
Two-Level, Self-Verifying Data for Peer-to-Peer Storage

Patrick Eaton, Hakim Weatherspoon, and John Kubiatowicz
University of California, Berkeley

Report No. UCB/CSD-05-1401

June 2005

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Two-Level, Self-Verifying Data for Peer-to-Peer Storage

Patrick Eaton, Hakim Weatherspoon, and John Kubiatowicz
University of California, Berkeley

June 2005

Abstract

First-generation peer-to-peer storage systems unneces-
sarily couple the unit of client data access to the unit of
infrastructure data management. Designs that require all
peers to operate on data at a fixed granularity lead to inef-
ficiencies such as high query load and high per-block stor-
age overheads. To provide variable granularity access
and support more efficient peer-to-peer storage systems,
we introduce two-level naming of self-verifying data. We
describe how to implement two-level naming and advo-
cate an extension to the traditional API used by peer-to-
peer storage systems to support two-level naming.

1 Introduction

Self-verifying data is a fundamental building block of
peer-to-peer storage systems. It allows clients to vali-
date the integrity of data and the infrastructure to iden-
tify corrupt data. Because many peer-to-peer applica-
tions are targeted to run on mutually distrusting machines
spread across the wide-area, the ability to verify data is
vital. Self-verifying data guards against errors introduced
by faulty peers or transmission through public networks.
It also protects clients from malicious or compromised
servers that attempt to deceive users by returning modi-
fied data.

Examining a variety of first-generation peer-to-peer
storage systems, we observed that they share a number of
design decisions with respect to self-verifying data. For
example, most clients create and access many small data
blocks that are linked into larger data structures. After
creating data, clients store each block in the storage in-
frastructure as an independent objects. The storage infras-

tructure then manages, indexes, tracks, and repairs each
small block individually.

Such a design effectively couples the infrastructure’s
unit of data management to the client’s unit of data cre-
ation and access. This coupling engenders a challenge for
creating efficient systems. For clients at the edges of the
network, it is natural to work with data divided into small
blocks. However, a storage infrastructure that manages
small blocks sees higher indexing cost (because the in-
frastructure must track all replicas of each smaller block
individually) and a larger query load (because clients must
use the infrastructure to locate each small block). On the
other hand, a storage infrastructure can reduce the over-
head of tracking data and resolving queries by amortizing
the costs over larger blocks of data. However, requiring
clients to work with large blocks can waste precious band-
width at the edges of the network and require significant
data buffering that limits data durability. Most existing
systems have elected to use relatively small data blocks,
resulting in systems with high query load on the infras-
tructure, high storage overhead, and poor communication
patterns.

To improve the efficiency of peer-to-peer storage sys-
tems, we introduce two-level naming for self-verifying
data. Two-level naming decouples the unit of manage-
ment from the unit of access by packing many small,
application-level data blocks into larger containers called
extents while maintaining the self-verifying properties.
This solution allows different components to access data
at different granularities—clients can access exactly the
data they desire by referencing data at a fine granularity
while peers in the infrastructure can operate on larger con-
tainers to amortize the cost of indexing and querying data.
To support two-level naming, we advocate an extension to

1



the traditional API used by peer-to-peer storage systems.
In Section 2, we review the concepts of self-verifying

data and other related work. In Section 3, we detail the
prevailing design decisions of popular, first-generation
peer-to-peer storage systems and describe the conse-
quences of these designs. In Section 4, we present two-
level naming and describe an implementation based on
extending the API used by traditional peer-to-peer stor-
age systems. Section 5 shows how to use that API to build
a versioning backup application. Finally, Section 6 con-
cludes.

2 Background and Related Work

Data is said to be self-verifying if it is named in a way that
allows any peer to validate the integrity of data against the
name by which it was retrieved. The self-verifying prop-
erty enables clients to request data from any peer in the
network without concern of data corruption or substitu-
tion attack. A malicious peer cannot deceive a client with
corrupt data—its attack is limited to denying a block’s ex-
istence.

