring attached self-administering descriptions.

Consider how the task above might be performed if SD Handlers were available to

the collaborating parties. When the web-page designer creates web-pages, she saves them

into a directory or folder somewhere on her local disk, as is her standard practice. Her SD

Handler detects this action and pops up a UI with a self-administering description for the

saved web pages, probably representing her defaults. She examines the default preferences,

checks a couple of choices and adds a new destination, in this case, a location specifier

provided by the client. Then the SD Handler attaches to the data objects their respective

self-administering description.

Suppose the designer specified that these pages should be delivered to client’s

public web folder whenever she updates one of those. When a page is updated, the SD

Handler will automatically sign it with the designer’s private key and encrypt the result

with the client’s public key. The signed and labeled data object is deposited into the network

of SD Handler infrastructure.

The client’s SD Handler receives and verifies the authenticity of the self-administering

description. In this case, it interprets the description as instructing incorporation of the

data object into client’s web folder. The client’s SD Handler logs this event of data incor-

poration. If the designer’s name is not found in the client’s trustee list, the incorporation

is denied. If the recipient’s SD Handler is not available, the SD Handler could retry or

delegate the retrying of delivery to a pre-negotiated server.

154

If the designer prefers strong update serialization, the SD Handler might be con-

figured to first contact a pre-negotiated central serialization service, (say, a CVS [7] server

or the Oceanstore [26] service) and have her changes merged according to the arrival or-

der at the central serialization server. The merged data are then delivered back to the

designer’s SD Handler, which forwards the merged data to the destinations specified in the

self-administering description.

Such a network of SD Handlers provides a lightweight asynchronous collaboration

infrastructure for sharing data in a secure way. Centralized servers may be exploited in this

process, but only when there is some particular need that justifies the cost, such as a desire

for strong serialization of updates.

8.1.3 A Less Desktop-Centric Scenario

Let us briefly consider a less desktop-centric scenario. Suppose a botanist takes

pictures of plants in a field with her digital camera. She wants to transfer these to multiple

remote designations, including her own web page, her research group’s database, and her

collaborator’s disk. To do so, she must go to her office desktop and download the image

from the digital camera into some buffer space, and then copy it into her own web page

folder. She must then open up a database connection, authenticates herself, and then

upload the data into database. She would also pop up an email client, create a new email

message and upload the image data as the message’s attachment. Then she sends the email

to her collaborators, asking them to download the attached image onto their disk space.

She repeats these procedures whenever she takes a picture or pictures she wishes to so

incorporate.

155

This scenario provides comparable desiderata to the initial one, except that one

would like to deploy our proposal as close to the data as possible. Thus, we must modu-

larize SD Handler functionality so we can implement its services within a device’s limited

resources. For example, the camera might be enabled with a simple interface for using some

pre-downloaded self-administering descriptions. Services that the camera couldn’t perform

locally could be performed by an affiliated proxy server. The camera need only reach the

proxy server for the rest of the tasks to be automated as above.

We envision data collection involving SD Handlers from a wide variety of simple

special purpose devices, include scanners, smart cards, smart mobile phones, PDAs, and

lightweight widely distributed sensors. These devices, perhaps together with a helpful proxy,

simply deposit their tagged data into the infrastructure, which takes care of all routine data

management and transport issues.

8.2 Self-administering Data Model

As suggested above, we envision a network of SD Handlers, each “close” to a user

or device that it serves. To a first approximation, there would be one SD Handler per

networked device, perhaps more. Some would be associated primarily with users, some

with data collection in devices, others with services, such as digital object repositories, each

supporting basic SD Handler functionality, but perhaps implementing services associated

with the particular characteristics of its application.

156

User A

Service Providers:

On-line Storage

SD Handler

Device D:

Pervasive Sensors/Actuators,

PDA, Camera, Scanner
User B

Self-administering Data Delivery Protocol

SD Handler
SD Handler

SD Handler Centralized Services:

Strong Serialization,

Store-and-forward delivery

Partitioned(Local)

Versioning,Indexing

Partitioned(Local)

Versioning,Indexing

Figure 8.1: SDH Network with a Shared Service: Each SDH may contact a pre-determined
SDH that provides a shared service. The shared service is not required for the correctness
of SDH interaction rather for efficiency. Since the shared service is a soft state, any SDH
can provide the shared service functionality.

User P1

SD Handler

User P3

User P2 SD Handler

SD Handler
P1:foo.txt

C:\\Mydoc\foo.txt

D:\\myfoo.txt

C:\\workingfolder\foo.txt

Log foo.txt
Log foo.txt
Log P1:foo.txt

Log foo.txt
Log foo.txt
Log P1:foo.txt

Log foo.txt
Log foo.txt
Log P1:foo.txt

Figure 8.2: SDH Network of Revisions: Each SDH maintains revision history so that in-
cremental delivery is performed based on revision differences. The revision history can be
represented using Summary Hash History.

157

8.2.1 Network of SD Handlers

SD Handlers form a network, within which data is moved in accordance with the

SD Handler’s discipline. In addition, each SD Handler may provide an interface to a local

collection or stream of data. The data may be a user’s file system, web space, database,

or other collection, administered by some mechanism other than the SD Handler. Such a

network is illustrated in Figure 8.1 and Figure 8.2.

While these may be administered by a wide variety of mechanisms, the data looks

the same once it is with the SD Handler network. We refer to each diverse collection of

data as a data realm. In effect, the SD Handler bridges a realm into the SD Handler

infrastructure.

8.2.2 Basic Functionality

Figure 8.3 presents an overview of the functionalities of each SD Handler. SD

Handlers are required to implement the bottom tier of the functionalities, we define its

basic functions. These are named bottling, floating, popping, and logging, and are described

further below. To exploit capabilities fully, however, it is recommended that SD Handlers

also implement an additional tier of functions on top of the basic services. These are called

notifying, doffing, and versioning. Applications of various sorts may be built on top of these

functions. In addition, GUIs and API need to be provided, to communicate with the user,

and to form a bridge between the SD Handler and the user’s data realms.

Here we present the basic building blocks of SD handling. These are bottling,

floating, popping, and logging. We then describe how other functions can be built on top

158

Bottling LoggingPoppingFloating

VersioningDiff-ingNotifying

Co-Authoring Data-Collection

API to legacy appsGUI for SD Handler

Figure 8.3: SDH functionalities: SDH provides basic functionalities: bottling (data en-
capsulation), popping (data incorporation), floating (data delivery) and logging (revision
history). Additional tier of functions are optional.

of these basic functions.

Prior to this process, a self-administering data description is attached to the data

object, akin to creating a packing slip for a shipment. This description contains the shipper’s

preferences for handling the data, as well as the lists of recipients and/or destinations.

The data preference can include high-availability, strong-serialization and default archival

support. The destinations can be an on-line storage of collaborator’s, a database, a PDA, a

smart phone, a speaker/media device and pervasive sensors/actuators. In accordance with

this packing slip, at some point, the data object is bottled, i.e., prepared for shipping. To

make a data bottle, the labeled data object is signed and encrypted. Then the bottle is

floated across a sea of data. Finally, the bottle is popped at its destination(s), and the data

extracted. All events are logged, so that support for other services, e.g., version control,

and be readily accommodated.

159

Preparation

Prior to a SD Handler performing any operation on a data object, the object

must be bridged into the infrastructure. I.e., a SD Handler has to be made aware of the

object, and of the user’s specifications for it. This is done by attaching a Self-administering

Data Description (SDD) to the data. Since a self-administering data description can have

many options and get quite complicated, we assume that most users never work with one

directly. Instead, users interact with a UI. We have implemented a standard UI for a SD

Handler running on desktop, which we discuss below. We assume that a different UI would

be suitable for different devices, and that there would be default description templates for

each user and each device, perhaps inherited or cascaded together as a function of the user

and device environment.

Once an object has a SDD attached to it, the SD Handler aware of it will begin

monitoring the object and attempting to enforce the specification of the SDD. Doing so

typically results in sending a copy of the object to one or more recipients.

Bottling

When a SD Handler decides it must send a data object to a recipient, it first

prepares a data bottle. It does so by signing the self-administering description and its data

with its user’s private key, for authenticating the sender at the recipient’s SD Handler. The

result is then encrypted with the destination’s public key so that only the real destination

can access the description and the data. The sender’s credentials are checked against re-

ceiver’s trustee list to allow appropriate access in incorporating the data at the destinations.

160

Then the bottle is floated, i.e., dropped into the SD Handler network. We describe floating

below, but first examine the inverse operation of bottling, popping, which occurs when a

SD Handler receives a bottle destined for a known user.