Data can be made self-verifying via two techniques:
hashing and embedded signatures. Hash-verified data is
named by a secure hash of its content. A client can verify
hash-verified data by recomputing the hash of the data.
Key-verified data is named by the hash of a public key
that verifies a signature over a secure hash of the data.
To verify the data, a client uses the public key that corre-
sponds to the data’s name to verify the signature over the
data, recomputes the hash of the data, and compares the
computed hash with the signed hash. These techniques
were made popular by the Self-certifying Read-only File
System [4].

Many systems employ Merkle’s chaining tech-
nique [10] with hash-verified data to combine blocks into
larger, self-verifying data structures. Such systems embed
self-verifying names into other data blocks as secure, un-
forgeable pointers. To bootstrap the process, systems of-
ten embed secure pointers in key-verified blocks, provid-
ing an immutable name for mutable data. To update data,
then, a client replaces a key-verified block with a block
that references the new data. See, for example, CFS [2],
Ivy [12], and Venti [13].

Additionally, Weatherspoon et al. extended the hash-

based approach to name erasure code fragments in a self-
verifying manner [17]. Clients can verify either individual
erasure code fragments or the full block of data by the
same name. Distillation codes [7] can be considered a
generalization of this scheme.

The classical file systems literature provides an inspir-
ing precedent of improving system efficiency by adapting
the granularity of data access. Many file systems man-
age data at different granularities at different levels of the
storage hierarchy to improve performance. For example,
the Fast File System (FFS) [9] increased performance, in
part, by increasing the unit of transfer to the disk. Also,
XFS [16] managed storage in extents, or sequences of
blocks, to reduce the size of the metadata and allow for
fast sequential access to data. GoogleFS [5] uses extents
to reduce the per-object maintenance costs. None of these
systems, however, combine the concepts of aggregation
and self-verifying data.

One recent system does use aggregation to improve the
efficiency of content-addressable storage. To reduce the
number of objects that the system must track, Glacier [6]
relies on a proxy trusted by the user to aggregate many
application-level objects into larger collections. An ob-
ject’s durability is limited while data is buffered at the
proxy. Once a proxy publishes an aggregate, its content
cannot be modified.

3 Analyzing Existing Systems

In this section, we identify dominant design decisions
made in first-generation peer-to-peer storage systems. We
then consider the consequences of these decisions.

3.1 Prevailing Design Decisions

Limited space precludes us from detailing each peer-to-
peer storage system individually. Instead, we present the
prevailing design decisions that we observed in popu-
lar, first-generation peer-to-peer storage systems includ-
ing CFS [2], Ivy [12], OceanStore [14], Total Recall [1],
and Venti [13].

The systems that we studied tended to use self-
verifying data in a common manner, illustrated in Fig-
ure 1. Applications divide objects into small, hash-
verified blocks ranging in size from a few tens of bytes

2



= Verifiable Pointer

V1 V2

R1:

I1: I2:

B1 B3 B4

I3:

R2:

B6B5B2

Figure 1: Applications divide data into small blocks
which are combined into larger, linked data structures.
A key-verified block points to the root of the structure.
To update an object, an application overwrites the key-
verified block to point to the new root. (V = version, R =
version root, I = indirect node, B = data block)

for a log entry [12] or inode block [2] to a few kilobytes
for a data block. Using the hashes that name the blocks
as unforgeable references, hash-verified blocks are com-
bined into larger data structures, like linked lists [12] or
trees [2, 14]. Key-verified blocks point to the roots of
these structures, providing an immutable name to muta-
ble data.

After dividing an object into blocks, the client stores
the blocks in the peer-to-peer storage infrastructure. Peers
in the storage infrastructure work together to serve as a
query router, tracking the location of data and resolving
queries to a peer storing the data. In first-generation sys-
tems, the query router indexes and tracks each block of
data stored by a client. That is, the unit of management
in the query router is the same as the unit of creation and
access by the client application. Because they access and
manage data at the same granularity, clients and the query
router can interact through a simple put()/get() in-
terface, shown in Table 1, reminiscent of the interface
to a hashtable. While we have shown putHash() and
putKey() as distinct members of the interface, they are
often implemented as a single put() function.

To update an object, applications create new blocks
which reference older blocks or other new blocks and
store them in the infrastructure. To make updates visible
to others, applications overwrite the key-verified block of
the object.