Popping

A delivered bottle is inspected for its integrity and the sender is authenticated for

appropriate access right. Then the bottle is uncapped with matching encryption keys to be

incorporated into the destination realm according to the packing slip. For safe incorporation,

each incorporation process is logged for undoing or redoing operations.

The trustee-list maintained by SD Handler is used for giving or denying the delivery

action from the sender. When SD Handler daemon process receives the bottled data, it

authenticates the sender with trustee-list and decrypts the self-administering description

to guide the incorporation activities. Incorporation is based on appending; SD handling

never overwrites data, but may shadow it. Since every incorporation process is logged, it is

always possible to undo the changes back to a specific version.

The bottled data is incorporated through SD Handler into any number of places,

and in any number of different manners: onto a user’s desktop, PDA, collaborator’s do-

main, online-storage (NFS, Web), database entry, and even subdocument elements, such as

anchor points in HTML page. The SD Handler running on a desktop computer maintains

the history for the versioned content, and the incorporation activities. If the destination is

database, the incorporation could comprise adding new entry; if the destination is a collab-

orator’s online storage, the incorporation may create a newly updated file in a sandboxed

location.

161

The followings are the examples of incorporations at various destinations.

A bottled data delivered

• onto UNIX file system, creates an i-noded file.

• onto a database, creates an updated (appended) database entry.

• onto a repository, creates a new index entry and is moved into repository space.

• onto a speaker device, creates voice data at the speaker

• onto another trusted user’s file system, creates an i-noded file in a sandboxed location.

• onto a calendar/address book in a personal information managing application, creates

anchor contains new data or new hyperlink pointing to a file in a sandboxed location.

• onto an anchor in a HTML document owned by another trusted user’s, creates an

anchor contains new data or new hyperlink pointing to a newly updated data in a

sandboxed location.

• onto a writable CD, creates a newly added data on the writable CD

Floating

A bottled data object is dropped into the SD Handler network infrastructure.

The infrastructure provides the delivery of the bottled data to the destination. SD Handler

has its own delivery protocol (SDDP: Self-administering data Delivery Protocol) but SD

Handlers can also use legacy protocols such as HTTP, FTP, and SMTP by tunneling SDDP.

The “floating” functionality of SD Handler provides store-and-forward service for

delivering the data to a recipient who is not available at the time of delivery. It also

provides the update serialization service, where the updates from the multiple participants

162

are serially ordered according to the arrival time at the server. The bottled data has to flow

into the serialization server and flow out to its destinations. Finally, the infrastructure of

network of SD Handler provides a naming service to map the user’s SD Handler’s location

into its current IP address. Each SD Handler that does not have static IP address, register

its current IP address to the name resolution server in the infrastructure. And the SD

Sender would cache the latest mapping and use it until the host becomes unreachable, and

then it contacts the name resolution server for the current IP address of the participant’s

SD Handler.

Logging

The data and packing slip and its bottling/popping activities are logged for un-

doing/redoing and auditing purposes. The logging history can be flushed to a designated

archival repository from the local space of the bottling and popping point. The log can

be incremental in that the delta of changes is recorded. Doing so, of course, increases the

dependency between logged objects, although it saves the disk space.

Versioning

Each SD Handler maintains its own version tree at its own realm by enhancing the

logging feature. Decentralization is achieved by naming the same resource uniquely along

with its version number across different administrative domain. This is done by prefixing

the owner-name to a local name of resource, as each SD Handler has its own name space

per given owner-name. We use the owner name to uniquely locate its public key. The

typical owner name could be email address where the uniqueness is being maintained at its

163

organization or email service provider. In CVS [7] and WebDAV [53] there is one version

tree that is maintained at the central server with its single name space. In contrast, in SD

Handler, different version trees are maintained at each realm. They share only a naming

convention that uniquely addresses identifiable resources across different version trees. The

shared naming convention that each SDH has to follow can be provided by S2D2’s secure

naming.

8.2.3 Self-administering Data Description (SDD)

The basic responsibility of a SD Handler is to interpret SDDs, i.e., a Self-administering

Data Description attached to a data object. SDDs are written in SDDL that is based on

XML. Figure 8.4 provides a typical example. We stipulate that every SDD has one owner,

but may contain multiple users as sharers. Each user in the sharer element can have its

own multiple self-administering data server (SD server) locations. The central server ele-

ment given by the owner provides the central server location for SD Handler’s “floating”

operations (to be described below), such as store-and-forward data delivery, serializing the

updates at a central location, and dynamically mapping the user’s SD server name into its

current IP address.