Traditional interface:
putHash(H(data), data);
putKey(H(PK), data);

data = get(hash);

Table 1: The traditional put()/get() interface used
by first-generation peer-to-peer storage systems. The
putHash() and putKey() functions are often com-
bined into a single put() function.

Because each new hash-verified block of data has a
unique name, these systems naturally provide versioning
capabilities. Some systems expose the versioning feature
to the end user [14] while others do not. Using copy-on-
write to provide efficient versioning has also been imple-
mented in other systems predating the peer-to-peer sys-
tems that we describe [11].

One notable counterexample to these patterns is the
PAST [15] system. PAST stores whole objects as hash-
verified blocks and relies on complicated shedding and
forwarding protocols to find servers that can store large
replicas. PAST objects cannot be incrementally updated;
they can only be wholly replaced.

3.2 Consequences of Design Decisions

These design decisions determine many characteristics of
the resulting system. For example, granting clients fine
granularity access to data leads to several benefits. First,
it is a natural interface for many applications that con-
sider data to be a collection of small blocks. It also allows
clients to fetch data without wasting scarce bandwidth at
the edges of the network retrieving data that is not needed
or already cached. Finally, it allows clients to push data
to the infrastructure as soon as it is created, improving
durability.

Fine granularity access to data also has several disad-
vantages. Because each block is independently managed
in the infrastructure, the client must issue a separate query
to the query router for each block. To read an object of
even moderate size, a client must issue many queries. The
query router, then, must be able to support heavy query
loads and to route many simultaneous queries efficiently.
Figure 2 illustrates a query router operating in the tradi-
tional scenario where each block is managed separately.

3



P2P Query
Router

Query=C

C

B

A

C

Figure 2: A system stores three blocks of data, A, B,
and C. First-generation systems route queries to individ-
ual blocks.

Other consequences are more directly related to spe-
cific types of query routers. One common type of query
router is the distributed hashtable (DHT) [3]. In a DHT,
each participating node is responsible for a fixed portion
of the namespace. When storing data, a DHT transfers
the block to the peer that is responsible for the portion of
the namespace containing the name of the block. Due to
their design, systems that rely on DHTs for query routing
must cope with widely distributed communication pat-
terns. Because the location of data is determined solely
by its name and because hashing creates effectively ran-
dom names, data blocks from a single object are spread
randomly across servers in the network. To read even a
single object, a client’s queries are routed to many differ-
ent servers—often most of the servers in the system.

Decentralized object location and routing (DOLR) [3]
networks are another type of query router that allow
clients to select where data is placed. Systems built
atop DOLR-based query routers can manage data location
to improve communication patterns. To resolve queries
quickly, a DOLR maintains small pointers that track the
location of data. While this approach enables efficient
data placement strategies, the pointer state required to
track each data block and the bandwidth required to main-
tain that state can waste valuable storage and bandwidth.

To see these issues in practice, consider a versioning
backup application storing a 1 GB filesystem. CFS, Pond,

and Venti suggest that applications divide objects into
blocks with a maximum size of 8 KB. Thus, the filesys-
tem would be divided into at least 131,000 data blocks.
To read the data from the system, a client would need
to query for and fetch each block. Furthermore, DOLR-
based systems, such as Pond and Total Recall, must main-
tain extra pointer state to index each of those blocks. If a
pointer is 64 bytes and is replicated 8 times for availabil-
ity, then the cost to store only the index of the filesystem is
64 MB. This storage overhead becomes even more signif-
icant, growing to 256 MB or 25%, if each block is mod-
estly replicated 4 times to ensure durability. Even if the
cost of storage is not a concern, the large index can lead
to other problems. Some DOLRs maintain the index very
aggressively to ensure that the query router can respond
to queries [1]. As the index grows larger, the bandwidth
required to maintain the index also increases. In the end,
a system could use more bandwidth maintaining the in-
dexing state than maintaining or serving the data.

4 Two-Level, Self-Verifying Data

For flexibility and control, clients must be able to access
data at a fine granularity. This does not, however, mean
that the infrastructure must manage data at such a fine
granularity. In fact, the root cause of problems outlined
in Section 3.2 is the unnecessary coupling of the unit of
management in the infrastructure to the unit of access at
the client.

4.1 An Alternative: Two-Level Naming

If many small, variable-sized, application-level blocks
were coalesced into larger containers in the infrastructure,
the system could store, index, and locate data more effi-
ciently. This leads to a modified query process that we
call two-level naming, shown in Figure 3.

To retrieve a block of data, a client first queries the
infrastructure to find the enclosing container; it then re-
quests a specific block from the container. Each block is
identified not by a single hash, but by a tuple. The first
element identifies the enclosing container; the second el-
ement names the block within the container. After identi-
fying a server storing a container, a client can send subse-
quent requests directly to the server without querying the

4



P2P Query
Router

Query=(E,C)

C
C

B
A

Figure 3: A system stores three blocks of data, A, B, and
C. With two-level naming, small blocks are aggregated
into larger extents. The query includes both an extent
name and a block name.

infrastructure.
Let us return to the example backup application de-

scribed previously to see the potential impact of two-level
naming. Assume that the application aggregates blocks
into 4 MB containers. The query routing load imposed by
a client reading the 1 GB filesystem would decrease three
orders of magnitude to 256 operations. For the DOLR-
based systems, assuming the same pointer size and repli-
cation level, the indexing state maintained by the infras-
tructure drops from 64 MB to 128 KB.

4.2 An Extent-Based Interface

Next, we discuss how to implement two-level naming to
aggregate many small, variable-sized blocks of data into
containers called extents.

We could support two-level naming with only minor
modifications to current systems by forcing clients (or
their agents) to aggregate data, as is done in Glacier [6].
The consequences, however, of such an approach are un-
appealing. A client would buffer blocks locally until it
could fill an extent. The client would then merge the set
of blocks into an extent and store the container with a sin-
gle put() operation. Implementing this scheme would
require only a slight extension to the query process to al-
low clients to retrieve individual blocks from an extent.

Two-Level interface:
create(H(PK), cert);

ext name = append(H(PK), cert, data[]);
ext name = truncate(H(PK), cert);
ext name = snapshot(H(PK), cert);
ext name = put(cert, data[]);

cert = getCert(ext name);
data[] = getBlocks(ext name, blocks[]);
extent = getExtent(ext name);

Table 2: By extending the traditional put()/get() in-
terface used by first-generation systems, peer-to-peer stor-
age systems can support data access at different granular-
ities and allow query routers to operate more efficiently.

While easy to implement, this approach has several prob-
lems. With applications that create new data at a slow
rate, a client will buffer data locally for a long time before
writing it to the system. This impacts the durability and
visibility of the data and can lead to lost data in the event
of a client crash.

Instead, we seek a solution that allows clients to store
data in extents incrementally and as it is created. Recall
from our discussion of self-verifying data in Section 2 that
key-verified data can be modified while hash-verified data
is immutable. Thus, to allow the contents of an extent to
change over time, we know that mutable extents must be
key-verified. However, it is not feasible to store all data
in key-verified extents because that would require extents
to grow boundlessly large or clients to manage large num-
bers of key pairs. Consequently, we include a mechanism
to convert key-verified extents into hash-verified extents.

With these observations, we present the interface de-
fined in Table 2. This interface extends the traditional in-
terface shown in Table 1 by defining additional operations
for key-verified data and including the snapshot() op-
eration to convert key-verified extents to hash-verified ex-
tents. Figure 4 shows how different operations relate to
different types of self-verifying data. Note from Table 2
that we assume all extents—both key-verified and hash-
verified—include a certificate signed by the data owner
that asserts the current content of the extent. The certifi-
cate, which includes metadata about the extent and a list
of blocks stored in the extent, can also be used to attribute
storage to individual users for accounting purposes.

5



putappend
truncate

create

Key−verified Data Hash−verified Data

snapshot

get

Figure 4: The expanded interface of Table 2 provides dif-
ferent commands to operate on different types of self-
verifying data. Commands create, append, and truncate
operate on key-verified extents while snapshot converts a
key-verified extent into a hash-verified extent.