8.3 Related Work

8.3.1 Comparison to “Legacy” Applications

We compared SD Handler with Email, CVS, and FTP, according to the seven

desiderata listed in section 8.1.2.

164

<SELFDATA owner="B.Hoon Kang" UAN =”dlib2001 selfdata paper”

archivalsupport="yes“ accesscontrol="yes“ change-notification="always">

<UAN name = “dlib2001 selfdata paper”>

<ITEM location = “selfdata01.doc”/>

<ITEM location = “diagram-image01.gif”/>

<ITEM location = “diagram-image02.gif”/>

</UAN>

<SHARER coherency = "SERIALIZE" data-availability="high" >

<USER name="B. Hoon Kang" id="hoon@cs.berkeley.edu">

<SELFDATASERVER name="alpine.cs.berkeley.edu:7070" />

<SELFDATASERVER name="sb.index.berkeley.edu:7070" />

<ARCHIVALSERVER name="dlibarchiver.cs.berkeley.edu:7070" />

</USER>

<USER name="Robert Wilensky" id="wilensky@cs.berkeley.edu" >

<SELFDATASERVER name="bonsai.cs.berkeley.edu:7070" />

<SELFDATASERVER name="mobile-ip.cs.berkeley.edu:7070" />

<SELFDATASERVER name="home-ip.eecs.berkeley.edu:7070" />

<ARCHIVALSERVER name="myarchiver.eecs.berkeley.edu:7070" />

</USER>

<CENTRALSERVER name="galaxy.cs.berkeley.edu:7070" />

</SHARER>

</SELFDATA>

Figure 8.4: SDD Example: This shows an SDD example owned by the user “B. Hoon
Kang”, and shared with two users “B. Hoon Kang” and “Robert Wilensky”. The user
“Robert Wilensky” contains four different SelfData (SD) server locations, the last of the
four being his own archival server. The archival server is an instance of SD server where the
SD Handler governs the archival repository for its subscribed users. The owner “B. Hoon
Kang” provides its own archival server to be accessible by the sharer.

165

P1. No repeat user involvement in routine data management All of the applications

except SD Handler require repeated user involvement in copying, moving, and sending the

data. SD Handler requires SDD creation once for repeated usages.

P2. No unnecessary dependence on shared resources, such as shared data reposi-

tories or file servers Email does not require shared resources for collaboration; CVS require

a shared server location.

P3. No prior administrative set up costs Both CVS and FTP provide the password-

controlled access to the data that is being shared among collaborators. Either group ac-

count or individual account needs to be set up by an administrator, and need to be dis-

tributed to each collaborator to access the data prior to the collaboration. In Email, ICQ

(www.icq.com) and AIM (www.aim.com), however, the password is not required to send

or receive the message and its attached data. The access is purely controlled by the user’s

discretion whether to accept or refuse the attachment. An orthogonal end-to-end security

method, for example, PGP (Pretty Good Privacy) email, could be added. Both the SD

Handler and Groove (www.groove.net) provide public/private key based access control to

the data without requiring prior administrative account set up. The user’s discretion is

guided by the key issuer’s certificate or web-of-certificates.

P4. Ability to exploit minimal use of central server as only required ICQ utilize

this property to support the scalable use of central data server. The central data server

is minimally used only for name resolution of recipient’s current IP address and store-and-

forward data delivery to the unavailable recipient. By this measure, web-based file sharing

systems over-utilize their central server in terms of the network bandwidth, processing power

166

and disk space.

P5. Undo/Redo capability within user’s domain CVS and SDH support this prop-

erty.

P6. Secure and safe incorporation of updates at user’s domain Email could use

DSA (Digital Signature Algorithm) for end-to-end security but the incorporation of email

attachment is not sand-boxed. ICQ and FTP do not provide safe-guarded incorporation

either. CVS’s undo capability could provide a safe incorporation since one can go back to

the previous change in the case of an incorporation error.

P7. Lightweight enough to be widely deployed All the applications above are

considered to be lightweight since they do not require a heavyweight server infrastructure.