Let us present an example to explain the proposed in-
terface. A client wishing to store data first uses the
create() interface to request that the infrastructure cre-
ate an extent. New extents are key-verified objects, named
by the hash of a public key that verifies the certificate
stored in the extent. To create a new extent, the system
must recruit a set of storage servers to host the extent.
We assume that the system includes a storage set iden-
tification service that provides sets of candidate storage
servers. We leave the details of this service unspecified—
the service may create candidate sets using simple random
assignment or using heuristics such as network location
or server capacity. On a create() operation, the sys-
tem requests a new storage set from the service and then
contacts the members of that set to allocate space for the
extent and participate in management of the extent.

After an extent has been created, an application can
write new data to it. New data can be added to the ex-
tent using the append() operation. An application can
append data to a key-verified extent, provided that it also
supplies a new certificate that certifies those changes.

To limit the size of an extent and the number of
key pairs that a client must manage, the application can
periodically convert mutable, key-verified data to im-
mutable hash-verified data using the snapshot() inter-
face. Note that the snapshot() operation creates a new
extent and thus makes use of the set identification service.
Once an extent is made hash-verifiable, its contents can
never change.

After saving data in an immutable format, the client can
reinitialize the key-verified extent with a truncate()

H(Dn)

N0

H(D0)

N1

H(D1)

Nn

H(PK)

Figure 5: To compute the hash-verified name of an ex-
tent, a peer combines the blocks of the key-verified extent
in a self-verifying chain. A peer can compute the even-
tual hash-verified name incrementally, as new blocks are
added. To compute the name, a peer uses the recurrence
relation Ni = H(Ni−1 + H(Di))). N

−1 = H(PK)
where PK is a public key.

operation. The truncate() operation removes all
blocks from the extent, leaving a key-verified extent
that is equivalent to a newly created extent. While
snapshot() and truncate() are typically used to-
gether, we have elected to make them separate operations
for ease of implementation, especially for distributed sys-
tems with Byzantine failure modes. Each individual op-
eration can be repeated until successful execution is as-
sured. In Section 5, we will show how the snapshot()
and truncate() operations can be used to facilitate
storing streams of data.

The append(), snapshot(), and truncate()
operations that transform mutable, key-verified extents
are useful for applications that periodically write small
amounts of data, allowing the system to aggregate data in
a way that was not possible previously. But in situations
that applications quickly write large amounts of data, us-
ing the sequence of operations can be inefficient. Instead,
applications may write collections of blocks directly to
hash-verified extents using the put() operation. The
put() operation, of course, also relies of the set iden-
tification service.

4.3 Naming Extents

The names of hash-verified extents should be created in a
way that allows any peer to reference and verify both the
individual blocks and the extent as a whole. One scheme
that satisfies these properties is naming blocks by chain-
ing [8], as shown in Figure 5. Given a block of data, Di,

6



the block name is simply the hash of the data, H(Di). The
hash-verified extent name is computed using the recur-
rence relation Ni = H(Ni−1 + H(Di))), where + is the
concatenation operator. When snapshotting a key-verified
extent that contains n blocks, the name of the resulting
hash-verified extent is Nn corresponding to the last data
block added to the extent. We bootstrap the process by
defining N

−1 to be a hash of the public key.
Creating extent names by chaining has several advan-

tages. It allows us to compute names incrementally; when
a block is added to an extent, we need to hash only the new
data, not all data in the extent, to compute the running
name. Also, chaining creates a verifiable, time-ordered
log recording data modifications.

To access blocks from a key-verified extent, the client
queries the system for the extent named by the hash of
the public key signing the extent’s certificate. To ac-
cess blocks from a hash-verified extent, the client uses
the name computed by hashing the chain of component
blocks. In the next section, we show how an application
can keep track of those names.

5 An Example Application: Ver-
sioning Backup

Finally, we present a high-level design demonstrating how
one might use the interface described in Section 4 to im-
plement a sample application, namely a versioning back-
up application.