8.3.2 Declarative vs. Session-Based Data Management

FTP, NFS, HTTP, and derivative applications (e.g. WebDAV) require a session

with a resource controlling a data object in order to create, update, move, delete, or other-

wise manage that object. Moreover, during this session, the data are managed by procedural

commands. Network file systems, e.g., AFS and NFS, basically provide file semantics in

sharing data, so, once again, intentions are expressed procedurally. Ficus [34] , Bayou [49]

(peer-to-peer optimistic file replication), and Rumor [20](user-level replication system) use

file sharing semantics, and hence are fundamentally procedural as well. Also the overwriting

semantics of file systems does not provide the knowledge about who made which changes.

Hence one would have to use versioning software like CVS in an explicit way, requiring the

user’s involvement in setting up check-in, check-out and copying.

In contrast, the SD Handler model provides a declarative way of managing data

167

across administrative domains in a wide area scale. The SD Handler model also enables the

user to specify that the data needs to be versioned at the different administrative domains.

We believe this model can simplify data management, achieving our goals of minimizing

the user’s participation in routine tasks.

8.3.3 Scripted Email Attachment

A SD Handler can perform incorporation of received data into the recipient’s

internal data storage. A similar effect can be achieved by running a script (VBScript, UNIX

shell script) with an email attachment. However, as is well-known, doing so is dangerous

since the script can run any arbitrary command. However, the SD Handler’s incorporation

operation is sand-boxed within SD Handler’s address boundary where the access is limited

only through the sanitized SD Handler’s incorporation functionality.

8.3.4 P2P (Peer to Peer) Collaborative Systems

ICQ, AIM provide a peer to peer instant messaging with infrastructure services

such as identity (user account) management, store-and-forward delivery and dynamic map-

ping of user’s current IP address. We have found that these infrastructure services are

common to most P2P systems. For example, Groove provides collaborative P2P software

tools with just these infrastructure services. The “shared space” in Groove provides an

interactive collaborative environment where various applications (tools) can be built upon

such as instant messaging, file sharing, free form drawing, and real-time conversation.

However, unlike SD Handler, the management of data still requires repeated user

interactions. The delivered files (attachments) have to be manually downloaded and saved.

168

Versioning and logging are not provided since the incorporation of data is not automated

but depends on manual end-user commands. Moreover, Groove and ICQ/AIM assume each

peer to be an end user; in SD Handler the peer could be a personal repository server, a

back up server, and a device in addition to other desktop users.

Finally, Groove is focused on building a collaboratively shared space (or workspace)

in a P2P way. SD Handler is focused on providing new semantics and controls for managing

data with minimal user interactions. The co-authoring application is an example of using

self-administering data model in a collaborative scenario.

8.4 Summary

We described a self-administering data model, in which a declarative description

of how a data object should behave is attached to the object, either by a user or by a data

input device. This self-administering data model assumes an widespread infrastructure of

self-administering data handlers (SDH). S2D2 can enable the required infrastructure by

building SDH based on S2D2. The handlers (SDHs) are responsible for carrying out the

specifications attached to the data. Typically, the specifications express how and to whom

the data should be transferred, how it should be incorporated when it is received, what

rights recipients of the data will have with respect to it, and the kind of relation that

should exist between distributed copies of the object.

We suggest that this model can provide superior support for common cooperative

functions. Because the model is declarative, users need only express their intentions once

in creating a self-administering description, and need not be concerned with manually per-

169

forming subsequent repetitious operations. Because the model is peer-to-peer, users are less

dependent on additional, perhaps costly resources, at least when these are not critical.

170

Chapter 9

Summary and Conclusion

In this dissertation, we identified the needs for scalable and secure optimistic repli-

cation to effectively support global-scale server replication, to enable open collaboration

using shared data, and to manage pervasive/ubiquitous data replication. Then, we showed

that the design of a scalable and secure decentralized ordering mechanism is the foundation

for building a system capable of supporting such optimistic replication. To this end, we

developed a novel decentralized ordering mechanism, called Summary Hash History (SHH).

SHH uses summary hashes as version identifiers to provide simple management in site mem-

bership changes, scales regardless of the number of sites, and guarantees the correctness of

decentralized ordering in a scalable way.

Using summary hashes as version identifers provides SHH with many useful prop-

erties. Because of the collision resistant property of the hashing function that we use

for creating a summary hash, a site can always verify the associated history/data in a

tamper-evident way. This verifiable summary hash allows two-step SHH reconciliation and

171

aggressive log pruning utilizing SHH’s secure log reconstruction property.