Because a filesystem’s version history may grow very
large, the design must allow for storage to be spread
across multiple extents. This design will store the version
history in a series of extents. The application appends the
new data from the filesystem to a key-verified extent un-
til the extent reaches a specified maximum capacity. The
application then snapshots the extent to convert it to hash-
verified immutable data and truncates the key-verified ex-
tent to prepare it for more data.

We will assume that the user associates a unique key
with each filesystem that she wishes to backup. To archive
a filesystem—for example, the simple filesystem shown
in Figure 6—the back-up application first translates the
filesystem into a self-verifying Merkle tree. The form
of the resulting Merkle tree for the sample filesystem is

proj1

budget

proj2

report reqs

docs

sched

Figure 6: A simple file system used as a running example.

shown in Figure 7. (The details about the secure refer-
ences will be explained below.) For simplicity, the file in-
odes are not shown in the figure. This translation process
is analogous to that used in CFS [2]. Note the similarity
between Figure 7 and the first version of the object shown
in Figure 1.

The key challenge when creating the Merkle tree is in
determining the self-verifying block names to embed in
the tree. Recall that to retrieve a block from a system that
implements two-level naming, one must provide the ex-
tent name and the block name. If, however, we wish to
use the snapshot functionality to convert key-verified ex-
tents to hash-verified extents, we cannot know the even-
tual hash-verified name of an extent as long as it is muta-
ble. So, without knowing the eventual hash-verified name
of an extent, how do we refer to a block when building the
Merkle tree?

To create unique, unforgeable references for blocks
stored in key-verified extents, the application assigns a
sequence number, s, to each extent. New key-verified ex-
tents are assigned sequence number s = 0. After execut-
ing the snapshot() and truncate() operations on
an extent, the application increments the sequence num-
ber and inserts it in the otherwise empty extent. When
creating or updating a Merkle tree, the application embeds
block references of the form (s, H(Di)) where H(Di) is
the hash of the data block.

The references embedded in the hash tree cannot be
used to retrieve data directly because the query router
does not identify extents by application-defined sequence
numbers. To enable clients to retrieve data using the ref-
erences embedded in the tree, the application also main-
tains a mapping that resolves the sequence number to the
permanent, hash-verified extent name. This mapping is
placed along with the sequence number as the first block
in the extent. Each time the mutable extent is made hash-

7



proj2: (s=0, H(report)) (s=0, H(reqs))proj1: (s=0, H(budget)) (s=0, H(sched))

docs: (s=0, H(proj1)) (s=1, H(proj2))

reqsreportbudget sched

Figure 7: The Merkle tree resulting from the translation of the initial version of the filesystem into a self-verifying
data structure. For simplicity, file inodes are not shown.

s=−1−>
s=−1−>

D0

D1

D2

D3

D4

D5

Extent E0 Extent E1

s=0−>(E0,M0)

budget

sched

proj1

report

reqs

proj2

docs

s=0 s=1

Figure 8: Two extent are used to store a back-up of the
original file system. The first extent, E0, is filled and has
been converted to a hash-verified extent. The second ex-
tent, E1, is a partially filled key-verified extent.

verified and then truncated to contain no data, the appli-
cation records the mapping sj−1 → (Ej−1, Mj−1) where
Ej−1 is the hash-verifiable name of the previous extent
and Mj−1 is the name of the metadata block that records
mappings in the previous extent.

Putting all of these mechanisms together, Figure 8
shows the contents of the chain of extents after archiving
the first version of the filesystem. The first block in each
extent, labelled D0 in the figure, contains the metadata
information for the application including the sequence
number of the extent and the mappings between previous
sequence numbers and the corresponding hash-verified
names of their extent. Of course, to ensure that a par-
ent block can record the names of all of its child blocks,
the application must write blocks from the Merkle tree
to extents in a depth-first, leaf-to-root fashion. In storing

the initial version of the filesystem, the application com-
pletely filled one extent and partially filled another. The
filled extent, E0, has been converted to a hash-verified
extent and is immutable. The partially filled extent E1
is a key-verified extent and can store more data at a later
time. The first block in E1, its metadata block includes
the mapping for the previous extent E0. By observing the
organization of data in the extents in Figure 8, the reader
should now understand the derivation of the unforgeable
references in the Merkle tree of Figure 7.