SHH can be thought of a kind of causal history approach that overcomes the an

inherent limitation of a straightforward realization of causal history (i.e., unbounded growth

of history) while providing decentralized ordering correctness and verifiability. Being based

on the causal history approach, the size of a SHH that needs to be exchanged grows in

proportion to the number of update instances. To effectively manage this overhead, we

developed two-step SHH reconciliation, which makes SHH a practical technique. Only the

latest summary hashes in SHHs are exchanged frequently; the data/SHHs can be lazily

pulled from any local site, with the latest summary hash verifying the associated data and

SHH. Since we can verify the validity of the given history, the data/SHH need not come

from trusted remote sites.

The verifiable nature of summary hash provides us with many other optimization

opportunities. For example, with a verifiable summary hash, a site can aggressively prune

its log history. The pruned log history can be reconstructed incrementally and securely

from the latest summary hash. This secure log reconstruction property of summary hash

allows the SHH to be pruned aggressively, which is especially useful in supporting optimistic

replication among sites with limited storage.

SHH’s ability of capturing a coincidental equality is a fascinating property that

we found. It can allow distributed replicas to converge even across partitioned networks.

Such ability also enables distributed replica to converge faster than other mechanisms that

may be susceptible to creating false conflicts among descendant versions. (SHH creates

absolutely no false conflicts.)

172

After the simulation study of SHH properties, we concluded that SHH can be a

technique of choice for designing a scalable and secure optimistic replication. Our simula-

tion confirmed that SHH with two-step reconciliation consumes orders of magnitude lower

bandwidth than previous version vector based approaches. Our simulation also showed

that replicas can converge faster than other mechanism that are prone to create false con-

flicts. We find it rather remarkable that SHH is able to provide scalability, security and fast

convergence all at once by simply using summary hash as version identifier.

We believe it would be interesting to apply SHH to application domains other than

optimistic replication. For example, SHH’s ability to converge during network partition

with no false conflicts can be utilized for scaling the performance of distributed parallel

computations. SHH may reduce the amount of network traffic required to synchronize

partial computation results or may be able to speed up the computation by assigning the

same identifier for the independently created partial computation results that are equivalent.

We are currently deploying SHH-based optimistic replication technique to various

distributed systems applications via the S2D2 framework that we developed. S2D2 is a

framework with which diverse applications can readily implement SHH-based optimistic

replications. S2D2 employs an adaptor architecture to support the application-specific data

management. Being based on SHH, S2D2 provides various service components that are

required for global-scale optimistic replication: the two-step SHH reconciliation, a global

secure naming for shared object and an access control mechanism based on a PKI (Public

Key Infrastructure). In implementing S2D2/SHH, we developed a hash typing principle,

which is proven to be useful in enforcing the correctness in the error-prone usage of various

173

Alice

Bob

Charles

Diverse application support

Simple membership management

Scalable bandwidth consumption

Best data availability

Fastest convergence

Ordering correctness guarantee

S2D2

S2D2

S2D2

S2D2
S2D2

S2D2
S2D2

S2D2

S2D2

S2D2

Figure 9.1: Scalable and Secure Optimistic Replication based on S2D2: Being based on
SHH, S2D2 can provide scalable bandwidth consumption, ordering correctness guarantee,
faster convergence, simple membership management, and high data availability to diverse
applications with global-scale and secure optimistic replication support.

hashes and to identify composite object’s structural information for scalable data exchanges.

Figure 9.1 summarizes what S2D2 can provide: scalable bandwidth consumption, ordering

correctness guarantee, faster convergence, simple membership management, and high data

availability to diverse and pervasive applications.

We believe SHH-based optimistic replication, as realized via S2D2 framework, is a

fundamental technique that can provide the scalability and security required for supporting

global-scale, highly dynamic, and pervasive/distributed systems.

174

Bibliography

[1] The IceCube approach to the reconciliation of divergent replicas, 2001.

[2] A. Adya et al. Farsite: Federated, available, and reliable storage for an incompletely

trusted environment. In Proceedings of the 5th USENIX Symposium on OSDI, Boston,

Massachusetts, December 2002.

[3] A. Demers et al. Epidemic algorithms for replicated database maintenance. In Proc.

of ACM PODC Symp., 1987.

[4] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Version stamps- decentralized

version vectors. In Proc. of IEEE ICDCS, 2002.

[5] C. Baquero and F. Moura. Improving causality logging in mobile computing networks.

ACM Mobile Computing and Communications Review, 2(4):62–66, 1998.