Figure 9 shows how the backup application handles
modifications to the filesystem. Assume the user edits
the files in the proj2 directory. Figure 9(a) shows the
Merkle tree resulting from these changes. The dashed
pointer indicates a reference to a block from the previous
version, namely block (s = 0, H(proj1)). Figure 9(b)
shows the contents of the extent chain after recording the
changes. The changes have filled extent E1 which has
been converted to an immutable hash-verified extent. The
key-verified extent for the filesystem is now labelled ex-
tent E2. Again, notice how the first block of E2 records
the hash-verified names of previous extents and the name
of the metadata block in those extents.

To recover the name of an extent corresponding to a
sequence number, the application must consult the map-
pings that are stored in the extent. The mapping can al-
ways be found as the first data block of the key-verified
extent corresponding to the object. An application can
trade storage for lookup latency by storing more or fewer
mappings in each extent. A client may also keep a local
cache of these immutable mappings to accelerate future
translations.

8



s=−1 −> 
s=−1−>

s=−1−>

D0

D1

D2

D3

D4

D5

Extent E0 Extent E1 Extent E2

(b)

s=0−>(E0,M0) s=1−>(E1,M1)
s=0−>(E0,M0)

budget

sched

proj1

report

reqs

s=0
proj2

docs

report’

reqs’

proj2’

s=1
docs’

s=2

(s=0, H(proj1)) (s=1, H(proj2’))docs’:

(s=1, H(report’)) (s=1, H(reqs’))proj2’:

reqs’report’

(a)

Figure 9: (a) The Merkle tree resulting from translating
the updated file system. The dashed pointer indicates a
reference to a block from the previous version. (b) The
contents of the extents chain after storing blocks of the
updated filesystem.

6 Conclusion and Future Work

We have identified the prevailing design decisions used
in existing peer-to-peer storage systems focussing on the
cost of coupling the unit of client data access to the unit of
infrastructure data management. We proposed an alterna-
tive approach, two-level naming, to allow efficient, vari-
able granularity access for future systems. We described
an implementation and API to support two-level naming
and showed how applications could use the new API.

References

[1] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M.
Voelker. Total recall: System support for automated avail-
ability management. In Proc. of NSDI, pages 337–350,
Mar. 2004.

[2] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. of ACM SOSP, pages 202–215, Oct. 2001.

[3] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-
ica. Towards a common API for structured peer-to-peer
overlays. In Proc. of International Workshop on Peer-to-
Peer Systems, Feb. 2003.

[4] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and secure
distributed read-only file system. In Proc. of OSDI, Oct.
2000.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proc. of ACM SOSP, pages 96–108, Oct.
2003.

[6] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive cor-
related failures. In Proc. of NSDI, May 2005.

[7] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. D. Tygar. Dis-
tillation codes and their application to DoS resistant multi-
cast authentication. In Network and Distributed System Se-
curity Conference (NDSS 2004), pages 37–56, Feb. 2004.

[8] J. Li, M. Krohn, D. Mazires, and D. Shasha. Secure un-
trusted data repository (sundr). In Proc. of OSDI, pages
121–136, Dec. 2004.

[9] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX. Computer Systems, 2(3):181–
197, 1984.

[10] R. C. Merkle. A digital signature based on a conventional
encryption function. In Proc. of CRYPTO, pages 369–378,
1988.

[11] S. J. Mullender and A. S. Tanenbaum. A distributed file
service based on optimistic concurrency control. In Proc.
of ACM SOSP, pages 51–62, Dec. 1985.

[12] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In Proc. of OSDI,
Dec. 2002.

[13] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Proc. of USENIX FAST, Jan. 2002.

[14] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: the OceanStore prototype. In
Proc. of USENIX FAST, pages 1–14, Mar. 2003.

[15] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proc. of ACM SOSP, pages 188–201,
Oct. 2001.

9



[16] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS file system. In
Proc. of USENIX Technical Conference, pages 1–14, Jan.
1996.

[17] H. Weatherspoon, C. Wells, and J. Kubiatowicz. Naming
and integrity: Self-verifying data in peer-to-peer systems.
In Proc of FuDiCo, June 2002.

10