[6] D. Bayer, S. Haber, and W. S. Stornetta. Improving the efficiency and reliability of

digital time-stamping. In Sequences’91: Methods in Communication, Security, and

Computer Science, pages 329–334. SpringerVerlag, 1992.

[7] B. Berliner. CVS II: Parallelizing software development. In Proceedings of the USENIX

175

Winter 1990 Technical Conference, pages 341–352, Berkeley, CA, 1990. USENIX As-

sociation.

[8] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and

Yaron Minsky. Bimodal multicast. ACM Transactions on Computer Systems (TOCS),

17(2):41–88, 1999.

[9] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence

of failures. ACM Transactions on Computer Systems, 5(1):47–76, 1987.

[10] I. Clark, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous

information storage and retrieval system. In Proc. of the Workshop on Design Issues

in Anonymity and Unobservability, Berkeley, CA, 2000.

[11] L. Cox and B. Noble. Fast reconciliations in fluid replication. In The 21st International

Conference on Distributed Computing Systems, April 2001, Phoenix, AZ, pages 449–

458.

[12] D. Stott Parker et al. Detection of mutual inconsistency in distributed systems. IEEE

Transactions on Software Engineering, 9(3):240–247, May 1983.

[13] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative

storage with CFS. In Proc. of ACM SOSP, 2001.

[14] Ivan Bjerre Damg̊ard. A design principle for hash functions. In Proceedings on Advances

in cryptology, pages 416–427. Springer-Verlag New York, Inc., 1989.

[15] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and B. B.

176

Welch. The bayou architecture: Support for data sharing among mobile users. In

Proceedings IEEE Workshop on Mobile Computing Systems & Applications, pages 2–7,

Santa Cruz, California, 8-9 1994.

[16] R. Dingledine, M. Freedman, and D. Molnar. The freehaven project: Distributed

anonymous storage service. In Proc. of the Workshop on Design Issues in Anonymity

and Unobservability, 2000.

[17] P. Druschel and A. Rowstron. Storage management and caching in PAST, a large-scale,

persistent peer-to-peer storage utility. In Proc. of ACM SOSP, 2001.

[18] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast and secure distributed read-

only file system. ACM Transactions on Computer Systems (TOCS), 20(1):1–24, 2002.

[19] Richard A. Golding. A weak-consistency architecture for distributed information ser-

vices. Computing Systems, 5(4)(UCSC-CRL-92-31):379–405, 1992.

[20] Richard G. Guy, Peter L. Reiher, David Ratner, Michial Gunter, Wilkie Ma, and Ger-

ald J. Popek. Rumor: Mobile data access through optimistic peer-to-peer replication.

In ER Workshops, pages 254–265, 1998.

[21] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document. Journal

of Cryptology, 3(2):99–111, 1991.

[22] IETF Crypto Forum Research Group. Discussion re: Merkle hash tree

weakness - request for advice. https://www1.ietf.org/mail-archive/working-

groups/cfrg/current/index.html.

177

[23] Anthony D. Joseph, Joshua A. Tauber, and M. Frans Kaashoek. Building reliable

mobile-aware applications using the rover toolkit. In Second ACM International Con-

ference on Mobile Computing and Networking (MobiCom’96), 1996.

[24] Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The hash history

approach for reconciling mutual inconsistency. In Proceedings of the 23rd International

Conference on Distributed Computing Systems, page 670. IEEE Computer Society,

2003.

[25] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file

system. ACM Transactions on Computer Systems, 10(1):3–25, 1992.

[26] J. Kubiatowicz et al. Oceanstore: An architecture for global-scale persistent storage.

In Proc. of ASPLOS, 2000.

[27] M. Satyanarayanan et al. Coda: a highly available file system for a distributed work-

station environment. IEEE Transactions on Computers, 39(4):447–459, 1990.

[28] Petros Maniatis and Mary Baker. Secure History Preservation Through Timeline En-

tanglement. In Proc. of the 11th USENIX Security Symposium, 2002.

[29] Ralph C. Merkle. A certified digital signature. In Proceedings on Advances in cryptol-

ogy, pages 218–238. Springer-Verlag New York, Inc., 1989.

[30] R.C. Merkle. A digital signature based on a conventional encryption function. In Carl

Pomerance, editor, Advances in Cryptology Crypto ’87, 1987.

[31] Athicha Muthitacharoen, Robert Morris, Thomer Gil, and Benjie Chen. Ivy: A

178

read/write peer-to-peer file system. In Proceedings of the 5th USENIX Symposium on

Operating Systems Design and Implementation (OSDI ’02), Boston, Massachusetts,

December 2002.

[32] Brian Noble, Ben Fleis, Minkyong Kim, and Jim Zajkowski. Fluid replication. In The

Network Storage Symposium, Seattle, WA, 14-15 Oct., 1999.

[33] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch. The

sprite network operating system. Computer Magazine of the Computer Group News of

the IEEE Computer Group Society, ; ACM CR 8905-0314, 21(2), 1988.

[34] P. Reiher et al. Resolving file conflicts in the ficus file system. In USENIX Conference

Proceedings, Summer 1994.

[35] Karin Petersen et al. Flexible update propagation for weakly consistent replication. In

Proc. of ACM SOSP, 1997.

[36] Thomas A. Phelps and Robert Wilensky. Multivalent annotations. In European Con-

ference on Digital Libraries, pages 287–303, 1997.

[37] Ravi Prakash and Mukesh Singhal. Dependency sequences and hierarchical clocks:

efficient alternatives to vector clocks for mobile computing systems. Wireless Networks,

3(5):349–360, 1997.

[38] R. Guy et al. Implementation of the Ficus Replicated File System. In USENIX Con-

ference Proceedings, Summer 1990.

[39] David Ratner, Peter Reiher, and Gerald J. Popek. Dynamic version vector main-

179

tenance. Technical Report CSD-970022, University of California, Los Angeles, June

1997.

[40] Michael Reiter and Li Gong. Securing causal relationships in distributed systems. The

Computer Journal, 38(8):633–642, 1995.

[41] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik Mahalingam. Tam-

ing aggressive replication in the pangaea wide-area file system. In Proc. of the 5th

USENIX Symposium on Operating Systems Design and Implementation (OSDI ’02),

Boston, Massachusetts, December 2002.

[42] Sunil K. Sarin and Nancy A. Lynch. Discarding obsolete information in a replicated

database system. IEEE Transactions on Software Engineering, 13(1):39–47, 1987.

[43] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in dis-

tributed computations: In search of the holy grail. Distributed Computing, 7(3):149–

174, 1994.

[44] Jonathan S. Shapiro and John Vanderburgh. Access and integrity control in a public-

access, high-assurance configuration management system. In USENIX Security Sym-

posium, 2002, San Francisco, CA, 2002.

[45] Jonathan S. Shapiro and John Vanderburgh. Cpcms: A configuration management

system based on cryptographic names. In USENIX Annual Technical Conference,

FreeNIX Track, Monterey, CA, 2002.

[46] S. W. Smith and J. D. Tygar. Security and privacy for partial order time. In ISCA

International Conference on Parallel and Distributed Computing Systems, 1994.

180

[47] Mike J. Spreitzer et al. Dealing with server corruption in weakly consistent, replicated

data systems. In Proc. of the third annual ACM/IEEE international conference on

Mobile computing and networking, pages 234–240, 1997.

[48] Mike J. Spreitzer et al. Dealing with server corruption in weakly consistent replicated

data systems. Wireless Networks, 5(5):357–371, 1999.

[49] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing

update conflicts in Bayou, a weakly connected replicated storage system. In Proceedings

of the Symposium on Operating System Principles, pages 172–183, December 1995.

[50] Douglas B. Terry, Karin Petersen, Mike Spreitzer, and Marvin Theimer. The case

for non-transparent replication: Examples from bayou. Data Engineering Bulletin,

21(4):12–20, 1998.

[51] Gene Tsudik. Message authentication with one-way hash functions. In INFOCOM (3),

pages 2055–2059, 1992.

[52] M. Waldman, A. Rubin, and L. Cranor. Publius: A robust, tamper-evident, censorship-

resistant, web publishing system. In Proc. 9th USENIX Security Symposium, 2000.

[53] E. James Whitehead, Jr. and Yaron Y. Goland. WebDAV: A network protocol for

remote collaborative authoring on the web. In Proc. of the Sixth European Conf. on

Computer Supported Cooperative Work (ECSCW’99), Copenhagen, Denmark, Septem-

ber 12-16, 1999, pages 291–310.

[54] Haifeng Yu and Amin Vahdat. The costs and limits of availability for replicated services.

In Proc. of ACM SOSP, 2001.

181

[55] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to model an internetwork. In

Proceedings of IEEE INFOCOM, 1996.

